同济大学概率论与数理统计期末试卷(带答案)09-10 A 答案

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

《概率论与数理统计》期末考试答案

《概率论与数理统计》期末考试答案

1单选(2分)同时掷2颗均匀骰子,X表示点数大于4出现的个数,则以下结果正确的是得分/总分∙A.P(X<2)=5/9∙B.P(X=0)=P(X=1)∙C.P(X=2)=4/9∙D.P(X>0)=1正确答案:B你没选择任何选项2单选(2分)设随机变量(X,Y)的联合概率密度为则以下结果正确的是得分/总分∙A.∙B.P(X<0.5)=0.5∙C.E(Y)=E(X)∙D.正确答案:D你没选择任何选项3单选(2分)设总体,是来自X的简单随机样本,表示中出现的个数。

以下结果正确的是得分/总分∙A.,其中“”表示近似服从。

∙B.∙C.∙D.正确答案:C你没选择任何选项4单选(2分)研究某企业生产某种产品的产量和单位成本,数据资料如下:用Excel计算得下面两张表:设一元线性回归模型为,则以下结果不正确的是得分/总分∙A.∙B.在显著水平为0.05下回归方程的检验是不显著的∙C.的置信水平为95%的置信区间为(-4.83596,-3.07806)∙D.在显著水平为0.05下回归方程的检验是显著的正确答案:B你没选择任何选项5单选(2分)设总体具有概率密度是待估未知参数。

设是简单随机样本,是样本均值,以下说法正确的是得分/总分∙A.的极大似然估计量是∙B.的矩估计量是∙C.似然函数∙D.的极大似然估计量是正确答案:B你没选择任何选项6单选(2分)有两个独立正态总体均未知,从总体X与Y中分别取得容量均为8的独立样本,计算得样本均值分别为和,样本方差分别为和,记,取显著水平为0.05,对于假设,以下哪个结果是正确的?(备用数据:.)得分/总分∙A.p_值=0.009∙B.拒绝域为T≥1.7531∙C.拒绝域为|T|≥2.1448∙D.拒绝域为T≥1.7613正确答案:C你没选择任何选项7单选(2分)设随机变量X服从参数为2的泊松分布,则以下结果正确的是得分/总分∙A.P(X≤1)=P(X=2)∙B.P(X≥2︱X≥1)=P(X≥1)∙C.E(X)=D(X)∙D.E(X)>D(X)正确答案:C你没选择任何选项8单选(2分)在区间(0,2)中随机取一数X,X的分布函数记为F(x),数学期望为E(X),方差为D(X),则以下结果正确的是得分/总分∙A.∙B.F(0.5)=0.5∙C.D(X)=1/3∙D.F(2.2)=0正确答案:C你没选择任何选项9单选(2分)设总体X的分布律为,其中0<θ<1为待估未知参数。

同济大学概率论期末复习题(含答案).

同济大学概率论期末复习题(含答案).

五、(16 分)设二维随机变量 ( X , Y ) 的联合密度函数为
ax 2 y , x 2 y 1 f ( x, y ) 0, 其他
(1) 求常数 a ; (3) 求概率 P (2) 分别求 X 和 Y 的边缘密度函数;
X
0 , Y 1 ;
(4)求概率 P ( X
Y) .
六、(10 分) 某城市每次交通堵塞造成的平均损失 15 万元,损失的标准差是 3 万元.假设各 次堵果今天该城市发生了 100 次交通 堵塞,试用中心极限定理求今天该城市由于交通堵塞造成的损失在 1440 万元到 1530 万元 之间的概率 .
-1 -1 1 1/6 1/3
1 1/3 1/6
(2)
2 3
(3)

1 4

1 4
五、 (1)
(2)
21/ 4
21 2 4 x (1 x ) 1 x 1 f ( x) 8 0, else 7 5 y2 f ( y) 2 0, 0 y 1 else
P(A B) =
,P AB =

.
2、(4 分)设随机变量
X ~ N (4,16) ,则 Y | X 4 | 的概率密度为
fY ( y )
.
2 2 2
3、 (4 分)设随机变量 X 服从自由度为 2 的 分布,用 ( 2) 表示自由度为 2 的 分布

2
(2)
的 分位数,且
三、(12 分)设某同学的手机在一天内收到短信数服从参数为 泊松分布 P ( ) ,每个短信是 否为垃圾短信与其到达时间独立,也与其他短信是否为垃圾短信相互独立. 如果假设每个 短信是垃圾短信的概率为 p . (1) 如 果 已 知 该 同 学 的 手 机 一 天 内 收 到 了 n 条 短 信 , 求 其 中 恰 有 k 条 垃 圾 短 信 的 概 率.( 0 k n ). (2)求该同学的手机一天内收到 k 条垃圾短信的概率.( k 0,1,2, ).

同济大学-概率论与数理统计-期末考试试卷(2套)

同济大学-概率论与数理统计-期末考试试卷(2套)

《概率论与数理统计》期末试卷(基础卷)一.填空题(本题满分22分,每空2分)1、设A ,B 是两个相互独立的事件,()=0.4P A B ⋃,()0.2P A =, 则()P B = ,()P A B -= ,()P A B = .2、设一个袋中装有两个白球和三个黑球,现从袋中不放回地任取两个球,则取到的两个球均为白球的概率为 ;第二次取到的球为白球的概率为 ;如果已知第二次取到的是白球,则第一次取到的也是白球的概率为 .3、设X 服从区间)4,1(-上的均匀分布,则(2)P X <= ,Y 表示对X 作3次独立重复观测中事件}2|{|<X 出现的次数,试求)1(=Y P = .4、设()1234,,,X X X X 是取自总体X 的一个样本,(0,2)X N ,样本均值为X ,样本方差为2S ,则()E X = ,()D X = , 2()E S = .二.(本题8分)有甲、乙、丙三个箱子,甲箱中有四个白球和两个黑球,乙箱中有三个黑球和三个白球,丙盒中有两个白球和四个黑球,现随机的选一个箱子,再从箱子中任取两球。

