第七章半导体器件基础

合集下载

半导体器件基础

半导体器件基础

半导体器件基础半导体器件是现代电子技术中极其重要的组成部分,它们广泛应用于电子设备和通信系统中。

本文将介绍半导体器件的基础知识,包括半导体材料、PN结、二极管、晶体管和集成电路。

一、半导体材料半导体器件的核心是半导体材料。

半导体材料是介于导体和绝缘体之间的材料,它的导电性能在室温下较低,但在特定条件下可被控制增强。

常见的半导体材料有硅和锗。

半导体材料的导电特性取决于其原子晶格的结构和杂质的掺入。

二、PN结PN结是半导体器件中常见的结构之一。

它由一个掺杂有三价杂质的P区和一个掺杂有五价杂质的N区组成。

在PN结中,P区的杂质原子会释放出空穴,而N区的杂质原子则释放出电子。

当P区和N区相接触时,空穴和电子将发生复合,形成电势垒。

这种电势垒在正向偏置和反向偏置下表现出不同的特性。

三、二极管二极管是最简单的半导体器件之一。

它由PN结组成,具有两个引线,分别为阴极和阳极。

二极管可用于整流、开关和发光等应用。

在正向偏置下,电流可以顺利通过二极管;而在反向偏置下,电流将被截断。

四、晶体管晶体管是半导体器件的一种重要类型。

它由三个掺杂不同的区域组成,分别为发射极、基极和集电极。

晶体管可用于放大、开关和振荡等电路中。

具体而言,当有电流流经基极时,晶体管将放大电流,并将其从发射极传递到集电极。

五、集成电路集成电路是将大量的半导体器件和电子元件集成在单个芯片上的技术。

它是现代电子技术发展的重要里程碑,使得电子设备更小、更强大。

集成电路分为两种主要类型:模拟集成电路和数字集成电路。

模拟集成电路用于处理连续变化的信号,而数字集成电路则用于处理离散的数字信号。

综上所述,半导体器件作为现代电子技术的基础,具有广泛的应用前景。

通过了解半导体材料、PN结、二极管、晶体管和集成电路等基础知识,我们可以更好地理解和应用半导体器件,推动电子技术的进步和创新。

半导体器件基础课件(PPT-73页)精选全文完整版

半导体器件基础课件(PPT-73页)精选全文完整版

有限,因此由它们形成的电流很小。
电子 技 术
注意:
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P 区中的空穴、N 区中的电子(
都是多子)向对方运动(扩散 运动)。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
电子 技 术
二、PN 结的单向导电性
电子 技 术
1. 1 半导体二极管的结构和类型
构成:实质上就是一个PN结
PN 结 + 引线 + 管壳 =
二极管(Diode)
+
PN
-
符号:P
N
阳极
阴极
分类:
按材料分 按结构分
硅二极管 锗二极管 点接触型 面接触型 平面型
电子 技 术
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
电子 技 术
半导体中存在两种载流子:自由电子和空穴。 自由电子在共价键以外的运动。 空穴在共价键以内的运动。
结论:
1. 本征半导体中电子空穴成对出现,且数量少。 2. 半导体中有电子和空穴两种载流子参与导电。 3. 本征半导体导电能力弱,并与温度有关。
电子 技 术
2、杂质半导体
+4
一、N 型半导体
电子 技 术
三、课程特点和学习方法
本课程是研究模拟电路(Analog Circuit)及其 应用的课程。模拟电路是产生和处理模拟信号的电路。 数字电路(Digital Circuit)的知识学习由数字电子技 术课程完成。
本课程有着下列与其他课程不同的特点和分析方 法。
电子 技 术

