聚光光伏发电系统的技术
聚光太阳能电池的基本原理
聚光太阳能电池的基本原理聚光太阳能电池是一种利用聚光系统将太阳光聚焦到电池表面的光伏发电技术。
它的基本原理是光的聚光、吸收和转化。
聚光太阳能电池由透明表面、反射镜和太阳能电池组成。
透明表面通常是玻璃或塑料材料,它的作用是把太阳光传递到反射镜上。
反射镜用于聚光,将散射的太阳光线聚焦到太阳能电池表面上。
太阳能电池是由半导体材料制成的,当太阳光照射到电池表面时,光子被吸收并转化为电能。
具体来说,光子是光的最小单位,它携带着能量。
当光线照射到太阳能电池表面时,光子会与电池中的半导体材料相互作用。
半导体材料通常是硅或镓,它们具有特殊的电子结构,能够吸收光子。
当光子被吸收时,它会激发半导体材料中的电子从价带跃迁到导带,形成电子空穴对。
在半导体材料中,导带中的电子具有自由运动的能力,而价带中的电子则被束缚在原子核周围。
当光子被吸收时,激发的电子和空穴会分别在导带和价带中自由运动。
这种分离的电荷就形成了一个电势差,也就是产生了电压。
为了提高聚光太阳能电池的效率,反射镜会把太阳光线聚焦到太阳能电池的表面上。
这样,更多的光子将被吸收,从而产生更多的电子和空穴。
同时,由于聚光太阳能电池表面的面积较小,电子和空穴之间的传输距离也较短,从而减少了电子和空穴的复合效应,提高了电池的效率。
聚光太阳能电池还可以通过优化半导体材料的能带结构来提高效率。
例如,通过在半导体表面引入能带势垒,可以增加光子被吸收的概率,进一步提高电池的效率。
总的来说,聚光太阳能电池利用聚光系统将太阳光线聚焦到电池表面,光子被吸收后会激发半导体材料中的电子从价带跃迁到导带,形成电子和空穴,从而产生电势差和电流。
通过优化半导体材料的能带结构和聚光系统的设计,可以提高聚光太阳能电池的效率,实现更高的光能转化效率。
聚光型光伏发电的太阳能定位和跟踪系统
聚光型光伏发电的太阳能定位和跟踪系统和高强的辐射能量,日渐成为资源利用的首要选择。
聚光型光伏发电的基本原理是采用带有菲尼尔透镜的太阳能电池板,利用图像采集传感器,拍摄参照物的太阳影子长度,并以与垂直投影做出的比较测出太阳的偏转角度,通过高速控制芯片,根据对采集信息的分析,控制传动机构调节太阳能电池板的偏转角度,实现对太阳的定位和跟踪,从而实现太阳能的高效采集。
关键词:聚光型;光伏发电;跟踪;定位;高效1 设计思路目前我国的太阳能利用率处于较低水平,主要原因是太阳能密度低,照射到地面上的平均光强只有1kW/m2,并且随着季节和天气因素的变化,更增强了太阳能利用的难度;我国现有的太阳能电池板的发展水平也限制了太阳能的利用率,目前,单晶体硅的太阳能转化率可以达到23%,多晶体硅可以达到16%,而薄膜的只能达到8%。
这具有挑战性的难题是这次太阳能定位和跟踪系统设计的出发点。
为了克服太阳能量密度低的劣势,我们采用了带有定位与跟踪功能的太阳能电池板支架,利用电机传动带动电池板的两个自由度的旋转,尽量使每个时刻电池板都能垂直接收太阳能。
跟踪功能的实现根本是定位,我们使用分辨率为640 乘以320 的CCD 图像采集传感器,以至少0.2 s/幅的速度来拍摄参考物的太阳影子长度并与参考物的垂直投影作比较,精确地测量出当前太阳的偏转角度;通过高速的控制芯片,将得到的角度进行采集与处理,得到相应的控制角度与位移量。
这样,定位的目的实现了,跟踪的效率自然就会大大提高。
使用精度为1/10 000 度的伺服电机与高精度涡轮蜗杆传动机构,使太阳能支架能自如的旋转,以最高的效率接受太阳能。
2 支架设计部分在设计太阳能电池板支架的过程中,不仅要考虑到材料自身重量和惯性的因素,还要考虑到投入应用后,实际的自然条件的因素。
大风是不可忽略的一个重要自然现象,在世界各。
中科院科技成果——第四代全效光伏发电
中科院科技成果——第四代全效光伏发电项目简介
传统平板光伏发电由于转换效率不足20%,发电成本居高不下,难以与火电、水电竞争,导致我国光伏产业几近全军覆没。
聚光光伏作为第三代光伏发电技术,发电成本有所降低,但跟踪追日系统机构复杂、成本高企,仍然无法将光伏发电成本降低至传统能源水平。
第四代全效光伏发电,主要技术原理是对太阳光进行人工干预和处理,将太阳光“加工”成适合当前普及型的晶硅电池板的人工光线,导致发电量成倍增长。
人工处理包括六种效果:广角采光、散射收集、光线准直、多倍聚光、波长优选、波段调制。
借鉴了仿生学的昆虫复眼结构,移植了西方激光武器的先进技术,综合集成的第四代光伏,单位硅电池板的入射光线增长了5-10倍,综合光电转换效率从不到20%可以最高提升至60%,综合发电量提升了15-30倍,扣除光线处理单元增加的成本,发电成本只有传统平板光伏的五分之一,降低到每千瓦时0.5元以下,在光照资源良好的地区更可降低到0.3元。
由于电池板仍沿用传统Si光电池板,当前光伏企业无需重大改造即可采用这一技术,只要在电池板上方安装光学处理器即可。
相关技术仍在不断开发完善过程中。
聚光太阳能发电(CSP)技术探讨
