插空法解排列组合题之欧阳家百创编
排列组合中捆绑法和插空法的应用,典型例题讲解
相邻问题——捆绑法对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”在一起,看作一个“大”的元素,与其它元素排列,然后再对相邻的元素内部进行排列。
(例3)7人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法?分析:先将甲,乙,丙三人捆绑在一起看作一个元素,与其余4人共有5个元素做全排列,有55A种排法,然后对甲,乙,丙三人进行全排列由分步计数原理可得:5353A A种不同排法例4:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。
若三个女孩要站在一起,有多少种不同的排法?解:将三个女孩看作一人与四个男孩排队,有55A种排法,而三个女孩之间有33A种排法所以不同的排法共有:5353720A A(种)。
变式1:若三个女孩要站在一起,四个男孩也要站在一起,有多少种不同的排法?不同的排法有:(种)对于相邻问题,常常先将要相邻的元素捆绑在一起,视作为一个元素,与其余元素全排列,再松绑后它们之间进行全排列.这种方法就是捆绑法.不相邻问题——插空法对于某几个元素不相邻得排列问题,可先将其它元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可。
例4)7人站成一排照相,要求甲,乙,丙三人不相邻,分别有多少种站法?分析:可先让其余4人站好,共有44A种排法,再在这4人之间及两端的5个“空隙”中选三个位置让甲,乙,丙插入,则有35 A种方法,这样共有3445AA种不同的排法。
变式2:若三个女孩互不相邻,有多少种不同的排法?解:先把四个男孩排成一排有44A种排法,在每一排列中有五个空档(包括两端),再把三个女孩插入空档中有35A种方法,所以共有:43451440A A=(种)排法。
变式3:男生、女生相间排列,有多少种不同的排法?23423428 A A A=解:先把四个男孩排成一排有44A种排法,在每一排列中有五个空档(包括两端),再把三个女孩插入空档中有33A种方法,所以共有:4343144A A=(种)排法。
排列组合题型归纳之欧阳光明创编
排列组合难题二十一种方法欧阳光明(2021.03.07)排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有1m种不同的方法,在第2类办法中有2m种不同的方法,…,在第n类办法中有n m种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有1m种不同的方法,做第2步有2m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合之插空法
插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序
注:(1)要注意在插空的过程中是否可以插在两边
(2)要从题目中判断是否需要各自排序
【Example 1】
甲乙丙等6人站成一排,求甲乙丙不相邻的排队方案种类数.
【Example 2】
书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有多少种不同的插法
【Example 3】
从1,2,3,…20中任取5个不同的数,则这5个数都不相邻,这样的取法有多少种?
1. 停车场划出一排12个停车位置,今有8辆车需要停放.有2个空车位置连在一起,不同
的停车方法有多少种?
2. 马路上有编号为1,2,3,…9的九只路灯,现要关掉其中的三盏,但不能关掉相邻的
二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?
3. 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种数有多少种?
4. 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙
必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行。
那么安排这6项工程的不同排法种类有多少?
5. 设A 是整数集的一个非空子集,对于k A ∈,如果1k A −∉且1k A +∉,那么称k 是集合
A 的一个“孤立元”,给定{}
1,2,3,4,5,6,7,8S =,则S 的3个元素构成的所有集合中,其元素都是“孤立元”的集合个数是( )
A. 6
B. 15
C. 20
D. 25。
排列组合插空法例题
排列组合插空法例题“哎呀,这排列组合可真是让人头疼啊!”小李皱着眉头说道。
好啦,小李别愁啦,让我来给你讲讲排列组合插空法的例题。
比如说,有 5 个不同的球,要放到 3 个不同的盒子里,每个盒子至少放一个球,问有多少种放法。
我们就可以用插空法来解决。
先将 3 个球排成一排,中间就有 2 个空,然后从这 2 个空中选 1 个空插入隔板,将球分成 2 部分,这样就可以分成3 个盒子。
所以一共有 C(2,1)种插隔板的方法。
再比如说,有 6 个人排成一排,其中甲、乙两人不相邻,问有多少种排法。