求(1)取出两个白球的概率;(2)当取出的两个球为白球时,此球来自甲箱的概率.三.(本题12分)设随机变量X 的分布函数为22,0()0,0x A Be x F x x -⎧⎪+>=⎨⎪≤⎩. 其中,A B 为常数. (1)求常数,A B ; (2)求X 的概率密度函数;(3)求概率(12)P X <<; (4)求2(),(),()E X E X D X .四.(本题12分)设随机变量,X Y 相互独立,(,)X Y 的联合分布律为求常数,,a b c 的值。

五.(本题12分)若),(Y X 的联合密度函数为221,1(,)0,x y f x y π⎧+<⎪=⎨⎪⎩其他(1) 分别求Y X ,边缘密度函数;(2) 求 Y X ,的数学期望()E X 和()E Y ;(3)求11(,)44P X Y ≤≤.六.(本题8分)假设总体X 服从正态分布(,500)N μ,总体Y 服从正态分布(,625)N μ,现从这两个总体中各独立抽取了样本容量为5的样本1515,,,,,X X Y Y ,即合样本1515,,,,,X X Y Y 相互独立.(1)求随机变量Y X -的概率密度函数,其中Y X ,分别为两个正态总体的样本均值;(2)求概率()30≤-Y X P .七.(本题6分)假设一个复杂系统由400个相互独立工作的部件组成,每个部件正常工作的概率为0.9,试用中心极限定理求该系统中至少有348个部件正常工作的概率.八.(本题8分)设()12,,,n X X X 是取自总体X 的一个样本,X 的密度函数为()1,01,(0)0,x x f x θθθ-⎧<<=>⎨⎩其余未知.试求: (1)θ的矩估计1;θ (2) θ的极大似然估计2θ.九.(本题12分)假定婴儿的体重X 服从正态分布()22,,,N μσμσ未知,现从医院随机抽查了4个婴儿,得到他们的体重数据(单位:kg ):3.1, 3.9, 3.2, 3 .(1)由数据计算样本均值x ,样本方差2s ;(2)求μ的双侧99%置信区间;(3)求2σ的双侧99%置信区间;(()220.9950.9950.0053 5.84,(3)12.83,(3)0.07t χχ===).《概率论与数理统计》期末试卷(综合卷)一.填空题(本题满分22分,每空2分)1、已知()0.3,()0.4,()0.32,P A P B P A B ===则()P A B ⋃=___ __,()P AB = ,()P A B ⋃= .2、设随机变量X 的概率函数为1(1)(1)(2)3P X P X P X =-=====,记{}1.5A X =≤,Y 表示在三次重复独立试验中事件A 发生的次数,则()P A = ,()2P Y == .3、 设随机变量X 的密度函数为,02()0,cx x f x <<⎧=⎨⎩其他,则常数c = ,()E X = .4、设随机变量1234,,,X X X X 相互独立且服从相同的分布,()~,1i X N μ,221234()()Y a X X b X X =-+-,其中0ab ≠,则当常数a = ,b = 时,Y 服从自由度为 的 分布.二.(本题8分)一公司为联赛生产比赛用乒乓球.自动包装机把白色和黄色的乒乓球混装,每盒装12只,每盒装白球的个数X 服从离散型均匀分布(即X 取各可能值的概率相等). 为检查某一盒子中装有白球的数量,从盒中任取一球.(1) 求从盒中取到的球为白球的概率;(2)如果发现从盒中取到的球是白球,求此盒全是白球的概率.三.(本题10分)设随机变量,X Y 相互独立且服从相同的分布,X 的密度函数为23,02()80,x x f x ⎧<<⎪=⎨⎪⎩其他,记{}{}{}1,11A X B X Y =≤=≤⋂≤,求 ()P A 、()P A B -和()P A B ⋃.四.(本题8分)设随机变量1234,,,X X X X 相互独立且服从相同的分布,11(0)0.6,(1)0.4P X P X ====.(1)求随机变量14Y X X =的分布律;(2)求行列式1234X X X X 的分布律.五.(本题12分)设离散型随机变量,X Y 均只取0,1这两个值.()()0,00.21,10.3P X Y P X Y ======,,且随机事件{}1=X 与{}1=+Y X 相互独立.(1) 求),(Y X 的联合概率函数;(2)分别求,X Y 的边缘概率函数;(3)求22Y X Z +=的概率函数和协方差),cov(Z X .六.(本题12分)设随机变量(,)X Y 的联合密度函数为,01;(,)0,cy y x f x y <<<⎧=⎨⎩其余. 求 (1) 常数c ;(2) X ,Y 的边缘密度函数;(3)X 和Y 相互独立吗?为什么?(4)求概率()1P X Y +≥.七.(本题8分)某次考试共有100道4选1的选择题,某位同学由于平时学习不用功,他决定采用随机的方法选择每道题目的答案.用下列两种方法计算他最后考试及格的概率,(1)二项分布精确计算的方法(答案用概率函数表示);(2)中心极限定理近似计算的方法(答案用数字表示).八.(本题12分)设n X X X 21,是取自总体X 的一个样本,X 的密度函数为(1),01;()0,x x f x ββ⎧+<<⎪=⎨⎪⎩其余.其中β未知,1β>-. (1)求β的极大似然估计ˆβ;(2)设1=+1αβ-,求α的极大似然估计ˆα;(3)ˆα为α的无偏估计吗?请说明理由.九.(本题8分)设某厂生产的零件重量X (单位:克)服从正态分布2(,)N μσ,现从该厂生产的零件中抽取了9只零件,测得其重量(单位:克)为19,,x x ,并由此算出99211414,19044.32i i i i xx ====∑∑.试求μ和2σ的置信水平为0.95的双侧置信区间.。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、AB2、设A ,B ,C 表示三个事件,则ABC 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P AB =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15B 、14 C 、4 D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX ==D 、1,93EX DX == 10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。