Science and Technology &Innovation ┃科技与创新2020年第23期·73·文章编号:2095-6835(2020)23-0073-03聚光太阳能发电(CSP )技术探讨令强华,卫书满(中国葛洲坝集团机电建设有限公司,四川成都610091)摘要:聚光太阳能发电(CSP )通过余热储存,实现友好并网与有效调峰,与光伏发电、风电形成良性互补,可承担电力系统基础负荷。
分析了聚光太阳能发电(CSP )技术及其与光伏发电、风电的互补性,对新能源项目的综合开发利用提出了建议和思路。
关键词:聚光太阳能发电;光伏发电;余热储存;综合开发中图分类号:TM615文献标志码:ADOI :10.15913/ki.kjycx.2020.23.028在中国光伏发电和风力发电发展迅速,技术已经成熟,但光伏发电和风力发电虽然发电成本低廉但不可实现调峰,并且由于大型风电、光伏等可再生能源建设在远离市区的区域,且利用小时数低,单独远距离进行电力输送十分不经济,输送电网的利用率不高。
聚光太阳能发电(CSP )作为利用太阳能热发电的新能源技术,其熔盐储热技术可以实现有效调峰,与光伏、风电具有良好的互补性。
CSP 、光伏、风电的综合开发利用既可以解决光伏、风电的电网利用率低问题,解决风能及光伏发电不稳定的问题,同时光热则可以利用光伏、风电作为厂用电来源的一部分。
虽然CSP 存在投资成本高的缺点,但随着近年来CSP 市场的持续升温,作为有望成为唯一取代火电调峰的清洁能源,加强CSP 技术及与光伏、风电的综合开发利用的研究,取得技术突破,对企业新能源产业布局具有重要意义。
1CSP 原理太阳能热发电是利用太阳能聚光器先将太阳辐射能转化为热能,然后经过各种方式转换为电能的技术形式。
太阳能热发电包括聚光太阳能热发电(CSP )、太阳能半导体温差发电、太阳能烟囱发电、太阳池发电和太阳能热声发电等。
2024年聚光光伏市场分析现状
2024年聚光光伏市场分析现状一、引言随着能源危机的愈发严重,以及对环境保护意识的不断增强,可再生能源的发展逐渐成为全球的热点话题。
光伏能源作为一种可再生能源的重要组成部分,受到了广泛的关注。
聚光光伏作为光伏能源的一种创新形式,因其高发电效率和更小的占地面积而备受关注。
本文旨在分析聚光光伏市场的现状和发展趋势。
二、聚光光伏市场概述1. 聚光光伏的定义和原理聚光光伏是一种利用聚光技术将太阳能集中到太阳能电池上的光伏发电方式。
其原理是通过光学器件将太阳光线聚焦到光伏电池上,提高光电转换效率。
聚光光伏系统通常包括聚光器、跟踪设备和太阳能电池。
2. 聚光光伏市场规模和发展趋势近年来,聚光光伏市场呈现出快速增长的趋势。
根据市场调研数据显示,2019年全球聚光光伏市场规模达到XX亿美元,预计到2025年将达到XX亿美元。
聚光光伏市场的快速发展主要得益于对可再生能源的需求增加和技术的进步。
3. 聚光光伏市场的主要应用领域聚光光伏系统的高发电效率使其在许多领域中得到了广泛的应用。
目前,聚光光伏主要应用于以下领域: - 太阳能农业灌溉系统 - 太阳能供电系统 - 太阳能发电站三、聚光光伏市场的现状1. 国内聚光光伏市场的发展状况中国作为全球光伏市场的主要参与者之一,聚光光伏市场也在不断发展。
国内聚光光伏市场的发展主要受益于国家政策的支持和资源丰富。
目前,聚光光伏系统已经在一些地区实现了商业化运营,并呈现出良好的推广前景。
2. 国际聚光光伏市场的发展状况国际聚光光伏市场的发展相对较为成熟,多个国家开展了聚光光伏项目。
例如,美国、西班牙等国家的聚光光伏项目规模较大,技术水平相对较高。
同时,国际聚光光伏市场也面临着一些挑战,如高昂的成本、技术瓶颈等。
四、聚光光伏市场的发展趋势1. 技术进步推动市场发展随着聚光光伏技术的不断进步,聚光器件的成本逐渐降低,效率不断提升,这将进一步推动聚光光伏市场的发展。
2. 政策支持促进市场增长各国政府对可再生能源的支持政策将进一步促进聚光光伏市场的增长。
2024年聚光光伏市场发展现状
2024年聚光光伏市场发展现状引言近年来,光伏发电作为一种清洁能源形式,得到了广泛的关注和应用。
而聚光光伏作为光伏发电的一种新技术,具有高转换效率和较小占地面积等优势。
本文将对聚光光伏市场的发展现状进行深入分析,并探讨其未来的发展前景。
聚光光伏技术及工作原理聚光光伏技术是利用光学聚焦将太阳光线聚集到光伏电池上,从而提高电能的产生效率。
其工作原理是通过反射镜或透镜将太阳光线聚焦到较小的光伏电池上,使得单位面积上的光照强度大大增加,进而提高光伏发电的效率。
聚光光伏市场概况聚光光伏市场处于快速发展阶段,主要体现在以下几个方面:技术创新推动市场发展随着科技的进步,聚光光伏技术不断创新,不断提高光伏发电效率,降低成本。
一些新型聚光光伏系统如高集成度聚光光伏系统和微透镜全息聚光光伏系统等的出现,为聚光光伏市场的发展带来了新的机遇。
政策支持带动市场需求政府对可再生能源的政策支持和鼓励,为聚光光伏市场的发展提供了有力支撑。
一些国家和地区通过减税、补贴等政策,吸引了众多企业投资光伏发电项目,促进了聚光光伏市场的快速增长。
市场竞争激烈,企业积极布局随着市场需求的增加,聚光光伏市场竞争也日益激烈。
许多光伏企业积极布局聚光光伏市场,加大研发投入,提高产品质量和技术水平,争取在市场竞争中获得更大的份额。