半导体器件基础

半导体器件基础

半导体器件基础一、引言半导体器件是现代电子技术的基础,广泛应用于通信、计算机、消费电子等各个领域。

本文将对半导体器件的基础知识进行介绍,包括半导体材料、PN结、二极管和晶体管。

二、半导体材料半导体器件的制作材料主要是硅(Si)和锗(Ge)。

这两种材料的原子结构中,外层电子数与内层电子数相差较小,使得它们具有较好的导电性能。

此外,硅和锗还具有稳定的化学性质和较高的熔点,适合用于制作半导体器件。

三、PN结PN结是半导体器件中最基本的结构之一。

它由一个P型半导体和一个N型半导体组成。

在PN结中,P型半导体中的空穴(正电荷)和N型半导体中的电子(负电荷)会发生扩散,形成空间电荷区。

空间电荷区中的电荷分布形成了电场,使得PN结两侧形成了正负电势差。

当外加电压使得PN结正向偏置时,空间电荷区变窄,电流可以通过;当外加电压使得PN结反向偏置时,空间电荷区变宽,电流无法通过。

PN结的这种特性使其成为二极管和晶体管等器件的基础。

四、二极管二极管是一种最简单的半导体器件,由PN结组成。

二极管具有只能单向导通电流的特性,即正向偏置时电流可以通过,反向偏置时电流无法通过。

二极管广泛应用于电路中的整流、限流和保护等功能。

五、晶体管晶体管是一种三层PN结的器件,由发射极、基极和集电极构成。

晶体管的工作方式取决于PN结的偏置状态。

当PN结适当偏置时,发射极和集电极之间的电流受到基极电流的控制。

晶体管可以放大电流和信号,广泛应用于放大器、开关和逻辑电路等领域。

六、其他半导体器件除了二极管和晶体管,半导体器件还包括场效应晶体管(FET)、可控硅(SCR)等。

FET是一种基于电场控制的器件,具有高输入阻抗和低噪声的特点,适用于放大和开关电路。

SCR是一种具有双向导通特性的器件,广泛应用于交流电控制领域。

七、结论半导体器件基础知识对于理解和应用现代电子技术至关重要。

本文介绍了半导体材料、PN结、二极管和晶体管等基本概念。

通过深入学习和理解半导体器件的基础知识,我们可以更好地应用和创新电子技术,推动科技进步和社会发展。

半导体器件基础

半导体器件基础

IF(多子扩散) 反向饱和电流 反向击穿电压 正偏
反偏 反向击穿 IR(少子漂移)
电击穿——可逆
2019年1月14日星期一5时11 分50秒
热击穿——烧坏PN结
11
根据理论分析:
i I S (e
u
UT
1)
T
UT =kT/q 称为温度的电压当量 u U 当 u>0 u>>UT时 e 1 其中k为玻耳兹曼常数 u 1.38×10-23 i I Se U T -9 q 为电子电荷量 1.6 × 10 u 当 u<0 |u|>>|U T |时 e U T 1 T 为热力学温度 对于室温(相当T=300 K) i IS 则有UT=26 mV。
3

E
+4 +4 +4

自由电子
4、导电机制
+4 +4 +4
+4
自由电子 载流子 空穴 带负电荷 带正电荷
+4
电子流
+4
空穴流

=总电流
本征半导体的导电性取决于外加能量:
温度变化,导电性变化;光照变化,导电性变化。
2019年1月14日星期一5时11 分50秒 4
二. 杂质半导体
在本征半导体中掺入某些微量杂质元素后的半导体称为 杂质半导体。 硅原子
△I
I z ma x
△U
27
稳压二极管的主要 参数 (1) 稳定电压UZ ——
在规定的稳压管反向工作电流IZ下 ,所对应的反向工作电压。
UZ
i
(2) 动态电阻rZ ——
陡。
I z min
△I

半导体器件基础

半导体器件基础

自由电子 带负电荷 电子流
载流子
空穴 带正电荷 空穴流 +总电流
6
N型半导体和P型半导体
多余电子
N型半导体
硅原子
【Negative电子】
+4
+4 +4
在锗或硅晶体内
掺入少量五价元素
杂质,如磷;这样
+4
在晶体中就有了多 磷原子 余的自由电子。
+4
+5 +4 +4 +4
多数载流子——自由电子
少数载流子——空穴
不失真——就是一个微 弱的电信号通过放大器 后,输出电压或电流的 幅度得到了放大,但它 随时间变化的规律不能 变。
放大电路是模拟电路中最主要的电路,三极管是 组成放大电路的核心元件。
具有放大特性的电子设备:收音机、电视机、
手机、扩音器等等。
36
利用三极管组成的放大电路,最常用的接法是:基 极作为信号的输入端,集电极作为输出端,发射极 作为输入回路、输出回路的共同端(共发射极接法)
38
饱和工作状态
调节偏流电阻RP的阻值, 使基极电流充分大时,集电 极电流也随之变得非常大, 三极管的两个PN结则都处于 正向偏置。集电极与发射极 之间的电压很小,小到一定 程度会削弱集电极收集电子 的能力,这时Ib再增大, Ic也不能相应地增大了, 三极管处于饱和状态,集电 极和发射极之间电阻很小, 相当开关接通。
27
▪ 几种常见三极管的实物外形
大功率三极管
功率三极管
普通塑封三极管
28
▪ 三极管的分类
① 按频率分
高频管 低频管
硅管 ③ 按半导
体材料分 锗管
② 按功率分