则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。

15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。

23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。

概率论和数理统计期末考试试题及答案

概率论和数理统计期末考试试题及答案

一、选 择 题 (本大题分5小题, 每小题3分, 共15分)(1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有 (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P =(2)某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为(A) 0.05 (B ) 0.06 (C) 0.07 (D ) 0.08(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则(A)对任意实数21,p p =μ (B )对任意实数21,p p <μ(C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意实数a 成立的是(A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-a dx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)二维随机变量(X ,Y )服从二维正态分布,则X +Y 与X -Y 不相关的充要条件为(A )EY EX = (B)2222][][EY EY EX EX -=-(C)22EY EX = (D) 2222][][EY EY EX EX +=+二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P 0.1(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f ,则使)()(a X P a X P <=>的常数a = 421(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P 0.35(4) 设两个相互独立的随机变量X 和Y 均服从)51,1(N ,如果随机变量X -aY +2满足条件 ])2[()2(2+-=+-aY X E aY X D ,则a = 20 _.(5) 已知X ~),(p n B ,且8)(=X E ,8.4)(=X D , 则n = 3三、解答题 (共65分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?解:A 为事件“生产的产品是次品”,B 1为事件“产品是甲厂生产的”,B 2为事件“产品是乙厂生产的”,B 3为事件“产品是丙厂生产的”易见的一个划分是Ω321,,B B B(1) 由全概率公式,得.0345.0%2%40%4%35%5%25)()()()(3131=⨯+⨯+⨯===∑∑==i i i i i B A P B P AB P A P(2) 由Bayes 公式有:2、(10分)设二维随机变量(X,Y)的联合概率密度为⎩⎨⎧<<<<--= , 其它040,20),6(),(y x y x k y x f 求:(1)常数k (2))4(≤+Y X P2380345.0%4%35)()()()()(31222=⨯==∑=i ii B P B A P B P B A P A B P解:(1)由于1),(=⎰⎰∞∞-∞∞-dxdy y x f ,所以1)6(4020=--⎰⎰dy y x k dx ,可得241=k (2)98)16621(241)6(2412204020=+-=--⎰⎰⎰-dx x x dy y x dx x3、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y 求:随机变量Y X Z +=的概率密度函数.解: ⎰∞-=xdt t f x F )()( 当t x t e dt e x F x 2121)(,0==<⎰∞-------------------------------------------------------------------------------------3分 当t x t t e dt e dt e x F x --∞--=+=≥⎰⎰211][21)(,0004、(8分)设随机变量X 具有概率密度函数⎩⎨⎧<<=其他,,0;40,8)(x x x f X求:随机变量1-=X e Y 的概率密度函数.解:1-=X e Y 的分布函数).(y F Y⎰+∞-=+≤=≤-=≤=)1ln()())1ln(()1()()(y X X Y dx x f y X P y e P y Y P y F=⎪⎩⎪⎨⎧≤--<≤+<.1,1;10),1(ln 161;0,0442y e e y y y 于是Y 的概率密度函数⎪⎩⎪⎨⎧-<<++==.,0;10,)1(8)1ln()()(4其他e y y y y F dy d y f Y Y5、(8分)设随机变量X 的概率密度为:∞<<∞-=-x e x f x 21)(,求:X 的分布函数.解:由卷积公式得⎰+∞∞--=dx x z x f z f Z ),()( , 又因为X 与Y 相互独立,所以⎰+∞∞--=dx x z f x f z f Y X Z )()()( 当10<<z 时,;1)()()(0)(z z x z Y X Z e dx e dx x z f x f z f ---+∞∞--==-=⎰⎰ 当0≤z 时,;0)()()(=-=⎰+∞∞-dx x z f x f z f Y X Z 当1≥z 时,);1()()()(10)(-==-=---+∞∞-⎰⎰e e dx e dx x z f x f z f z x z Y X Z 所以 ;1)1(10100)()()(⎪⎩⎪⎨⎧≥-<<-≤=-=--∞+∞-⎰z e e z e z dx x z f x f z f z z Y X Z6、(9分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障可获利润5万元;发生二次故障所获利润0元;发生三次或三次以上故障就要亏损2万元,求一周内期望利润是多少?解:(1)因为)1,0(~),1,0(~N Y N X ,且相互独立,所以1,1++=+-=Y X V Y X U 都服从正态分布,11)1(=+-=+-=E EY EX Y X E EU2)1(=+=+-=DY DX Y X D DU所以 )2,1(~N U ,所以 4241)(u U e u f -=π同理 11)1(=++=++=E EY EX Y X E EV 2)1(=+=++=DY DX Y X D DU所以 )2,1(~N V ,所以 4241)(u V e u f -=π(2))12()1)(1(22++-=+++-=X Y X E Y X Y X E EUV12))(()(122222+++-+=++-=EX EY DY EX DX EX EY EX 1=7、 所以0=-=DV DU EUEV EUV UV ρ7、(10分)设)1,0(~),1,0(~N Y N X ,且相互独立1,1+-=++=Y X V Y X U ,求:(1)分别求U,V 的概率密度函数;(2)U,V 的相关系数UV ρ; 、(3)解 由条件知)2.0,5(~B X ,即5,,1,0,8.02.05}{5 =⎪⎪⎭⎫ ⎝⎛==-k k k X P k k⎪⎪⎩⎪⎪⎨⎧≥-=====3,2;2,0;1,5;0,10)(X X X X X g Y)(216.5057.02410.05328.010}]5{}4{}3{[2}2{0}1{5}0{10}{)()(50万元=⨯-⨯+⨯==+=+=⨯-=⨯+=⨯+=⨯====∑=X P X P X P X P X P X P k X P k g X Eg EY k。