聚光光伏市场面临的挑战尽管聚光光伏市场发展迅猛,但仍然面临一些挑战:技术难题有待解决聚光光伏技术的进一步提升和突破仍然面临一些技术难题。
例如,如何解决高浓度太阳能光束对光伏电池产生的热量问题,以及如何克服光伏系统在温度、湿度等环境条件变化下的不稳定性等。
市场规模与成本之间的矛盾聚光光伏技术相较于传统光伏技术更为昂贵,因此成本是制约其市场发展的一个重要因素。
然而,随着市场规模的扩大,一些成本问题如光伏电池材料成本和生产成本的高昂,成为制约聚光光伏市场进一步发展的瓶颈。
聚光光伏市场未来发展趋势尽管聚光光伏市场面临一些挑战,但其未来仍然具有广阔的发展前景。
LCPV技术技术简单分析方案
北京安信高科太阳能低倍聚光光伏发电系统(LCPV)技术简单分析方案2010年9月21日一、公司简介北京安信高科创始者是清华大学原研究生处副处长、清华大学计算机系教授、信息产业部顾问沈梁教授,公司的主要技术主管者都是沈教授的学生,公司有着一支由自动控制、光学、晶硅、机械设计专家组成的强有力的技术队伍;技术总设计师陈平坚先生从小就是一个机械、电子痴,大学毕业后一直跟随沈梁教授。
他从2008年3月份开始带领他的研发团队,经过2年多的攻关在投入了上百万的资金,在经过了数不清的失败后终于悉数圆满解决了单晶硅10倍聚光的核心技术,已获取或者正在申请的专利达到8个之多;公司现在已经具体小规模的生产能力。
二、LCPV技术难点CPV太阳能发电系统原理比较简单,为什么到现在全世界也没有几家公司做出特别稳定且便宜的发电系统呢!在CPV领域原则上讲聚光倍数越高造价就越便宜但是使用聚光的方式就会出现以下问题。
2.1、让单晶硅承受较高倍聚光虽然砷化镓可以承受1000倍的光强,但是现在砷化镓价格昂贵,并且砷化镓中的砷是剧毒物质,不可能大幅度的降低制造成本,另外在以环保为主题的国际环境下也不可能大量使用,最后只能是单晶硅;但是单晶硅一般只能承受3到5倍的光强,在CPV领域3到5倍的聚光几乎不怎么能降低成本,要想大幅度降低成本必须达到10左右。
为了达到10倍的聚光必须用特制的单晶硅。
2.2、散热:普通的硅光电池板在夏日中午时温度能到75度以上,普通的硅电池板在两倍太阳光强下时间一长就会起泡,在5倍太阳光强下10分钟就会就会起泡,在10倍太阳光强下5分钟就会起泡,起泡后太阳能电池片就会被氧化,在很短的时间内就会大幅降低效率,另外起泡后由于受热不均匀,常常有电池片炸裂的,这样系统就完全不可用。
如果太阳能电池板使用铝或者铜制的散热片进行自然散热,需要大量的散热片,造价特别贵,贵到比硅光片还要贵;如果使用强制风冷,就要使用大量的电能,得不偿失,并且风扇的寿命与可靠性不高,要想达到高可靠性必须有错误检查与冗余设置,这样就会成几倍增加造价,如果在夏天的中午风扇坏了,整个硅光电池板有可能被彻底烧坏。
太阳能热发电和聚光光伏发电
太阳能热发电技术
2013-7-24
3
槽式
碟式
塔式
2013-7-24
太阳能热发电三种基本形式
4
三种系统比较:
塔式效率高,槽式成本低,碟式单机可标准化 生产,三种方式各自优势明显,同时缺点也很 明显:塔式一次性投入大,槽式相对塔式和碟 式效率较低,碟式单机规模很难做大。 目前来说,塔式和碟式尚处于研究、开发、示 范阶段,槽式已经是最成熟的商业化技术。
2013-7-24 24
发展方向:
(1)先进的聚光器结构; 围绕结构(轴式—衍架式);长度(100米—150米);聚光镜材料; 玻璃厚度;降低整机重量等等。
LS3型100米长阵列
2013-7-24
EUROTROUGH型150米长阵列
25
(2)性能提高的真空管接收器; 涂层技术提高发射率;结构上最大限度减少阴影面积;调 整相关材料配方,使得可伐更好封接等等。
28
(4)联合发电系统。与常规电站联合,由太阳能提供汽轮机中、低 压部分的蒸汽。这样可提高系统效率,降低成本。
2013-7-24
29
(5)可靠性技术研究。例如,运动中的高温真空 接收器在聚光器阵列两端与布置在地面上不动的 导热油管路之间存在一个重要的活动密封连接问 题。现在一般设计为球型关节,需要考虑高温、 一定压力、处于运动状态、密封等因素。 (6)极轴跟踪技术。南北向聚光集热器由原来的 水平放置改为面朝南的倾斜轴,充分考虑方位角 和高度角的影响,从而更有效地接收太阳辐射能。
2013-7-24
31
2013-7-24
32
单台碟式太阳能发电机
多套并联的碟式太阳能发电机站
2013-7-24
聚光光伏(CPV)
聚光光伏聚光光伏(CPV)是指将汇聚后的太阳光通过高转化效率的光伏电池直接转换为电能的技术,CPV是聚光太阳能发电技术中最典型的代表。
使用晶硅电池和薄膜电池进行光电转换,分别是第一、第二代太阳能利用技术,均已得到了广泛应用。
利用光学元件将太阳光汇聚后再进行利用发电的聚光太阳能技术,被认为是太阳能发电未来发展趋势的第三代技术。
使用晶硅电池和薄膜电池进行光电转换,分别是第一、第二代太阳能利用技术,均已得到了广泛应用。
利用光学元件将太阳光汇聚后再进行利用发电的聚光太阳能技术,被认为是太阳能发电未来发展趋势的第三代技术。
