热学课后习题答案
热学课后习题答案
![热学课后习题答案](https://img.taocdn.com/s3/m/8460fea176a20029bc642d50.png)
第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。
(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。
(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。
解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。
此时管内水银面到管顶的距离为。
问当此气压计的读数为时,实际气压应是多少。
设空气的温度保持不变。
题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。
解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。
热力学统计物理 课后习题 答案
![热力学统计物理 课后习题 答案](https://img.taocdn.com/s3/m/23b7a5fb770bf78a65295491.png)
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV =由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数T pV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果P T T 1,1==κα,试求物态方程。
解: 体胀系数 pT V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数 TT p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,=其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= dp dT VdV T κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln 根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫ ⎝⎛-=dp p dT T V 11ln 则有 C pT V +=ln ln , PV=CT 要确定常数C ,需要进一步的实验数据。
1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。
线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂= ,其中A 是金属丝的截面。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
工程热力学课后题答案
![工程热力学课后题答案](https://img.taocdn.com/s3/m/17792549a88271fe910ef12d2af90242a895abc4.png)
习题及部分解答第一篇 工程热力学 第一章 基本概念1. 指出下列各物理量中哪些是状态量,哪些是过程量:答:压力,温度,位能,热能,热量,功量,密度;2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位能,热能,热量,功量,密度;3. 用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产生,在水银柱上加一段水;若水柱高mm 200,水银柱高mm 800,如图2-26所示;已知大气压力为mm 735Hg,试求容器中气体的绝对压力为多少kPa 解:根据压力单位换算4. 锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示;若已知斜管倾角 30=α,压力计中使用3/8.0cm g =ρ的煤油,斜管液体长度mm L 200=,当地大气压力MPa p b 1.0=,求烟气的绝对压力用MPa 表示解:5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为kPa 110,B 为真空表,读数为kPa 45;若当地大气压kPa p b 97=,求压力表A 的读数用kPa 表示 kPa p gA 155=6. 试述按下列三种方式去系统时,系统与外界见换的能量形式是什么;1.取水为系统;2.取电阻丝、容器和水为系统;3.取图中虚线内空间为系统;答案略;7.某电厂汽轮机进出处的蒸汽用压力表测量,起读数为MPa 4.13;冷凝器内的蒸汽压力用真空表测量,其读数为mmHg 706;若大气压力为MPa 098.0,试求汽轮机进出处和冷凝器内的蒸汽的绝对压力用MPa 表示 MPa p MPa p 0039.0;0247.021==8.测得容器的真空度mmHg p v 550=,大气压力MPa p b 098.0=,求容器内的绝对压力;若大气压变为MPa p b102.0=',求此时真空表上的读数为多少mmMPa MPa p MPa p v8.579,0247.0='= 9.如果气压计压力为kPa 83,试完成以下计算:1.绝对压力为11.0MPa 时的表压力;2.真空计上的读数为kPa 70时气体的绝对压力;3.绝对压力为kPa 50时的相应真空度kPa ;4.表压力为MPa 25.0时的绝对压力kPa ;1.kPa p g 17=;2.kPa p 13=;3.kPa p v 33=;4.kPa p 333=;10.摄氏温标取水在标准大气压下的冰点和沸点分别为0℃和100℃,而华氏温标则相应地取为32℉和212℉;试导出华氏温度和摄氏温度之间的换算关系,并求出绝对零度所对应的华氏温度;将水在标准大气压下的冰点值032和F ℃,以及沸点值100292和F ℃代入,得解该二元一次方程组,得:32,8.1==B A ;从而有 328.1+=t t F当15.273-=t ℃时,有11.气体进行可逆过程,满足pV C =C 为常数,试导出该气体从状态1变化到状态2时膨胀功的表达式,并在p V -图上定性画出过程线、示出膨胀功;答案:略12.某气体的状态方程为g pV R T =,试导出:1.定稳下气体,p v 之间的关系;2.定压下气体,v T 之间的关系;3.定容下气体,p T 之间的关系;答案:1.2112v v p p =;2.1212T T v v =;3. 1212T T p p =;第二章 热力学第一定律1.一蒸汽动力厂,锅炉的蒸汽产量为318010/q kg h =⨯,输出功率为55000P kW =,全厂耗煤,19.5/m c q t h =,煤的发热量为33010/c q kJ kg =⨯;蒸汽在锅炉中吸热量2680/q kJ kg =;试求:1.该动力厂的热效率t η;2.锅炉的效率B η蒸汽总吸热量煤的总发热量;解:1.锅炉中蒸汽吸热量热效率 %411034.1550005=⨯=Φ=H t P η 2.锅炉效率2.系统经一热力过程,放热8kj 对外做功26kJ ;为使其返回原状态,对系统加热6kJ ,问需对系统作功多少解:由W U Q +∆=得对于返回初态的过程故需对系统做功kj 28;3.气体在某一过程只能感吸收了54kJ 的热量,同时热力学能增加了94kJ ;此过程是膨胀过程还是压缩过程系统与外界交换的功是多少答案:此过程为压缩过程;此过程中系统与外界交换的功是kj 40-;4.1kg 空气由115,0.5p MPa t MPa ==膨胀到220.5,500p MPa t ==℃,得到热量506kJ ,对外做膨胀功506kJ ;接着又从终态被压缩到初态,热出热量390kJ ,试求:1.膨胀过程空气热力学能的增量;2.压缩过空气热力学能的增量;3.压缩过程外界消耗的功;答案:1.0=∆U ;2. 0=∆U ;3.kj W 390-=;5.闭口系统中实施以下过程,试填补表中的空缺数据;表中括号内的数为答案;6.如图所示,某封闭系统沿b c a --途径由状态a 变化到b ,吸入热量kj 90,对外做功kj 40,试问:1.系统从a 经d 至b ,则吸收热量是多若对外做功kj 10,少2.系统由b 经曲线所示过程返回a ,若外界对系统左贡kj 23,吸收热量为多少3.设,45,5kj U kj U d adb ==,那么过程d a -和b d -中系统吸收的热量各为多少答案 1.kj Q adb 60=;2.kj Q ba 73-=;2.kj Q ad 50=;4.kj Q db 10=;7.容积为31m 的绝热封闭的气缸中装有完全不可压缩的流体,如图2-31所示;试问:1.活塞是否对流体做功2.通过对活塞加压,把流体压力从MPa p 2.01=提高到MPa p 33=,热力学能变化多少焓变化多少答案 1.0=W ;2.kj H U 3108.2,0⨯=∆=∆;8.一质量为kg 4500的汽车沿坡度为 15的山坡下行,车速为s m /300;在距山脚m 100处开始刹车,且在山脚处刚好刹住;若不计其它力,求因刹车而产生的热量;kj Q 51004.2⨯=;9.某蒸汽动力装置,蒸汽流量为h t /40,汽轮机进出口处压力表读数为MPa 9,进口比为kg kj /3440,汽轮机出口比焓为kg kj /2240,真空表读数为kPa 06.95,当时当地大气压力为kPa 66.98,汽轮机对环境放热为;试求:1.汽轮机进出口蒸汽的绝压各为多少2.单位质量蒸汽经汽轮机对外输出功为多少3.汽轮机的功率为多少答案 1.2.kg kj sh /1200=ω3.kW P 410332.1⨯=4.考虑进出口动能差后sh ω的相对偏差10.进入冷凝器的泛汽的蒸汽为MPa p 005.0=,比焓kg kj h /25001=,出口为同压下的水,比焓为kg kj h /77.1372=,若蒸汽流量为h t /22,进入冷凝器的冷却水温为171='t ℃,冷却水出口温度为302='t ℃,试求冷却水流量为多少水的比热容为)./(18.4K kg kj ;答案 )/(104.9563,h kg q w m ⨯=11.某活塞式氮气压气机,压缩的氮气的参数分别为:MPa p 1.01=,kg m v /88.031=;MPa p 0.12=,kg m v /16.03=;设在压缩过程中每kg 氮气热力学能增加kj 180,同时向外放出热量kj 60;压气机每min 生产压缩氮气kg 18,试求:1.压缩过程对每kg 氮气所做的功;2.生产每kg 压缩氮气所需的功;3.带动比压气机至少要多大的电动机;答案 1.kg kj /240-=ω;2.kg kj sh /312-=ω;3.kW P 6.93=;12.