七年级数学上册比较线段的长短综合练习题(附答案)
初一数学线段的长短比较试题
初一数学线段的长短比较试题1.已知,如图:点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列错误的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离【答案】C【解析】因为PA⊥PC,所以线段PA的长是点A到直线PC的距离,C错误.2.如图,线段AB="BC=CD=DE=1" cm,那么图中所有线段的长度之和等于________cm.【答案】20【解析】因为长为1 cm的线段共4条,长为2 cm的线段共3条,长为3 cm的线段共2条,长为4 cm的线段仅1条,所以图中所有线段长度之和为1×4+2×3+3×2+4×1=20(cm).3.已知线段a,利用尺规,求作一条线段AB,使AB=2a.【答案】【解析】本题考查的是基本作图以A为端点画射线,在射线上顺次截取AB=2a即可.如图:则AB=2a为所求.思路拓展:掌握在射线上作出所求线段为已知线段的整数倍的方法是解决本题的关键.4.在同一平面上有A、B、C三点,已知AB=5cm,BC=2cm,则AC的长是()A.7cmB.3cmC.7cm或3cmD.不能确定【答案】C【解析】本题考查的是线段的计算要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算:第一种情况:在AB外,AC=AB+BC=5+2=7,第二种情况:在AB内,AC=AB-BC=5-2=3,故答案为7 cm或3cm,故选C.思路拓展:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.5.如图有三条线段,它们分别是线段、、,则图中最短的线段是 .【答案】线段【解析】本题考查的是线段的长短比较分别用刻度尺测量出各条线段的长,即可比较大小;也可从点C处折叠比较。
七年级数学上册第四章第二节比较线段的长短练习题(附答案)
C. 与 D. 与
10.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 千米处,是黄河上最具气势的自然景观.其落差约 米,年平均流量 立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )
A. 立方米/时 B. 立方米/时
C. 立方米/时 D. 立方米/时
火车往返于 两个城市,不同的车站往来需要不同的车票,所以共有30种不同的车票.
21.答案:5
解析:因为 互为相反数, 互为倒数,所以 ,
又m的绝对值为 ,所以 ,则原式 .
22.答案:2
解析:
23.答案:5cm或11cm
解析:有两种情况,如答图所示.
24.答案:0
解析:∵从数轴可知: ,
∴ , , ,
3.答案:B
解析:因为 的长为 ,点D为线段 的中点,所以 .
分两种情况:
(1)如图1,C为线段 的一个三等分点,所以
所以 ;
(2)如图2,因为C为线段 的一个三等分点,所以
所以 .故选B.
4.答案:B
解析:因为点M在线段 上,所以再加下列条件之一,即可确定点M是 的中点:① ;② ;③ .而无论点M在 上的什么位置,都有 ,所以选项B不能确定点M是 的中点.
24.已知有理数 表示的点在数轴上的位置如图所示,化简 =_______.
参考答案
1.答案:C
解析:从“数”“形”两个角度理解线段的中点.
(1)由形到数:若点M是线段 的中点,则 .
(2)由数到形:若点M在线段 上,且 或 ,则点M是线段 的中点.
2.答案:C
解析:两条直线相交最多有 (个)交点,三条直线相交最多有 (个)交点,四条直线相交最多有 (个)交点,五条直线相交最多有 (个)交点,六条直线相交最多有 (个)交点.故选C.
人教版2020-2021年初一数学上册同步练习:线段长短的比较【含答案】
人教版2020-2021年初一数学上册同步练习:线段长短的比较【含答案】一.选择题1.经过平面上的四个点,可以画出来的直线条数为()A.1B.4C.6D.前三项都有可能【答案】D【解析】解:(1)如果4个点,点A、B、C、D在同一直线上,那么只能确定一条直线,如图:(2)如果4个点中有3个点(不妨设点A、B、C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:(3)如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,如图:综上所述,过其中2个点可以画1条、4条或6条直线.故选D.2.平面内有n条直线(n≥2),这n条直线两两相交,最多可以得到a个交点,最少可以得到b个交点,则a+b的值是()A. B. C. D.【答案】D【详解】如图:2条直线相交有1个交点;3条直线相交有1+2个交点;4条直线相交有1+2+3个交点;5条直线相交有1+2+3+4个交点;6条直线相交有1+2+3+4+5个交点;…n条直线相交有1+2+3+4+5+…+(n-1)=个交点.所以a=,而b=1,∴a+b=.故选D.3.题目;已知:线段a,b.求作:线段AB,使得AB=a+2b.小明给出了四个步骤①在射线AM上画线段AP=a;②则线段AB=a+2b;③在射线PM上画PQ=b,QB=b;④画射线AM.你认为顺序正确的是()A.①②③④B.④①③②C.④③①②D.④②①③【答案】B【解析】由题意可知,正确的画图顺序是:④画射线AM;①在射线AM上画线段AP=a;③在射线PM上画PQ=b,QB=b;②则线段AB=a+2b.故选B.4.如图,点C是线段AB上的点,点D是线段BC的中点,AB=10,AC=6,则线段AD的长是()A.6B.2C.8D.4【答案】C【解析】试题解析:∵BC=AB-AC=4,点D是线段BC的中点,∴CD=DB=BC=2,∴AD=AC+CD=6+2=8;故选C.5.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b【答案】A【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.6.已知线段AB=10 cm,点C是直线AB上一点,点D是线段BC的中点,AC=4 cm,则AD的长为()A.3 cm B.5 cm C.7 cm D.3 cm或7 cm【答案】D【详解】试题解析:①如图1所示,∵AB=10cm,AC=4cm,∴BC=AB-AC=10-4=6cm,∵D是线段BC的中点,∴AD= =×6=7cm;②如图2所示,∵AB=10cm,AC=4cm,∴BC=AB+AC=10+4=14cm,∵D是线段BC的中点,∴AD=BC-AC=×14-4=3cm.故选D.7.如图,点A,B,C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点,若想求出MN的长度,那么只需条件()A.AB=16B.BC=3C.AM=4=1【答案】A【解析】因为MN=BM+BN=MC-B C+ = =,故选A.8.点C在线段AB上,下列条件不能确定点C为线段AB中点的是()A.AB=2ACB.AC=2BCC.AC=BCD.BC=AB【答案】B【详解】A、若点C在线段AB上,AB=2AC,则点C为线段AB的中点;B、若点C在线段AB上,AC=2BC,则点C不是线段AB的中点;C、若点C在线段AB上,AC=BC,则点C为线段AB的中点;D、若点C在线段AB上,BC=AB,则点C为线段AB的中点.故选:B.9.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直【答案】B【详解】根据两点确定一条直线.故选:B.10.如图所示,已知线段a,b,c(a>b+c),求作线段AB,使AB=a-b-c.下面利用尺规作图正确的是()A. B.C. D.【详解】解:用尺规先作线段AC=a,再从内部顺次截取CD=b,DB=c,则AB=a-b-c.故选D.二.填空题11.如图,、两点将线段分成2:3:4三部分,为线段的中点,,则线段______.【答案】1cm【分析】根据、两点将线段分成2:3:4三部分,设,然后表示出,再根据,求得x的值,进而求出AB的长;再计算出AE的长,然后利用AD﹣AE可得DE长.【详解】解:设∵∴解得:∴∵为线段的中点∴故答案为:1cm12.已知点A、B、C在同一直线上,AB=8厘米,BC=3AC,那么BC=_________厘米.【答案】6或12∵BC=3AC,∴AC=BC,如图1,点C在线段AB上时,BC+BC=8,解得C=6(厘米),如图2,点C在线段BA的延长线上时,BC-BC=8,解得BC=12(厘米),综上所述,BC=6或12厘米.故答案为:6或12.13.如图,C、D在线段AB上,且C为线段BD的中点,若AD=3,AB=11,则AC的长等于______.【答案】6.5【详解】∵AD=3,AB=10,∴BD=AB-AD=7,∵C为线段BD的中点,∴BC=DC=BD=3.5,∴AC=AD+DC=6.5;故答案为:6.5,14.点 C 在射线 AB上,若 AB=3,BC=2,则AC为_____.【答案】1或5.解:本题有两种情形:(1)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=1;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=5.故答案为:5或1.15.已知点A、B、C都是直线l上的点,且AB=8cm,BC=5cm,那么点A与点C之间的距离是________________.【答案】3或13cm【详解】解: 根据A, B, C三点在同一直线上对应的位置不同,可分两种情况计算.如图所示,点B在线段AC上,根据题意,AC=AB+BC=8+5=13cm;如图所示,点C在线段AB上, AC=AB-BC=8-5=3cm.故答案为:3或13cm三.解答题16.如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点。
北师大版七年级上册数学 4.2比较线段的长短 同步测试(含解析)