技术展望有别与传统硅晶型以及薄膜型,聚光型太阳光电(HCPV)的技术最显着的优点在于它的高光电转换效率。
这种太阳电池芯片在聚焦太阳光500倍左右时它的光电转换效能介于36-40%之间,光电模组的效能在22-28%之间。
整个系统的效能在18-20%之间。
以年度发电量而言,在相同的条件下,系统(结合双轴追日技术)约是传统硅晶型的1.2-1.4倍左右,此点是HCPV技术的竞争优势。
HCPV技术最适合应用于大型电厂,特别是在阳光日照充足、干燥、低湿度的地区。
目前HCPV 的核心技术-三结化合物电池和高倍聚光技术的开发和制造已经突破了国外企业的封锁,目前在国内实现大规模量产的企业有国内上市企业三安光电旗下的日芯光伏,他们已经能够实现1000倍聚光和40%以上的光电转换效率。
日芯光伏科技有限公司参与了我国《聚光型光伏模块和模组设计鉴定和定型》认证技术规范制定工作,为通过本次认证,日芯光伏科技有限公司经过了申请、送样、型式试验、工厂检查、合格评定、发证等认证环节,也为我国今后聚光光伏组件的质量认证工作积累了宝贵经验。
系统效率比较能量转化效率薄膜型太阳能 7%~9%晶硅型太阳能 14%~17%第一代核能电厂 30%火力发电 36.8%聚光光伏(CPV) 27%~30%聚光光热 (CSP) 13%~19%。
聚光光伏应用场景
聚光光伏应用场景
聚光光伏技术是一种将太阳光通过光聚焦系统集中投射到太阳能电池上的光伏发电技术,具有高光电转换效率、较低成本、较小占地面积等优势。
聚光光伏技术主要应用于以下场景:
1. 太阳能发电站:聚光光伏系统可以大规模应用于太阳能发电站,利用光聚焦系统将更多的太阳能光线集中到太阳能电池上,提高发电效率,减少占地面积。
2. 太阳能热发电:聚光光伏技术可以用于太阳能热发电系统中,将太阳光集中到工作介质上,提高温度,产生热量,进一步转化为电能。
3. 太阳能热水供应:聚光光伏技术可以用于太阳能热水系统中,将太阳能光线集中到太阳能热水器上,加热水,提供热水供应。
4. 太阳能热处理:聚光光伏技术可以用于太阳能热处理系统中,将太阳能集中到物体表面,提高温度,实现材料热处理、烧结、熔炼等工艺。
5. 太阳能海水淡化:聚光光伏技术可以用于太阳能海水淡化系统中,将太阳能光线集中到海水蒸发器上,提高蒸发速度,实现海水的淡化。
6. 太阳能空调系统:聚光光伏技术可以用于太阳能空调系统中,将太阳能光线集中到吸收剂上,提高吸收剂的温度,从而实现空调制冷或制热效果。
总之,聚光光伏技术的应用场景非常广泛,涵盖了太阳能发电、热能利用、海水淡化、空调制冷等多个领域。
随着技术的不断发展,聚光光伏技术有望在未来得到更广泛的应用。
光伏发电主要技术类型
光伏发电主要技术类型根据电池材料和制造⼯艺的不同,地⾯应⽤的光伏发电技术可分为晶硅太阳电池技术、薄膜太阳电池技术、聚光太阳电池技术以及新型太阳电池技术(见图2)。
晶硅太阳电池技术晶硅太阳电池主要可分为单晶硅太阳电池和多晶硅太阳电池,其技术成熟度⾼、产业规模较⼤,是⽬前的主流产品。
⽬前商业化⽣产的单晶硅太阳电池的光电转换效率为17%左右。
单晶硅太阳电池使⽤寿命⼀般可达15年,最⾼可达25年。
单晶硅太阳电池的构造和⽣产⼯艺已定型,产品已⼴泛⽤于空间和地⾯。
多晶硅太阳电池的制作⼯艺与单晶硅太阳电池相似,但是多晶硅太阳电池的光电转换效率偏低,商业化⽣产的多晶硅电池光电转换效率约为16%左右。
多晶硅太阳电池的⽣产成本较低,使⽤寿命⽐单晶硅太阳电池要短。
薄膜太阳电池发电技术薄膜电池根据材料体系不同主要可分为硅基薄膜和多元化合物薄膜太阳电池,⽬前技术还不完全成熟,产业化规模相对较⼩。
硅基薄膜太阳电池硅材料消耗很少,电耗低、成本低、重量轻,便于⼤规模⽣产,其主要优点是在弱光条件下也能发电,主要问题是光电转换效率偏低。
⽬前,国际上商业化⽣产的硅基薄膜太阳电池的效率为6%-8%,且不稳定。
多元化合物薄膜太阳电池主要包括砷化嫁III-V族化合物、硫化镉和碲化镉以及铜铟硒薄膜电池等,砷化稼化合物电池转换效率可达28%,但材料价格昂贵;商业化⽣产的硫化镉和碲化镉多晶薄膜电池的效率约为9%-11%,成本较单晶硅电池低,但由于镉有剧毒,会对环境造成严重的污染;铜铟硒薄膜电池转换效率和多晶硅相近,具有价格低廉、性能良好和⼯艺简单等优点,但由于铟和硒都是⽐较稀有的元素,这类电池的发展规模受到限制。
聚光太阳电池技术聚光太阳电池是有别于平板太阳电池的另⼀类电池,利⽤聚光的办法提⾼太阳电池表⾯照度,相当于⽤光学系统代替昂贵的太阳电池,在降低成本的同时提⾼了效率。
聚光太阳电池技术最显著的优点是⾼光电转换效率。
在相同的外部条件下,结合双轴追⽇技术的应⽤,聚光太阳电池年发电量约为传统晶硅电池的1.2-1.4倍(见图3 ) 。
太阳能利用技术介绍
太阳能利用技术介绍太阳是地球上最重要的能源之一,太阳能也被认为是未来可再生能源的重要代表。
利用太阳能可以实现电力、热能等多种形式的能源转换和利用,对于环保节能具有重要意义。
下面我们将详细介绍太阳能利用的技术和应用。
一、太阳能光伏发电技术太阳能光伏发电技术是目前最为成熟的太阳能利用技术之一。
它利用太阳光的能量,通过光伏电池将太阳能直接转换成电能。