我们先将除甲、乙之外的 4 个人全排列,有 A(4,4)种排法,这 4 个人排好后会产生 5 个空,然后从这 5 个空中选 2 个空,将甲、乙插入,有A(5,2)种插空方法。
所以总的排法就是A(4,4)×A(5,2)。
再看一个例子,在一张节目单中原有 6 个节目,若保持这些节目相对顺序不变,再添加进去 3 个节目,要求不相邻,那么有多少种不同的添加方法。
原来的 6 个节目排好后会产生 7 个空,从这 7 个空中选 3 个空插入 3 个节目,就有 A(7,3)种方法。
插空法主要用于解决不相邻问题,通过先排列其他元素,再在它们之间插入不相邻的元素。
这样可以将复杂的问题简单化。
就像在一个聚会上,有 10 个人要坐成一排,其中小明和小红不想坐在一起。
那我们就先让其他 8 个人坐好,他们之间会有 9 个空,然后从这 9 个空中选 2 个空让小明和小红坐进去,这样就保证了他们不相邻。
所以啊,小李,只要掌握了插空法的精髓,这类问题就都不难解决啦。
多做几道题练习一下,你肯定能熟练掌握的。
别再头疼啦,加油哦!。
排列组合--插板法、插空法、捆绑法
排列组合问题——插板法(分组)、插空法〔不相邻〕、捆绑法〔相邻〕插板法〔m为空的数量〕【基此题型】有n个一样的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法?图中""〞表示名额间形成的空隙,设想在这几个空隙中插入六块"挡板〞,则将这10 个名额分割成七个局部,将第一、二、三、……七个局部所包含的名额数分给第一、二、三……七所学校,则"挡板〞的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个一样元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的〔n-1〕个空中插入假设干个〔b〕个板,可以把n个元素分成〔b+1〕组的方法.应用插板法必须满足三个条件:〔1〕这n个元素必须互不相异〔2〕所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个一样的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况"问题的题干满足条件〔1〕〔2〕,适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一节目单中原有6个节目,假设保持这些节目相对次序不变,再添加3个节目,共有几种情况"-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种【根本解题思路】将n个一样的元素排成一行,n个元素之间出现了〔n-1〕个空档,现在我们用〔m-1〕个"档板〞插入〔n-1〕个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素〔可能是1个、2个、3个、4个、….〕,这样不同的插入方法就对应着n个一样的元素分到m组的一种分法,这种借助于这样的虚拟"档板〞分配元素的方法称之为插板法。
数量关系技巧:排列组合小技巧系列之插空法
数量关系技巧:排列组合小技巧系列之插空法中公教育研究与辅导专家 赵一雯行测考试中必然会涉及到数量关系,而排列组合是数量关系中比较令人头疼的题型。
排列组合的题目往往不会很难,技巧性也比较强,只需要掌握必要的计算原理和方法就可以解决这类题型,但仅仅学会基本定义和基本的计算方法还远远不够,掌握一些常用的解题方法,可以更快得应对此类问题,今天中公教育专家跟大家分享排列组合中一种常用的解题方法——插空法。
一、方法介绍五个人排成一列,3个男生,2个女生,要求2个女生不能相邻,有多少种不同的安排方法?问到有多少种不同的安排方法,可以知道需要运用到排列组合相关知识。
那么我们来想一下这道题目,两个女生不相邻,我们可以把将这两名女生安排在男生周围的空隙中,这样就可以保证一定不相邻。
因此,我们先将三名男生安排好顺序33A ,再将2名女生安排在这三个男生周围出现的4个空隙中,24A 。
因此共有安排方法7234232433=⨯⨯⨯=⨯A A 种安排方法。
刚才这道题目便是我今天要讲的可以利用插空法解决的排列组合题目,那么什时候可以使用这种方法呢?只要题目中出现某几个元素不相邻的要求,我们就可以采用插空法来满足题目的要求。
总结一下解题的思路。
我们是先将没有特殊要求的三个男生安排顺序,所以采用插空法,第一步,将无特殊要求元素排列。
之后将不能挨在一起的女生插空安排,所以第二步将不相邻的元素按照题目要求插空排列。
需要注意的是,插空安排的元素是否有顺序要求。
了解完插空法的使用环境和解题思路后,我们利用插空法来解决下这道题目:二、巩固提高某学校组织文艺汇演,节目包括歌曲类1个,相声类3个,舞蹈类4个,魔术类2个。
要求相声类节目不能连续演出且不能作为开场或闭场节目,两个魔术类节目连续出演,有多少种不同的安排方法?中公解析:因为相声类不能连续演出,因此相声节目插空安排,而魔术连续演出则需要捆绑在一起,所以除相声以外其他节目,排列有66A种方法。
排列组合问题之捆绑法_插空法和插板法
行测答题技巧:排列组合问题之捆绑法,插空法和插板法“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。