流速为s m /600的高速空气突然受阻停止流动,即02=c ,称为滞止;如滞止过程进行迅速,以致气流受阻过程中与外界的热交换可以忽略,问滞止过程空气的焓变化了多少答案 kg kj h /180=∆第三章 理想气体及其混合物1.把2CO 压送到体积为35.0m 的贮气罐内;压送前贮气罐上的压力表读数为kPa 3,温度为C 20,压送终了时压力表读数为kPa 30,温度为C 50;试求压送到罐内的2CO 的质量;大气压力为MPap b 1.0=;解由 ()())[]()kg T p T p R V T R V p T R V p m TmR pV K kg kJ M R R kPa p p p kPa p p p g g g g g g b g b 143.02732010103273501013010189.05.0.189.044314.813030101.01033101.033311221122322311=⎪⎪⎭⎫ ⎝⎛+⨯-+⨯⨯⨯=⎪⎪⎭⎫⎝⎛-=-=∆=====+⨯=+==+⨯=+=2. 体积为303.0m 的某钢性容器内盛有了C kPa 20,700的氮气;瓶上装有一排气阀,压力达到kPa 875时发门开启,压力降到kPa 840时关闭;若由于外界加热的原因造成阀门开启,问:1阀门开启时瓶内气体温度为多少2因加热造成阀门开闭一次期间瓶内氮气失去多少设瓶内空气温度在排气过程中保持不变;答案 13.932=t ℃;2kg m 0097.0=∆3.氧气瓶的容积330.0m V =瓶中氧气的表压力为Ct MPa p g 30,4.111==;问瓶中盛有多少氧气若气焊时用去一半氧气,温度降为C t202=,试问此时氧气的表压力为多少当地大气压力MPap b 1.0=答案 MPa p kg m g 625.0;86.72==4.某锅炉每小时燃煤需要的空气量折合表准状况时为h m 366000;鼓风机实际送入的热空气温度为C 250,表压力为kPa 0.20,当地大气压为MPa p b 1.0=,求实际送风量()m 3; 解 ()MPa p p p g b 12.010201.03=⨯+=+=- 由T R q pq g m V =得()()m P T T q p q T q p T pq V V V V 3511000000010068.112.027325027366000101325.0.⨯=+⨯⨯===5.某理想气体比热比4.1==V p c c k ,定压比热容()K kg kJ c p .042.1=,求该气体的摩尔质量;解 由k c c Vp =及MRR c c g V p ==-得 ()()()mol g k c R M p 93.274.111042.1314.811=-⨯=-=6.在容积为31.0m 的封闭容器内装有氧气,其压力为kPa 300,温度为C15,问应加入多少热量可使氧气温度上升到C8001按定值比热容计算;2按平均比热容计算;解 ()[]k kg kJ M R R g .26.032314.8===1()()()kJ t t R m t mc Q g V 3.6121580026.0252.12512=-⨯⨯⨯=-=∆=2查得()K kg kJ c V.656.015=7.摩尔质量为kg 30的某理想气体,在定容下由C 275,加热到C 845,若热力学能变化为kg kJ 400,问焓变化了多少答案kg kJ h 9.557=∆8.将kg 1氮气由C t 301=定压加热到C400,分别用定值比热容,平均比热容表计算其热力学能和焓的变化;用定值比热容计算用平均比热容计算9. kg 2的2CO ,由C t kPa p 900,80011==膨胀到C t kPa p 600,12022==,试利用定值比热容求其热力学能、焓和熵的变化;解10. 在体积为35.1mV=的钢性容器内装有氮气;初态表压力为MPapg0.21=,温度为C230,问应加入多少热量才可使氮气的温度上升到C750其焓值变化是多少大气压力为MPa1.0; 1按定值比热容计算;2按真实比热容的多项式计算;3按平均比热容表计算;4按平均比热容的直线关系式计算;解12查得()()()()()()()()()()()()kJ TnR Q dT nC kJ T T nR T a T a T a n T nR dT aT T a a n dT nR dT nC n dT R C n dT nC Q kmol m M n a a a T a T a a C m p T T m p m p m V m p 4321,3228223123221021212121021,,21,823102210,10226.150********.87532.010005.910005.9]5031023314.87532.050310231042.0315031023102335.52150310233146.27[7532.0327532.02809.211042.0,102335.5,3146.2721⨯=-⨯⨯+⨯=∆+==∆H ⨯=-⨯⨯--⨯⨯-⨯+-⨯⨯⨯+-⨯⨯=--⎪⎭⎫ ⎝⎛++=∆-++=-=-=====⨯-=⨯==++=⎰⎰⎰⎰⎰⎰----3查得4查得11. 某氢冷却发电机的氢气入口参数为C t MPa p g 40,2.011==,出口参数为C t MPa p g 66,19.022==;若每分钟入口处体积流量为35.1m ,试求氢气经过发电机后的热力学能增量、焓增量和熵增量;设大气压力为MPa p b 1.0=;1按定值比热容计算;2按平均比热容直线关系式计算;解(1) 按定值比热()[]()[]()()()()()[]min .4504.03.029.0ln 157.42734027360ln 55.143459.0ln ln min 9.130406655.143459.0min 44.93406639.103459.0.39.10157.455.14.55.14157.427271212K kJ p p R T T c q S kJ t c q kJ t c q U K kg kJ R c c K kg kg R c g p m p m V m g p V g p =⎪⎭⎫ ⎝⎛-++⨯=⎪⎪⎭⎫ ⎝⎛-=∆=-⨯⨯=∆=∆H =-⨯⨯=∆=∆=-=-==⨯==2按平均比热容的直线关系式12. 利用内燃机排气加热水的余热加热器中,进入加热器的排气按空气处理温度为C 300,出口温度为C 80;不计流经加热器的排气压力变化,试求排气经过加热器的比热力学能变化,比焓变化和比熵的变化;1按定值比热容计算;2按平均比热容表计算;答案1213. 进入气轮机的空气状态为C kPa 600,600,绝热膨胀到C kPa300,100,略去动能、位能变化,并设大气温度为KT 3000=,试求:1每千克空气通过气轮机输出的轴功;2过程的熵产及有效能损失,并表示在s T -图上;3过程可逆膨胀到kPa 100输出的轴功;解12熵产g s ∆及有效能损失i 如图3-36中阴影面积所示;314.由氧气、氮气和二氧化碳组成的混合气体,各组元的摩尔数为试求混合气体的体积分数、质量分数和在C t kPa p 27,400==时的比体积;解15.试证明:对于理想气体的绝热过程,若比热容为定值,则无论过程是否可逆,恒有()211T T k R w g --=式中:1T 和2T 分别为过程初终态的温度;证明 对于理想气体的绝热过程,有又 ⎪⎩⎪⎨⎧==-kc c R c c V p gV p得 1-=k R c g V故 ()211T T k R w g --=证毕第四章 理想气体的热力过程1. 某理想气体初温K T 4701=,质量为kg 5.2,经可逆定容过程,其热力学能变化为kJ U 4.295=∆,求过程功、过程热量以及熵的变化;设气体()35.1,.4.0==k K kg kJ R g ,并假定比热容为定值;解由⎪⎩⎪⎨⎧==-kc c R c c V p g V p得()[]()()()K kJ T T mc S K T mc U T T T mc T mc U K kg kJ k R c V V V V gV 568.04704.573ln 143.15.2ln3.573470143.15.24.295.143.1135.14.01121212=⨯==∆=+⨯=+∆=-=∆=∆=-=-=2. 一氧化碳的初态为K T MPa p 493,5.411==;定压冷却到K T 2932=;试计算kmol 1的一氧化碳在冷却过程中的热力学能和焓的变化量,以及对外放出的热量;比热容取定值;答案 kJ kJ U 441082.5,10154.4⨯=∆H ⨯=∆3. 氧气由MPa p C t 1.0,3011== 被定温压缩至MPa p 3.02=;1试计算压缩单位质量氧气所消耗的技术功;2若按绝热过程压缩,初态与终态与上述相同,试计算压缩单位质量氧气所消耗的技术功;3将它们表示在同一副v p -图和s t -图上,试在图上比较两者的耗功;解 ()[]K kg kJ M R R g .26.032314.8===155.863.01.0ln 30326.0ln211,-=⨯==p p T R w g T t 23两过程在v p -图和s T -图上的表示分别如图3-37a 和3-37b 所示;图中过程线T21-为定温过程,s 21-为绝热过程线;从v p -图中可以看到,绝热过程耗功比定温过程耗功多出曲边三角形面积s T 221--;4.使将满足以下要求的理想气体多变过程在v p -和s t -图上表示出来先画出4个基本热力过程:1气体受压缩、升温和放热;2气体的多变指数8.0=n ,膨胀;3气体受压缩、降温又降压;4气体的多变指数2.1=n ,受压缩;5气体膨胀、将压且放热;答案 如图3-38a 和图3-38b 所示的v p -图和s T -图上,1-1,1-2,1-3,1-4和1-5分别为满足1,2,3,4和5要求的多变过程线;5.柴油机汽缸吸入温度C t 601=的空气33105.2m -⨯,经可逆绝热压缩;空气的温度等于燃料的着火温度;若燃料的着火温度为C 720,问空气应被压缩到多大的体积答案3421063.1m V -⨯=6.有kg 1空气,初态为C t MPa p 27,6.011==,分别经下列三种可逆过程膨胀到MPa p 1.02=,试将各过程画在v p -图和s t -图上,并求各过程始态温度、做工量和熵的变化量:1定温过程;225.1=n 的多变过程;3绝热过程;答案123v p -图和s T -图如图3-39所示; 7.一容积为32.0m 的贮气罐,内装氮气,其初压力MPa p 5.01=,温度C t 371=;若对氮气加热,其压力、温度都升高;贮气罐上装有压力控制阀,当压力超过MPa 8.0时,阀门便自动打开,防走部分氮气,即罐中维持最大压力为MPa 8.0,问当贮气罐中氮气温度为C 287时,对罐内氮气共加入多少热量设氮气比热容为定值;解()[]K kg kJ M R R g .297.028314.8===由 T mR pV g =开始过程是定容过程,则8.