光伏电池是一种通过光生电效应将光能直接转化为电能的半导体器件,常见的有硅、镓、砷化镓等材料制成。
随着技术的发展,光伏电池的转换效率不断提高,成本不断降低,因此光伏发电在全球范围内得到了广泛的应用。
光伏发电技术的优点是清洁、安全、稳定,不产生二氧化碳等温室气体,对环境友好。
它可以在没有电网的地区独立运行,也可以与电网相连,为城市和农村的电力供应提供便利。
目前,光伏发电技术已经在屋顶、农田、沙漠等地广泛应用,为人们的生活和生产提供了便利的电力支持。
二、太阳能热利用技术除了光伏发电技术,太阳能还可以通过太阳能热利用技术转化成热能。
一种常见的太阳能热利用技术是太阳能热水器。
太阳能热水器利用集热器(太阳能吸收板)、储水箱、管道等组件,将太阳能转化为热能,用于加热水。
太阳能热水器主要分为平板式和真空管式两种,广泛应用于家庭、学校、工厂等场所,为人们提供了清洁、可再生的热水资源。
太阳能热利用技术还可以用于太阳能空调、太阳能干燥、太阳能取暖等领域。
通过集热板、储热罐、换热器等设备,可以将太阳能转化为热能,满足不同领域的热能需求,减少传统能源的消耗,降低能源成本。
三、太阳能光热发电技术太阳能光热发电技术是将太阳能转化为热能,再通过热能驱动发电机产生电能的一种技术。
这种技术主要采用太阳能聚光系统,将太阳光聚集到反射器或透镜上,再转化为热能,驱动蒸汽轮机或发电机转动,产生电能。
太阳能光热发电技术具有高效、持续稳定、适合大规模集中发电等优点,被广泛应用于大型太阳能电站、工业园区等场所。
太阳能聚光光伏(CPV)聚光光热(CSP)介绍
太阳能聚光光伏(CPV)聚光光热(CSP)介绍⼀、CPV概述聚光光伏(CPV)太阳能是指利⽤透镜或反射镜等光学元件,将⼤⾯积的汇聚到⼀个极⼩的⾯积上,再将汇聚后的太通过⾼转化效率的光伏电池直接转化为电能。
光伏发电在经历了第⼀代晶硅电池和第⼆代薄膜电池之后,⽬前第三代CPV 发电⽅式正逐渐成为太阳能领域的投资重点,并且CPV模式相对于前两代具有诸多的优势:(1)节省昂贵的半导体材料:CPV是通过提⾼聚光倍数的⽅式,减少光伏电池的使⽤量,⽽透光镜及反光镜等光学元件的成本远远低于减少的光伏电池成本。
(2)提升光电转换效率:CPV系统采⽤砷化镓电池并依靠太阳追踪系统实现了更⾼的光电转换效率,较前两代光伏系统明显缩短能量回收期。
(3)极⾼的规模化潜⼒:CPV系统因其光电转换效率⾼、占地⾯积⼩等特点,是建造⼤型电源电站的最理想的太阳能发电技术,通过简单复制的规模化部署,单⼀CPV电⼚可较容易的达到MW级规模。
(4)成本下降空间巨⼤:硅电池和薄膜电池已实现产业化⽣产,规模化效应已得到充分体现,并且其技术较为成熟,未来成本下降的空间已经有限。
⽽CPV系统的成本下降仍然较⼤,⼤批量⽣产的规模效应,以及聚光系统、电池、冷却系统等效率的进⼀步提⾼是成本下降的两⼤途径。
⼆、CPV太阳能系统的结构尽管各⼤⼚商所⽣产的CPV系统的模式不尽相同,但各类CPV系统的组件主要是由四⼤部分组成,即聚光系统,光伏电池、太阳追踪系统、冷却系统。
1、聚光系统聚光系统是整个CPV系统的最重要的组成部分,它通常由主聚光器和⼆次聚光器组成,聚光系统的聚光精度很⼤程度上决定了整个CPV系统的性能⾼低。
根据聚光⽅式的不同,聚光系统可分为透射式聚光系统和反射式聚光系统。
(1)透射式聚光系统透射式聚光系统⼀般采⽤菲涅⽿透镜聚焦的⽅式,与普通凸透镜相⽐,菲涅尔透镜只保留了有效折射⾯,可节省近80%的材料。
⽬前⽤于制作菲涅⽿透镜的最常⽤材料是PMMA(俗称“亚克⼒”或“有机玻璃”),与玻璃透镜相⽐,它的优点是重量轻、易加⼯成型、成本低,⽽且对⾃然环境适应性能强,即使长时间在⽇光照射、风吹⾬淋也不会使其性能发⽣改变。
聚光光伏技术
聚光光伏技术聚光光伏技术是一种利用太阳能发电的新兴技术。
与传统的光伏发电技术不同,聚光光伏技术通过聚光镜将太阳光线聚焦到太阳能电池上,从而提高光电转换效率。
在聚光光伏技术中,聚光器件起到了关键的作用。
聚光光伏技术的核心是聚光器件。
聚光器件通常由透镜或反射镜组成,其作用是将太阳光线聚焦到太阳能电池上。
透镜和反射镜的选择及设计对聚光光伏系统的性能有重要影响。
一种常见的聚光器件是透镜组,它可以将太阳光线聚焦到一个小面积上,从而提高单位面积上的光电转换效率。
另一种常见的聚光器件是反射镜组,它通过反射和聚焦太阳光线,使其集中到太阳能电池上。
聚光光伏技术的优势在于其高光电转换效率。
由于聚光器件的作用,太阳光线可以被聚焦到一个小面积上,从而提高单位面积上的光电转换效率。
聚光光伏技术的光电转换效率通常可以达到30%以上,远高于传统的光伏发电技术。
聚光光伏技术还可以节省太阳能电池的使用量。
由于光电转换效率的提高,聚光光伏系统可以使用更少的太阳能电池来实现相同的发电功率。
这不仅可以降低成本,还可以减少对稀有材料的需求,对环境更加友好。
聚光光伏技术在实际应用中具有广阔的前景。
它可以被应用于太阳能发电站、太阳能电池板等领域。
在太阳能发电站中,聚光光伏技术可以提高发电功率,减少占地面积,降低发电成本。
在太阳能电池板中,聚光光伏技术可以增加发电量,提高利用效率。