4.1比较线段的长短同步测试一.选择题1.如图,从A地到B地有四条路线,由上到下依次记为路线①、②、③、④,则从A地到B地的最短路线是路线()A.①B.②C.③D.④2.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm 3.如图,点D把线段AB从左至右依次分成1:2两部分,点C是AB的中点,若DC=3,则线段AB的长是()A.18B.12C.16D.144.如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.15.如图,已知线段AB的长为4,点C为AB的中点,则线段AC的长为()A.1B.2C.3D.46.如图,点C是线段AB上的点,点M、N分别是AC、BC的中点,若AC=6cm,MN=5cm,则线段MB的长度是()A.6cm B.7cm C.8cm D.10cm7.如图,点C、D为线段AB上两点,AC+BD=6,且AD+BC=AB,则CD等于()A.10B.8C.6D.48.下列说法不正确的是()A.因为M是线段AB的中点,所以AM=MB=ABB.在线段AM延长线上取一点B,如果AB=2AM,那么点M是线段AB的中点C.因为A,M,B在同一直线上,且AM=MB,所以M是线段AB的中点D.因为AM=MB,所以点M是AB的中点9.已知线段AB=4cm,延长线段AB到C使BC=AB,延长线段BA到D使AD=AC,则线段CD的长为()A.12cm B.10cm C.8cm D.6cm10.如图,AB=18,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8B.10C.12D.15二.填空题11.已知点A、B、C在一条直线上,AB=5cm,BC=3cm,则AC的长为.12.如图,已知线段AB=8cm,AD=1.5cm,D为线段AC的中点,则线段CB=cm.13.如图,线段AB=6,AC=2BC,则BC=.14.同一直线上有两条等长的线段AB,CD(A在B左边,C在D左边),点M,N分别是线段AB,CD的中点,若BC=6cm,MN=4AB,则AB=cm.15.如图,线段AB=4cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,使AD =3cm,E是AD中点,F是CD的中点.则EF的长度为cm.三.解答题16.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.17.如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.参考答案1.解:根据两点之间线段最短可得,从A地到B地的最短路线是路线③.故选:C.2.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.3.解:∵D把线段AB从左至右依次分成1:2两部分,点C是AB的中点,∴AD=AB=AB,AC=AB,∴DC=AB﹣AB=AB,∵DC=3,∴AB=3×6=18.故选:A.4.解:∵AB=10cm,BC=4cm.∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=AC=7cm;∵M是AB的中点,∴AM=AB=5cm,∴DM=AD﹣AM=2cm.故选:C.5.解:因为点C为AB的中点,AB的长为4,所以AC=AB=4=2.则线段AC的长为2.故选:B.6.解:∵点M、N分别是AC、BC的中点,AC=6cm,∴MC=AC=3cm,CN=BN,∵MN=5cm,∴BN=CN=MN﹣MC=5﹣3=2cm,∴MB=MN+BN=5+2=7cm,故选:B.7.解:∵AD+BC=AB,∴5(AD+BC)=7AB,∴5(AC+CD+CD+BD)=7(AC+CD+BD),∵AC+BD=6,∴CD=4,故选:D.8.解:A、因为M是线段AB的中点,所以AM=MB=AB,故本选项正确;B、如图,由AB=2AM,得AM=MB;故本选项正确;C、根据线段中点的定义判断,故本选项正确;D、如图,当点M不在线段AB时,因为AM=MB,所以点M不一定是AB的中点,故本选项错误;故选:D.9.解:由线段的和差,得AC=AB+BC=4+4=6(cm),由线段中点的性质,得CD=AD+AC=2AC=2×6=12(cm),故选:A.10.解:∵AB=18,点C为AB的中点,∴BC=AB=×18=9,∵AD:CB=1:3,∴AD=×9=3,∴DB=AB﹣AD=18﹣3=15.故选:D.11.解:若C在线段AB上,则AC=AB﹣BC=5﹣3=2(cm);若C在线段AB的延长线上,则AC=AB+BC=5+3=8(cm),故答案为2cm或8cm.12.解:∵D为线段AC的中点,∴AC=2AD=2×1.5cm=3(cm),∵AB=8cm,∴CB=AB﹣AC=8﹣3=5(cm).故答案为:5.13.解:∵AB=6,AC=2BC,∴BC=AB﹣AC=AB=6=2,故答案为:2.14.解:如图1,设AB=CD=x,∵M,N分别是线段AB,CD的中点,∴AM=AB,DN=CD,∵BC=6cm,∴AD=AB+CD+BC=2x+6.∴MN=AD﹣AM﹣DN=2x+6﹣x=6+x;∵MN=4AB=4x,∴6+x=4x,∴x=2,∴AB=2,如图2,设AB=CD=x,∵M,N分别是线段AB,CD的中点,∴AM=AB,DN=CD,∵BC=6cm,∴AD=BC﹣CD﹣AB=6﹣2x,∴MN=AD+DN+AM=6﹣2x+x=6﹣x;∵MN=4AB=4x,∴6﹣x=4x,∴x=,∴AB=,综上所述,AB=2或.故答案为:2或.15.解:CD=AD+AB+BC=3+4+1=8cm;∵E是AD中点,F是CD的中点,∴DF=CD=×8=4cm,DE=AD=×3=1.5cm.∴EF=DF﹣DE=4﹣1.5=2.5cm,故答案为:2.5.16.解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.17.解:(1)如图,AC=9,BC=6,则AB=AC=BC=9+6=15,∵AM=2MC,BN=2NC.∴MC=AC,NC=BC,∴MN=MC+NC=(AC+BC)=AB=×15=5,答:MN的长为5;(2)由(1)得,MN═AB,若MN=5时,AB=15,答:AB的长为15.。
北师大版 七年级 上册 4.2 比较线段的长短 练习(带答案)
比较线段的长短练习一、选择题1.如图,点A、B、C顺次在直线上,点M是线段AC的中点,点N是线段BC的中点,已知AB=16cm,MN=()A. 6cmB. 8cmC. 9cmD. 10cm2.平面内A,B两点之间的距离是指().A. 经过AB两点的直线B. 射线ABC. 线段ABD. 线段AB的长3.在修建高速公路时,有时需要将弯曲的道路改直,依据是()A. 两点之间线段最短B. 两点确定一条直线C. 线段有两个端点D. 线段可以比较大小4.如图,下列关于图中线段之间的关系一定正确的是()A. x=2x+2b−cB. c−b=2a−2bC. x+b=2a+c−bD. x+2a=3c+2b5.已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A. 12cmB. 8 cmC. 12 cm或8 cmD. 以上均不对6.如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 直线比线段长7.下列说法正确的()A. 连接两点的线段叫做两点之间的距离B. 射线AB与射线BA表示同一条射线C. 若AC=BC,则C是线段AB的中点D. 两点之间,线段最短8.如果线段AB=4cm,BC=3cm,那么A、C两点的距离为()A. 1cmB. 7cmC. 1cm或7cmD. 无法确定9.如图,点C是线段AB上的点,若AC=3cm,AB=15cm,点D为线段CB的中点,则线段CD的长为()A. 3cmB. 6cmC. 9cmD. 7.5cm10.下列四种情况:()①从A地到B地架设电线,总是尽可能沿着线段AB架设;②锯木板前,在木板两端固定两个点,用墨盒弹一根墨线然后再锯;③用两个钉子就可以把木条固定在墙上;④把弯曲的公路改直,就能缩短路程.其中可用基本事实“两点确定一条直线”来解释的是()A. ①②B. ①③C. ②③D. ③④11.如图,某同学家在A处,现在该同学要去位于D处的同学家,请帮助他选择一条最近的路线是()A. A→B→M→DB. A→B→C→DC. A→B→F→DD. A→B→E→F→D12.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A. 两点之间,线段最短B. 过一点有无数条直线C. 两点确定一条直线D. 两点之间线段的长度,叫做这两点之间的距离13.如图,某同学家在A处,现在该同学要去位于B处的同学家去玩,请帮助他选择一条最近的路线()A. A→C→D→BB. A→C→F→BC. A→C→E→F→BD. A→C→M→B14.如图,A,B两地间修建曲路与修建直路相比,虽然有利于游人更好地观赏风光,但增加了路程的长度.其中蕴含的数学道理是()A. 经过一点可以作无数条直线B. 经过两点有且只有一条直线C. 两点之间,有若干种连接方式D. 两点之间,线段最短二、填空题15.如图,在直线l上顺次取A,B,C,D四点,则AC=_______+BC=AD−_______,AC+BD−BC=_______.16.线段AB=6,点C在直线AB上,BC=4,则AC的长度为______.17.如图,D为线段CB的中点,AD=8厘米,AB=10厘米,则CB的长度为_____厘米.18.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是______.19.已知点A、B、C在一条直线上,AB=5cm,BC=3cm,则AC的长为______.三、解答题(本大题共3小题,共24.0分)20.如图,点C、D是线段AB上两点,且AB=8cm,CD=2cm,点M是AC的中点,点N是BD的中点,求线段MN的长度.21.如图,线段AB=8,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;BC,求AE的长.(2)若在线段AB上有一点E,CE=1422.已知线段AC和BC在同一条直线上,E,F分别是线段AC和BC的中点,(1)如果AC=8cm,BC=5cm,求E、F之间的距离.(2)如果AC=a,BC=b,且a>b,请直接写出E、F之间的距离.答案和解析1.【答案】B【解答】解:∵点M是线段AC的中点,点N是线段BC的中点,∴MN=MC−NC=12AC−12BC=12(AC−BC)=12AB,∵AB=16cm,∴MN=8cm.故选:B.2.【答案】D【解答】解:A、B两点间的距离是指连结A、B两点间的线段长,故选D.3.【答案】A【解析】解:在修建高速公路时,有时需要将弯曲的道路改直,依据是两点之间线段最短.故选:A.根据线段的性质:两点之间线段最短解答.本题考查了两点之间线段最短的性质,是基础题,比较简单.4.【答案】C【解答】解:∵x−c+2b=2a,∴x+2a=2x+2b−c,故选项A错误;∵2a−2b=x−c,故选项B错误;∵x+b=2a+c−b,故选项C正确;∵2a−2b=x−c,∴−x+2a=−c+2b,故选项D错误,故选:C.5.【答案】C【解答】解:(1)点C在A、B中间时,BC=AB−AC=10−2=8(cm).(2)点C在点A的左边时,BC=AB+AC=10+2=12(cm).∴线段BC的长为12cm或8cm.故选:C.6.【答案】A【解析】解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,7.【答案】D【解析】【试题解析】解:A、连接两点的线段的长度叫做两点之间的距离,故选项错误;B、射线AB的端点是A,射线BA的端点是B,故不是同一条射线,故选项错误;C、若AC=BC,则点C是线段AB的中点,错误,因为点A、B、C不一定共线;故选项错误;D、两点之间,线段最短,正确.8.