容积为36.0m V =的空气瓶内装有压力MPa p 101=,温度为K T 3001=的压缩空气,打开压缩空气瓶上的阀门用以启动柴油机;假定留在瓶中的空气进行的是绝热膨胀;设空气的比热容为定值,)./(287.0K kg kj R g =;1.问过一段时间后,瓶中空气从室内空气吸热,温度有逐渐升高,最后重新达到与室温相等,即又恢复到K 300,问这时空气瓶中压缩空气的压力3p 为多大答案 1 kg m K T 6.15,1.2712-=∆= 2MPa p 75.73=9.是导出理想气体定值比热容的多变过程的初、终态熵变为解:主要步骤与公式由 ⎪⎩⎪⎨⎧==-k c c R c c Vp gV p 得 1-=k kR c g p10.压力为kPa 160的kg 1空气,K 450定容冷却到K 300,空气放出的热量全部被温度为17℃的大气环境所吸收;求空气所放出热量的饿有效能和传热过程、的有效能损失,并将有效能损失表示在s T -图上;解由于放出的热量全部被环境吸收,使热量有效能全部变成了无效能,故有效能损失有效能损失如图3-40的s T -图上阴影面积所示;11.空气进行可逆压缩的多变过程,多变指数,3.1=n 耗功量为kg kj /95.67,求热量和热力学能变化;答案 kJ U kJ Q 85.50,95.16=∆-=第六章 水蒸气1.湿饱和蒸汽,85.0,9.0==x MPa p ,试由水蒸气表求u s v h t 和,,,,;答案 kg kJ h C t s 99.2468,389.175==2.过热蒸汽,425.0.3==t MPa p ℃,根据水蒸气表求u s h v ,,,和过热度D ,再用s h -图求上述参数;答案 查表:kg kJ h m v 7.3286,103638.03==查图:kg kJ h kg m v 3290,105.03==3.开水房用开水的蒸汽与20=t ℃同压下的水混合,试问欲得t 5的开水,需要多少蒸汽和水解 设需蒸汽为kg m V ,则水为V w m m m -=;由MPa p 1.0=,查得kg kJ h kg kJ h 14.2675,52.417=''='C t 20=时,kg kJ h 96.832=根据热力学第学一定律4.已知水蒸气kg kj h MPa p /1300,2.0==,试求其s t v ,,;答案 )K kg kJ s C t kg m v .5452.3,30.120,3158.03===5.kg 1蒸汽,95.0,0.211==x MPa p ,定温膨胀至MPa p 1.02=,求终态s h v ,,及过程中对外所做的功;解 ()kg kJ w 0.683=6.进汽轮机的蒸汽参数为435,0.311==t MPa p ℃;若经可逆膨胀绝热至MPa p .2=,蒸汽流量为s kg /0.4,求汽轮机的理想功率为多少千克:答案 kW P 31066.4⨯=7.一刚性容器的容积为MPa 3.0,其中51为饱和水,其余为饱和蒸汽,容器中初压为MPa 1.0;欲使饱和水全部汽化,问需要加入多少热量终态压力为多少若热源温度为500℃,试求不可逆温差传热的有效能损失;设环境温度为27℃;8.容积为336.0m 的刚性容器中贮有350=t ℃的水蒸气,其压力表度数为kPa 100;现容器对环境散热使压力下降到压力表度数为kPa 50;试求:1.确定初始状态是什么状态2.求水蒸气终态温度;3.求过程放出的热量和放热过程的有效能损失;设环境温度为20℃,大气压力为MPa 1.0;答案 1过热蒸汽;2C t 8.1452=此结果为利用教材热工基础与应用后附录A-7所得;利用较详细水蒸气热表或s h -图答案应为C 1913kJ I kJ Q 8.35,6.82=-=同上,kJ I kJ Q 2.27,1.59=-=9.气轮机的乏汽在真空度为kPa 96干度为88.0=x 的湿空气状态下进入冷凝器,被定压冷却凝结为饱和水;试计算乏汽体积是饱和水体积的多少倍,以及kg 1乏汽2在冷凝器中放出的热量;设大气压力为MPa 1.0;答案 kg kJ q V V 2140,1005.3411=⨯='10.一刚性绝热容器内刚性各班将容器分为容积相同的B A ,两部分;设A 的容积为316.0m ,内盛有压力为MPa 1.0、温度为300℃的水蒸气;B 为真空;抽掉隔板后蒸汽蒸汽自由膨胀达到新的平衡态;试求终态水蒸气的压力、温度和自由膨胀引起的不可逆有效能损失;设环境温度为20℃,并假设该蒸汽的自由膨胀满足常数=pV ;解1由==1122V p V p 常数得 ()MPa V V p p 5.0210.12112=⨯== (2) 由C t MPa p 300,0.111==,查得 由kg m v MPa p 3225161.0,5.0==,查得11.利用空气冷却蒸汽轮机乏汽的装置称为干式冷却器;瑞哦流经干式冷却器的空气入口温度为环境温度201=t ℃,出口温度为352=t ℃;进入冷凝器的压力为kPa 0.7,干度为8.0,出口为相同压力的饱和水;设乏汽流量为h t /220,空气进出口压力不变,比热容为定值;试求:1.流经干式冷却器的焓增量和熵增;2.空气流经干式冷却器的熵变以及不可逆传热引起的熵产;解1由8.0,0.7==x kPa p 查算得对空气)()K kg kJ c K kg kJ R p g .004.1,.287.0==根据热力学第一定律有2()()()()K kW S kW t t c q a p a m a 18.3910177.12035004.110818.75312,=∆⨯=-⨯⨯⨯=-=∆H3()()K kW S K kW S g V 63.1417.377=∆-=∆39.500,0.911==t MPa p ℃的水蒸汽进入气轮机中作绝热膨胀,终压为kPa p 502=;汽轮机相对内效率式中s h 2——为定熵膨胀到2p 时的焓;试求1.每kg 蒸汽所做的功;2.由于不可逆引起熵产,并表示在s T -图上;答案 由C t MPa p 500,0.911==查得()K kg kJ s kg kJ h .656.6,338511==由()kPa p K kg kJ s s 0.5,.656.6212===查得kg kJ h s 20302=由s T h h h h 2121--=η得()kg kJ h 22202=()kg kJ w sh 1165=(3) 由kg kJ h kPa p 2220,522==查得过程如图所示第七章 湿空气1.设大气压力为MPa 1.0,温度为25℃,试用分析法求湿空气的相对湿度为%55=ϕ,露点温度、含湿量及比焓,并查d h -图校核之;答案 解析法 ()()a kg kJ h a kg kg d C t d 15.53,011.0,8.14===查d h -图:2.空气的参数为%30,20,1.01===ϕC t MPa p b ,在加热器中加热到85℃后送入烘箱取烘干物体/从烘箱出来时空气温度为353=t ℃,试求从烘干物体中吸收kg 1水分所消耗的赶空气质量和热量;解 由%,30,2011==ϕC t 查d h -图得由C t d d 85,212==得3.设大气压力为MPa 1.0,温度为30℃,相对湿度为8.0;如果利用空气调节设备使温度降低到10℃去湿,然后再加热到20℃,试求所的空气的相对湿度;答案 %53=ϕ4.一房间内空气为MPa 1.0,温度为5℃,相对湿度为%80;由于暖气加热使房间温度升至18℃;试求放暖气后房内空气的相对湿度;答案 %32=ϕ5.在容积为3100m 的封闭室内,空气的压力为MPa 1.0,温度为25℃,露点温度为18℃,试求室内空气的含湿量,和相对湿度;若此时室内放置若干盛水的敞口容器,容器的加热装置使水能保持25℃定温蒸发至空气达到室温下饱和空气状态;试求达到饱和空气状态的空气含湿量和水的蒸发量;解 1由C t 25=查得由C t d 18=查得MPa p V 002064.0=所以%65=ϕ2%1002=ϕ6.一股空气流压力为MPa 1.0,温度为20℃,相对湿度为%30,流量为每分钟315m ;另一股空气流压力也为MPa 1.0,温度为35℃,相对湿度为%80,流量为每分钟320m ;混合后压力仍为MPa 1.0,试求混合后空气的温度、相对湿度和含湿量;解: 水蒸气的()[]K kg kJ R v g .462.0,=由%30,2011==ϕC t 查得由%80,3522==ϕC t 查得由热力学第一定律由 ()()a kg kg d a kg kJ h 0181.0,3.7333==查得第八章 气体和蒸汽的流动1.燃气经过燃气轮机中渐缩喷管绝热膨胀,流量为s kg q m /6.0=,燃气参数6001=t ℃,压力MPa p 6.01=,燃气在喷管出口的压力为MPa p 4.02=,喷管进口流速及摩擦损失不计,试求燃气在喷管出口处的流速和出口截面积,设燃气的 热力性质与空气相同,取定值比热容; 答案: s m A s m c /65.7,/43822==2.空气流经一出口截面积为3210cm A =的渐缩喷管,喷管进口的空气参数、为s m c C t MPa p /150,80,0.2111=== ,背压为MPa p b 8.0=,试求喷管出口处的流速和流经喷管的空气流量;若喷管的速度系数为96.0,喷管的出口流速和流量又为多少解:1.528.0356.0246.28.0)(246.2)3332.344(2)()(2.344004.1210150333204.04.111010322110=<===⨯===⨯⨯+=+=--er k k p v p MPa T T p p K c c T T 所以 )(186.1246.2528.002MPa p v p p er er =⨯=⋅==2.3.水蒸气经汽轮机中的喷管绝热膨胀,进入喷管的水蒸气参数525,0.911==t MPa p ℃,喷管背压力为MPa p b 0.4=,若流经喷管的流量为s kg q m /6=,试进行喷管设计计算;解: 由546.044.00.90.41=<==er b v p p 知喷管形状应选缩放型的;由,525,0.911C t MPa p ==s h -图得由,,0.4,),(914.4546.00.912211s s MPa p p s s MPa v p p b cr cr cr =====⨯==和查得4.空气以s m /200的速度在管内流动,用水银温度计测得空气的温度为70℃,假设气流在温度计壁面得到完全滞止,试求空气的实际温度;答案 1.50=f t ℃5.压力kPa p 1001=、温度为271=t ℃的空气,流经扩压管时压力提高到kPa p 1802=,问空气进入扩压管是至少有多大流速这时进口马赫数是多少答案 956.0,/33211==M s m c6.某单级活塞式压气机每小时吸入温度171=t ℃、压力MPa p 1.01=的空气3120m ,输出空气的压力为MPa p 64.02=;试按下列三种情况计算压气机所许的理想功率:1.