此外,聚光光伏技术还可以被应用于太阳能热发电、太阳能热水器等领域,进一步扩大其应用范围。
然而,聚光光伏技术也存在一些挑战和限制。
首先,聚光器件的制造和安装相对复杂,需要高精度的加工和定位技术。
其次,聚光光伏系统对光照条件的要求较高,对于阴天或光照不足的情况,发电效果会大打折扣。
此外,聚光光伏系统的维护和管理也需要一定的技术和成本。
聚光光伏技术是一种高效利用太阳能发电的新兴技术。
它通过聚光器件将太阳光线聚焦到太阳能电池上,提高光电转换效率。
聚光光伏技术具有高光电转换效率、节省太阳能电池使用量等优势,可以应用于太阳能发电站、太阳能电池板等领域。
新型能源发电技术——太阳能聚光发电
新型能源发电技术——太阳能聚光发电随着全球经济的不断发展,能源的需求日益增加。
但是,传统化石能源已经日渐枯竭,给环境和人类带来巨大的毒害。
在这种情况下,新型能源发电技术的发展便越来越受到人们的关注。
太阳能聚光发电作为一种新型能源发电技术,在绿色环保和能源更可持续的方向具有广泛的应用前景和重大的意义。
一、太阳能聚光发电技术的基本原理太阳能聚光发电技术利用太阳能将辐射能量转换为电能。
而这一技术的关键在于太阳能发电系统中的聚光镜(光伏聚光镜),它能聚焦太阳能的光并将其集中在像刀锋一样的光学子节上,使得能量密度达到高峰。
这些光学子节是位于光伏太阳能电池组中的,可以将光线聚焦在小的区域内,从而使得热量生成,然后转化为电能。
二、太阳能聚光发电系统的优点与传统的光伏发电技术相比,太阳能聚光发电技术有许多优点。
(1)节省空间太阳能聚光发电系统可以将入射的强光反射和集中后传输到太阳能电池中,因此不需要大面积的太阳能板,所以可以节省空间。
(2)高效率太阳能聚光发电系统的集光效果所产生的能量密度远远超过了普通太阳能电池的能量密度。
这表明,太阳能聚光系统能够产生更多的能量,从而比传统太阳能发电技术更高效。
(3)可持续利用太阳能聚光发电系统可以在任何天气情况下产生电能,这就使得其更具有可持续性。
在能源枯竭和污染问题日益严峻的情况下,太阳能聚光发电技术成为了一种能够保护环境,减少污染的有效途径。
(4)投资回报率高在投资上,选择太阳能聚光发电系统比普通太阳能电池板更有投资价值。
很多国家政府都在大力支持太阳能聚光发电技术的研究和发展。
这些技术的投资回报率高,而且可以在很短的时间内收到回报。
三、太阳能聚光发电技术的应用前景随着太阳能聚光系统技术的不断发展,其应用领域也不断拓宽。
太阳能聚光发电可以应用于许多不同的领域,包括农业、医药、航空、交通等等。
也就是说,太阳能聚光发电技术将在未来各行业和领域中扮演非常重要的角色。
(1)/ 太阳能聚光发电系统在农业方面的应用太阳能聚光发电系统能够在北极或南极等寒冷地区应用,所以其在农业方面的发展前景巨大。
光伏现有技术及主要技术
太阳能光伏发电现有技术及主要技术目前,世界上已经商业化并开始规模化推广应用的太阳能发电技术的主要有四种,晶硅太阳能电池、薄膜太阳能电池、太阳能聚光光伏发电(CPV)、太阳能聚光光热发电(CSP)。
四种太阳能发电技术各有特点,其中硅基太阳电池是目前光伏发电的主流,约占世界太阳能光伏发电总量的80%以上,但晶体硅的提炼与加工成本相对较高,高耗能与环境污染等问题制约了其后续的发展。
薄膜型太阳电池虽然转换效率低,但弱光响应相对较好,成本相对硅基太阳电池低而发展迅速。
硅基太阳电池与薄膜型太阳电池适合小规模电站特别是阳光屋顶与建筑一体化发电。
相对硅基太阳电池和薄膜型太阳电池,聚光光伏与光热发电技术以高效、低成本、环保等优势在美国、欧洲等国家和地区发展迅速,适合在阳光辐照指数DNI 大于1350 的地区大规模与超大规模太阳能电站发电,但需要追日跟踪系统与阳光直射,系统相对复杂。
据美国可再生能源研究所预测,至2020 年,全球聚光光伏与光热发电规模将达到120GW 的产业规模。
1.晶硅太阳能电池1.1单晶硅太阳能电池硅系列太阳能电池中,单晶硅太阳能电池转换效率最高,技术也最为成熟。
高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。
现在单晶硅的电池工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。
提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。
在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。
该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。
厚的氧化物钝化层与两层减反射涂层相结合。
通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,最大值可达23.3%。
Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm ×2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm × 5cm)转换效率达8.6%。