【答案】D【解析】解:(1)当A,B,C三点在一条直线上时,分点B在A、C之间和点C在A、B 之间两种情况讨论.①点B在A、C之间时,AC=AB+BC=4+3=7cm;②点C在A、B之间时,AC=AB−BC=4−3=1cm.所以A、C两点间的距离是7cm或1cm.(2)当A,B,C三点不在一条直线上时,A,C两点之间的距离有多种可能.故选D.9.【答案】B【解答】解:∵AC=3cm,AB=15cm,∴CB=AB−AC=12cm,∵点D为线段CB的中点,BC=6cm.∴CD=12故选B.10.【答案】C【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:C.11.【答案】C【解答】解:根据两点之间的线段最短,可得D、B两点之间的最短距离是线段DB的长度,所以想尽快赶到同学家玩,一条最近的路线是:A→B→F→D.故选C.12.【答案】A【解析】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,13.【答案】B【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到同学家玩,一条最近的路线是:A→C→F→B.故选:B.14.【答案】D【解析】解:A,B两地间修建曲路与修建直路相比,虽然有利于游人更好地观赏风光,但增加了路程的长度.其中蕴含的数学道理是两点之间,线段最短,15.【答案】AB;CD;AD【解答】解:由线段的关系可知AC=AB+BC=AD−CD,AC+BD−BC=AD,故答案为AB;CD;AD.16.【答案】2或10【解析】解:当C在线段AB上时,AC=1B−BC=6−4=2;当C在线段AB的延长线上时,AC=AB+BC=10.综上所述:AC的长度为2或10.17.【答案】4【解答】解:∵AD=8厘米,AB=10厘米,∴BD=AB−AD=2厘米,∵D为线段CB的中点,∴CB=2BD=4厘米.故答案为4.18.【答案】两点之间线段最短【解析】解:田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短.19.【答案】2cm或8cm【解析】解:若C在线段AB上,则AC=AB−BC=5−3=2(cm);若C在线段AB的延长线上,则AC=AB+BC=5+3=8(cm),20.【答案】解:∵M、N分别是AC、BD的中点,∴MN=MC+CD+ND=12AC+CD+12DB=12(AC+DB)+CD=12(AB−CD)+CD=5cm.21.【答案】解:(1)∵AB=8,C是AB的中点,∴AC=BC=4,∵D是BC的中点,∴CD=12BC=2,∴AD=AC+CD=6;(2)∵BC=4,CE=14BC,∴CE=14×4=1,当E在C的左边时,AE=AC−CE=4−1=3;当E在C的右边时,AE=AC+CE=4+1=5.∴AE的长为3或5.22.【答案】解:(1)①当点C在线段AB上时,如图:∵E,F分别是线段AC和BC的中点,∴CE=12AC,CF=12BC,∴EF=CE+CF=12AC+12BC=12(AC+BC)=12×(8+5)=6.5(cm)即E、F之间的距离为6.5cm;②当点C在AB的延长线上时,如图:∵E,F分别是线段AC和BC的中点,∴CE=12AC,CF=12BC,∴EF=CE−CF=12AC−12BC=12(AC−BC)=12×(8−5)=1.5(cm)即E、F之间的距离为1.5cm;综上,E、F之间的距离为6.5cm或1.5cm;(2)①当点C在线段AB上时,如图:∵E,F分别是线段AC和BC的中点,∴CE=12AC,CF=12BC,∴EF=CE+CF=12AC+12BC=12(AC+BC)=a+b2即E、F之间的距离为6.5cm;②当点C在AB的延长线上时,如图:第11页,共11页∵E ,F 分别是线段AC 和BC 的中点, ∴CE =12AC ,CF =12BC , ∴EF =CE −CF =12AC −12BC =12(AC −BC)=a −b 2综上,E 、F 之间的距离为a+b2或a−b2.。
2022-2023学年北师大版七年级数学上册《4-2比较线段的长短》同步练习题(附答案)
2022-2023学年北师大版七年级数学上册《4.2比较线段的长短》同步练习题(附答案)一.选择题1.下列生活现象,可以用基本事实“两点之间,线段最短”解释的是()A.汽车的雨刮器把玻璃上的水刷干净B.开山挖隧道,把上坡下坡的盘山公路改为平直的隧道C.公园的喷泉中,喷水龙头喷出的圆形水面D.建筑工人通过在两个柱子之间拉一条绳子砌墙2.下列说法不正确的是()A.﹣5πab2的系数是﹣5B.3x3﹣2x2+1是三次三项式C.过两点有且只有一条直线D.两点之间的所有连线中,线段最短3.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处4.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处5.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线,嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对6.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF7.下列画图语句中,正确的是()A.画射线OP=3cm B.连结A、B两点C.画出直线AB的中点D.画出A、B两点的距离8.下列作图不是尺规作图的是()A.用直尺和圆规作线段a等于已知线段B.用直尺和圆规作一个角等于已知角C.用刻度尺和圆规作一条10cm的线段D.用直尺和圆规作一个三角形二.填空题9.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两棵树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有(填序号).10.如图,从A地到B地共有五条路,人们常常选择第③条,请用几何知识解释原因:.11.四边形ABCD中,AC=11,BD=13.在四边形ABCD内找一点O,使它到四边形四个顶点的距离之和最小,则其最小和为.三.解答题12.如图1,将一段长为60厘米绳子AB拉直铺平后折叠(绳子无弹性,折叠处长度忽略不计),使绳子与自身一部分重叠.若将绳子AB沿M、N点折叠,点A、B分别落在A',B'处.(1)如图2,若A',B'恰好重合于点O处,MN=cm;(2)如图3,若点A'落在B'的左侧,且A'B'=20cm,求MN的长度;(3)若A'B'=ncm,求MN的长度.(用含n的代数式表示)13.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s 的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.14.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.15.如图,点C为线段AD上一点,点B为CD的中点,且AD=13cm,BC=3cm.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AD上,且EA=4cm,求BE的长.16.如图,已知A、B、C三点在同一直线上,AB=24cm,BC=AB,E是AC的中点,D 是AB的中点,求DE的长.17.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?请直接写出你的答案.(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.18.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N分别是线段AC,BC的中点,请画出图形,并用a的式子表示MN的长度.19.如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.(1)点E是线段AD的中点吗?说明理由;(2)当AD=10,AB=3时,求线段BE的长度.20.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.21.如下图,已知线段a、b(a>b),画一线段,使它等于2a﹣2b.22.(1)如图,已知点C在线段AB上,且AC=8cm,BC=6cm,点M、N分别是AC、BC 的中点,要求线段MN的长度,可进行如下的计算.请填空:解:因为M是AC的中点,所以MC=,因为AC=8cm,所以MC=4cm.因为N是BC的中点,所以CN=BC,因为BC=6cm,所以CN=.所以MN =MC+CN=.(2)对于(1),如果AC=a cm,BC=b cm,其他条件不变,请求出MN的长度.23.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s 的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.参考答案一.选择题1.解:A、汽车的雨刮器把玻璃上的水刷干净,根据是线动成面,故此选项不合题意;B、开山挖隧道,把上坡下坡的盘山公路改为平直的隧道,根据两点之间,线段最短,故此选项符合题意;C、公园的喷泉中,喷水龙头喷出的圆形水面,根据点动成线,故此选项不合题意;D、建筑工人通过在两个柱子之间拉一条绳子砌墙,根据是两点确定一条直线,故此选项不合题意.故选:B.2.解:A、﹣5πab2的系数是﹣5π,本选项错误,符合题意;B、3x3﹣2x2+1是三次三项式,正确,不符合题意;C、过两点有且只有一条直线,正确,不符合题意;D、两点之间的所有连线中,线段最短,正确,不符合题意.故选:A.3.解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.4.解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.5.解:嘉嘉利用量角器画90°角,可以画垂线,方法正确.淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.6.解:A.连接AD,不能同时使平分∠BAC,此作图错误;B.只能反向延长射线AB,此作图错误;C.作∠AOB的平分线OC,此作图正确;D.过点A作AB∥CD或AB∥EF,此作图错误;故选:C.7.解:A、画射线OP=3cm,错误,射线没有长度,本选项不符合题意.B、连结A、B两点,正确.本选项符合题意.C、画出直线AB的中点,错误,直线没有长度,本选项不符合题意.D、画出A、B两点的距离,错误,距离的一个数值,应该是量出A,B两点的距离.本选项不符合题意.故选:B.8.