2009概率论与数理统计试题及答案——同济

2009概率论与数理统计试题及答案——同济

1 n X i 是已知的,个体(总体)的 E( X i ) 未知,矩估计: X ,完成了一个从样本到 n i 1
1
总体的推断过程。
二、做题的 18 个口诀(概率 15 个,统计 3 个) 1、概率
(1)题干中出现“如果” 、 “当” 、 “已知”的,是条件概率。 例 7:5 把钥匙,只有一把能打开,如果某次打不开就扔掉,问第二次打开的概率? (2)时间上分两个阶段的,用“全概公式”或者“贝叶斯公式” 。 例 8:玻璃杯成箱出售,每箱 20 只,设各箱含 0,1,2 只残次品的概率分别为 0.8, 0.1 和 0.1。一顾客欲购买一 箱玻璃杯,由售货员任取一箱,而顾客开箱随机地察看 4 只;若无残次品,则买下该箱玻璃杯,否则退回。试求: (1)顾客买此箱玻璃杯的概率; (2)在顾客买的此箱玻璃杯中,确实没有残次品的概率。 (3) “只知次数,不知位置”是“二项分布” 。 例 9:抛 5 次硬币,其中有 3 次正面朝上的概率?

Hale Waihona Puke 2 、 F 分布取面积对称的分位数。
3
三、选择题常考的 5 个混淆概念 1、乘法公式和条件概率
例 24:100 个学生,60 个男生,40 个女生,棕色头发 30 个,棕色头发的男生 10 个,任取一个学生,是棕色头发 的男生的概率?已知取了一个男生,是棕色头发的概率?
P( AB) P( A) P( B / A)
(10)均匀分布用“几何概型”计算。
0 x 1,0 y x,
试求 U=X-Y 的分布密度。
其他. 0 x 1,0 y x,
,试求 P(X+Y>1)。
2 例 17:设随机变量(X,Y)的分布密度为: ( x, y ) 0,

(完整word版)概率论与数理统计期末考试试卷答案

(完整word版)概率论与数理统计期末考试试卷答案

《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。

答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B =U ()A 、AB B 、A BC 、A BD 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P A B P A P B =+UC 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==L ,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。

概率论与数理统计_同济大学中国大学mooc课后章节答案期末考试题库2023年

概率论与数理统计_同济大学中国大学mooc课后章节答案期末考试题库2023年

概率论与数理统计_同济大学中国大学mooc课后章节答案期末考试题库2023年1.在正态总体中,样本均值是总体均值的极大似然估计量。

答案:正确2.样本方差是总体方差的矩估计。

答案:错误3.样本均值是总体均值的矩估计。

答案:正确4.设X是一个随机变量,称X的概率分布为总体分布。

答案:正确5.【图片】(结果保留三位小数)答案:0.1906.在问题1中,自由度是。

答案:17.X~Poisson(3), Y~Poisson(2), X与Y相互独立 , 则X+Y服从的分布为:答案:Poisson(5)8.(1)设两个离散型随机变量【图片】独立同分布,都仅取-1和1两个取值,且【图片】,则下列成立的是:答案:9.【图片】是某一连续型随机变量的概率密度函数的充要条件是【图片】.答案:错误10.从5双不同的鞋子当中任意取4只,4只鞋子中至少有2只鞋子配成一双的概率是________.(结果请用保留三位小数表示)答案:0.61911.若连续型随机变量的概率密度函数连续,则【图片】.答案:正确12.设【图片】的联合概率函数为【图片】,则概率值【图片】=___________.答案:113.【图片】当【图片】=______时,【图片】与【图片】相互独立?(结果请用小数表示)答案:0.514.两名水平相当的棋手弈棋三盘,设【图片】表示某名棋手获胜的盘数,【图片】表示他输赢盘数之差的绝对值.假定没有和棋,且每盘结果是相互独立的.则【图片】与【图片】的联合概率函数为:【图片】答案:正确15.某地有3000个人参加了人寿保险,每人交纳保险金10元,一年内死亡时家属可以从保险公司领取2000元,假定该地一年内人口死亡率为0.1%,且死亡是相互独立的.则保险公司一年内赢利不少于1万元的概率为______.(结果请保留四位小数)答案:0.999716.已知某商店每周销售的电视机台数【图片】服从参数为6的泊松分布.那么周初至少应该进货_____台,才能保证该周不脱销的概率不小于0.99.假定上周没有库存,且本周不再进货.答案:1217.某系统由4个电子元件构成,各个元件是否正常工作是相互独立的,该种产品的使用寿命达到1000小时以上的概率为0.3,求4个电子元件在使用了1000小时以后最多只有一个损坏的概率为__________.(结果请保留四位小数) 答案:0.083718.某人投篮命中率为40%,假定各次投篮是否命中相互独立.设【图片】表示他首次投中时累计已投篮的次数,则【图片】取值为奇数的概率是_______.(结果请用小数表示)答案:0.62519.【图片】(结果请用小数表示)答案:0.420.把一个表面涂有红色的立方体等分成1000个小立方体,从这些小立方体中随机抽取一个,它有【图片】个面涂有红色,那么【图片】的值为__________.(结果请保留三位小数)答案:0.10421.已知某个国家在飞行中失联的轻型飞机中有80%会被找到.在这些被找到的飞机中有60%的装有紧急定位仪,而没有找到的飞机中有90%未装紧急定位仪.假定,该国现有一架轻型飞机失联了,若它未装紧急定位仪,那么它会被找到的概率是_______.(结果请用小数表示)0.6422.某年级有甲、乙、丙三个班级,各班人数分别占年级总人数的1/4、1/3、5/12,已知甲、乙、丙三个班级中集邮人数分别占该班1/2、1/4、1/5,从该年级中随机地选取一个人,发现此人为集邮者,则此人属于乙班的概率为________.(结果请保留三位小数)答案:0.28623.5名篮球运动员独立地投篮,每个运动员投篮的命中率都是80%.他们各投一次,那么至少有4次命中的概率是__________.(结果请保留两位小数)答案:0.7424.(1)矩估计原理在于大数定理.答案:正确25.在置信水平相同的情况下,样本量越多,区间长度越窄.答案:正确26.矩估计利用样本矩替代总体矩,可以利用二阶矩甚至阶矩计算总体的未知参数.正确27.极大似然估计必须知道总体的概率函数或密度函数.答案:正确28.某商店出售晶体管,每盒装100只,且已知每盒混有4只不合格品.商店采用“缺一赔十”的销售方式:顾客买一盒晶体管,如果随机地取1只发现是不合格品,商店要立刻把10只合格品的晶体管放在盒子中,不合格的那只晶体管不再放回.顾客在一个盒子中随机地先后取3只进行测试,那么他发现全是不合格品的概率为____________.(结果请保留五位小数)答案:0.0000229.甲、乙两人各自独立作同种试验,已知甲、乙两人试验成功的概率分别为0.6、0.8. 已知甲乙两人中至少有一人试验成功的情况下,甲成功但乙未成功的概率是_________.(结果请保留两位小数)答案:0.1330.甲、乙两人各自独立作同种试验,已知甲、乙两人试验成功的概率分别为0.6、0.8.那么两人中只有一人试验成功的概率是_________.(结果请用小数表示)答案:0.4431.设两个事件A和B互不相容,已知【图片】,则条件概率【图片】是_______.(结果请用小数表示)答案:0.2532.向平面区域【图片】内等可能的投点,则点落入直线【图片】与【图片】之间的概率为________(结果请保留两位小数).答案:0.4133.在长度为20分钟的时间段内,有两个长短不等的信号随机地进入接收机,长信号持续时间为4分钟,短信号持续时间为2分钟.那么这两个信号互不干扰的概率为__________(结果请用小数表示).答案:0.72534.在样本量相同的情况下,置信水平越高,区间长度越窄.答案:错误35.为了保证一定的置信水平,又要使得区间的长度不大于某一常数,只有增加样本的容量n,通过掌握更多的信息来实现.答案:正确36.极大似然估计法借助样本观测值,取使得样本观测值达到概率最大时的未知参数取值.答案:正确37.二阶样本中心距是总体方差的无偏估计量.答案:错误38.假设检验依据的原理是“小概率原理”,即发生概率很小的随机事件在一次试验中是几乎不可能发生的.答案:正确39.可以找到一个拒绝域,同时使得在降低第一类错误概率的同时也能降低第二类错误概率。