第7章 半导体器件基础

第7章 半导体器件基础

PNP型:UE>UB>UC
三极管具有放大作用的测试电路
IC IB V Rb + IE
Rc
+ -
I E IC I B

VBB UBB
-
VCC UCC
I I
C B
进入P区的电子少部分与基区的 空穴复合,形成电流IB ,多数扩 散到集电结。
C B
IB
RB E EB IE
N P N
RC Ec 发射结正
二、PN结的单向导电性 1、外加正向电压 P区接电源正极,N区接电源负极,又称正向偏置。
U
内电场 外电场
U
外电场抵消内电场的作用,使耗尽层变窄,当外电压增 加到一定值后,正向电流明显增加(P→N),PN结呈现 的电阻很小。形成较大的扩散电流,PN结导通。
2、外加反向电压
U
外电场和内电场共同作用,使耗尽层变宽,阻碍了多子的扩散运动, 而加强了少子的漂移运动,通过PN结的电流(反向电流)由少子的 漂移运动决定 。少子浓度很低,反向电流很小。当反向电压增大时, 反向电流几乎不随外加电压的增大而增大。PN结截止。
(a. 电子电流、b.空穴电流)
7.1.2 PN结
通过现代工艺,把一块本征半导体的一边形 成P型半导体,另一边形成N型半导体,两种 半导体的交界处就形成PN结。
P区
N区
一、PN结的形成
P区
N区
在交界面,由于两种载流子的浓度差,出 现多子的扩散运动。
(N区中多子电子向P区扩散并与P区中的空穴复合而消失; P区中的多子空穴扩散到N区,与N区中的自由电子复合而消失)
7.4.2 工作原理
晶体管的两个PN结(发射结、集电结) 加不同的偏置电压,晶体管具有放大、 饱和、截止三种工作状态。

半导体器件基础要点课件

半导体器件基础要点课件
变。
05 半导体器件应用与展望
半导体器件在电子设备中的应用
集成电路
01
半导体器件是集成电路的基础组成部分,用于实现各种逻辑功
能和电路控制。
数字逻辑门
02
半导体器件可以构成各种数字逻辑门,如与门、或门、非门等
,用于实现数字信号的处理和运算。
微处理器和存储器
03
微处理器和存储器是半导体器件的重要应用领域,用于实现计
详细描述
半导体器件可以分为分立器件和集成电路两大类。分立器件 包括二极管、晶体管等,它们主要用于信号放大、转换和控 制。集成电路是将多个器件集成到一个芯片上,实现更复杂 的功能,如运算、存储和处理等。
半导体器件的发展历程
总结词
半导体器件的发展经历了三个阶段,即晶体管的发明、集成电路的诞生和微电子技术的 飞速发展。
包括热导率、热膨胀系数等参数,影 响半导体的散热性能和可靠性。
光学性能
包括能带隙、光吸收系数、光电导率 等参数,影响半导体的光电转换性能 。
03 半导体器件工作原理
PN结的形成与特性
PN结的形成
在半导体中,通过掺杂形成P型和N型半导体,当P型和N型半导体接触时,由 于多数载流子的扩散作用,在接触面形成一个阻挡层,即PN结。
硅基MEMS器件的特点与优势
高度集成
硅基MEMS器件可以在微米尺 度上实现复杂的功能,具有极
高的集成度。
长寿命
硅基材料具有优异的机械性能 和化学稳定性,使得硅基 MEMS器件具有较长的使用寿 命。
低功耗
硅基MEMS器件的功耗较低, 适用于对能源效率要求较高的 应用场景。
可靠性高
硅基MEMS器件的结构简单, 可靠性高,不易出现故障。