解:A、用直尺和圆规作线段a等于已知线段,属于尺规作图,本选项不符合题意.B、用直尺和圆规作一个角等于已知角,属于尺规作图,本选项不符合题意.C、用刻度尺和圆规作一条10cm的线段,不属于尺规作图,本选项符合题意.D、用直尺和圆规作一个三角形,属于尺规作图,本选项不符合题意.故选:C.二.填空题9.解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两棵树的位置,就能确定同一行所在的直线根据两点确定一条直线;故答案为:②.10.解:从A地到B地共有五条路,人们常常选择第③条,请用几何知识解释原因:两点之间,线段最短,故答案为:两点之间,线段最短.11.解:∵两点之间,线段最短,∴在四边形ABCD内找一点O,使它到四边形四个顶点的距离之和最小,这个点O就是对角线的交点,∵对角线AC=11,BD=13,∴其最小和为11+13=24.故答案为:24.三.解答题12.解:(1)∵绳子AB沿M、N点折叠,点A、B分别落在A'、B'处,A'、B'恰好重合于点O处,∴AM=MO=AO,ON=BN=OB,∴MN=MO+ON=(AO+OB)=AB=30(cm);故答案为:30.(2)∵AB=60 cm,A′B′=20cm,∴AA′+BB′=AB﹣A′B′=60﹣20=40(cm).根据题意得,M、N分别为AA′、BB′的中点,∴AM=AA′,BN=BB′,∴AM+BN=AA′+BB′=(AA′+BB′)=×40=20cm,∴MN=AB﹣(AM+BN)=60﹣20=40(cm);(3)∵M、N分别为AA′、BB′的中点,∴AM=MA′=AA′,BN=B′N=BB′.当点A′落在点B′的左侧时,∴MN=MA′+A′B′+B′N=AA′+A′B′+B′B=(AA′+A′B′+B′B)+ A′B′=(AB+A′B′)=(30+n)(cm);当点A′落在点B′的右侧时,∵AA′+BB′=AB+A′B′=(60+n)cm,∴AM+BN=AA′+BB′=(AA′+BB′)=×(60+n)=(30+n)cm.∴MN=AB﹣(AM+BN)=60−(30+n)=(30−n)(cm).综上,MN的长度为(30+)cm或(30−)cm.13.解:(1)当点C、D运动了1s时,CM=1cm,BD=3cm∵AB=11cm,CM=1cm,BD=3cm∴AC+MD=AB﹣CM﹣BD=11﹣1﹣3=7cm;(2)设运动时间为t,则CM=t,BD=3t,∵AC=AM﹣t,MD=BM﹣3t,又MD=3AC,∴BM﹣3t=3AM﹣3t,即BM=3AM,∵BM=AB﹣AM∴AB﹣AM=3AM,∴AM=AB,∴AM=BM,故答案为:;(3)当点N在线段AB上时,如图∵AN﹣BN=MN,AN﹣AM=MN,∴BN=AM=AB,∴MN=AB,即=.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,AN﹣BN=AB∴MN=AB,∴=1,即=.综上所述=或.14.解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm;(2)同(1)可得CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=a.15.解:(1)图中的线段有AC、AB、AD、CB、CD、BD这6条,故答案为:6;(2)∵点B为CD的中点、BC=3cm,∴CD=2BC=6cm,∵AD=13cm,∴AC=AD﹣CD=13﹣6=7(cm).(3)如图1,当点E在AC上时,∵AB=AC+BC=10cm、EA=4cm,∴BE=AB﹣AE=10﹣4=6(cm);如图2,当点E在CA延长线上时,∵AB=10cm、AE=4cm,∴BE=AE+AB=14cm;综上,BE的长为6cm或14cm.16.解:∵AB=24cm,D是AB中点,∴AD=AB=12cm,∵BC=AB,∴BC=9,AC=AB+BC=33cm,∵E是AC中点,∴AE=AC=cm,∴DE=AE﹣AD=﹣12=4.5cm,∴DE=4.5cm17.解:(1)∵M、N分别是AC、BC的中点,∴MC=AC、CN=BC,∵AC=9cm,CB=6cm,∴MN=MC+CN=AC+BC=(AC+BC)=(9+6)=7.5cm;(2)∵M、N分别是AC、BC的中点,∴MC=AC、CN=BC,∵AC+CB=acm,∴MN=MC+CN=(AC+CB)=a(cm);(3)MN=b,如图,∵M、N分别是AC、BC的中点,∴MC=AC、CN=BC,∵AC﹣BC=b cm,∴MN=MC﹣CN=AC﹣BC=(AC﹣BC)=b.18.解:(1)∵M是AC的中点,∴MC=AC=3cm,∴BC=MB﹣MC=7cm,又N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+NC=6.5cm;(2)如图:∵M是AC的中点,∴CM=AC,∵N是BC的中点,∴CN=BC,∴MN=CM﹣CN=AC﹣BC=(AC﹣BC)=acm.19.解:(1)点E是线段AD的中点.∵AC=BD,∴AB+BC=BC+CD,∴AB=CD.∵E是线段BC的中点,∴BE=EC,∴AB+BE=CD+EC,即AE=ED,∴点E是线段AD的中点.(2)∵AD=10,AB=3,∴BC=AD﹣2AB=10﹣2×3=4,∴BE=BC=×4=2.即线段BE的长度为2..20.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.21.解:画法(如图):①画射线AF;②在射线AF上顺次截取AB=BC=a;③在线段AC上顺次截取AD=DE=b,则线段EC即为所要画的线段.22.解:(1)由分析可得题中应填:AC;3cm;7cm(2)因为M是AC的中点,所以MC=AC,因为AC=acm,所以MC=acm因为N是BC的中点,所以CN=BC,因为BC=bcm,所以CN=bcm,所以MN=MC+CN=cm.23.解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm ∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm.(2)设运动时间为t,则CM=t,BD=3t,∵AC=AM﹣t,MD=BM﹣3t,又MD=3AC,∴BM﹣3t=3AM﹣3t,即BM=3AM,∵BM=AB﹣AM∴AB﹣AM=3AM,∴AM=AB,故答案为:.(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=。
七年级数学比较线段的长度综合练习题(附答案)
七年级数学比较线段的长度综合练习题一、单选题1.如图,C 是线段AB 的中点,D 是线段AC 的中点,那么下列各式中不成立的是( )A. 4AB AD =B. 12AC AB =C. BD AC =D. 3BD AC =2.已知线段6AB =,在直线AB 上取一点C ,使2BC =,则线段AC 的长( )A.2B.4C.8D.8或43.如图,,C D 是线段AB 上两点,若3cm 5cm BC BD ==,,且D 是AC 的中点,则AC 的长为( )A. 2cmB. 4cmC. 8cmD. 13cm4.如图,小林利用圆规在线段CE 上截取线段CD ,使CD AB =.若点D 恰好为CE 的中点,则下列结论中错误的是( )A.CD DE =B.AB DE =C.12CE CD =D.2CE AB =5.若线段5AB =cm, 3CD =cm ,则下列判断正确的是( ).A.AB CD =B.AB CD >C.AB CD <D.不能判断6.如图,如果AB CD =,那么AC 与BD 的大小关系是( )A.AC BD =B.AC BD <C.AC BD >D.不能确定7.下列直线的表示法正确的是( )A.直线ab B. 直线Ab C. 直线AB D. 直线a8.如图,对于直线AB 、线段CD 、射线EF ,其中能相交的是( ).A. B.C. D.9.如图,点,,A B C 是直线l 上的三个点,图中共有线段( )A.1条B.2条C.3条D.4条10.如图,下列说法正确的是( )A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.如图,有下列说法:①直线AB 与直线BA 是同一条直线;②射线OA 与射线OB 是同一条射线;③射线OA 与射线AB 是同一条射线.其中正确的有( ).A.3个B.2个C.1个D.0个12.如图,平面内有公共端点的六条射线,,,,,OA OB OC OD OE OF ,从射线OA 开始按逆时针依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2018”在( )A.射线OA 上B.射线OB 上C.射线OD 上D.射线OF 上二、解答题13.如图,在一条不完整的数轴上从左到右有,,A B C 三点,其中2,1AB BC ==.设点,,A B C 所对应的数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .14.如图,P 是线段AB 上一点, 12cm AB =,,C D 两点分别从,P B 出发以1/2/cm s ,cm s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上),运动的时间为t .(1)当1t =时,2PD AC =,请求出AP 的长;(2)当2t =时,2PD AC =,请求出AP 的长;(3)若,C D 运动到任一时刻时,总有2PD AC =,请求出AP 的长;(4)在(3)的条件下,Q 是直线AB 上一点,且AQ BQ PQ -=,求PQ 的长.三、填空题15.直线l 上有,,A B C 三点,已知6AB =,2AC BC =,则BC 的长是__________. 16.如图,,a b 是两根木条,用,A B 两根钉子钉在墙上,其中木条a 可以绕点A 转动,木条b 被固定不动.这一生活现象用你学过的数学知识解释为___________________.参考答案1.答案:C解析:2.答案:D解析:3.答案:B解析:4.答案:C解析:5.答案:B解析:6.答案:A解析:7.答案:C解析:8.答案:B解析:9.答案:C解析:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.10.答案:C解析:11.答案:B解析:12.答案:B÷=⋅⋅⋅⋅⋅⋅,所以数字“2018”在射线OB上.解析:20186332213.答案:解:(1)若以B为原点,则C表示1,A表示-2,所以1021p=+-=-.若以C为原点,则A表示-3,B表示一I,所以3104p=--+=-.(2)若原点O在图中数轴上点C的右边,28CO=,则C表示-28,B表示-29,A表示-31,所以31292888p=---=-.解析:14.答案:(1)4cm;(2)4cm;(3)4cm;(4)4cm或12cm解析:15.答案:2或6解析:16.答案:两点确定一条直线(过所点有且只有一条直线或过一点不能确定一条直线) 解析:。