例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“A,B”、C、D、E“四个人”进行排列,有种排法。
又因为捆绑在一起的A、B两人也要排序,有种排法。
根据分步乘法原理,总的排法有种。
例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有种排法;又3本数学书有种排法,2本外语书有种排法;根据分步乘法原理共有排法种。
【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。
解题过程是“先捆绑,再排列”。
“不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
例3.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】:题目要求A和B两个人必须隔开。
首先将C、D、E三个人排列,有种排法;若排成D C E,则D、C、E“中间”和“两端”共有四个空位置,也即是:︺ D ︺ C ︺ E ︺,此时可将A、B两人插到四个空位置中的任意两个位置,有种插法。
由乘法原理,共有排队方法:。
例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有方法,由乘法原理得:所有不同的添加方法为=504种。
排列组合练习题及答案之欧阳光明创编
排列组合习题精选欧阳光明(2021.03.07)一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是( )A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人 4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有( )A.12个B.13个C.14个D.15个 答案:1、2936C = 2、2972A = 3、选 B. 设男生n 人,则有2138390n n C C A -=。
4、2258m nm A A +-=选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A= (2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是( )A.28种B.84种C.180种D.360种 答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A6828C =四、定序问题:1. 有4名男生,3名女生。
排列组合 插空法模型(原卷版)
专题12 插空法模型【方法技巧与总结】插空法:解决不相邻问题的方法为“插空法”,即将n 个不同的元素排成一排,其中k 个元素互不相邻(1k n k ≤-+).求不同的排法种数的步骤:①先将不作不相邻要求的元素共n k -个排成一排,其排列方法有k n k n A --种;②然后将要求两两不相邻的k 个元素插入1n k -+个空隙中,相当于从1n k -+个空隙中选出k 个,分别分配给两两不相邻的k 个元素,其排列方法有:k k n A 1+-种;③根据分步乘法计数原理,符合条件的排法有1n k k n k n k A A ---+⋅种. 【典型例题】例1.(2023秋·甘肃庆阳·高二校考期末)五声音阶(汉族古代音律)是按五度的相生顺序,从宫音开始到羽音,依次为宫,商,角,徵,羽.若将这五个音阶排成一列,形成一个音序,且要求宫、羽两音节不相邻,可排成不同的音序的种数为( )A .12种B .48种C .72种D .120种例2.(2023秋·福建龙岩·高二统考期末)为弘扬我国古代的“六艺文化”,某校计划在社会实践中开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每天开设一门,连续开设6天,则( )A .从六门课程中选两门的不同选法共有30种B .课程“书”不排在第三天的不同排法共有720种C .课程“礼”、“数”排在不相邻两天的不同排法共有288种D .课程“乐”、“射”、“御”排在不都相邻的三天的不同排法共有576种例3.(2023秋·北京·高二北京市十一学校校考期末)某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有( )种排法?A .72B .36C .24D .12例4.(2023秋·浙江·高二浙江省江山中学校联考期末)公元五世纪,数学家祖冲之估计圆周率π的范围是:3.1415926π 3.1415927<<,为纪念祖冲之在圆周率方面的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.小明是个数学迷,他在设置手机的数字密码时,打算将圆周率的前5位数字3,1,4,1,5进行某种排列得到密码.如果排列时要求两个1不相邻,那么小明可以设置的不同密码有( )A .24个B .36个C .72个D .60个例5.(2023秋·山西长治·高二长治市上党区第一中学校校考期末)《红楼梦》是中国古代章回体长篇小说,中国古典四大名著之一,《红楼梦》第三十七回贾探春提议邀集大观园中有文采的人组成海棠诗社.诗社成立目的旨在“宴集诗人於风庭月榭;醉飞吟盏於帘杏溪桃,作诗吟辞以显大观园众姊妹之文采不让桃李须眉.”