半导体器件基础知识

半导体器件基础知识

半导体基础知识一、半导体本础知识(一)半导体自然界的物质按其导电能力区别,可分为导体、半导体、绝缘体三类。

半导体是导电能力介于导体和绝缘体之前的物质,其电阻率在10-3~109Ω范围内。

用于制作半导体元件的材料通常用硅或锗材料。

(二)半导体的种类在纯净的半导体中掺入特定的微量杂质元素,能使半导体的导电能力大提高。

掺入杂质后的半导体称为杂质半导体。

根据掺杂元素的性质不同,杂质半导体可分为N型和P型半导体。

(三)PN结及其特性1、PN结:PN结是构成半导体二极管、三极管、场效应管和集成电路的基础。

它是由P型半导体和N型半导体相“接触”后在它们交界处附近形成的特殊带电薄层。

2、PN结的单向导电性:当PN结外加正向电压(又叫正向偏置)时,PN结会表现为一个很小的电阻,正向电流会随外加的电压的升高而急速上升。

称这时的PN结处于导通状态。

当PN结外加反向电压(以叫反向偏置)时,PN结会表现为一个很大的电阻,只有极小的漏电流通过且不会随反向电压的增大而增大,这时的电流称为反向饱和电流。

称这时的PN结处于截止状态。

当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。

这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。

3、频率特性由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。

导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。

二、半导体二极管(一)半导体二极管及其基本特性1、半导体二极管:半导体二极管(简称为二极管)是由一个PN结加上电极引线并封装在玻璃或塑料管壳中而成的。

其中正极(或称为阳极)从P区引出,负极(或称为阴极)从N区引出。

以下是常见的一些二极管的电路符号:普通二极管稳压二极管发光二极管整流桥堆2、二极管的伏安特性二极管的伏安特征如下图所示:二极管的伏安特性曲线(二)二极管的分类二极管有多种分类方法1、按使用的半导体材料分类二极管按其使用的半导体材料可分为锗二极管、硅二极管、砷化镓二极管、磷化镓二极管等。

半导体物理与器件第七章1

半导体物理与器件第七章1
①空间电荷区内正负空间电荷区的宽度和该区的杂质浓度成反 比,即空间电荷区主要向杂质浓度低的一侧扩展。
②单边突变结的空间电荷区宽度随低掺杂一边的杂质浓度的增加而 下降,而且内建电势差主要分配在这一区域
当施加外电压时,可推广为:
W
(Vbi
V
)( 2s
e
)(
Na Nd Na Nd
)
7.3 PN结反偏特性
成结后:
电子由n型材料 向p型材料扩散
空穴由p型材料 向n型材料扩散
P区
N区
n区处留下带正 电的施主杂质
p区处留下带负 电的受主杂质
空间电荷区 内建电场
在pn结附近,n区一侧电离施
主形成正电荷区,P区一侧电离受
P
N
主形成负电荷区,两者统称为空 间电荷区,所带电荷为空间电荷
由于空间电荷区中的可动载流
dEFi dx
)
本征费米能级 EFi 与电子的附加电势能 -e(x) 变化一致,即:
dEFi e d(x) eE
dx
dx

Jn
nqn
E
1 q
( dEF dx
dEFi dx
)
Jn
nn
dEF dx
同理:
Jp
p p
dEF dx
以上两式说明通过pn结的电流密度与费米能级的变化
有关,对于平衡p-n结,Jn、Jp应均为零
E
子基本处于耗尽状态,因此空
成结后各电流成分:
间电荷区也称作耗尽区。
载流子扩散流:
(J p )扩
eDp
dp(x) dx
(Jn )扩
eDn
dn(x) dx
内建电场导致的漂移电流: (J p )漂 p(x)e p E

半导体器件基础知识

半导体器件基础知识

半导体器件基础知识目录一、半导体器件概述 (2)1.1 半导体的定义与特性 (3)1.2 半导体的分类 (3)1.3 半导体的应用领域 (4)二、半导体器件基础理论 (5)2.1 二极管 (6)2.1.1 二极管的分类与结构 (8)2.1.2 二极管的特性与应用 (9)2.2 晶体管 (10)2.2.1 晶体管的分类与结构 (11)2.2.2 晶体管的特性与应用 (13)2.3 集成电路 (15)2.3.1 集成电路的分类与结构 (16)2.3.2 集成电路的特性与应用 (18)三、半导体器件制造工艺 (19)3.1 晶圆制备 (20)3.2 淀积与光刻 (21)3.3 蚀刻与退火 (22)3.4 封装与测试 (23)四、半导体器件设计 (24)4.1 设计流程与方法 (24)4.2 特征尺寸与制程技术 (25)4.3 低功耗设计 (27)4.4 高性能设计与优化 (28)五、半导体器件测试与可靠性 (29)5.1 测试方法与设备 (30)5.2 可靠性评估与提升 (32)5.3 环境与寿命测试 (33)六、新兴半导体器件与发展趋势 (34)6.1 量子点半导体器件 (36)6.2 纳米半导体器件 (37)6.3 光电半导体器件 (38)6.4 三维集成与先进封装技术 (39)一、半导体器件概述半导体器件是现代电子工业中的核心组件,它们在各种电子设备中发挥着至关重要的作用。