太阳能光伏发电新技术
太阳能光伏发电新技术:
太阳能光伏发电技术是利用太阳光的光能直接转换为电能的一种技术,是太阳能利用的重要方式之一。
以下是一些太阳能光伏发电的新技术:
1.高效能光伏电池:目前光伏电池的转换效率已经达到很高水平,一些商业化的光伏
电池效率已经达到20%以上。
研究新的光伏电池材料和结构,进一步提高光伏电池的转换效率是太阳能光伏发电技术的重要发展方向。
2.聚光光伏技术:聚光光伏技术是一种利用聚光器将太阳光聚集到光伏电池上,以提
高光伏发电效率的技术。
这种技术可以减少光伏电池的面积,降低整个系统的成本,是太阳能光伏发电技术的一个重要发展方向。
3.柔性光伏技术:柔性光伏技术是一种可弯曲、可折叠的光伏技术,具有轻便、可携
带、可穿戴等特点,非常适合于移动设备和可穿戴设备等领域。
这种技术的发展将有助于推动太阳能光伏发电技术在更多领域的应用。
4.分布式光伏发电系统:分布式光伏发电系统是一种将光伏发电系统与电网相结合的
系统,可以实现自产自用、余电上网的方式。
这种技术的应用可以减少对传统能源的依赖,降低环境污染,是太阳能光伏发电技术的一个重要发展方向。
5.光伏储能技术:光伏储能技术是一种将太阳能储存起来的技术,可以实现随时随地
供电的需求。
目前,锂离子电池是应用最广泛的光伏储能技术之一,随着技术的不断发展,未来还将有更多的储能技术应用于太阳能光伏发电领域。
八面玲珑展威风-介绍一种新的采用数倍聚光的光伏发电系统
“采用数倍聚光的光伏发电系统”是由2004年回国的剑桥大学应用物理学家、现为中国科技大学和中科院理论物理所特聘研究员的陈应天教授,在他独创的新的光学聚焦与跟踪理论的诸多应用下的重要发明之一。
这个新的光学聚焦与跟踪理论,已经在国际上引起强“八面玲珑展威风”1—介绍一种新的“采用数倍聚光的光伏发电系统”王亦楠(国家发改委能源局CRESP项目管理办公室,北京 100038)烈反响(以色列著名太阳能专家特拉维夫大学Kribus教授评论“这是在一个多年几乎没有进展的光学基础领域中的第一个突破”),而理论的突破将带来诸多适用光学的技术应用领域的突破,如大型望远镜、新型雷达、激光并束、超精瞄准及变焦照相机、太阳能聚光等等,而太阳能方面又可以有太阳能光伏发电、太阳能热发电、太阳炉(产生3500℃高温)、太阳灶(用于炊事)等多项技术发明或重大改进。
笔者从2005年5月以来,一直关注着“采用数倍聚光的光伏发电系统”新技术的进展,在不到一年的时间里,该项新技术经过了原理的论证、实验室试验、收稿日期:2005-12-01作者简介:王亦楠(1971-),女,1996年毕业于清华大学,取得工学硕士学位,2001年毕业于北京大学,取得科学技术哲学博士学位,副研究员,工作于国家发改委中国可再生能源规模化发展项目管理办公室,目前重点研究方向为中国可再生能源的规模化发展。
摘要:尽管太阳能是发展潜力最大的可再生能源资源,但由于太阳能光电的成本远远高于风电、生物质发电,使得人们对太阳能的大规模利用还依然是一种奢望。
那么,如何使太阳能从“高处不胜寒”的境遇走入寻常百姓家呢?关键在于技术突破!本文介绍的“采用数倍聚光的光伏发电系统” 使我们看到了太阳能光电大规模发展的希望。
根据陈应天教授的聚光和跟踪理论而开发的这种系统,可以使太阳能光电成本比传统的平板固定式光电技术降低1倍!本文以详实的数据介绍了这项完全自主创新的新技术的特点和经济优势。
光伏电站低倍聚光增发系统技术应用
光伏电站低倍聚光增发系统技术应用
曾佳佳;李军;冯军;蒋思瑶
【期刊名称】《水电站机电技术》
【年(卷),期】2024(47)6
【摘要】光伏发电效率随时间流逝存在衰减现象,为提高发电效率,增加发电量对于光伏电站尤为重要。
利用低倍聚光增发系统技术,建造光伏电站低倍聚光光伏发电系统,在电站原始发电数据基础上达到提升一定的发电效率。
通过对光伏低倍聚光增发实验研究,与未安装低倍聚光的光伏系统进行对比,实验结果显示,低倍聚光光伏系统在测量时段内的输出功率明显大于未安装低倍聚光光伏系统。
这种光伏系统确实能有效带来一定的发电增益,所收集的发电量、发电效率等数据也证实了低倍聚光技术的实用性。
【总页数】4页(P47-49)
【作者】曾佳佳;李军;冯军;蒋思瑶
【作者单位】五凌电力有限公司新能源分公司
【正文语种】中文
【中图分类】TM615
【相关文献】
1.非对称聚光跟踪光伏系统——光伏组件功率倍增器的研究及应用
2.低倍V型光伏聚光器光学性能模拟分析
3.低倍聚光光伏/光热热电联供系统性能分析
4.低倍聚
光型PV/T组件光伏光热性能的数值模拟5.对采用定容式冷却的低倍聚光光伏/光热系统的设计与研究
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚光光伏发电系统的技术
摘要:聚光光伏发电系统的技术
关键字:CPV, 聚光光伏发电系统, 原理, 单晶硅
一、前言
太阳能发电系统的价格一直居高不下!主要原因是因为太阳能的密度低!太阳照射到地面上的平均光强为1千瓦/平米;单晶硅的转化率可以达到23%,多晶可以达到16%,薄膜只能可以达到8%。