定温压缩;2.绝热压缩;3.多变压缩2.1=n ;答案 1.kW P T c 19.6,=; 2.kW P s c 2.8,=; 3.kW P n c 3.7,=7.一台两级压气机,几如压气机的空气温度是171=t ℃,压力为MPa p 1.01=,压气机将空气压缩至MPa p 5.23=,压气机的生产量为h m /503标态下,两级压气机中的压缩过程均按多变指数25.1=n 进行;现以压气机耗功最小为条件,试求:1.空气在低压气缸中被压缩后的饿压力为2p ;2.空气在气缸中压缩后的温度;3.压气机耗功量;4.空气在级间冷却器中放出的热量;解 1.)(5.051.051.05.21213MPa p p p p opt opt =⨯=====ππ 2.K T T T T K p p T T nn 400,)(4005290231225.125.011212==='=⨯=⎪⎪⎭⎫ ⎝⎛=- 3.)(9.56)15(125.1290287.018.025.12)1(12)/(180.0)/(6.64627310287.010*********.025.125.01136000kW n T R nq P s kg h kg T R q p q opt n n g m c g v m =-⨯-⨯⨯⨯⨯=--===⨯⨯⨯⨯==-π4.()()()()kW T T c q T T c q p m p m 9.19400290004.118.02122-=-⨯⨯=-=-'=Φ8.某轴式压气机,每秒生产kg 20压力为MPa 5.0的压缩空气;若进入压气机的空气温度为201=t ℃,压力为MPa p 1.01,压气机的绝热效率92.0,=s c η,求出口处压缩空气的温度及该压气机的耗功率;解 )(1.4641.05.02934.114.111212K p p T T k k =⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛=-- 由12121212,T T T T h h h h s c -'-=-'-=η得 9.一离心式压气机每分钟吸入压力为2010011==t kPa p 、℃的空气3200m ;空气离开压气机的温度为502=t ℃,出口截面上的流速为s m /50,空气的比热容()K kg kJ c p ./004.1=,假定与外界无热量交换;试求压气机的耗功率;答案 kW P 4.124=10.定容加热汽油机循环在每千克空气加入热量kJ 1000,压缩比5/21==v v ε,压缩过程的初参数为15,100kPa ℃;试求:1.循环的最高压力和最高温度;2.循环的热效率;答案 1.K T 1943max =,MPa p 37.3max =; 2.%6.52,=s c η11.一混合加热理想内燃机循环,工质视为空气,已知3.1/,8.1/,12/,50,1.034232111========v v p p v v C t MPa p ρλε ,比热容为定值;试求在此循环中单位质量工质的吸热量、净功量和循环热效率;解 循环s T -图如右图所示;1点:2点: 3点:4点:5点:12.在相同的初态及循环最高压力与最高温度相同的条件下,试在s T -图上利用平均温度的概念比较定容加热、定压加热及混合加热的内燃机理想循环的热效率;答案 s T -图如图所示 若定容加热理想循环热效率为V t ,η,定压加热理想循环热效率为p t ,η,混合加热理想循环热效率为t η,则有p t t V t ,,ηηη<<13.在燃气轮机的定压循环中,工质视为空气,进入压气机的温度271=t ℃,压力MPa p 1.01=,循环增压比4/12==p p π;在燃烧事中加入热量,经绝热膨胀至MPa p 1.04=;设比热为定值;1.画出循环的s T -图;2.求循环的最高温度;3.求循环的净功量和热效率;4.若燃气轮机的相对内效率为91.0,循环的热效率为多少答案 1.s T -图如图所示;2.K T T 11763max ==;3.%7.32,/8.2390==t kg kJ ηω;4.%28=t η14.对于燃气轮机定压加热理想循环,若压气机进出口空气参数为MPa p 1.01=,271=t ℃,燃气轮机进出口处燃气温度10003=t ℃,试向增压比π最高为多少时,循环净功为0 答案 157max =π15.某锅炉每小时生产t 4水蒸气;蒸汽出口的表压为MPa p g 122=,温度3502=t ℃;设给水温度401=t ℃,锅炉效率8.0=B η,煤的发热量热值kg kJ q p /1097.24⨯=,试求每小时锅炉的耗煤量;答案 耗煤量h kg q c m /448,=16、 填空题:1用水银温度计测量高速流动的气流温度,设温度计上读数为t ,气流温度为f t ,则二者的大小关系为____________;2在喷管的气体流动中,气体压力不断__________,流速____,马赫数 ______; 3有一减缩喷管,空气进口压力为MPa p 11=,背压MPa p b 3.0=,册出口压力=2p ;4现设计一喷管,若进口过热蒸汽压为MPa p 91=,背压为MPa p b 2=,此 喷管的形状应选择 ;17、压力为MPa 1.0、温度为C 015的空气,分别以s m /100,s m /200,和s m /400的流速流动,当空气滞止时,问空气的滞止温度和滞止压力各为多少18、某减缩喷管进口氮气压力为MPa p 6.61= ,温度C t 0960= ,背压为MPa p b 0.4=试求出口截面流速;19.某减缩喷管出口截面积为225mm ,进口空气参数C t Pa p 011300,5.0==,初速s m c /1781=,问背压为多大时达到最大质量流量该值是多少20.压力为MPa 1.0,温度C 030的空气经扩压管后压力升高至MPa 16.0,问空气进入扩压管的初速是多少21.压力MPa p 0.91=、温度C t 01550=的水蒸气,经节流阀后压力降为MPa P 6.82=,然后进入喷管作可逆膨胀至压力为MPa p 63=;设环境温度为K T 3000=,流量s kg q m /32=问:1该喷管为何形状;2喷管出口流速及截面积为多少;3因节流引起的熵产及有效能损失为多少第九章 蒸汽动力循环1.蒸汽动力循环的主要设备是什么各起什么作用2.提高蒸汽动力循环热效率的主要措施与方法有那些3.在蒸汽压缩制冷循环中,如果用膨胀代替节流阀,有何优缺点4.试画出蒸汽再循环的s T -图;5.某朗肯循环,水蒸气初参数为C t MPa p 011500,4==,背压为MPa p 004.02=;试求循环吸热、放热量、汽轮机做功和循环热效率;6.某蒸汽动力循环,水蒸气的初参数为C t MPa p 011530,5.4==,背压为MPa p 005.02=,汽轮机相对内效率88.0=T η,试求循环吸热量、放热量、汽轮机做功量和循环热效率;7.某蒸汽压缩制冷循环,制冷剂为氟里昂134a,蒸发器的出口温度为C 045.26-,冷凝器的出口温度C 030;试求:1循环制冷量和压气机耗功量;2制冷系数;3循环热效率;8.某蒸汽动力循环装置为郎肯循环;蒸汽的初压为MPa p 0.41=,背压为MPa p 005.02=,若初温分别为300℃和500℃,试求蒸汽在不同初温下的循环热效率t η及蒸汽的终态干度2x ; 解:1.由MPa p 0.41=,3001=t ℃,查过热蒸汽表得由MPa p 005.02=,查饱和水和饱和蒸汽表得由12s s =得又 kg kJ h h /22.13723='=忽略泵功 34h h =2.过程和上一问相同,最后结果是%39=t η,832.02=x9.某朗肯循环,水蒸气初温为5001=t ℃,背压为MPa p 005.02=,试求当初压分别为MPa 0.4和MPa 0.6时的循环热效率及排汽干度;答案10.某蒸汽动力厂按再热循环工作,锅炉出口蒸汽参数为500,1011==t MPa p ℃,汽轮机排汽压力MPa p 004.02=;蒸汽在进入汽轮机膨胀至MPa 0.1时,被引出到锅炉再热器中再热至500℃,然后又回到汽轮机继续膨胀至排汽压力;设汽轮机和水泵中的过程都是理想的定熵过程,试求: 1.由于再热,使乏汽干度提高多少2.由于再热,循环的热效率提高了多少解: 1.由500,1011==t MPa p 查得由)./(5954.6,0.11K kg kJ s s MPa p a a ===查得由500,0.1==b b t MPa p ℃查得由)(7597.7,004.022K kg kJ s s MPa p b •===且 kg kJ h 3.1212=' 由)(5954.6,004.012K kg kJ s s MPa p a •===查得忽略泵功 kg kJ h h h 3.121234='== 2忽略泵功 ()()210h h h h w w b a T -+-===()())(17060.23378.347628078.3372kg kJ =-+-=()())(3.392128078.34763.1218.3372kg kJ =-+-无再热时第十章 制冷循环1.某蒸气压缩制冷装置如图5-26所示;制冷剂为氨,蒸发器出口氨的温度为 C t ︒-=151,在冷凝器中冷凝后的氨为饱和液,温度C t ︒=251;试求:蒸发器中氨的压力和冷凝器中氨的压力;循环的制冷量L q ,循环净功0w 和制冷系数ε; 若该装置的制冷能力为h kJ L 41042⨯=Φ,氨的流量为多大解 1T-s 图参阅图5-26b。
工程热力学第三版课后习题答案
![工程热力学第三版课后习题答案](https://img.taocdn.com/s3/m/a9977938a76e58fafab00390.png)
工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。
当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。
⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
这种观点对不对,为什么?答:不对。
“绝热系”指的是过程中与外界无热量交换的系统。
热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。
物质并不“拥有”热量。
一个系统能否绝热与其边界是否对物质流开放无关。
⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。
⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。
它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。