半导体器件基于半导体材料,如硅(Si)和锗(Ge),这些材料的导电性介于导体和绝缘体之间。

通过控制半导体器件中掺杂离子的浓度和类型,可以实现其电学特性的精确调整,从而满足不同电子系统的需求。

半导体器件广泛应用于放大器、振荡器、开关、光电器件、传感器等多种功能模块。

集成电路(IC)是半导体器件的一种重要形式,它将成千上万的半导体器件紧密地封装在一个微小的芯片上,形成了一个高度集成化的电子系统。

集成电路在计算机、手机、汽车电子等领域的应用尤为广泛,极大地推动了信息技术的发展。

半导体器件基础

半导体器件基础

半导体器件基础半导体器件是由半导体材料制成的电子元件,用于控制和放大电流和电压。

常见的半导体器件有二极管、晶体管、场效应管、双极型晶体管、光电二极管等。

半导体器件的基础知识包括以下几个方面:1. 半导体材料:半导体器件主要使用硅(Si)和砷化镓(GaAs)等半导体材料。

半导体材料具有介于导体和绝缘体之间的电导特性,可以通过控制材料的掺杂来调节其导电性。

2. PN结:PN结是半导体器件中最基本的结构,由P型和N型半导体材料直接接触而成。

在PN结中,P型半导体中的空穴与N型半导体中的电子发生复合,形成一个电子云区,这称为耗尽区。

耗尽区的存在使得PN结具有正向导通和反向截止的特性。

3. 二极管:二极管是一种最简单的半导体器件,由PN结构成。

在正向偏置(即P端连接正电压)时,二极管导通,允许电流通过;在反向偏置(即N端连接正电压)时,二极管截止,电流无法通过。

二极管广泛用于整流和保护电路中。

4. 晶体管:晶体管是一种三层构造的半导体器件,通常分为NPN和PNP两种类型。

晶体管可以作为开关或放大器使用,可以控制一个输入电流或电压来控制另一个输出电流或电压。

晶体管的放大性能使得它在电子设备中有广泛的应用。

5. 场效应管:场效应管是一种基于电场效应的半导体器件,包括MOSFET(金属-氧化物-半导体场效应管)和JFET (结型场效应管)两种。

场效应管具有高输入电阻、低输入电流、低噪声等特点,常用于放大和开关电路中。

6. 光电器件:光电器件包括光电二极管和光电三极管,它们能够将光信号转换为电信号。

光电器件广泛应用于光通信、光电传感、光能转换等领域。

以上是半导体器件基础的概述,深入了解半导体器件还需要学习更多的电子物理和电路理论知识。

《半导体器件基础》课件

《半导体器件基础》课件
《半导体器件基础》PPT 课件
这个PPT课件将带你深入了解半导体器件基础知识,从定义和分类开始,逐步 介绍固体物理基础、材料特性及应用等内容。
第一章 概述
半导体器件的定义和分类
从理解半导体器件的概念和分类开始,打下良好的基础。
固体物理基础
了解固体物理基础和半导体的结构特性,为后续内容打下坚实的基础。
介绍在半导体器件制造过程中使用的工艺辅助设备和材料。
第八章 半导体器件测试与可靠性
半导体器件生产过程中的测试
讨论半导体器件生产过程中的测试方法和步骤,确保 产品质量。
半导体器件的可靠性分析方法
介绍半导体器件的可靠性分析方法,以提高产品可靠 性和寿命。
结语
1 半导体器件的未来发展趋势
2 学习资源和参考文献
CMOS电路的设计原理 和技巧
讲解CMOS电路设计的原理和技巧, 探索其优势和应用范围。
第五章 光电子器件
光电二极管和光电晶体管
了解光电二极管和光电晶体管的原理和结构,以及其在光电子学中的应用。
光电耦合器件和光电器件应用
探索光电耦合器件和其他光电器件的特性和应用领域。
第六章 集成电路和MEMS器件
展望半导体器件领域的未来,包括新技术和应用。
提供学习资源和参考文献,以便进一步学习和探 索。
2
稳压二极管
介绍稳压二极管及其在电路中的应用,以及其工作原理。
3
功率晶体管
理解功率晶体管的工作原理和应用,探讨其在电路中的功能。
第四章 MOS场效应管
基础概念和原理
深入了解MOS场效应管的基本概 念、工作原理和操作特性。
MOSFET的模型和特性
介绍MOSFET的模型和特性,包括 负载线和阈值电压等。各种应用中的表现。

电工学第7章半导体器件

电工学第7章半导体器件

6
Si
Si
BS–i
Si
硼原子 接受一个 电子变为 负离子
掺入三价元素 空穴 掺杂后空穴数目大量
增加,空穴导电成为这 种半导体的主要导电方 式,称为空穴半导体或 P型半导体。 在 P 型半导体中空穴是多 数载流子,自由电子是少数 载流子。
无论N型或P型半导体都是中性的,对外不显电性。
7
三、PN 结
外电场
+–
内电场被
削弱,多子 的扩散加强, 形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
PN 结加反向电压(反向偏置) P接负、N接正
PN 结变宽
--- - -- --- - -- ---- - -
++ + ++ + ++ +
+ ++ + ++ + ++
UCC = 15 V UBB1 = 5 V UBB2 = 1.5 V
晶体管处于放大状态。
RB1 = 500 k RB2 = 50 k
RC = 5 k
(2) 开关 S 合向 b 时
IB =
UBB1 RB2
=
5 50×103 A = 0.1 mA
RB1
IC
=
UCC RC
=
15 5×103 A = 3 mA
点接触型、面接触型。