诗社成员有8人:林黛玉、薛宝钗、史湘云、贾迎春、贾探春、贾惜春、贾宝玉及李纨,若这8人排成一排进人大观园,且林黛玉、薛宝钗、贾宝玉3人不相邻,则不同的排法种数有( )A .1440B .2400C .14400D .86400例6.(2023·全国·高三专题练习)“四书” “五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为( )A .622622A A A B .6262A A C .622672A A A D .622662A A A例7.(2023·全国·高三专题练习)A ,B ,C ,D ,E ,F 这6位同学站成一排照相,要求A 与C 相邻且A 排在C 的左边,B 与D 不相邻且均不排在最右边,则这6位同学的不同排法数为( )A .72B .48C .36D .24例8.(2023秋·甘肃武威·高二天祝藏族自治县第一中学校考期末)2022年2月4日,中国北京第24届奥林匹克冬季运动会开幕式以二十四节气的方式开始倒计时创意新颖,赢得了全球观众的好评.某中学为了弘扬我国二十四节气文化,特制作出“立春”、“雨水”、“惊蛰”、“春分”、“清明”、“谷雨”六张知识展板分别放置在六个并排的文化橱窗里,要求“立春”和“春分”两块展板相邻,且“清明”与“惊蛰”两块展板不相邻,则不同的放置方式种数有( )A .24B .48C .144D .240例9.(2023·全国·高三专题练习)志愿服务是办好2022年北京冬奥运的重要基础和保障,现有一冬奥服务站点需要连续六天有志愿者参加志愿服务,每天只需要一名志愿者,现有6名志愿者计划依次安排到该服务站点参加服务,要求志愿者甲不安排第一天,志愿者乙和丙不在相邻两天参加服务,则不同的安排方案共有( )A .240种B .408种C .1092种D .1120种例10.(2023·全国·高三专题练习)第13届冬残奥会于3月4日在北京开幕.带着“一起向未来”的希冀,给疫情下的世界带来了信心.为了运动会的顺利举行,组织了一些志愿者协助运动会的工作.有来自某大学的2名男老师,2名女老师和1名学生的志愿者被组织方分配到某比赛场馆参加连续5天的协助工作,每人服务1天,如果2名男老师不能安排在相邻的两天,2名女老师也不能安排在相邻的两天,那么符合条件的不同安排方案共有( )A .120种B .96种C .48种D .24种例11.(2023秋·山东德州·高二德州市第一中学校考期末)某夜市的一排摊位上共有9个铺位,现有6家小吃类店铺,3家饮料类店铺打算入驻,若要排出一个摊位规划,要求饮料类店铺不能相邻,则可以排出的摊位规划总个数为( )A .7377A A B .3636A A C .3133A A D .6367A A例12.(2023秋·陕西西安·高三西北工业大学附属中学校考期末)中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学;某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“礼”排第一节课,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有几种( ) A .48B .72C .54D .36例13.(2023·全国·高三专题练习)现有一圆桌,周边有标号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有( ).A .6种B .8种C .12种D .16种例14.(2023·高二课时练习)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为A .144B .120C .72D .24例15.(2023·全国·高三专题练习)2022北京冬奥会开幕式在北京鸟巢举行,小明一家五口人观看开幕式表演,他们一家有一排10个座位可供选择,按防疫规定,每两人之间必须至少有一个空位.现要求爷爷与奶奶之间有且只有一个空位,小明只能在爸爸妈妈中间且与他俩各间隔一个空位,则不同的就座方案有___________种.例16.(2023·上海·高三专题练习)已知江大爷养了一些鸡和兔子,晚上关在同一间房子里,数了一下共有7个头,20只脚,清晨打开房门,鸡和兔子随机逐一向外走,则恰有2只兔子相邻走出房子的情况有___________种(用数字作答)例17.(2023·全国·高三专题练习)“学习强国”是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质学习平台.该平台设有“阅读文章”,“视听学习”等多个栏目.假设在这些栏目中某时段更新了2篇文章和2个视频,一位学员准备学习这2篇文章和这2个视频,要求这2篇文章学习顺序不相邻,则不同的学法有________种.(用数字作答)例18.(2023·高三课时练习)已知5辆不同的白颜色汽车和3辆不同的红颜色汽车停成一排,则白颜色汽车至少2辆停在一起且红颜色的汽车互不相邻的停放方法有______例19.(2023·全国·高三专题练习)在某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为_____.例20.(2023秋·江西上饶·高二统考期末)求下列问题的排列数:(1)3名男生和3名女生排成一排,男生甲和女生乙不能相邻;(2)3名男生和3名女生排成一排,男生甲不能排排头,女生乙不能排排尾.。