《概率论与数理统计》期末考试(A)卷答案与评分标准

《概率论与数理统计》期末考试(A)卷答案与评分标准

海南师范大学 物理、电子、自动化、地理、城规、计算机专业《概率论与数理统计》 2009—2010学年度第一学期期末考试(A )卷答案与评分标准 注意事项:1. 考前请将密封线内填写清楚 2. 所有答案请直接答在试卷上 3.考试形式:闭卷 4. 本试卷共五大题,满分100分, 考试时间100分钟一、单项选择题(本题共六小题,每小题3分,共18分。

在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分)1、设B A ,为随机事件, 若4.0)(,6.0)(==B P A P , 则有( D ). A :1)(=B A P ; B :24.0)(=AB P ; C :6.0)(≤B A P ; D: 4.0)(≤AB P .2、设随机变量X 服从正态分布)1 ,0(N , )(x Φ为其分布函数,则}4{2<X P =( A ) . A :1)2(2-Φ ; B :1)4(2-Φ ; C : )2(21Φ-; D :)2(1Φ-.3、己知二维随机变量),(Y X 具有分布函数),(y x F ,则( D ). A :}{),(x X P x F <=+∞; B :1),(=+∞x F ; C :1),(=+∞-∞F ; D :0),(=-∞x F .4、己知随机变量X 服从二项分布)2.0 ,5(B , 则=)(2X E ( C ). A :1; B :0.8; C :1.8; D :0.2.5、设n X X X ,,,21 是来自总体) ,(2σμN 的简单随机样本,则∑==n i i X n X 11服从正态分布( A ). A :) ,(2n N σμ; B :) ,(2σn n N ; C :) ,(2σμN ; D :)1 ,0(N .6、设n X X X ,,,21 是来自总体) ,(2σμN 的简单随机样本,2 σ未知,检验假设 00μμ=:H ,对01μμ≠:H 时,需用到检验统计量是( B ). A :n X Z σμ0-=; B :n S X T 0μ-=; C :222)1(σχS n -=; D :n S X T n 0μ-=. 二、填空题(将答案直接填入栝号内,本题共六小题,每小题3分,共18分) 1、设事件B A 与相互独立,7.0)(,5.0)(==B A P A P ,则=)(B P ( 0.4 ) 第1页(共6页) 第2页(共6页)2、设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它,,0,10,3)(2x x x f X 的概率分布函数为)(x F ,则=)5.0(F ( 0.125 ).3、已知随机变量Y X 与的联合分布律为则概率==}1),{max(Y X P ( 0.6 );4、设随机变量X 的概率密度函数为⎩⎨⎧≤>=-,0,0,0,)(x x e x f x则X e Y 3-=的数学期望=)(Y E ( 41).5、己知随机变量X 的期望,20)(=X E 方差,8)(=X D ,则≤≥-}620{X P ( 92);.6、设n X X X ,,,21 是来自总体),(2σμN 的简单随机样本,2σ未知,X 是样本均值, 2S 是样本均值,则μ的置信度为1-α的单侧置信下限为()三、解答题(本题共 4小题,每小题8分,共32分)1、9.0)(,7.0)(,5.0)(===B A P B P A P ,试计算:)(AB P ,)(B A P -及)(B A A P 的值。

概率论与数理统计期末考试试卷及答案

概率论与数理统计期末考试试卷及答案

概率论与数理统计期末考试试卷及答案专业概率论与数理统计课程期末试卷A卷1.设随机事件A、B互不相容,p(A)=0.4,p(B)=0.2,则p(AB)=0.A。

2B。

4C。

0D。

62.将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率为3/16.A。

2B。

2/3C。

3/16D。

13/163.填空题(每空2分,共30分)1)设A、B是两个随机变量,p(A)=0.8,p(B)=。

则p(AB)=0.3.2)甲、乙两门彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.3、0.4,则飞机至少被击中一次的概率为0.58.3)设随机变量X的分布列如右表,记X的分布函数为F(x),则F(2)=0.6.X。