(2) 按材料分类
阳极
硅管、锗管。
(3) 按用途不同分类
普通管、整流管、开关管等。
N
阴极
13
(a) 点接触型 结面积小、

《半导体器件基础》课件

《半导体器件基础》课件

计算机的CPU、内存等核心硬件都离不开半导体器件,如晶体管、电容
、电阻等。
03
消费电子中的半导体器件
手机、电视、音响等消费电子产品中,半导体器件广泛应用于信号处理
、显示控制等方面。
光电器件在通信与显示领域的应用
光纤通信中的光电器件
光纤通信系统中的光电器件,如激光器、光电探测器等,用 于实现高速、大容量的信息传输。
成。
工作原理ቤተ መጻሕፍቲ ባይዱ
02
通过改变栅极电压来控制源极和漏极之间的电流。
特性
03
具有低噪声、高速、低功耗等优点,常用于高频率信号处理。
04
半导体器件的工作原理
半导体的能带模型
原子能级与能带
描述原子中的电子能级如何形成连续的能带结构。
价带与导带
解释半导体的主要能带特征,包括价带和导带的定义与特性。
禁带宽度
讨论禁带宽度对半导体性质的影响,以及如何利用禁带宽度进行电 子跃迁。
半导体器件的交流参数
阐述半导体器件的交流参数,如频率响应、噪 声系数等。
半导体器件的可靠性参数
介绍半导体器件的可靠性参数,如寿命、稳定性等。
05
半导体器件的应用
电子设备中的半导体器件
01
集成电路中的半导体器件
集成电路是现代电子设备的基础,其中的晶体管、二极管等半导体器件
起着关键作用。
02
计算机硬件中的半导体器件
ABCD
通过掺入不同元素,可以 调控半导体的导电类型( N型或P型)和导电性能 。
在实际应用中,通常将硅 或锗基体材料进行掺杂, 以实现所需的导电性能。
宽禁带半导体材料
宽禁带半导体的特点是其具有高热导率、高击 穿场强和高电子饱和速度等优异性能。

半导体器件基础习题答案(完美版)

半导体器件基础习题答案(完美版)
1062109053 杨旭一整理 (仅供参考) 5
半导体器件习题答案
片的电阻率较大?说明理由。 A:

1 , n型半导体 q n N D 1 , p型半导体 q p N A
两片晶片的掺杂浓度相同,而电子的迁移率大于空穴的迁移率,因此 p 型半导体即晶片 2 的电阻率较大。 Q: (e) 在室温下硅样品中测得电子的迁移率 cm2/V .s 。求电子的扩散系数。 A:
第二章 2.2 使用价键模型,形象而简要地说明半导体 (a) 失去原子 (b) 电子 (c) 空穴 (d) 施主 (e) 受主
2.3 Q: 使用能带模型,形象而简要地说明半导体: (a) 电子 (b) 空穴 (c) 施主
(d) 受主
(e) 温度趋向于 0 K 时,施主对多数载流子电子的冻结
(f) 温度趋向于 0 K 时,受主对多数载流子空穴的冻结 (g) 在不同能带上载流子的能量分布 (h) 本征半导体
说明:当材料内存在电场时,能带能量变成位置的函数,称为“能带弯曲” Q: (b) 电子的动能为零,即 K.E.=0 A: 说明:
Q: (c) 空穴的动能 K.E.=EG/4 A: 说明:
Q: (d) 光产生 A:
说明:从外部输入的光被吸收,电子被激发后,直接从价带进入导带 Q: (e) 直接热产生
1062109053 杨旭一整理 (仅供参考)
* m* p 2 m p ( Ev E )
g v ( E )[1 f ( E )] ( Ev E ) e
1/ 2