⒍经验温标的缺点是什么?为什么?答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。
热学第二版课后习题答案
![热学第二版课后习题答案](https://img.taocdn.com/s3/m/038aa18509a1284ac850ad02de80d4d8d15a01ce.png)
热学第二版课后习题答案热学第二版课后习题答案热学是物理学中的一门重要学科,研究热量的传递、热力学规律以及热力学系统的性质等。
在学习热学的过程中,课后习题是检验学生对知识掌握程度的重要手段。
下面将为大家提供热学第二版课后习题的答案。
第一章:热力学基础1. 什么是热力学第一定律?它的数学表达式是什么?热力学第一定律是能量守恒定律的推广,它表明能量可以从一种形式转化为另一种形式,但总能量守恒。
数学表达式为ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做功。
2. 什么是热容?如何计算物体的热容?热容是物体吸收或释放单位温度变化时所需的热量。
计算物体的热容可以使用公式C = Q/ΔT,其中C表示热容,Q表示吸收或释放的热量,ΔT表示温度变化。
3. 什么是等容过程?等容过程的特点是什么?等容过程是指在恒定体积条件下进行的热力学过程。
在等容过程中,系统对外界做功为零,因为体积不变。
等容过程的特点是内能变化等于吸收的热量,即ΔU = Q。
第二章:理想气体的热力学性质1. 理想气体的状态方程是什么?它的含义是什么?理想气体的状态方程是PV = nRT,其中P表示气体的压强,V表示气体的体积,n表示气体的物质量,R表示气体常数,T表示气体的温度。
这个方程表示了理想气体的状态与其压强、体积、物质量和温度之间的关系。
2. 理想气体的内能与温度有何关系?理想气体的内能与温度成正比,即U ∝ T。
当温度升高时,理想气体的内能也会增加。
3. 理想气体的等温过程与绝热过程有何区别?等温过程是指在恒定温度条件下进行的热力学过程,绝热过程是指在没有热量交换的情况下进行的热力学过程。
在等温过程中,气体的温度保持不变,而在绝热过程中,气体的内能保持不变。
第三章:热力学第二定律1. 热力学第二定律的表述是什么?它有哪些等效表述?热力学第二定律的表述是热量不会自发地从低温物体传递到高温物体。
它有三个等效表述:卡诺定理、克劳修斯不等式和熵增原理。
热力学课后习题02答案
![热力学课后习题02答案](https://img.taocdn.com/s3/m/3da1b3f9770bf78a6529548d.png)
第2章 热力学第一定律2-1 定量工质,经历了下表所列的4个过程组成的循环,根据热力学第一定律和状态参数的特性填充表中空缺的数据。
过程 Q/ kJ W/ kJ△U/ kJ1-2 0 100 -1002-3-11080 -1903-4 300 90 210 4-1 20 -60802-2 一闭口系统从状态1沿过程123到状态3,对外放出47.5 kJ 的热量,对外作功为30 kJ ,如图2-11所示。
(1) 若沿途径143变化时,系统对外作功为6 kJ ,求过程中系统与外界交换的热量; (2) 若系统由状态3沿351途径到达状态1,外界对系统作功为15 kJ ,求该过程与外界交换的热量;(3) 若U 2=175 kJ ,U 3=87.5 kJ ,求过程2-3传递的热量,及状态1的热力学能U 1。
图2-11 习题2-2解:(1)根据闭口系能量方程,从状态1沿途径123变化到状态3时,12313123Q U W −=∆+,得1347.5kJ 30kJ 77.5kJ U −∆=−−=−从状态1沿途径143变化到状态3时,热力学能变化量13U −∆保持不变,由闭口系能量方程14313143Q U W −=∆+,得14377.5kJ 6kJ 71.5kJ Q =−+=−,即过程中系统向外界放热71.5kJ(2)从状态3变化到状态1时,()31133113U U U U U U −−∆=−=−−=−∆,由闭口系能量方程35131351Q U W −=∆+,得35177.5kJ 15kJ 62.5kJ Q =−=,即过程中系统从外界吸热92.5kJ(3)从状态2变化到状态3体积不变,323232323232Q U W U pdV U −−−=∆+=∆+=∆∫,因此23233287.5kJ 175kJ 87.5kJ Q U U U −=∆=−=−=−由1331187.577.5kJ U U U U −∆=−=−=−,得1165kJ U =2-3 某电站锅炉省煤器每小时把670t 水从230℃加热到330℃,每小时流过省煤器的烟气的量为710t ,烟气流经省煤器后的温度为310℃,已知水的质量定压热容为 4.1868 kJ/(kg ·K),烟气的质量定压热容为1.034 kJ/(kg ·K),求烟气流经省煤器前的温度。
第一章热力学的基本规律课后作业及答案
![第一章热力学的基本规律课后作业及答案](https://img.taocdn.com/s3/m/6553586927d3240c8447ef36.png)
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数2111()T T V nRT V p V p pκ⎛⎫∂⎛⎫=-=-= ⎪ ⎪∂⎝⎭⎝⎭ 1.2试证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:ln (d d )T V T k p α=-⎰如果1Tα=,1T k p =,试求物态方程。
解 以,T p 为自变量,物质的物态方程为(,)V V T p =其全微分为d d d p TV V V T p T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有d 11d d p TV V V T p V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T k 的定义,可将上式改写为d d d T VT k p Vα=- (2) 有ln (d d )T V T k p α=-⎰ (3)若1Tα=,1T k p =,式(3)可表示为11ln (d d )V T p T p=-⎰ (4)积分pV CT = (5)1.3测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和71n 7.8*10p T κ--=,α和T κ可近似看作常量,今使铜块加热至10C ︒。
问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少解:(1)有d d d T Vp p p V T V T ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭知,当d 0V =时,有d 0d d d V Tp p T p T T T αβκ∂⎛⎫=+==⎪∂⎝⎭ 故 ()212121d T T TT p p T T T αακκ-==-⎰即 ()2121n 622p T p p p T T ακ∆=-=-= 分别设为V xp n ∆;,由定义得:4474.85810; 4.85101007.810T x V κ∆---=⨯=⨯-⨯⨯所以,44.0710V ∆-=⨯1.4 1mol 理想气体,在27C ︒的恒温下发生膨胀,其压强由n 20p 准静态地降到n 1p ,求气体所做的功和所吸取的热量。
工程热力学课后习题及答案第六版(完整版)
![工程热力学课后习题及答案第六版(完整版)](https://img.taocdn.com/s3/m/c84ef150f242336c1eb95e8f.png)
2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J • (2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m/3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO 2压送到容积3m 3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO 2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO 2的质量1111RT v p m =压送后储气罐中CO 2的质量 2222RT v p m =根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2)27311+=t T (3) 27322+=t T(4)压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m 3,充入容积8.5 m 3的储气罐内。
《热学》期末复习用 各章习题+参考答案
![《热学》期末复习用 各章习题+参考答案](https://img.taocdn.com/s3/m/21a7445d4b73f242326c5f4a.png)
(
29 × 10 3
)
485������
(4) 空气分子的碰撞频率为
√2������ ������
√2
6 02 × 10 × 22 4 × 10
3 3
×
(3
7 × 10−10)
× 485
(5) 空气分子的平均自由程为
7 9 × 109
������
485 7 9 × 109
6 1 × 10 8������
(������ + ������ )������������ ������ ������������ + ������ ������������
(4)
联立方程(1)(2)(3)(4)解得
������ + ������
������
2
������ ������ ������ (������ ������ + ������ ������ ) (������ + ������ )
������ (������ + ∆������) ������
������
������
(������ + ∆������) ������
������
ln
������������ ������
ln ������
������ + ∆������
ln
Hale Waihona Puke 133 101000ln
2
2
+
20 400
269
因此经过 69 × 60 40 后才能使容器内的压强由 0.101MPa 降为 133Pa.
1-7 (秦允豪 1.3.6) 一抽气机转速������ 400������ ∙ ������������������ ,抽气机每分钟能抽出气体20������.设 容器的容积������ 2 0������,问经过多长时间后才能使容器内的压强由 0.101MPa 降为 133Pa.设抽 气过程中温度始终不变.