1.2.3p(X) 0.2.0.4.0.44)把三个不同的球随机地放入三个不同的盒中,则出现两个空盒的概率为3/5.5)设X为连续型随机变量,c是一个常数,则p(X=c)=0.6)设随机变量X~N(μ,1),Φ(x)为其分布函数,则Φ(x)+Φ(-x)=1.7)设随机变量X、Y相互独立,且p(X≤1)=1/2,p(Y≤1)=1/3,则p(X≤1,Y≤1)=1/6.8)已知P(X=0)=1/2,P(X=1)=1/4,P(X=2)=1/8,则E(X^2)=1/2.9)设随机变量X~U[0,1],由切比雪夫不等式可得P(|X-1/2|≥1/4)≤1/4.4.答案解析1)p(B)=0.375由乘法公式p(AB)=p(A)p(B)可得,0.3=0.8p(B),解得p(B)=0.375.2)P(未击中)=0.3×0.6+0.4×0.7=0.58由概率加法公式可得,P(未击中)=P(甲未击中且乙未击中)=P(甲未击中)×P(乙未击中)=0.3×0.6+0.4×0.7=0.58.3)F(2)=P(X≤2)=0.2+0.4=0.6由分布函数的定义可得,F(2)=P(X≤2)=P(X=1)+P(X=2)=0.2+0.4=0.6.4)P(两个空盒)=3/5将三个球分别放入三个盒子中,共有3×2×1=6种方案。

(完整版)同济大学概率论期末复习题(含答案)

(完整版)同济大学概率论期末复习题(含答案)

复习题(1)--(A )备用数据:220.9950.0250.975(8) 3.3554,(8) 2.1797,(8)17.5345t χχ===,,9772.0)2(,8413.0)1(=Φ=Φ.95.0)645.1(=Φ一、填空题(18分)1、 (6分)已知()0.3,()0.4,()0.32,P A P B P A B ===则 ()P A B ⋃=___ __ ,()P AB = ,()P A B ⋃= .2、 (6分)设一个袋中装有两个白球和三个黑球,现从袋中不放回地任取两个球,则取到的两个球均为白球的概率为 ;第二次取到的球为白球的概率为 ;如果已知第二次取到的是白球,则第一次取到的也是白球的概率为 .3、 (6分)假设某物理量X 服从正态分布),(2σμN ,现用一个仪器测量这个物理量9次,由此算出其样本均值56.32,x =样本标准差0.22s =,则μ的置信水平0.99的双侧置信区间为_____________,σ的置信水平0.95的双侧置信区间为__________ _____.二、(12分)设有四门火炮独立地同时向一目标各发射一枚炮弹,若有两发或两发以上的炮弹命中目标时,目标被击毁.(1) 如果每发炮弹命中目标的概率(即命中率)为0.9,求目标被击毁的概率; (2) 若四门火炮中有两门A 型火炮和两门B 型火炮,A 型火炮发射的炮弹的命中率为0.9,B 型火炮发射的炮弹的命中率为0.8,求目标被击毁的概率.三、(12分)设某保险公司开办了一个农业保险项目,共有一万农户参加了这项保险,每户交保险费1060元,一旦农户因病虫害等因素受到损失可获1万元的赔付,假设各农户是否受到损失相互独立.每个农户因病虫害等因素受到损失的概率为0.10.不计营销和管理费用. (要求用中心极限定理解题)(1)求该保险公司在这个险种上产生亏损的概率; (2)求该保险公司在这个险种上的赢利不少于30万的概率.四、(16分)设随机变量X 的分布函数为22,0()0,0x A Be x F x x -⎧⎪+>=⎨⎪≤⎩. 其中,A B 为常数.(1)求常数,A B ; (2)求X 的概率密度函数; (3)求概率(12)P X <<; (4)求2(),(),()E X E X D X .五、(16分)若),(Y X 的联合密度函数为1,01(,)0,y x x f x y ⎧≤≤≤⎪=⎨⎪⎩且其他(1)分别求Y X ,边缘密度函数; (2)求 (),(),()E X E Y E XY ; (3)问:Y X ,是否相互独立?Y X ,是否相关?为什么?请说明理由. (4)求11(,)22P X Y ≤≤.六、(12分) 设126,,,X X X L 是取自正态总体),0(2σN 的简单随机样本,02>σ,分别求下列统计量服从的分布:(1) 22121222234562()X X T X X X X +=+++ ; (2)2T =.七、(14分)设12,,,n X X X L 是取自总体X 的样本,X 的密度函数为21,()20,x e x f x x ϑϑϑ--⎧≥⎪=⎨⎪<⎩, 其中ϑ未知.(1) 求ϑ的极大似然估计;(2) 问: ϑ的极大似然估计是ϑ的无偏估计吗? 如果是,请给出证明;如果不是,请将其修正为ϑ的无偏估计.参考答案:一、 1.0.5720.1280.8722.0.10.40.253.[56.0739,56.5660],[0.1486,0.4215]二、 (1)0.9963(2)0.9892 三、 (1)1(2)(2)(1)-ΦΦ四、 (1)1,1A B ==- 22,0(2)()0,0x xe x f x x -⎧⎪>=⎨⎪≤⎩ 122(3)(12)P X e e --<<=-2(4)()()2,()222E X E X D X π===- 五、2,011||,0||1(1)()()0,0,X Y x x y y f x f y <<-<<⎧⎧==⎨⎨⎩⎩其余其余2(2)(),()0,()0311(3)(,0)()(0),()()()33(4)(||0.5,||0.5)0.25X Y E X E Y E XY X Y f f f E XY E X E Y P X Y ===≠=≤≤=与不独立,因为 也不相关,因为六、12(1)~(2,4)(2)~(3)T F T t七、(1)2ˆˆ(1)(2)()X E n θθθθ==+≠,所以不是无偏估计,1(1)2ˆX nθ=-为无偏估计。