2
3
e ( E EF ) / kT
( E E F ) / kT
...
* m* p 2m p
d g c ( E ) f ( E ) dE e ( E EF ) / kT ( Ev E )1/ 2 e ( E EF ) / kT 1/ 2 2( Ev E ) kT 0 EE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 m+2
Cj =
εε 0 S
d
=
C0 V 1 + V D
n
1 变容二极管指数: n = m+2
C ~ V特性
电路与电子学基础
m -13/7 -3/2 -1 0 1 2 3 4 n 7 2 1 1/2 1/3 1/4 1/5 1/6 势垒电容 PN结类型 超突变结
Cj =
C0 V 1 + V D
电路与电子学基础
第七章 半导体器件基础
7.1 半导体的基本知识 7.2 半导体二极管 7.3 半导体三极管 7.4 晶体管的主要参数 7.5 场效应晶体管
电路与电子学基础
7.1 半导体的基本知识
• 电阻率介于10e-3∼10e8Ω.cm,可变化区间大, 电阻率介于10e- 10e8Ω.cm,可变化区间大, 10e 介于金属(10e-6Ω.cm~10e-3Ω.cm) 介于金属(10e-6Ω.cm~10e-3Ω.cm)和绝缘体 10e8Ω.cm~10e20Ω.cm) (10e8Ω.cm~10e20Ω.cm)之间 • 热敏性:纯净半导体负温度系数,掺杂半导体在 热敏性:纯净半导体负温度系数, 一定温度区域出现正温度系数 • 光敏性:具有光敏性,用适当波长的光照射后, 光敏性:具有光敏性,用适当波长的光照射后, 材料的电阻率会变化, 材料的电阻率会变化,即产生所谓光电导 • 掺杂性:半导体中存在着电子与+ +
多子扩散电流
电路与电子学基础
补充耗尽层失去的多子,耗尽层窄, 补充耗尽层失去的多子,耗尽层窄,E 少子飘移 又失去多子,耗尽层宽, 又失去多子,耗尽层宽,E 多子扩散
内电场E
P型半导体 - - - - - - - - - - -
耗尽层
N型半导体 + + + + + + + + +
+ + +
1 + ω 2 C j Rs R p
角频率ω =2 π f 二极管电阻Rp ~M 串联电阻Rs ~ 二极管电容Cj ~ pf
Q=
低频 ω ≤ MHz (106 Hz ) :
Q ≈ ω C j Rp
由Rp决定,反压V 增加,d 增加,Cj 减小,Q 下降。由Q =1得低频截止频率:
1 fL = 2π Cj Rp
最大稳定 稳压管允许通过的最 值,否则稳压管会因为电 大反向电流 电流
流过大而发热损坏 实际电流小于此值时,稳 最小稳定 稳压管进入正常稳压 压管因未进入到击穿状态 状态所必须的电流 电流 而不能起到稳压作用
电路与电子学基础
主要参数
最大耗散 功率
概念
补充说明
稳压管在反向击穿时,PN 实际的耗散功率一定 结所能承受的最大功率值 要小于最大耗散功率
P
R
空 间 电 荷 区
N
- - -
- - -
- - -
- - -
+ + +
+ + +
+ + +
+ + IR +
内电场 E
EW
R
电路与电子学基础
IF(多子扩散) 多子扩散) 反向饱和电流 反向击穿电压 正偏
反偏 反向击穿 IR(少子漂移) 少子漂移)
电击穿——可逆 可逆 电击穿 热击穿——烧坏 结 烧坏PN结 热击穿 烧坏
当流过稳压管的电流发生 变化时,它两端的电压变 动态电阻越小,稳定 动态电阻 化量ΔVZ与电流变化量ΔIZ 性能越好 之比 电压温度 系数 电压温度系数越小, 其稳压管的稳定性能 温度每变化1℃,稳压管稳 越好 定电压的相对变化量
稳压二极管的主要特性
∇VZ XZ = .100% VZ ∇T
电路与电子学基础
电路与电子学基础
发光二极管 1、工作原理
将电能变成光能的特殊器件; PN结加正向电压,使P区的空穴 注入到N区,N区的电子注入到P区, 运动中电子和空穴产生复合; 非平衡少子复合,放出能量hν (一 个光子),产生辐射发光。