七年级数学比较线段长短专项练习题(附答案)
七年级数学比较线段长短专项练习题一、解答题1.如图,点C 是AB 的中点,,D E 分别是线段,AC CB 上的点,且23,35AD AC DE AB ==,若24cm AB =,求线段CE 的长.2.如图,P 是线段AB 上一点, 12cm AB =,,C D 两点分别从,P B 出发以1/2/cm s ,cm s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上),运动的时间为t .(1)当1t =时,2PD AC =,请求出AP 的长; (2)当2t =时,2PD AC =,请求出AP 的长;(3)若,C D 运动到任一时刻时,总有2PD AC =,请求出AP 的长;(4)在(3)的条件下,Q 是直线AB 上一点,且AQ BQ PQ -=,求PQ 的长.3.如图,已知,C D 为线段AB 上顺次两点,点,M N 分别为AC 与BD 的中点,若20,8AB CD ==,求线段MN 的长.4.已知点C 是线段AB 上一点,6cm,4cm AC BC ==,若.M N 分别是线段,AC BC 的中点,求线段MN 的长.5.如图,点C 在线段AB 上,3:2AC BC =:,点M 是AB 的中点,点N 是BC 的中点,若3cm MN =,求线段AB 的长.6.已知线段6AB =,在直线AB 上取一点P ,恰好使2AP PB =,点Q 为PB 的中点,求线段AQ 的长.7.如图,N 为线段AC 中点,点M 、点B 分别为线段AN NC ,上的点,且满足::1:4:3AM MB BC =(1)若6AN =,求AM 的长; (2)若2NB =,求AC 的长. 8.读题计算并作答线段3cm AB =,在线段AB 上取一点K ,使AK BK =,在线段AB 的延长线上取一点C ,使3AC BC =,在线段BA 的延长线取一点D ,使12AD AB =. (1)求线段,BC DC 的长? (2)点K 是哪些线段的中点?9..如图,已知,C D 为线段AB 上顺次两点,点M N ,分别为AC 与BD 的中点,若10AB =,4CD =,求线段MN 的长.10.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长; (2)若,8AB a BC ==,求MN 的长; (3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?11.已知点C 在线段AB 上,线段7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点,求MN 的长度.12.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.13.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.14.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度; (2)若3cm,1cm AC CP ==,求线段PN 的长度.15.如图,已知线段AB 上有两点,C D ,且AC BD =,,M N 分别是线段,AC AD 的中点,若cm,cm AB a AC BD b ===,且,a b 满足2(10)|4|02ba -+-=.(1)求,AB AC 的长度. (2)求线段MN 的长度.16.如图,已知E 是AB 的中点,F 是CD 的中点,且11,10cm 34BD AB CD EF ===,求AC 的长.17.如图,已知线段65AB =cm ,点M 为AB 的中点,点P 在MB 上,且N 为PB 的中点,若6.5BN =cm ,试求线段MP 的长.18.如图,,M N 两点把线段AB 分成2:3:4三部分,C 是线段AB 的中点,4NB = cm. (1)求CN 的长. (2)求:AM MC .19.如图,点,,,,A B E C D 在同一条直线上,且AC BD =,点E 是BC 的中点,那么点E 是AD 的中点吗?为什么?20.如图,已知111,,,333CB AB AC AD AB AE ===,且2CB =,求CD 的长.21.如图①,已知点M 是线段AB 上一点,点C 在线段AM 上,点D 在线段BM 上,C D 、两点分别从M B 、出发以1cm/s 3cm/s 、的速度沿直线BA 向左运动,运动方向如箭头所示. (1)若10cm AB =,当点C D 、运动了2s ,求AC MD +的值. (2)若点C D 、运动时,总有3MD AC =,则:AM = AB . (3)如图②,若14AM AB =,点N 是直线AB 上一点,且AN BN MN -=,求MNAB的值.22.如图,D 是AB 的中点,E 是BC 的中点,12cm 5BE AC ==,求线段DE 的长.23.画线段3cm MN =,在线段MN 上取一点Q ,使MQ NQ =;延长线段MN 到点A ,使12AN MN =;延长线段NM 到点B ,使3BN BM =. (1)求线段AN 的长; (2)求线段BM 的长;(3)试说明点Q 是哪些线段的中点.24.如图,点C 在线段AB 上,8cm,6cm AC CB ==,点,M N 分别是,AC BC 的中点.(1)求线段MN 的长.(2)若点C 为线段AB 上任意一点,满足cm AC CB a +=,其他条件不变,你能猜想MN 的长度吗?并说明理由.(3)若C 在线段AB 的延长线上,且满足cm AC BC b -=,,M N 分别为,AC BC 的中点,你能猜想MN 的长度吗?并说明理由.参考答案1.答案:10.4cm CE =. 解析:2.答案:(1)4cm ;(2)4cm ;(3)4cm ;(4)4cm 或12cm 解析:3.答案:14MN = 解析:4.答案:线段MN 长5cm . 解析:5.答案:10cm 解析:6.答案:AQ 的长度为5或9. 解析:7.答案:(1)32AM =;(2)16AC = 解析:8.答案:(1) 1.5cm 6cm BC DC ==,; (2)点K 是线段AB 和DC 的中点. 解析: 9.答案:7 解析:10.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=, 因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==.(3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN 的长度始终等于线段AB 的一半,与C 点的位置无关. 解析:11.答案:【解】因为7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点, 所以113.5cm, 2.5cm 22MC AC CN BC ====. 则 3.5 2.56(cm)MN MC CN =+=+=. 解析:12.答案:【解】第一种情况:若为图(1)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==. 所以2cm MN MB NB =-=. 第二种情况:若为图(2)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==.解析:13.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===. 所以10cm AD AB BC CD =++=. 因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=. 因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=. 1010220(cm)AD x ==⨯-.解析:14.答案:(1)因为,M N 分别是,AC BC 的中点, 所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=. 因为P 是线段AB 的中点,所以28cm AB AP ==. 所以5cm CB AB AC =-=.因为N 是线段CB 的中点,12.5cm 2CN CB ==.所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 15.答案:解:(1)由题意可知2(10)0,|4|02ba -=-=, 所以10,8ab ==,所以10cm,8cm AB AC ==. (2)因为8cm BD AC ==, 所以2cm AD AB BD =-=.又因为,M N 分别是,AC AD 的中点,所以3cm MN AM AN =-=.解析:若几个非负数之和为0,则这几个非负数均为0. 16.答案:解:设BD x =, 因为1134AB CD BD ==,所以33,44AB BD x CD BD x ====, 因为E 为AB 的中点, 所以1322BE AB x ==. 因为F 为CD 的中点, 所以122DF CD x ==,所以2BF DF BD x x x =-=-=, 所以3522EF BE BF x x x =+=+=. 因为10EF =, 所以5102x =,解得4x =.所以312,416,4AB x CD x DB x ======, 所以16412BC CD BD =-=-=, 所以121224(cm)C AB BC =+=+=.解析:线段,AB CD 与BD 都有倍分关系,故把BD 设为x ,表示出,AB CD 的长. 17.答案:解:因为M 为AB 的中点,且65AB =cm 所以652AM MB ==cm. 又N 为PB 的中点,且 6.5BN =cm, 所以 6.5PN NB ==cm ,所以13PB =cm. 所以65391322MP MB PB =-=-= (cm). 解析:18.答案:解:(1)由题意得::2:3:4AM MN NB =,设 2AM x =,则3,4MN x NB x ==.又4NB =cm ,故2AM =cm,3MN =cm, 因此9AB =cm.又C 为AB 的中点,所以1922CB AB ==cm, 故91422CN CB BN =-=-= (cm) (2)由(1)知15322MC MN CN =-=-=(cm), 故5:2:4:52AM MC ==. 解析:19.答案:解:点E 是AD 的中点.理由如下:因为,,,,A B E C D 在同一条直线上,AC BD = (已知), 所以AC BC BD BC -=- (等式的性质),, 即AB CD = (线段和、差的意义). 因为点E 是BC 的中点(已知), 所以BE CE =(线段中点的定义), 所以AB BE CD CE +=+ (等式的性质), 即AE ED = (线段和、差的意义), 所以点E 是AD 的中点(线段中点的定义). 解析:20.答案:解:因为1,24CB AB CB ==,所以36AB CB ==. 