行测排列组合问题技巧:插空法
⾏测排列组合问题技巧:插空法 ⾏测排列组合问题有哪些解题技巧?正在备考的朋友可以来本篇⽂章看看,下⾯店铺⼩编为你准备了“⾏测排列组合问题技巧:插空法”内容,仅供参考,祝⼤家在本站阅读愉快!⾏测排列组合问题技巧:插空法 ⼀、插空法的应⽤环境 元素不相邻 ⼆、插空法的操作步骤 1、将剩余元素(除不相邻元素)排序; 2、选空; 3、将不相邻元素排序。
三、插空法的应⽤ 例1.由数字1、2、3、4、5、6、7组成⽆重复数字的七位数,求三个偶数互不相邻的七位数的个数?A.360B.720C.1440D.2880 【答案】C。
解析:问题中出现三个偶数互不相邻,考虑⽤插空法解题。
⾸先将除三个偶数外的数字1、3、5、7进⾏排序,有种不同的排法;这4个数字会产⽣5个空隙,从5个空隙中选出3个,有种不同的排法;最后将三个偶数进⾏排序,有种不同的排法,所以总的排法有24×10×6=1440种,故选择C选项。
例2.某单位举办职⼯⼤会,5名优秀员⼯坐⼀排,其中有2名男员⼯,若要求2名男员⼯不能坐在⼀起,则有多少种不同的座次安排?A.24种B.36种C.48种D.72种 【答案】D。
解析:问题中出现2名男员⼯不能坐在⼀起,表述的意思是男员⼯不相邻,考虑⽤插空法解题。
⾸先将除男员⼯之外的3名⼥员⼯进⾏排序,有种不同的排法;3名⼥员⼯会产⽣4个空隙,从4个空隙中选2个,有种不同的排法;最后将2名男员⼯进⾏排序,有种排法,所以总共的排序⽅式有6×6×2=72种,故选择D选项。
例3.将三盆同样的红花和四盆同样的⻩花摆放成⼀排,要求三盆红花不相邻,共有多少种不同的⽅法?A.8B.10C.15D.20 【答案】B。
解析:问题中出现红花不相邻,考虑⽤插空法解题。
⾸先将红花之外的⻩花进⾏排序,由于⻩花相同,只有1种排法;四盆⻩花产⽣5个空隙,从5个空隙中选2个,有种排法;最后将红花排序,由于红花也相同,只有1种排法,所以总的排序⽅式有1×10×1=10种,故选择B选项。
插空法解排列组合题
插空法解排列拉拢题之阳早格格创做曾安雄插空法便是先将其余元素排佳,再将所指定的不相邻的元素拔出它们的间隙或者二端位子,进而将问题办理的战术.使用插空法解问有闭元素不相邻问题非常便当.底下举例证明.一. 数字问题例1. 把1,2,3,4,5组成不沉复数字且数字1,2不相邻的五位数,则所有分歧排法有几种?剖析:本题曲交解问较为贫苦,果为可先将3,4,5三个元素排定,公有种排法,而后再将1,2拔出四个空位公有种排法,故由乘法本理得,所有分歧的五位数有二. 节目单问题例2. 正在一弛节目单中本有六个节目,若脆持那些节手段相对于程序稳定,再增加进来三个节目,则所有分歧的增加要领公有几种?剖析:若曲交解问则较为贫苦.故可先用一个节目来插七个空位,有种要领;再用另一个节目来插八个空位有种要领;用末尾一个节目来插九个空位有种要领.由乘法本理得,所有分歧的增加要领为:.三. 闭灯问题例3. 一条马路上有编号1,2,3,4,5,6,7,8,9的九盏路灯,为了俭朴用电,不妨把其中的三盏灯闭掉,但是不克不迭共时闭掉相邻二盏或者三盏,则所有分歧的闭灯要领有几种?剖析:如果曲交解问须分类计划,故可把六盏明着的灯瞅做六个元素,而后用不明的三盏灯来插七个空位公有种要领,果此所有分歧的闭灯要领为种.四. 停车问题例4. 停车场划出一排12个停车位子,今有8辆车需要停搁,央供空位子连正在所有,分歧的停车要领有几种?剖析:先排佳8辆车有种要领,央供空位子连正在所有,则正在每2辆之间及其二端的9个空核心任选一个,将空位子拔出其中有种要领.所以公有种要领.五. 座位问题例5. 3部分坐正在一排8个椅子上,若每部分安排二边皆有空位,则坐法的种类有几种?解法1:先将3部分(各戴一把椅子)举止齐排列有种,爆收的四个空中分别搁一把椅子,还剩一把椅子再来插空有种,所以每部分安排二边皆空位的排法有种.解法2:先拿出5个椅子排成一排,正在5个椅子中间出现4个空,再让3部分每人戴一把椅子来插空,于是有种.。
排列组合中关于捆绑法、插空法、插隔板法的应用(1)之欧阳学创编
排列组合中关于捆绑法、插空法、插隔板法的应用捆绑法:当要求某几个元素必须相邻(挨着)时,先将这几个元素看做一个整体,(比如:原来3个元素,整体考虑之后看成1个元素)然后将这个整体和其它元素进行考虑。
这时要注意:一般整体内部各元素如果在前后顺序上有区别的还需进行一定的顺序考虑。
插空法:当要求某几个元素必须不相邻(挨着)时,可先将其它元素排好,然后再将要求不相邻的元素根据题目要求插入到已排好的元素的空隙或两端位置。
插隔板法:指在解决若干相同元素分组,要求每组至少一个元素时,采用将比分组数目少1的隔板插入到元素中的一种解题策略。
题目特点:“若干相同元素分组”、“ 每组至少一个元素”。
例1:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?A.20 B.12 C.6 D.4分两种情况考虑1、这两个新节目挨着,那么三个节目有4个空,又考虑到这两个节目的先后顺序共有2×14C=8种2、这两个节目不挨着,那么三个节目有4个空,这就相当于考虑两个数在4个位置的排列,由24P=12种综上得,共8+12=20种此题中使用了捆绑法和插空法。
例2:A、B、C、D、E五个人排成一排,其中A、B 两人不站一起,共有()种站法。