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)ຫໍສະໝຸດ 的边缘密度。解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
八、(6分)一工厂生产的某种设备的寿命 (以年计)服从参数为 的指数分布。工厂规定,出售的设备在售出一年之内损坏可予以调换。若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元,求工厂出售一台设备净盈利的期望。
解:因为 得 ………….2分
用 表示出售一台设备的净盈利
…………3分

………..4分
所以
(元)………..6分
九、(8分)设随机变量 与 的数学期望分别为 和2,方差分别为1和4,而相关系数为 ,求 。
解:已知
则 ……….4分
……….5分
……….6分
=12…………..8分
十、(7分)设供电站供应某地区1 000户居民用电,各户用电情况相互独立。已知每户每日用电量(单位:度)服从[0,20]上的均匀分布,利用中心极限定理求这1 000户居民每日用电量超过10 100度的概率。(所求概率用标准正态分布函数 的值表示).
答案:
解答:设 的分布函数为 的分布函数为 ,密度为 则
因为 ,所以 ,即

另解在 上函数 严格单调,反函数为
所以
4.设随机变量 相互独立,且均服从参数为 的指数分布, ,则 _________, =_________.
答案: ,
解答:
,故
.
5.设总体 的概率密度为
.
是来自 的样本,则未知参数 的极大似然估计量为_________.
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的

同济大学概率论与数理统计期末试卷(带答案)09-10 A

同济大学概率论与数理统计期末试卷(带答案)09-10 A

B A B;
B 若 A B, 则 A,B 同时发生或 A,B 同时不发生; C 若 A B, 且 B A, 则 A B;
D 若 A B, 则 A-B 是不可能事件.
审核教师签名:
课名:概率论与数理统计
考试
2、 设 X , Y 的联合概率函数为
五、(16 分)设随机变量 ( X , Y ) 的联合密度函数为
2, 0 x y 1 f ( x, y ) 0, 其它
(1)分别求 X , Y 的边缘密度函数; (2)求 P 0 X

1 1 3 Y ; 2 2 4
(3)试问: X , Y 是否相互独立?请说明理由. (3)求 Z X Y 的概率密度函数 f Z z . 四、 (10 分)某商业中心有甲、乙两家影城,假设现有 1600 位观众去这 个商业中心的影城看电影,每位观众随机地选择这两家影城中的一家,且 各位观众选择哪家影城是相互独立的。 问: 影城甲至少应该设多少个座位, 才能保证因缺少座位而使观众离影城甲而去的概率小于 0.01. (要求用中心极限定理求解)
X
0
Y
0 0.125 0
1 0.25 0.125
2 0.125 0.25
3 0 0.125
年级 专业 任课教师 题号 一 二 得分
学号 三 四 五 六 七
姓名 总分
1
(注意:本试卷共 7 大题,3 大张,满分 100 分.考试时间为 120 分钟.要求写出解题 过程,否则不予计分)
则 ( )