大学物理化学1-热力学第一定律课后习题及答案
![大学物理化学1-热力学第一定律课后习题及答案](https://img.taocdn.com/s3/m/c65861462b160b4e767fcf16.png)
热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。
1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。
( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。
( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。
( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。
( )5. 稳定态单质的∆f H(800 K) = 0。
( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。
(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。
2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。
( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。
3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。
4. 在隔离系统内:( )。
( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。
5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。
( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。
6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。
( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。
7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。
工程热力学和传热学课后题答案
![工程热力学和传热学课后题答案](https://img.taocdn.com/s3/m/f121e60cce84b9d528ea81c758f5f61fb73628d1.png)
第2章课后题答案解析
简答题
简述热力学第一定律的实质和应用。
计算题
计算一定质量的水在常压下从100°C冷却 到0°C所需吸收的热量。
答案
热力学第一定律的实质是能量守恒定律在 封闭系统中的表现。应用包括计算系统内 能的变化、热量和功的相互转换等。
答案
$Q = mC(T_2 - T_1) = 1000gtimes 4.18J/(gcdot {^circ}C)times (0^circ C 100^circ C) = -418000J$
工程热力学和传热学课后题答 案
目
CONTENCT
录
• 热力学基本概念 • 气体性质和热力学关系 • 热力学应用 • 传热学基础 • 传热学应用 • 习题答案解析
01
热力学基本概念
热力学第一定律
总结词
能量守恒定律
详细描述
热力学第一定律是能量守恒定律在热力学中的表述,它指出系统能量的增加等于进入系统的能量减去离开系统的 能量。在封闭系统中,能量的总量保持不变。
热力学第二定律
总结词:熵增原理
详细描述:熵增原理指出,在一个孤 立系统中,自发反应总是向着熵增加 的方向进行,而不是减少。这意味着 孤立系统中的反应总是向着更加无序、 混乱的方向进行。
热力过程
总结词:等温过程 总结词:绝热过程 总结词:等压过程
详细描述:等温过程是指系统温度保持不变的过程。在 等温过程中,系统吸收或释放的热量全部用于改变系统 的状态,而不会引起系统温度的变化。
热力过程分析
总结词
热力过程分析是研究系统在热力学过程 中的能量转换和传递的过程,包括等温 过程、绝热过程、多变过程等。
VS
详细描述
等温过程是指在过程中温度保持恒定的过 程,如等温膨胀或等温压缩。绝热过程是 指在过程中系统与外界没有热量交换的过 程,如火箭推进或制冷机工作。多变过程 是指实际气体在非等温、非等压过程中的 变化过程,通常用多变指数来表示压力随 温度的变化关系。
大学物理化学2-热力学第二定律课后习题及答案
![大学物理化学2-热力学第二定律课后习题及答案](https://img.taocdn.com/s3/m/b5f5aad9852458fb770b56bd.png)
热力学第二定律课后习题答案习题1在300 K ,100 kPa 压力下,2 mol A 和2 mol B 的理想气体定温、定压混合后,再定容加热到600 K 。
求整个过程的∆S 为若干?已知C V ,m ,A = 1.5 R ,C V ,m ,B = 2.5 R[题解]⎪⎩⎪⎨⎧B(g)2mol A(g)2mol ,,纯态 3001001K kPa,()−→−−−−混合态,,2mol A 2mol B100kPa 300K 1+==⎧⎨⎪⎪⎩⎪⎪p T 定容()−→−−2混合态,,2mol A 2mol B 600K 2+=⎧⎨⎪⎩⎪T ∆S = ∆S 1 + ∆S 2,n = 2 mol∆S 1 = 2nR ln ( 2V / V ) = 2nR ln2 ∆S 2 = ( 1.5nR + 2.5nR ) ln (T 2 / T 1)= 4nR ln2 所以∆S = 6nR ln2= ( 6 ⨯ 2 mol ⨯ 8.314 J ·K -1·mol -1 ) ln2 = 69.15 J ·K -1 [导引]本题第一步为理想气体定温定压下的混合熵,相当于发生混合的气体分别在定温条件下的降压过程,第二步可视为两种理想气体分别进行定容降温过程,计算本题的关键是掌握理想气体各种变化过程熵变的计算公式。
习题22 mol 某理想气体,其定容摩尔热容C v ,m =1.5R ,由500 K ,405.2 kPa 的始态,依次经历下列过程:(1)恒外压202.6 kPa 下,绝热膨胀至平衡态; (2)再可逆绝热膨胀至101.3 kPa ; (3)最后定容加热至500 K 的终态。
试求整个过程的Q ,W ,∆U ,∆H 及∆S 。
[题解] (1)Q 1 = 0,∆U 1 = W 1, nC V ,m (T 2-T 1))(1122su p nRT p nRT p --=, K400546.2022.405)(5.11221211212====-=-T T kPa p kPa p T p T p T T ,得,代入,(2)Q 2 = 0,T T p p 3223111535325=-=-=--()γγγγ,, T T 320.42303==-()K(3)∆V = 0,W 3 = 0,Q U nC T T V 3343232831450030314491==-=⨯⨯⨯-=∆,()[.(.)].m J kJp p T T 434350030310131671==⨯=(.).kPa kPa 整个过程:Q = Q 1 + Q 2+ Q 3 =4.91kJ ,∆U = 0,∆H = 0,Q + W = ∆U ,故W =-Q =-4.91 kJ∆S nR p p ==⨯=--ln (.ln ..).141128314405616711475J K J K ··[导引]本题的变化过程为单纯pVT 变化,其中U 、H 和S 是状态函数,而理想气体的U 和H 都只是温度的函数,始终态温度未变,故∆U = 0,∆H = 0。
工程热力学 课后习题答案 可打印 第三版 第一章
![工程热力学 课后习题答案 可打印 第三版 第一章](https://img.taocdn.com/s3/m/a2a28a3b87c24028915fc32c.png)
1
第一章 基本概念
p = pe + pb = (1020mmH 2 O × 9.81Pa/mmH 2 O + 900mmHg × 133.3Pa/mmHg) + 755mmHg × 133.3Pa/mmHg = 2.306 × 105 Pa = 0.231MPa
1-6 容器中的真空度为 pv = 600mmHg ,气压计上水银柱高度为
1-12 有一绝对真空的钢瓶, 当阀门的打开时, 在大气压 p0 = 1.013 × 10 Pa 的作用下有体积为
5
0.1m3 的空气被输入钢瓶,求大气对输入钢瓶的空气所作功为多少?
3
第一章 基本概念
解
W = p0V = 1.013 × 105 Pa × 0.1m3 = 1.013 × 104 J = 10.13kJ
p= RgT RgTa = v v
w12 = ∫ pdv = ∫
v1 v5
v2
v2
v1
RgTa v dv = RgTa ln 2 ; v v1
w4−5 = ∫ pdv = ∫
v4
v5
Rg Ta v
v4
dv = RgTa ln
v3 v4
根据已知条件: v1 = v3,v4 = v6,p3 = p2,p6 = p5,T2 = T5 = Ta,T3 = T6 = Tb 得
1-14 据统计资料,上海各发电厂 1983 年平均发 1 千瓦小时的电耗标煤 372 克,若标煤的热值 是 29308kJ/kg ,试求 1983 年上海电厂平均热效率 η t 是多少? 解:ηt =
Wnet 3600kJ = = 33.3% Q1 0.372kg × 29308kJ/kg
热力学第二版习题答案(全)
![热力学第二版习题答案(全)](https://img.taocdn.com/s3/m/e72f3ae44afe04a1b071de69.png)
PD
F-
XC
h a n g e Vi e
w
F-
XC
h a n g e Vi e
w
er
er
!
O W
N
y
bu
to
m
w
.d o
c u -tr
. ack
c
w
o
.d o
c u -tr a c k
.c
习题: 2-1.为什么要研究流体的 pVT 关系? 答:在化工过程的分析、研究与设计中,流体的压力 p、体积 V 和温度 T 是流体最基本的性 质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能 U、熵 S、Gibbs 自由能 G 等都不方便直接测量, 它们需要利用流体的 p –V –T 数据和热力学基本关系式进行 推算;此外,还有一些概念如逸度等也通过 p –V –T 数据和热力学基本关系式进行计算。因 此,流体的 p –V –T 关系的研究是一项重要的基础工作。 2-2.理想气体的特征是什么? 答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体 叫做理想气体。严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理 想气体的,可以当作理想气体处理,以便简化问题。 理想气体状态方程是最简单的状态方程:
pV RT
2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 答:纯物质的偏心因子 是根据物质的蒸气压来定义的。实验发现,纯态流体对比饱和蒸 气压的对数与对比温度的倒数呈近似直线关系,即符合:
1 log p 1 T r
s r
ps 其中, p pc
迭代结果为: V 3.39m 3 kmol 1 (2) 压缩功 W pdV
第01章热力学基本定律习题及答案
![第01章热力学基本定律习题及答案](https://img.taocdn.com/s3/m/44251f5da32d7375a4178075.png)
第01章热力学基本定律习题及答案第01章热力学基本定律习题及答案第一章热力学基本定律习题及答案§ 1. 1 (P10)1.“任何系统无体积变化的过程就一定不做功。
”这句话对吗?为什么?解:不对。
体系和环境之间以功的形式交换的能量有多种,除体积功之外还有非体积功,如电功、表面功等。
2. “凡是系统的温度下降就一定放热给环境,而温度不变时则系统既不吸热也不放热。
”这结论正确吗?举例说明。
答:“凡是系统的温度下降就一定放热给环境”不对:体系温度下降可使内能降低而不放热,但能量可以多种方式和环境交换,除传热以外,还可对外做功,例如,绝热容器中理想气体的膨胀过程,温度下降释放的能量,没有传给环境,而是转换为对外做的体积功。
“温度不变时则系统既不吸热也不放热”也不对:等温等压相变过程,温度不变,但需要吸热(或放热),如PӨ、373.15K下,水变成同温同压的水蒸气的汽化过程,温度不变,但需要吸热。
3. 在一绝热容器中,其中浸有电热丝,通电加热。
将不同对象看作系统,则上述加热过程的Q或W大于、小于还是等于零?(讲解时配以图示)解:(1)以电热丝为系统:Q<0,W>0(2)以水为系统:Q>0,W=0(忽略水的体积变化)(3)以容器内所有物质为系统:Q=0,W>0(4)以容器内物质及一切有影响部分为系统:Q=0,W=0(视为孤立系统)4. 在等压的条件下,将1mol理想气体加热使其温度升高1K,试证明所做功的数值为R。
解:理想气体等压过程:W = p(V2 -V1) = pV2 -PV1= RT2 -RT1= R(T2 -T1) = R5. 1mol 理想气体,初态体积为25dm 3, 温度为373.2K ,试计算分别通过下列四个不同过程,等温膨胀到终态体积100dm 3时,系统对环境作的体积功。