所以4AC AB BC =-=.因为13AC AD =,所以312AD AC ==.所以1248CD AD AC =-=-=. 解析:21.答案:解:(1)当点C D 、运动了2s 时,2cm,6cm CM BD ==10cm,2cm,6cm AB CM BD ===10262cm AC MD AB CM BD ∴+=--=--= (2),C D 两点的速度分别为1cm/s,3cm/s , 3BD CM ∴=. 又3MD AC =,33BD MD CM AC ∴+=+,即3BM AM =,14AM AB ∴=;(3)当点N 在线段AB 上时,如图AN BN MN -=,又AN AM MN -=1142BN AM AB MN AB ∴==∴=,,即12MN AB =. 当点N 在线段AB 的延长线上时,如图AN BN MN -=,又AN BN AB -=MN AB ∴=,即1MNAB=. 综上所述12MN AB =或1. 解析:22.因为E 是BC 的中点,所以24cm BC BE ==. 因为D 是AB 的中点,解析:23.答案:(1)解:如图所示:因为1,3cm 2AN MN MN ==,所以 1.5cm AN => (2)因为3cm,MN MQ NQ ==,所以 1.5cm MQ NQ ==又因为13BM BN =,所以23MN BN =.所以34.5cm 2BN MN == 所以 1.5cm BM BN MN =-=.(3)因为 1.5 1.53(cm)BQ BM MQ =+=+=3cm AQ AN NQ =+=所以BQ AQ = 又MQ NQ =,所以Q 是MN 的中点,也是AB 的中点.解析:24.答案:(1)解:因为点,M N 分别是,AC BC 的中点,8cm,6cm AC CB == 所以114cm,3cm 22CM AC CN BC ====. 所以437(cm)MN CM CN =+=+= 所以线段MN 的长是7cm .(2)1cm 2MN a =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB a +=, 所以11,22CM AC CN BC ==, 所以1111()cm 2222MN CM CN AC BC AC BC a =+=+=+= 所以线段MN 的长是1cm 2a .(3)如图.1cm 2MN b =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB b -= 所以11,22CM AC CN BC == 所以1111()cm 2222MN CM CN AC BC AC BC b =-=-=-=, 即线段MN 的长是1cm 2b .解析:。
七年级数学上册《第四章 比较线段的长短》练习题-带答案(北师大版)
七年级数学上册《第四章比较线段的长短》练习题-带答案(北师大版)一、选择题1.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于( )A.3B.2C.3或5D.2或62.已知线段AB和线段CD,使A与C重合,若点D在AB的延长线上,则( )A.AB>CDB.AB=CDC.AB<CDD.无法比较AB与CD的长短3.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CDB.AC=AB+BCC.AC=BD﹣ABD.AC=AD﹣AB4.已知数轴上三点A、B、C分别表示有理数x、1、﹣1,那么|x﹣1|表示( )A.A、B两点的距离B.A、C两点的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和5.下列说法中,不正确的是( )A.若点C在线段BA的延长线上,则BA=AC-BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段BA外D.若A、B、C三点不在一直线上,则AB<AC+BC6.如图,长度为18cm的线段AB的中点为M,点C是线段MB的一个三等分点,则线段AC的长为( )A.3cmB.6cmC.9cmD.12cm7.如图线段AB=9,C、D、E分别为线段AB(端点A.B除外)上顺次三个不同的点,图中所有的线段和等于46,则下列结论一定成立的是( )A.CD=3B.DE=2C.CE=5 EB=58.如图,已知线段AB长度为a,CD长度为b,则图中所有线段的长度和为( )A.3a+bB.3a﹣bC.a+3bD.2a+2b二、填空题9.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=_______.10.如图,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC= .11.已知A,B是数轴上的两点,AB=2,点B表示-1,则点A表示________12.如图,比较图中AB,AC,BC的长度,可以得出AB_____AC,AC____BC,AB+BC___AC.13.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别为AM、AB 的中点,则PQ的长为.14.如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D 始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD= cm.三、解答题15.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.16.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求DB的长.17.如图,已知线段AB,请按要求完成下列问题.(1)用直尺和圆规作图,延长线段AB到点C,使BC=AB;反向延长线段AB到点D,使AD=AC;(2)如果AB=2cm;①求CD的长度;②设点P是线段BD的中点,求线段CP的长度.18.已知线段AB,延长线段AB到点C,使2BC=3AB,且BC比AB大1,D是线段AB 的中点,如图所示.(1)求线段CD的长.(2)线段AC的长是线段DB的几倍?(3)线段AD的长是线段BC的几分之几?19.如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.20.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.参考答案1.D2.C3.C4.A5.A6.D7.C8.A.9.答案为:2cm或8cm.10.答案为:6cm.11.答案为:1或-312.答案为:<>=.13.答案为:6cm.14.答案为:3.15.解:因为AB=4 cm,BC=2AB所以BC=8 cm所以AC=AB+BC=12 cm因为M是线段AC中点所以MC=AM=12AC=6 cm所以BM=AM-AB=2 cm 16.解:(1)∵C是AB的中点∴AC=BC=12AB=9 cm.∵D是AC的中点∴AD=DC=12AC=92cm.∵E是BC的中点∴CE=BE=12BC=92cm.又∵DE=DC+CE∴DE=92cm+92cm=9 cm.(2)由(1)知AD=DC=CE=BE∴CE=13 BD.∵CE=5 cm∴BD=15 cm.17.解:(1)如图所示,点C和点D即为所求;(2)①∵AB=2cm,B是AC的中点∴AC=2AB=4cm又∵A是CD的中点∴CD=2AC=8cm;②∵BD=AD+AB=4+2=6cm,P是线段BD的中点∴BP=3cm∴CP=CB+BP=2+3=5cm.18.解:(1)因为BC=32 AB所以BC∶AB=3∶2.设BC=3x,则AB=2x.因为BC比AB大1,所以3x-2x=1,即x=1所以BC=3x=3,AB=2x=2.又因为D是线段AB的中点,所以AD=DB=1所以CD=BC+BD=3+1=4.(2)因为AC=AB+BC=2+3=5所以AC=5DB,即线段AC的长是线段DB的5倍.(3)因为AD=1,BC=3,即3AD=BC所以AD=13BC,即线段AD的长是线段BC的三分之一.19.解:(1)∵C是线段BD的中点,BC=3∴CD=BC=3.又∵AB+BC+CD=AD,AD=8∴AB=8-3-3=2.(2)∵AD+AB=AC+CD+AB,BC=CD∴AD+AB=AC+BC+AB=AC+AC=2AC. 20.解:因为AC∶CD∶DB=2∶3∶4所以设AC=2x cm,CD=3x cm,DB=4x cm. 所以EF=EC+CD+DF=x+3x+2x=6x cm. 所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.。
沪科版七年级数学上册《4.3线段的长短》同步练习题及答案
沪科版七年级数学上册《4.3线段的长短》同步练习题及答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,点C在线段AB上,则下列式子不成立的是( )A. AC=BCB. AB>ACC. AC+BC=ABD. BC=AB−AC2.下列说法正确的是( )A. 直线可以比较长短B. 直线比射线长C. 线段可以比较长短D. 线段可能比直线长3.如图,用圆规比较两条线段的大小,其中正确的是( )A. A′B′<A′C′B. A′B′=A′C′C. A′B′>A′C′D. 不能确定4.为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )A. AB<CDB. AB>CDC. AB=CDD. 以上都有可能5.如图,M是线段AB的中点,N是线段AB上一点AB=2a,NB=b,下列线段的长表示错误的是( )A. AM=aB. AN=2a−bC. MN=a−bD. MB=a+b6.如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是( )①作射线AM;②在射线AM上截取AB=2a;③在线段AB上截取BC=b.A. a+bB. b−aC. 2a+bD. 2a−bAB,则CD的长为( ) 7.已知点C在线段AB上,点D在线段AB的延长线上,若AC=5,BC=3,BD=14A. 2B. 5C. 7D. 5或18.如图,在线段MN上有P、Q两点,PQ长度为2cm,MN长为整数,则以M、P、Q、N为端点的所有线段长度和可能为( )A. 19cmB. 20cmC. 21cmD. 22cm二、填空题9.延长线段AB至点C,使BC=13AB,延长线段BC至点D,使CD=13BC.如果BD=8cm,那么AB=cm.10.如图所示,直线上四点A,B,C,D,看图填空:①AC=+BC;②CD=AD−;③AC+BD−BC=.11.若点P在线段AB的延长线上AP=8,BP=3,则AB的长为______.12.如图,已知数轴上点A代表−8,点B代表4,动点P,Q分别从点A,B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t s,则当t=时,2OP−OQ=3.