EC hν

EV
电路与电子学基础
特性参数
发光强度 发光光谱 发光波长
说明
A(+) K(-)
电路与电子学基础
PN结势垒电容
平行板电容:
C j (V ) =
εε 0 S
d (V )
S:面积,d:耗尽层宽度, (ε0) ε:(真空)介电常数。
C
j
可变电容:
随外加电压变化, 耗尽层宽度变化, 电容变化。
0
V
电路与电子学基础
C ~ V特性
杂质浓度指数分布: N (V ) = Ax m
电路与电子学基础
光敏二极管 1、结构和工作原理
将光信号转变为电信号的特殊器件, PN结很浅,且在管壳上有光入射窗 口,光透过窗口透镜聚焦在管芯上; 在反向电压下工作,无光照射时反 向电阻很大,电流很小; 光照时,电子吸收光能被激发产生 电子-空穴对,在反向电压作用下, 光生载流子导电,(光)电流显著增 加,大小与光照的强度和波长有关。
A:系数 m:杂质指数
解泊松方程求得空间电荷区宽度:
(m + 1)(m + 2 )εε 0 (V + VD ) d (V ) = qA
V:外加电压
1 m+2
VD:接触电势差
电路与电子学基础
外加电压为 0 时的势垒电容:
qA C0 (V = 0 ) = εε 0 S (m + 1)(m + 2 )εε 0VD
功耗
响应时间
电路与电子学基础
3、发光二极管的种类
红外光:砷化镓(GaAs)发光二极管 可见光:红色:磷砷化镓(GaAsP)发光二极管 绿色:磷化镓(GaP)发光二极管 红~黄色:磷化镓(GaP)+锌(Zn)发光二极管
4、发光二极管的特点与用途
特点:体积小,功耗低,寿命长,响应快,机械强度 高,能和各种电路相结合。 用途:高速开关光源,光通信和测距的光源,光电自 动控制系统和光电显示装置的光电控制和显示器件。
a. 随电流增大成比例增大,不同材料的管子工作电流 不同; b. 随PN结温度升高而下降。 决定了发光二极管的发光颜色。 a. 决定于所使用的材料,不同材料的电子和空穴复合 时放出的能量不同,能量越大,发出的光波长越短, 频率越高; b. 与制造时PN结掺杂浓度有关。 最大功耗不得超过二极管的规定值,实际上发光效率 仅有百分之几。 光信号随电信号变化的快慢,即启亮和熄灭的延迟时 间;启亮特性与工作电流IF有关,随IF增大,启亮时 间呈指数衰减,而熄灭时间与IF无关
n
突变结 线性缓变结 超缓变结
C ~ V特性
电路与电子学基础
变容二极管的优值
Wc 优质定义: Q = 2π Wr
等效电路:
Ls:串联电感 Rp:二极管电阻 Cp:管壳电容 Rs:串联电阻 A Ls
Wc:存贮能量Cj Wr :一个周期消耗能量
D Cj Rp Cp Rs B
电路与电子学基础
ω C j Rp
不同型号的管子VZ值不 同,即使同一型号的管子 也具有一定的离散性。如 2CW21A的稳压值是4~4.5V 这个参数仅供参考,实际 中要根据具体情况而定 稳压管在工作时应小于此 稳压管的反向击穿电 稳定电压 压 即,稳压管正常工 作时两端所具有的电 (VZ) 压 稳定电流 稳压管两端保持正常 稳定电压值时制造厂 (IZ) 的测试电流
变容二极管的优值
电路与电子学基础
高频 ω ≥ 10GHz(1010 Hz ) :
Q= 1
ω C j Rs
由Rs决定,反压V 增加,d 增加,Rs、Cj 减小, Q 增加。由Q =1得低频截止频率:
1 fH = 2π Cj Rs
dQ = 0 求出 由 dω
1 在 ω = ωm = Cj
1 时 Rs Rp
最大优值:
1 Rp Qm = Rs 2
变容二极管的优值
Qm由Rp、Rs决定,与Cj无关,~103数量级。
电路与电子学基础
双变容二极管
A SiO 2 P N C CH CL V1 V2 V
j
C = C MOS // C j
A CMOS C
j
Al
=
C MOS C j C MOS + C j
B
B
V< V1, CMOS << Cj , C = CMOS V >V2, CMOS >> Cj , C = Cj V1< V< V2, CMOS ~ Cj , CMOS ~ Cj , C变化大


EC
EV
电路与电子学基础
2、光敏二极管的特性
特性参数
最高工作 电压VRmax
概念
硅光敏二极管在无光照条 件下,反向漏电流不超过 一定值(一般0.1 μA)时所 承受的最高反向电压 光敏二极管在无光照时和 最高工作电压下通过光敏 二极管PN结测得的反向 漏电流 硅光敏二极管在最高工作 电压下受一定光照时所产 生的电流
+
u
i
i
正偏
反偏
+
u
u
i
-
电路与电子学基础
稳压二极管
I
利用二极管的击穿性质工作; V<VB时,反向电流很小; V=VB时,反向电流将很快 增大,电流小于最大允许电 流,二极管可以安全工作;
VB V
IR 0 VS
电流变化大,电压变化很小, 达到稳压的目的。
电路与电子学基础
稳压二极管的主要特性
主要参数 概念 补充说明
相关文档
最新文档