(1)向真空膨胀。
(2)可逆膨胀。
(3)先在外压等于体积50 dm 3时气体的平衡压力下,使气体膨胀到50 dm 3,然后再在外压等于体积为100dm 3时气体的平衡压力下,使气体膨胀到终态。
工程热力学 课后习题答案 可打印 第三版 第二章
![工程热力学 课后习题答案 可打印 第三版 第二章](https://img.taocdn.com/s3/m/0fa7aa23bcd126fff7050b2c.png)
第二章 热力学第一定律
2-1 一辆汽车 1 小时消耗汽油 34.1 升,已知汽油发热量为 44000kJ/kg ,汽油密度 0.75g/cm3 。
测得该车通过车轮出的功率为 64kW,试求汽车通过排气,水箱散热等各种途径所放出的热量。
解: 汽油总发热量 Q = 34.1×10 −3m3 × 750kg/m3 × 44000kJ/kg = 1125300kJ
汽车散发热量 Qout = Q −W × 3600 = (1125300 − 64× 3600)kJ/h = 894900kJ/h
2-2 1kg 氧气置于图 2-13 所示气缸内,缸壁能充分导热,且活塞与缸壁无磨擦。初始时氧气压
力为 0.5MPa,温度为 27℃,若气缸长度 2 l ,活塞质量为 10kg。试计算拔除钉后,活塞可能
即每生产 1 公斤压缩空气所需技术功为 252kJ。
(3)压气机每分钟生产压缩空气 10kg,即1/ 6kg/s ,故带动压气机的电机功率为
N
=
q m wt
=
1 6
kg/s × 252kJ/kg
=
42kW
9
第二章 热力学第二定律
2-10 某蒸汽动力厂中锅炉以 40T/h 的蒸汽供入蒸汽轮机。进口处压力表上读数是 9MPa ,蒸 汽的焓是 3441kJ/kg 。蒸汽轮机出口处真空表上的读数是 0.0974MPa ,出口蒸汽的焓是
的室内空气每小时温度的升高值,已知空气的热力学能与温度关系为 ∆u = 0.72∆TkJ/kg 。
解 室内空气总质量 m = pV = 0.1×106 Pa ×15m2 × 3.0m = 52.06kg RgT 287J/(kg ⋅ K) × (28 + 273.15)K
大学物理下(毛峰版)课后习题答案ch11 热力学基础 习题及答案
![大学物理下(毛峰版)课后习题答案ch11 热力学基础 习题及答案](https://img.taocdn.com/s3/m/670ce7043169a4517723a386.png)
第11章 热力学基础 习题及答案1、 内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度越高,则热量越多; (2) 物体的温度越高,则内能越大。
答:内能是组成物体的所有分子的动能与势能的总和。
热量是热传递过程中所传递的能量的量度。
内能是状态量,只与状态有关而与过程无关,热量是过程量,与一定过程相对应。
(1) 错。
热量是过程量,单一状态的热量无意义。
(2) 对。
物体的内能与温度有关。
2、V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高? 答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 3、评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程.答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 4、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题4图解:(1)由热力学第一定律有 A E Q +∆= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=∆A Q E 经绝热b a →过程 012=+∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.(2)若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 5、一循环过程如图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.题5图 题6图解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得 KvR p = 故bc 过程为等压过程ca 是等温过程(2)V p -图如图 (3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形. (5) abca bc abQ Q Q Q e -+=6、两个卡诺循环如图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7、4.8kg 的氧气在27.0℃时占有1000m³的体积,分别求在等温、等压情况下,将其体积压缩到原来的1/2所需做的功、所吸收的热量以及内能的变化。
(完整版)大学物理热学习题附答案
![(完整版)大学物理热学习题附答案](https://img.taocdn.com/s3/m/372e2e98844769eae109ed94.png)
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
李椿热学答案及部分习题讲解部分习题的参考答案
![李椿热学答案及部分习题讲解部分习题的参考答案](https://img.taocdn.com/s3/m/3acca441a517866fb84ae45c3b3567ec112ddc47.png)
李椿热学答案及部分习题讲解部分习题的参考答案“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。
第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]?(?C/[X]), b = –[100 X i/(X s–X i)]?C, 其中的[X]代表测温性质X的单位.8. (1) –205?C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16?, 273.47?;(3) 不存在0度.20. 13.0 kg?m-3.24. 由教科书137页公式可得p = 3.87?10-3 mmHg.25. 846 kg?m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg?m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159?10-3 atm, 71.59 atm, 7159 atm; 4.871?10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km?s-1和2.38 km?s-1第二章部分习题的参考答案1. 3.22?103 cm-3.3. 1.89?1018.4. 2.33?10-2 Pa.5. (1) 2.45?1025 m-3;(2) 1.30 kg?m-3;(3) 5.32?10-26 kg;(4) 3.44?10-9 m;(5) 6.21?10-21 J.6. 3.88?10-2 eV,7.73?106 K.7. 301 K.8. 5.44?10-21 J.9. 6.42 K, 6.87?104Pa (若用范德瓦耳斯方程计算) 或6.67?104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m?s-1;(2) 7.91 m?s-1;(3) 7.07 m?s-111. (1) 1.92?103 m?s-1;(2) 483 m?s-1;(3) 193 m?s-1.12. (1) 485 m?s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02?104 K, 1.61?105 K; 459 K, 7.27?103 K.16. (1) 1.97?1025 m-3 或2.00?1025 m-3;(2) 由教科书81页公式可得3.26?1027m-2或3.31?1027 m-2;(3) 3.26?1027 m-2或3.31?1027 m-2;(4) 7.72?10-21 J, 6.73?10-20 J.17. 由教科书81页公式可得9.26?10-6 g?cm-2?s-1.18. 2.933?10-10 m.19. 3.913?10-2 L, 4.020?10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ?(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)?{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)?(4π/3)d3]}?(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m?s-1;(2) 3.37 m?s-1;(3) 4.00 m?s-1.2. 395 m?s-1, 445 m?s-1, 483 m?s-1.4. 3π/8.5. 4.97?1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94?10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m?s-1;(2) 1.36?10-2 g?h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2?[1 + (mv2/2kT)]?exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ?[1 + (v2/v p2)]?exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74?103 J?mol-1, 2.49?103 J?mol-1.27. 6.23?103 J?mol-1, 6.23?103 J?mol-1; 3.09?103 J?g-1, 223 J?g-1.28. 5.83 J?g-1?K-1.29. 6.61?10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J?mol-1?K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74?10-10 m.2. 5.80?10-8 m, 1.28?10-10 s.4. (1)5.21?104 Pa; (2) 3.80?106 m-1.6. (1) 3.22?1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45?10-7 m;(3) 1.08?10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11?10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09?10-10 m.15. 2.23?10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg?m-4;(2) 1.19?1023 s-1;(3) 1.19?1023 s-1;(4) 4.74?10-10 kg?s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04?103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42?103 J, –1.99?103 J, 567 J.3.(1) 1.50?10-2 m3;(2) 1.13?105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44?103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47?107 J?mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J?mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19. 注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49?104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];10. [略].11. [略].12. [略].13. [略].15. ?T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]?{1 + [gx3/(kT)]}?{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]?{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19?108 J.2. 7.24?10-2 N?m-1.3. 1.29?105 Pa.4. 1.27?104 Pa.6. f = S[α(R1-1 + R2-1) –(ρgh/2)]= {Sα?[2cos(π–θ)]/[2(S/π)1/2 ?cos(π–θ) + h–h sin(π–θ)]} + {Sα?[2cos(π–θ)]/h} –(Sρgh/2)≈Sα?[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98?10-2 m.10. (1) 0.712 m; (2) 9.60?104 Pa; (3) 2.04?10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J?kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21?103 J.2. (1) 6.75?10-3 m3;(2) 1.50?10-5 m3;(3) 液体体积为1.28?10-5 m3, 气体体积为9.87?10-4 m3.4. 373.52 K.6. 1.36?107 Pa.7. [略].8. [略].9. 1.71?103 Pa.11. 4.40?104 J?mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121?104 J?mol-1, 2.547?104 J?mol-1, 5.75?103 J?mol-1.。