A.120B.72C.48D.24插空法:我们来这样考虑,因A、B两人不站一起,故可考虑的位置C、D、E,C、D、E三个人站在那有一共留出4个空,将A、B分别放入这4个空的不同的空中,那就是4个空中取2个空的全排列,即24P=12。
这样考虑了之后,还有一点就是C、D、E三个人也存在一个排列问题,即23P=6,综上,共有6*12=72种例3:A、B、C、D、E五个人排成一排,其中A、B 两人必须站一起,共有()种站法。
A.120B.72C.48D.24捆绑法:此题和上一题实质是一样的,我们来这样考虑,A、B两人既然必须站在一起,那么索性我们就把他们看成一个人,那么我们就要考虑其和C、D、E共4个人的全排列,即44P=24,又因为A、B两人虽然是站在一起了,但还要考虑一个谁在前谁在后的问题,这有两种情况,也就是22P=2,综上,共有48种。
排列组合问题的类型及解答策略之欧阳歌谷创编
排列组合问题,联系实际,生动有趣,但题型多样,思路灵活,不易掌握。
实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。
本文介绍十二类典型排列组合问题的解答策略,供参考。
欧阳歌谷(2021.02.01)一、相邻问题捆绑法例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种A. 720B. 360C. 240D. 120解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。
由分步计数原理可知,共有=240种不同排法,选C。
评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。
二、相离问题插空法例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。
由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。
评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。
此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。
三、定序问题缩倍法例 3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。
解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。
评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。
这类问题用缩小倍数的方法求解比较方便快捷。
四、标号排位问题分步法例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()A. 6种B. 9种C. 11种D. 23种解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。
插空法解排列组合题之欧阳法创编
插空法解排列组合题时间:2021.03.09 创作:欧阳法曾安雄插空法就是先将其他元素排好,再将所指定的不相邻的元素插入它们的间隙或两端位置,从而将问题解决的策略。
运用插空法解答有关元素不相邻问题非常方便。
下面举例说明。
一. 数字问题例1. 把1,2,3,4,5组成没有重复数字且数字1,2不相邻的五位数,则所有不同排法有多少种?解析:本题直接解答较为麻烦,因为可先将3,4,5三个元素排定,共有种排法,然后再将1,2插入四个空位共有种排法,故由乘法原理得,所有不同的五位数有二. 节目单问题例2. 在一张节目单中原有六个节目,若保持这些节目的相对顺序不变,再添加进去三个节目,则所有不同的添加方法共有多少种?解析:若直接解答则较为麻烦。
故可先用一个节目去插七个空位,有种方法;再用另一个节目去插八个空位有种方法;用最后一个节目去插九个空位有种方法。
由乘法原理得,所有不同的添加方法为:。
三. 关灯问题例3. 一条马路上有编号1,2,3,4,5,6,7,8,9的九盏路灯,为了节约用电,可以把其中的三盏灯关掉,但不能同时关掉相邻两盏或三盏,则所有不同的关灯方法有多少种?解析:如果直接解答须分类讨论,故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插七个空位共有种方法,因此所有不同的关灯方法为种。
四. 停车问题例4. 停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?解析:先排好8辆车有种方法,要求空位置连在一起,则在每2辆之间及其两端的9个空当中任选一个,将空位置插入其中有种方法。
所以共有种方法。
五. 座位问题例5. 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种类有多少种?解法1:先将3个人(各带一把椅子)进行全排列有种,产生的四个空中分别放一把椅子,还剩一把椅子再去插空有种,所以每个人左右两边都空位的排法有种。
解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个空,再让3个人每人带一把椅子去插空,于是有种。