1

P 1 Y 3, X 0
2009-2010 学年第二学期《概率论与数理统计》期终考试试卷(A 卷)--1

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。

答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。

答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。

答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。

答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。

概率论及数理统计期末考试试题及解答

概率论及数理统计期末考试试题及解答

WORD格式.《概率论与数理统计》期末试题一、填空题(每题 3 分,共 15 分)1.设事件 A,B 仅发生一个的概率为0.3 ,且 P(A)P(B)0.5,则A,B起码有一个不发生的概率为 __________.答案: 0.9解:P(ABAB)0.3即0.3P(AB)P(AB)P(A)P(AB)P(B)P(AB)0.52P(AB)因此P(AB)0.1P(AB ) P(AB)1P(AB)0.9.2.设随机变量 X 听从泊松散布,且 P( X1)4P(X2),则P(X3)______.答案:1 e 16解答:P( X1)P ( X0)P(X1)ee,P(X2)e由 P(X1)4P(X2) 知 ee2e2即 210解得 1,故P(X3)e 3.设随机变量 X 在区间 (0,2)上听从平均散布,则随机变量密度为 f Y(y)_________.答案:2 221162YX在区间 (0,4)内的概率114,0y4,f( y) F(y)f(y)YYX2y解答:设 Y 的散布函数为 F Y(y),X的散布函数为F X(x) ,密度为2F(y)P(Yy)P(Xy)P(yXy ) F(y ) F(y )YXX由于 X~U(0,2) ,因此 F(y ) 0 ,即 F Y(y)F X(y )Xy0,.其余f X(x) 则专业资料整理WORD格式教育资料专业资料整理WORD 格式.故11,0y4,f( y) F(y)f(y )4yYYX2y0,其余.另解在 (0,2) 上函数2yx 严格单一,反函数为h(y)y因此11f(y)f(y)4,0y4,yYX2 y0,其余.4.设随机变量 X,Y 互相独立,且均听从参数为的指数散布,2P(X1)e ,则_________, P{min(X,Y)1}=_________.答案: 2,- 4P{min(X,Y)1}1e解答:2P(X1)1P(X1)ee ,故 2P{min(X,Y)1 }1P{min(X,Y)1 }1P(X1)P(Y1)41e.5.设整体 X 的概率密度为(1)x,0x1,f(x)1.0,其余X 1,X 2,,X 是来自 X 的样本,则未知参数的极大似然预计量为_________.n答案:$11n1xlnn i 1i解答:似然函数为nnL ( x ,L,x;)(1)x(1)(x,L,x)1ni1ni1nlnLnln(1)lnxii1dlnLn nlnx@0d1ii1专业资料整理WORD格式解似然方程得的极大似然预计为教育资料专业资料整理WORD格式.$11.n1ln xni 1i二、单项选择题(每题 3 分,共 15 分)1.设 A,B,C为三个事件,且A,B 互相独立,则以下结论中不正确的选项是(A)若 P(C)1 ,则 AC与 BC也独立 .(B)若 P(C)1 ,则 AUC 与 B 也独立 .(C)若 P(C)0 ,则 AUC 与 B 也独立 .(D)若 CB,则 A 与 C也独立 . ()答案:( D) .解答:由于概率为 1 的事件和概率为0 的事件与任何事件独立,因此(A),(B),(C)都是正确的,只好选(D) .事实上由图可见A与C不独立.SABC2.设随机变量X~N(0,1),X的散布函数为(x),则P(|X|2)的值为(A) 2[1(2)]. ( B) 2(2)1.(C) 2(2). ( D) 12(2). ()答案:( A)解答: X~N(0,1) 因此 P(|X|2)1P(|X|2)1P(2X2)1(2)(2)1[2(2)1]2[1(2)]应选(A).3.设随机变量 X 和 Y 不有关,则以下结论中正确的选项是(A)X 与 Y 独立 . ( B)D( XY)DXDY.(C)D(XY)DXDY. ( D) D(XY)DXDY.()教育资料专业资料整理WORD 格式.答案:( B )解答:由不有关的等价条件知,xy0cov ( x , y )0D( XY) DXDY+2cov ( x , y )应选( B ) .4.设失散型随机变量 X 和 Y 的结合概率散布为( X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)P1111 69183若 X,Y 独立,则 , 的值为( A )21.( )12.,A,9999 . ()( C )11( D )51,,661818答案:( A )解答:若 X,Y 独立则有P(X2,Y2)P(X2)P(Y2)Y123X1111 1121 169183()()() 11 3939233 21 111, 291899故应选( A ) .5.设整体 X 的数学希望为 ,X 1,X 2,L,X n为来自 X 的样本,则以下结论中正确的选项是(A)X1是的无偏预计量 . ( B)X1是的极大似然预计量 .(C)X1是的相合(一致)预计量 . ( D) X1不是的预计量 . ()答案:( A)解答:EX,因此 X1是的无偏预计,应选(A) .1三、( 7 分)已知一批产品中90%是合格品,检查时,一个合格品被误以为是次品的概率为0.5 ,一个次品被误以为是合格品的概率为0.02 ,专业资料整理WORD格式教育资料专业资料整理WORD格式.求( 1)一个产品经检查后被以为是合格品的概率;( 2)一个经检查后被以为是合格品的产品确是合格品的概率.解:设 A‘任取一产品,经查验以为是合格品’B‘任取一产品确是合格品’则( 1) P(A)P(B)P(A|B)P(B)P(A| B)0.9 0.950.10.020.857.P( B|A)0.9977( 2).P(A)0.857四、( 12 分)从学校乘汽车到火车站的途中有 3 个交通岗,假定在各个交通岗碰到红灯的事件是互相独立的,而且概率都是2/5. 设 X 为途中碰到红灯的次数,求 X 的散布列、散布函数、数学希望和方差 .解: X 的概率散布为23kk3kP(Xk ) C()()k0,1,2,3.355X0123即2754368PX 的散布函数为0,x0,27,0x1,12581F(x),1x2,125117,2x3, 1251,x3.EX26 3,55 2318DX3.5525五、( 10 分)设二维随机变量(X, Y) 在地区 D{(x,y)|x0,y0,xy1}上听从平均散布 . 求( 1) ( X,Y) 对于 X 的边沿概率密度;( 2) ZXY 的散布函数与概率密度 .专业资料整理WORD格式教育资料专业资料整理WORD格式.解:( 1) (X,Y)的概率密度为y2,(x,y)D1f(x,y)0,.x+y=1其余DD122x,0x1 x f(x)f(x,y)dy0z1x+y=zX0,其余(2)利用公式 f Z(z)f(x,zx)dx2,0x1,0zx1x2,0x1,xz1.此中 f(x,zx)0,0,其余其余 .当 z0或 z1时 f Z(z)0zzzz=x0z1时f(z)2dx2x2zZ故 Z 的概率密度为x f(z)2z,0z1,Z0,其余 .Z 的散布函数为0,z00,z0,zz2f(z)f(y)dy2ydy,0z1z,0z1,ZZ1,z1.1,z1或利用散布函数法0,z0,F(z)P(Zz)P(XYz)2dxdy,0z1,ZD11,z1.0,z0,2z,0z1,1,z1.2z,0z1,f(z)F(z)ZZ0,其余 .专业资料整理WORD格式六、( 10 分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标 Y 相222互独立,且均听从N(0,2)散布.求(1)命中环形地区D{(x,y)|1xy2}的教育资料专业资料整理.概率;( 2)命中点到目标中心距离WORD格式22ZXY的数学希望 .解:( 1)P{X,Y)D}f(x,y)dxdyyDx D01212221rr 2r11ed ( )eee ;88828124821( 2)222218EZE(XY)xyedxdy22xy 822rr 112882 rerdrderdr84000222 rrr21888reedredr2.0 022七、(11 分)设某机器生产的部件长度(单位:cm )2X~N( ,) ,今抽取容量为 16 的样20.16 本,测得样本均值x10 ,样本方差0.95 的置信区s. ( 1)求的置信度为间;(2)查验假定2H 0:0.1 (明显性水平为 0.05 ) .专业资料整理WORD格式(附注) t 0.05 (16)1.746,t 0.05 (15)1.753,t0.025 (15)2.132,2220.4 (16)26.296,0.05 (15)24.996,0.025 (15)27.488.解:(1)的置信度为 1 下的置信区间为ss( Xt(n1),Xt(n 1))/2/2nnX10,s0.4,n16,0.05,t(15)2.1320.25因此的置信度为0.95 的置信区间为(9.7868 , 10.2132 )(2)H0:0.1222(n1).的拒绝域为教育资料专业资料整理WORD格式.2215S2151.624 0.05 (15)24.996由于,0.5222424.996(15),因此接受H.0.26 0专业资料整理WORD格式教育资料专业资料整理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档