(当点P与点Q重合时,P,Q两点停止运动)三、解答题13.在线段AB上取两个点以C、D,已知AB=25,AD=19,CB=17,求CD长.14.如图,已知线段a,b,c,用圆规和直尺作线段,使它等于a+2b−c.15.点M,N,P在同一条直线上,MN=3cm,NP=1cm.求线段MP的长.16.如图AB=18cm,C是线段AB的三等分点,D是线段CB上一点,CD比DB长4cm,求CD的长.17.如图,已知线段AB的长为a,延长线段AB至点C,使BC=12AB.(1)求线段AC 的长(用含a 的式子表示);(2)取线段AC 的中点D ,若DB =2,求a 的值.18.如图,动点A 从原点出发向数轴负方向运动,同时动点B 也从原点出发向数轴正方向运动.3秒后,两点相距12个单位长度.已知动点A ,B 的速度比是1:3(速度单位:1个单位长度/秒).(1)求两个动点运动的速度,并在数轴上标出A ,B 两点从原点出发运动3秒时的位置;(2)若A ,B 两点分别从(1)中标出的位置同时向数轴负方向运动. ①几秒后,原点恰好处于两个动点的正中间? ②若表示数0的点记为点O ,经过多长时间参考答案1.A2.C3.A4.B5.D6.D7.B8.B9.18 10.AB ;AC ;AD 11.5 12.95或23313.解:由题意得:BD =AB −AD =6∴DC =BC −BD =17−6=11. 14.解:首先作射线AF ,在射线AF 上依次截取AB =a,BC =CD =b ,在线段DA 上截取DE =c ,进而得出线段AE 即为所求.如图所示:AE 即为所求.15.解: ①若点P 在线段MN 上,则MP =MN −NP =3−1=2(cm); ②若点P 在线段MN 的延长线上,则MP =MN +NP =3+1=4(cm).答:线段MP 的长为2cm 或4cm .16.解:∵C 是线段AB 的三等分点∴AC =6(cm),BC =AB −AC =12(cm)又∵CD +DB =BC,CD =DB +4∴DB +4+DB =BC,2DB +4=12∴CD =AB −AC −DB =18−6−4=8(cm).17.解:(1)因为AB=a,BC=12AB所以BC=12a因为AC=AB+BC所以AC=a+12a=32a.(2)因为AD=DC=12AC,AC=32a所以DC=34a.因为DB=2,BC=12a,DB=DC−BC所以2=34a−12a所以a=8.18.解:(1)设A点运动的速度为x个单位长度/秒,B点运动的速度为3x个单位长度/秒.根据题意得3(x+3x)=12,解得x=1.所以A点运动的速度为1个单位长度/秒,B点运动的速度为3个单位长度/秒.−1×3=−3,3×3=9.故运动3秒时A,B两点的位置如图所示.(2) ①设a秒后,原点恰好在A、B的正中间根据题意得3+a=9−3a.解得a=32.故32秒后原点恰好处于两个动点的正中间. ②设t秒后OB=2OA.当点B在原点的右侧时,根据题意得9−3t=2(3+t).解得t=35.当点B在原点的左侧时,根据题意得3t−9=2(3+t).解得t=15.综上所述,经过35秒或15秒OB=2OA.。
北师大版七年级上册:4.2《比较线段的长短》同步练习卷 含答案
北师大版七年级上册:4.2《比较线段的长短》同步练习卷一.选择题1.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短2.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④3.在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这样做的依据是()A.两点之间线段最短B.两点确定一条直线C.三点确定一条直线D.四点确定一条直线4.下列说法中正确的有()①射线比直线小一半;②连接两点的线段叫两点间的距离;③过两点有且只有一条直线;④两点之间所有连线中,线段最短A.1个B.2个C.3个D.4个5.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE6.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个7.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个8.如果A、B、C三点在同一直线上,且线段AB=8cm,BC=6cm,若M、N分别为AB、BC的中点,那么M、N两点之间的距离为()A.7cm B.1cm C.7cm或1cm D.无法确定9.如图,已知点C在线段AB上,线段AC=4,线段BC的长是线段AC长的两倍,点D 是线段AB的中点,则线段CD的长是()A.1B.2C.3D.410.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题11.如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是.12.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.13.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.14.如图,BC=AB,AC=AD,若BC=1cm,则CD的长为.15.如图,点C、D、E是线段AB上的三个点,下面关于线段CE的表示,其中正确的有.①CE=CD+DE;②CE=CB﹣EB;③CE=CB﹣DB;④CE=AD+DE﹣AC三.解答题16.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.17.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.18.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm,(1)求AC的长;(2)若点E在直线AD上,且EA=2cm,求BE的长.19.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.参考答案一.选择题1.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.2.解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选:C.3.解:在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选:B.4.解:①射线比直线小一半,根据射线与直线都无限长,故这个说法错误;②连接两点的线段的长度叫两点间的距离,此这个说法错误;③过两点有且只有一条直线,此这个说法正确;④两点之间所有连线中,线段最短,此这个说法正确;故正确的有2个.故选:B.5.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.6.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.7.解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.8.解:如图1,当点B在线段AC上时,∵AB=8cm,BC=6cm,M,N分别为AB,BC的中点,∴MB=AB=4,BN=BC=3,∴MN=MB+NB=7cm,如图2,当点C在线段AB上时,∵AB=8cm,BC=6cm,M,N分别为AB,BC的中点,∴MB=AB=4,BN=BC=3,∴MN=MB﹣NB=1cm,故选:C.9.解:∵AC=4,线段BC的长是线段AC长的两倍,∴BC=8,∴AB=AC+BC=12,∵点D是线段AB的中点,∴AD=AB=6,∴CD=AD﹣AC=2.故选:B.10.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题11.解:校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是两点之间线段最短,故答案为:两点之间线段最短.12.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.13.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.14.解:∵BC=AB,AC=AD,∴AB=4BC,AC=AB,AD=4AC,∵BC=1cm,∴AB=4BC=4cm,∴AC=3cm,∴AD=12cm,∴CD=AD﹣AC=12﹣3=9(cm).故答案为:9.15.解:观察图形可知:CE=CD+DE;CE=BC﹣EB.故①②正确.BC=CD+BD,CE=BC﹣EB,CE=CD+BD﹣EB.故③错误AE=AD+DE,AE=AC+CE,CE=AD+DE﹣AC故④正确.故选①②④.三.解答题16.解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.17.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.18.解:(1)∵点B为CD的中点,BD=1cm,∴CD=2BD=2cm,∵AD=8cm,∴AC=AD﹣CD=8﹣2=6cm(2)若E在线段DA的延长线,如图1∵EA=2cm,AD=8cm∴ED=EA+AD=2+8=10cm,∵BD=1cm,∴BE=ED﹣BD=10﹣1=9cm,若E线段AD上,如图2EA=2cm,AD=8cm∴ED=AD﹣EA=8﹣2=6cm,∵BD=1cm,∴BE=ED﹣BD=6﹣1=5cm,综上所述,BE的长为5cm或9cm.19.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.。
【七年级数学】七年级数学上4.2比较线段的长短练习(新北师大版有答案)
七年级数学上4.2比较线段的长短练习(新北师大版有答
案)
42 比较线段的长短
1下列错误的判断是( )
A.任何一条线段都能度量长度
B.因为线段有长度,所以它们之间能比较大小
c.利用圆规配合尺子,也能比较线段的大小
D.两条直线也能进行度量和比较大小
2.点P是线段cD的中点,则( )
A.cP=cD B.cP=PD
c.cD=PD D.cP>PD
3.如图,AB=cD,那么Ac与BD的大小关系是( )
A.Ac=BD B.Ac<BD
c.Ac>BD D.不能确定
4.已知点c是线段AB上一点,不能确定点c是线段AB中点的条是( )
A.Ac=Bc
B.Ac=12AB
c.AB=2Bc
D.Ac+Bc=AB
5.c为AB的一个三等分点,D为AB的中点,若AB的长为66 c,则cD的长为( )
A.08 c B.11 c
c.33 c D.44 c
6.把一条弯曲的路改成直道,可以缩短路程,其道理用几何知识解释应是________________.