排列组合问题之插板法之欧阳地创编
排列组合问题之插板法:插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢?例1.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法?【解析】:题目中球的分法共三类:第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。
其分法种数为C37=35。
第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。
其分法种数2*C27=42。
第三类:有1个班分到4个球,其余的6个班每班分到1个球。
其分法种数C17=7。
所以,10个球分给7个班,每班至少一个球的分法种数为84:。
由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境——插板。
将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用“档板”把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟“档板”分配物品的方法称之为插板法。
由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个“档板”(6个档板可把球分为7组),其方法种数为C39=84。
由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以下3个条件:①所要分的元素必须完全相同;②所要分的元素必须分完,决不允许有剩余;③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。
下面再给各位看一道例题:例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法.A.35 B.28 C.21 D.45【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的“插板法”,而忽略了“插板法”的适用条件。
用“插空法”解排列组合题
用“插空法”解排列组合题
奇谋
【期刊名称】《西藏教育》
【年(卷),期】2006(000)012
【摘要】对某些排列组合题,可采用“插空法”加以解决.其方法是先把一些受限制的元素(或不限制的元素)排列.然后再把其余的元素插到排列中去,用这种方法解题,思路清晰.简便易懂。
【总页数】2页(P33-34)
【作者】奇谋
【作者单位】山南地区第一高级中学
【正文语种】中文
【中图分类】G633
【相关文献】
1.妙用插空法解排列组合问题
2.应用插空法妙解排列组合问题
3.用插空法求一次同系数不定方程的非负整数解
4.用捆绑、插空、分组、挡板法解排列组合题
5.例谈插空法解不相邻问题
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
插空法解排列组合题
欧阳家百(2021.03.07)
曾安雄
插空法就是先将其他元素排好,再将所指定的不相邻的元素插入它们的间隙或两端位置,从而将问题解决的策略。
运用插空法解答有关元素不相邻问题非常方便。
下面举例说明。
一. 数字问题
例1. 把1,2,3,4,5组成没有重复数字且数字1,2不相邻的五位数,则所有不同排法有多少种?
解析:本题直接解答较为麻烦,因为可先将3,4,5三个元素排定,共有种排法,然后再将1,2插入四个空位共有种排法,故由乘法原理得,所有不同的五位数有
二. 节目单问题
例2. 在一张节目单中原有六个节目,若保持这些节目的相对顺序不变,再添加进去三个节目,则所有不同的添加方法共有多少种?
解析:若直接解答则较为麻烦。
故可先用一个节目去插七个空位,有种方法;再用另一个节目去插八个空位有种方法;用最后
一个节目去插九个空位有种方法。
由乘法原理得,所有不同的添加方法为:。
三. 关灯问题
例3. 一条马路上有编号1,2,3,4,5,6,7,8,9的九盏路灯,为了节约用电,可以把其中的三盏灯关掉,但不能同时关掉相邻两盏或三盏,则所有不同的关灯方法有多少种?
解析:如果直接解答须分类讨论,故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插七个空位共有种方法,因此所有不同的关灯方法为种。
四. 停车问题
例4. 停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?
解析:先排好8辆车有种方法,要求空位置连在一起,则在每2辆之间及其两端的9个空当中任选一个,将空位置插入其中有种方法。
所以共有种方法。
五. 座位问题
例5. 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种类有多少种?
解法1:先将3个人(各带一把椅子)进行全排列有种,产生的四个空中分别放一把椅子,还剩一把椅子再去插空有种,所以每个人左右两边都空位的排法有种。
解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个空,再让3个人每人带一把椅子去插空,于是有种。