热学课后习题答案
![热学课后习题答案](https://img.taocdn.com/s3/m/3eec00dcbe23482fb4da4cbe.png)
第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。
(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。
(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。
解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。
此时管内水银面到管顶的距离为。
问当此气压计的读数为时,实际气压应是多少。
设空气的温度保持不变。
题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。
解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n 转后,压强设当压强降到时,所需时间为 分,转数1-27 把 的氮气压入一容积为 的容器,容器中原来已充满同温同压的氧气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。
(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。
(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。
解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。
此时管内水银面到管顶的距离为。
问当此气压计的读数为时,实际气压应是多少。
设空气的温度保持不变。
题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。
解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。
试求混合气体的压强和各种气体的分压强,假定容器中的温度保持不变。
解:根据道尔顿分压定律可知又由状态方程且温度、质量M 不变。
第二章 气体分子运动论的基本概念2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。
设混合气体的温度为150℃,求混合气体的压强。
解:根据混合气体的压强公式有PV=(N 氧+N 氮+N 氩)KT其中的氩的分子个数:N氩=15231001097.410023.640103.3⨯=⨯⨯⨯=-N M 氩氩μ(个)∴ P=(1.0+4.0+4.97)10152231033.225004231038.1--⨯=⨯⨯⋅Pa 41075.1-⨯≅mmHg 2-5一容器内有氧气,其压强P=1.0atm,温度为t=27℃,求 (1) 单位体积内的分子数:(2) 氧气的密度; (3) 氧分子的质量; (4) 分子间的平均距离; (5) 分子的平均平动能。
解:(1) ∵P=nKT∴n=252351045.23001038.110013.10.1⨯=⨯⨯⨯⨯=-KT P m -3(2) l g RTP /30.1300082.0321=⨯⨯==μρ(3)m 氧=23253103.51045.2103.1-⨯≅⨯⨯=n ρg (4) 设分子间的平均距离为d ,并将分子看成是半径为d/2的球,每个分子的体积为v 0。
V 0=336)2(34d d ππ= ∴71931028.41044.266-⨯=⨯⨯==ππn d cm (5)分子的平均平动能ε为:ε14161021.6)27273(1038.12323--⨯=+⨯⨯==KT (尔格)2-12 气体的温度为T = 273K,压强为 P=1.00×10-2atm,密度为ρ=1.29×10-5g(1) 求气体分子的方均根速率。
(2) 求气体的分子量,并确定它是什么气体。
解:(1)s m PRTV/485332===ρμ(2)mol g mol kg PRTn PN A /9.28/109.283=⨯===-ρμ m=28.9该气体为空气2-19 把标准状态下224升的氮气不断压缩,它的体积将趋于多少升?设此时的氮分子是一个挨着一个紧密排列的,试计算氮分子的直径。
此时由分子间引力所产生的内压强约为多大?已知对于氮气,范德瓦耳斯方程中的常数a=1.390atm ﹒l 2mol -2,b=0.039131mol -1。
解:在标准状态西224l 的氮气是10mol 的气体,所以不断压缩气体时,则其体积将趋于10b ,即0.39131,分子直径为:)(1014.32383cm N b d O-⨯≅=π内压强P 内=8.90703913.039.122≅=V a atm 注:一摩尔实际气体当不断压缩时(即压强趋于无限大)时,气体分子不可能一个挨一个的紧密排列,因而气体体积不能趋于分子本身所有体积之和而只能趋于b 。
第三章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-13 N 个假想的气体分子,其速率分布如图3-13所示(当v >v 0时,粒子数为零)。
(1)由N 和V 0求a 。
(2)求速率在1.5V 0到2.0V 0之间的分子数。
(1) 求分子的平均速率。
解:由图得分子的速率分布函数: NV Va0 (00V V 〈〈)Na(002V V V 〈〈) f(v)= 0 (02V V 〉)(1) ∵dv V Nf dN )(=∴a V aV V V a advdV V VadV V f N N VV V 00200202321)(0=+=+==⎰⎰⎰∞32V Na =(2) 速率在1.5V 0到2.0V 0之间的分子数33221)5.12()(000025.125.10N V V N V V a adVdV V Nf N V VV V =⋅=-===∆⎰⎰3-21 收音机的起飞前机舱中的压力计批示为1.0atm ,温度为270C ;起飞后压力计指示为0.80atm ,温度仍为27 0C ,试计算飞机距地面的高度。
解:根据等温气压公式: P=P0e -有In = - ∴ H = - In •其中In =In = -0.223,空气的平均分子量u=29. ∴H= 0.223× =2.0×103(m)3-27 在室温300K 下,一摩托车尔氢和一摩尔氮的内能各是多少?一克氢和一克氮的内能各是多少?解:U 氢= RT =6.23×103(J) U 氮= RT =6.23×103(J)可见,一摩气体内能只与其自由度(这里t=3,r=2,s=0)和温度有关。
一克氧和一克氮的内能:∴U 氢= = = 3.12×103(J) U 氮= = = 2.23×103(J)3-30 某种气体的分子由四个原子组成,它们分别处在正四面体的四个顶点:(1)求这种分子的平动、转动和振动自由度数。
(2)根据能均分定理求这种气体的定容摩尔热容量。
解:(1)因n个原子组成的分子最多有3n个自由度。
其中3个平动自由度,3个转动自由度,3n-1个是振动自由度。
这里n=4,故有12个自由度。
其中3个平动、个转动自由度,6个振动自由度。
(2) 定容摩尔热容量:Cv= (t+r+2s)R = ×18×2= 18(Cal/mol•K)第四章气体内的输运过程4-2.氮分子的有效直径为,求其在标准状态下的平均自由程和连续两次碰撞间的平均时间。
解:=代入数据得:-(m)=代入数据得:=(s)4-4.某种气体分子在时的平均自由程为。
(1)已知分子的有效直径为,求气体的压强。
(2)求分子在的路程上与其它分子的碰撞次数。
解:(1)由得:代入数据得:(2)分子走路程碰撞次数(次)4-6.电子管的真空度约为HG,设气体分子的有效直径为,求时单位体积内的分子数,平均自由程和碰撞频率。
解:(2)(3)若电子管中是空气,则4-14.今测得氮气在时的沾次滞系数为试计算氮分子的有效直径,已知氮的分子量为28。
解:由《热学》(4.18)式知:代入数据得:4-16.氧气在标准状态下的扩散系数:、求氧分子的平均自由程。
解:代入数据得4-17.已知氦气和氩气的原子量分别为4和40,它们在标准状态嗲的沾滞系数分别为和,求:(1)氩分子与氦分子的碰撞截面之比;(2)氩气与氦气的导热系数之比;(3)氩气与氦气的扩散系数之比。
解:已知(1)根据(2)由于氮氩都是单原子分子,因而摩尔热容量C相同(3)现P、T都相同,第五章热力学第一定律5-21. 图5-21有一除底部外都是绝热的气筒,被一位置固定的导热板隔成相等的两部分A和B,其中各盛有一摩尔的理想气体氮。
今将80cal 的热量缓慢地同底部供给气体,设活塞上的压强始终保持为1.00atm,求A部和B部温度的改变以及各吸收的热量(导热板的热容量可以忽略).若将位置固定的导热板换成可以自由滑动的绝热隔板,重复上述讨论.解:(1)导热板位置固定经底部向气体缓慢传热时,A部气体进行的是准静态等容过程,B部进行的是准表态等压过程。
由于隔板导热,A、B两部气体温度始终相等,因而=6.7K=139.2J(2)绝热隔板可自由滑动B部在1大气压下整体向上滑动,体积保持不变且绝热,所以温度始终不变。
A部气体在此大气压下吸热膨胀5-25.图5-25,用绝热壁作成一圆柱形的容器。
在容器中间置放一无摩擦的、绝热的可动活塞。
活塞两侧各有n 摩尔的理想气体,开始状态均为p0、V0、T0。
设气体定容摩尔热容量C v为常数,=1.5将一通电线圈放到活塞左侧气体中,对气体缓慢地加热,左侧气体膨胀同时通过活塞压缩右方气体,最后使右方气体压强增为p0。
问:(1)对活塞右侧气体作了多少功?(2)右侧气体的终温是多少?(3)左侧气体的终温是多少?(4)左侧气体吸收了多少热量?解:(1)设终态,左右两侧气体和体积、温度分别为V左、V右、T左、T右,两侧气体的压强均为p0对右侧气体,由p0 =p右得则外界(即左侧气体)对活塞右侧气体作的功为(2)(3)(4)由热一左侧气体吸热为5-27 图5-27所示为一摩尔单原子理想气体所经历的循环过程,其中AB为等温线.已知3.001, 6.001求效率.设气体的解:AB,CA为吸引过程,BC为放热过程.又且故%5-28 图5-28(T-V图)所示为一理想气体(已知)的循环过程.其中CA为绝热过程.A点的状态参量(T, )和B点的状态参量(T, )均为已知.(1)气体在A B,B C两过程中各和外界交换热量吗?是放热还是吸热?(2)求C点的状态参量(3)这个循环是不是卡诺循环?(4)求这个循环的效率.解:(1)A B是等温膨胀过程,气体从外界吸热,B C是等容降温过程,气体向外界放热.从又得(3)不是卡诺循环(4)==5-29 设燃气涡轮机内工质进行如图5-29的循环过程,其中1-2,3-4为绝热过程;2-3,4-1为等压过程.试证明这循环的效率为又可写为其中是绝热压缩过程的升压比.设工作物质为理想气体, 为常数. 证:循环中,工质仅在2-3过程中吸热,循环中,工质仅在4-1过程中放热循环效率为从两个绝热过程,有或或由等比定理又可写为5-31 图5-31中ABCD为一摩尔理想气体氦的循环过程,整个过程由两条等压线和两条等容线组成.设已知A 点的压强为 2.0tam,体积为 1.01,B点的体积为2.01,C点的压强为 1.0atm,求循环效率.设解:DA和AB两过程吸热,===6.5atmlBC和CD两过程放热===5.5atml%5-33 一制冷机工质进行如图5-33所示的循环过程,其中ab,cd分别是温度为, 的等温过程;cb,da为等压过程.设工质为理想气体,证明这制冷机的制冷系数为证:ab,cd两过程放热, 而Cd,da两过程吸热, ,而则循环中外界对系统作的功为从低温热源1,(被致冷物体)吸收的热量为制冷系数为证明过程中可见,由于,在计算时可不考虑bc及da两过程.第六章热力学第二定律6-24 在一绝热容器中,质量为m,温度为T1的液体和相同质量的但温度为T2的液体,在一定压强下混合后达到新的平衡态,求系统从初态到终态熵的变化,并说明熵增加,设已知液体定压比热为常数CP。