7.如图所示
(1)Ac=________+Bc;。
北师大版七年级数学上册比较线段的长短优化练习(附答案)
北师大版七年级数学上册比较线段的长短优化练习(附答案)一、单选题1.如图,从A到B有三条路径,最短的路径是③,理由是()A. 两点确定一条直线B. 两点之间,线段最短C. 过一点有无数条直线D. 因为直线比曲线和折线短2.在直线m上顺次取A,B,C三点,已知AB=5cm.BC=3cm.则AC的长为()A. 2cmB. 8cmC. 2cm或8cmD. 15cm3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A. 5B. 25C. 10 +5D. 354.如图,在公路MN两侧分别有A ,A ......A ,七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是().①车站的位置设在C点好于B点;②车站的位置设在B点与C点之问公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A. ①B. ②C. ①③D. ②③5.如图,已知△ABC中,BC=13cm,AB=10cm,AB边上的中线CD=12cm,则AC的长是()A. 13cmB. 12cmC. 10cmD. cm二、填空题6.如图,正方形ABCD的面积为1,则以相邻两中点连接EF为边的正方形EFGH的周长为________.7.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是________ .8.在数轴上表示8与表示-2的两个点之间的距离是________.9.如图,已知点C为AB上一点,AC=12,CB= AC,点D是AC的中点,则BD的长为________.10.在平面直角坐标系中,已知A(-1,1),B(1,1),若要在x轴上找一点P,使AP+BP最短,则点P 的坐标为________.三、解答题11.如图,点D为线段CB的中点,AD=8cm,AB=10cm,求CB的长度.12.C为线段AB的中点,N为线段CB的中点,若CN=1厘米,求线段AN的长.四、作图题13.已知线段AB=4.(1)尺规作图:延长线段AB至点C,使得BC=AB;(保留作图痕迹,不要求写作法)(2)若点E是线段AB的中点,求线段EC的长.五、综合题14.如图1,由于保管不善,长为40米的拔河比赛专用绳左右两端各有一段(和)磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳.请你按照要求完成下列任务:(1)在图1中标出点E、点F的位置,并简述画图方法;(2)说明(1)中所标符合要求.15.如图,点C是线段AB上的一点,点D、E分别是线段AC、CB的中点.(1)若AC=4cm,BC=2cm,求线段DE的长.(2)若DE=5cm,求线段AB的长.答案一、单选题1. B2. B3. B4. C5. A二、填空题6. 7. 两点之间线段最短8. 10 9. 14 10. (0,0)三、解答题11. 解:由线段的和差,得DB=AB﹣AD=2cm,由线段中点的性质,得BC=2BD=4cm.12. 解:∵N为线段CB的中点,CN=1cm,∴BC=CN+NB=2cm,又∵C为线段AB的中点,∴AC=BC=2cm,∴AN=AC+CN=3cm.四、作图题13. (1)解:如图BC为所作线段(2)解:∵点E是AB的中点,∴EB= = 2∵ BC=AB=4 ∴ EC=EB+BC=2+4=6五、综合题14. (1)解:如图,在CD上取一点M,使CM=CA,F为BM的中点,点E与点C重合.(2)解:∵F为BM的中点,MF=BF∵AB=AC+CM+MF+BF,CM=CA,∴AB=2CM+2MF=2(CM+MF)=2EF∵AB=40m,∴EF=20m,∵AC+BD<20m,AB=AC+BD+CD=40m,∴CD>20m.∵点E与点C重合,EF=20m,∴CF=20m.点F落在线段CD上.∴EF符合要求.15. (1)解:∵点D、E分别是线段AC、CB的中点,∴DC= AC,CE= BC,∴DE=DC+CE= (AC+BC).又∵AC=4cm,BC=2cm,∴DE=3cm;(2)解:由(1)知,DE=DC+CE= (AC+BC)= AB.∵DE=5cm,∴AB=2DE=10cm.。
北师大七年级上册《4.2比较线段的长短》同步练习(有答案)
北师大版数学七年级上册同步练习4.2 比较线段的长短学校:___________姓名:___________班级:___________一.选择题(共10小题)1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短2.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣23.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm4.如图,AB=12cm,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.4cm B.6cm C.8cm D.10cm5.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是()A.A′B′>AB B.A′B′=AB C.A′B′<AB D.A′B′≤AB6.如图,下列关系式中与图不符合的式子是()A.AD﹣CD=AB+BC B.AC﹣BC=AD﹣BD C.AC﹣BC=AC+BD D.AD﹣AC=BD﹣BC 7.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB8.如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个 B.2个 C.3个 D.4个9.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交10.下列各说法一定成立的是()A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行二.填空题(共5小题)11.如下图,从小华家去学校共有4条路,第条路最近,理由是.12.如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).13.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=.14.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=15.如图,线段AB=12cm,C是线段AB上任意一点,M,N分别是AC,BC的中点,MN的长为cm,如果AM=4cm,BN的长为cm.三.解答题(共3小题)16.如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使BC=2AB,取AC中点D;(2)在(1)的条件下,如果AB=4,求线段BD的长度.17.如图,点C是线段AB上的一点,延长线段AB到点D,使BD=CB.(1)请依题意补全图形;(2)若AD=7,AC=3,求线段DB的长.18.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?参考答案一.选择题(共10小题)1.D.2.B.3.D.4.D.5.A.6.C.7.B.8.C.9.D.10.D.二.填空题(共5小题)11.小华家去学校共有4条路,第③条路最近,理由是两点之间,线段最短.12.①②④.13.1.14.1.15.6、2.三.解答题(共3小题)16.(1)如图:(2)∵BC=2AB,且AB=4,∴BC=8.∴AC=AB+BC=8+4=12.∵D为AC中点,(已知)∴AD=AC=6.(线段中点的定义)∴BD=AD﹣AB=6﹣4=2.17.(1)补全图形;(2)∵AD=7,AC=3,(已知)∴CD=AD﹣AC=7﹣3=4.)∵BD=CB,(已知)∴B为CD中点.(中点定义)∵B为CD中点,(已证)∴BD=CD.(中点定义))∵CD=4,(已证)∴BD=×4=2.18.(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=7cm;(2)MN=,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,又∵MN=MC+CN,AB=AC+BC,∴MN=(AC+BC)=;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,又∵AB=AC﹣BC,NM=MC﹣NC,∴MN=(AC﹣BC)=;(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册比较线段的长短综合练习题
一、单选题
1.如图,点C是AB的中点,D是AB上的一点,3
AB=,则CD的长是( )
AB DB
=,已知12
A.6
B.4
C.3
D.2
2.已知线段10cm
AC=,则线段AB的中点与AC的中点AB=,在直线AB上取一点C,使16cm
的距离为( )
A. 13cm或26cm
B. 6cm或13cm
C. 6cm或25cm
D. 3cm或13cm
3.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用基本事实“两点之间,线段最短”来解释的现象有( )
A.①②
B.①③
C.②④
D.③④
4.下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是( )
A.用两颗钉子就可以把木条钉在墙上
B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线
C.从A地到B地架设电线,总是尽可能沿着线段AB来架设
D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上
5.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有( )
A.1个
B.2个
C.3个
D.4个
6.已知线段6
BC=,则线段AC的长( )
AB=,在直线AB上取一点C,使2
A.2
B.4
C.8
D.8或4
7.关于直线、射线、线段的描述正确的是( )
A.直线最长,线段最短
B.直线、射线及线段的长度都不确定
C.直线没有端点,射线有一个端点,线段有两个端点
D.射线是直线长度的一半
a b c两两相交,
8.按下所语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线,,
下图中正确的是( )
A. B.
C. D.
9.在平面上有任意四个点,那么这四个点可以确定的直线有( )
A.1条
B.4条
C.6条
D.1条或4条或6条
10.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是:( )
A.两点之间,直段最短
B.两点确定一条直线
C.两点之间,线段最短
D.经过一点有无数条直线
11.平面内互不重合的三条直线的交点个数是( )
A. 13,
B. 0,1,3
C. 0,2,3
D. 0,1,2,3
12.线段AB被分为2:3:4三部分,已知第一部分和第三部分两中点间距离是5.4cm,则线段AB长度为( )
A. 8.1cm
B. 9.1cm
C. 10.8cm
D. 7.4cm
13.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着直线AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有( ).
A.①②
B.①③
C.②④
D.③④
14.如图,某同学家在A处,现在该同学要去位于B处的同学家玩,请帮助他选择一条最近的路线( )
A.A C D B →→→
B.A C F B →→→
C.A C E F B →→→→
D.A C M B →→→
15.如图,点M 在线段AB 上,则下列条件不能确定M 是AB 的中点的是( )
A.12
BM AB = B.AM BM AB +=
C.AM BM =
D.2AB AM =
二、解答题
16.如图,N 为线段AC 中点,点M 、点B 分别为线段AN NC ,上的点,且满足
::1:4:3AM MB BC =
(1)若6AN =,求AM 的长;
(2)若2NB =,求AC 的长.
三、填空题
17.把弯曲的河道改直,能够缩短航程.这样做根据的道理是___________________.
18.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.
参考答案
1.答案:D
解析:
2.答案:D
解析:
3.答案:D
解析:
4.答案:C
解析:
5.答案:B
解析:
6.答案:D
解析:
7.答案:C
解析:
8.答案:B
解析:
9.答案:D
解析:
10.答案:C
解析:
11.答案:D
解析:
12.答案:A
解析:
13.答案:A
解析:
14.答案:B
解析:根据“两点之间,线段最短”可知,C B 两点之间的最短距离是线段CB 的长度,所以最近的一条路线是A C F B →→→.
15.答案:B
解析:因为点M 在线段AB 上,所以再加下列条件之一,即可确定点M 是AB 的中点:①12
BM AB =;②AM BM =;③2AB AM =.而无论点M 在AB 上的什么位置,都有AM BM AB +=,所以选项B 不能确定点M 是AB 的中点. 16.答案:(1)32AM =
;(2)16AC = 解析:
17.答案:两点之间,线段最短
解析:
18.答案:两点确定一条直线.
解析:。