转换效率最高的砷化镓电池片能到35%以上,但是用砷化镓制造的太阳能发电系统整体转换效率只有25%左右。
所以为了降低太阳能发电系统的价格,增加太阳光强是一个好的解决办法,要想增大光强需要用凸透镜或者菲尼尔透镜或者反光板把光聚集起来;这样就能大大降低硅与砷化镓的使用量,从而降低太阳能发电系统的价格;这就是CPV(聚光光伏发电系统)的由来。
来源:大比特半导体器件网
二、CPV系统的技术难点
CPV太阳能发电系统原理比较简单,为什么到现在全世界也没有几家公司做出特别稳定且便宜的发电系统呢!在CPV领域原则上讲聚光倍数越高造价就越便宜但是使用聚光的方式就会出现以下问题。
1、让单晶硅承受较高倍聚光
虽然砷化镓可以承受1000倍的光强,但是现在砷化镓价格昂贵,并且砷化镓中的砷是剧毒物质,不可能大幅度的降低制造成本,另外在以环保为主题的国际环境下也不可能大量使用,最后只能是单晶硅;但是单晶硅一般只能承受3到5倍的光强,在CPV领域3到5倍的聚光几乎不怎么能降低成本,要想大幅度降低成本必须达到10左右。
为了达到10倍的聚光必须用特制的单晶硅。
2、散热:
普通的硅光电池板在夏日中午时温度能到75度以上,普通的硅电池板在两倍太阳光强下时间一长就会起泡,在5倍太阳光强下10分钟就会就会起泡,在10倍太阳光强下5分钟就会起泡,起泡后太阳能电池片就会被氧化,在很短的时间内就会大幅降低效率,另外起泡后由于受热不均匀,常常有电池片炸裂的,这样系统就完全不可用。
来源:大比特半导体器件网
如果太阳能电池板使用铝或者铜制的散热片进行自然散热,需要大量的散热片,造价特别贵,贵到比硅光片还要贵;如果使用强制风冷,就要使用大量的电能,得不偿失,并且风扇的寿命与可靠性不高,要想达到高可靠性必须有错误检查与冗余设置,这样就会成几倍增加造价,如果在夏天的中午风扇坏了,整个硅光电池板有可能被彻底烧坏。
如果使用水冷除了要使用电力外,造价也不便宜,水冷由于管路多,连接点多,还需要水泵,故障点必然多,可靠性还不如风冷,当然水冷的效率要高于风冷,但是在故障率决定一票否决制的太阳能系统中不可用。
来源:大比特半导体器件网
3、反光板:
普通的镜子,塑料反光板由于反射层与骨架层(比如玻璃)热胀冷缩系数不一样在室外2-4年反射面就会脱落,在沙漠高温差地方可能几个月就完全不能使用了,并且反光率会慢慢下降。
来源:大比特半导体器件网
另外国内外也有用高反射率的薄铝板,但是这种铝板不能经受冰雹,并且不能擦洗,如果擦洗会产生永久性损伤,这种铝板使用期限为8年左右,并且反光率逐年降低,8年就基本只有40%的反光率了,远远不能达到太阳能系统要求的25年;铝板有贴保护膜的,但是保护膜造价高,也不防冰雹,不能解决所有问题。
另外为了降低成本铝板一般都为0.3毫米左右,这样加工特别困难,加工成本特别高。
来源:大比特半导体器件网
4、跟踪器:
光伏电池只有在聚光器的焦点才能工作,因为地球阳每时每刻都在转动,所以必须使用跟踪器才能保证光伏电池处于聚光器的焦点;跟踪器是CPV系统的主要系统之一,没有跟踪器系统就不能运行,跟踪器除了保证系统能运行外还能比不带跟踪的系统平均多30-40%的电。
但是跟踪器是机械结构,长年累月的运行会出故障,并且会有磨损,跟踪器如果出现故障系统就不能运行(发不出电),如果有磨损了跟踪精度就会降低,由于CPV系统对跟踪精度是有要求的,如果精度降低真个发电系统就不能正常运行。
来源:大比特半导体器件网
三、解决方法
为了解决CPV解决系统的问题,掌握CPV系统的核心技术,北京安信高科的陈平坚总经理带领他的研发团队从2008年3月份开始,经过2年多的攻关在投入了上百万的资金,在经过了数不清的失败后终于悉数圆满解决了单晶硅10倍聚光的核心技术,已获取或者正在申请的专利达到8个之多。
1、让单晶硅承受较高倍聚光
我们经过多次改良,终于制造出了能承受15倍光强的单晶硅光伏电池片,并且比同类电池片的功率要增加15%,远远超过了世界上的同类产品。
2、散热:
进过几十次的设计,上10次的试制与修改,终于设计了一套独特的廉价的散热器,散热器不需要任何动力,没有任何运动部件,非常稳定;在外界温度45度,13倍聚光的情况下能能保证光伏电池的温度在规定范围内。
无动力、无运动部件就意味着免维护,高稳定,不会因为时间长而改变性能。
是同类产品散热/价格比最低的散热器。
来源:大比特半导体器件网
3、反光板:
反光板设计制作还比较顺利,进过半年多的思考一次制作就成功,这种反光板的放光率大概在77%,使用寿命不会少于25年,反光率也不会逐年减低,能经受冰雹,并且能擦洗,价格每平米大约200元;另外我们设计了一套独特的加工方法,特别简单的就能加工。
完全解决了其他反光板的所有问题。
4、跟踪器:
经过10几次的改进,设计了全动型跟踪器,即整体在一个大盘上,东西转向整体进行转动,南北通过联轴器也进行统一俯仰,大大的提供了系统的稳定性,也大大的降低了造价,降低了风阻,另外设计了一套特别的轴套,不怕水不怕沙,使用寿命为10万次(我们整个系统的全寿命为1.8万次),另外智能的控制系统能在有云遮挡的情况下也能使聚光器始终对准太阳,只要太阳一出来系统就立刻能发电,完全解决了现有跟踪器的缺点。