C语言中三种常见排序算法分析

合集下载

C语言数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插入法排序、折半法排序

C语言数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插入法排序、折半法排序

C语⾔数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插⼊法排序、折半法排序⽂章⽬录1、选择法排序选择法排序是指每次选择索要排序的数组中的最⼩值(这⾥是由⼩到⼤排序,如果是由⼤到⼩排序则需要选择最⼤值)的数组元素,将这些数组元素的值与前⾯没有进⾏排序的数组元素值进⾏互换代码实现需要注意的是:声明⼀个数组和两个整形变量,数组⽤于存储输⼊的数字,⽽整形变量⽤于存储最⼩的数组元素的数值与该元素的位置,在我的代码中实现为a[] temp position。

代码具体如下#include<stdio.h>int main(){int m,n,k;printf("please input the length of the array:");scanf("%d",&k);int a[k];int temp;int position;printf("please input the number of the array:\n");for(m=0;m<k;m++){printf("a[%d]=",m+1);scanf("%d",&a[m]);}/*从⼩到⼤排序*/for(m=0;m<k-1;m++){temp=a[m]; //设置当前的值为最⼩值position=m; //记录当前的位置for(n=m+1;n<k;n++){if(a[n]<temp){temp=a[n]; //如果找到⽐当前的还要⼩的数值,则更换最⼩的数值与位置position=n;}}a[position]=a[m];a[m]=temp;}for(m=0;m<k;m++){printf("%d\t",a[m]);}return 0;}结果如下2、冒泡法排序冒泡法排序就是值在排序时,每次⽐较数组中相邻的两个数组元素的值,将⽐较⼩的(从⼩到⼤排序算法,如果是从⼤到⼩排序算法就是将较⼤的数排在较⼩的数前⾯)排在⽐较⼤的前⾯在代码实现的过程中:声明⼀个数组与⼀个整型变量,数组⽤于存放数据元素,整型变量⽤于交换时作为中间变量。

C语言常用算法概述

C语言常用算法概述

C语言常用算法概述C语言作为一种通用的高级编程语言,广泛应用于计算机科学领域,特别是在算法和数据结构方面。

C语言提供了许多常用算法,这些算法能够解决各种计算问题,并提供了高效的解决方案。

本文将概述C语言中常用的算法,包括排序算法、查找算法和图算法。

一、排序算法排序算法是将一组元素按照特定的顺序排列的算法。

C语言提供多种排序算法,下面将介绍几种常用的排序算法。

1. 冒泡排序冒泡排序是一种简单的排序算法,它通过多次遍历数组,每次比较相邻的两个元素,将较大的元素向后移动。

通过多次遍历,最大的元素会逐渐“冒泡”到数组的末尾。

2. 插入排序插入排序是一种稳定的排序算法,它通过将数组分为已排序和未排序两部分,将未排序的元素逐个插入已排序的部分,使得整个数组逐渐有序。

3. 快速排序快速排序是一种高效的排序算法,它通过选择一个基准元素,将数组分成两个子数组,其中一个子数组中的元素都小于基准,另一个子数组中的元素都大于基准。

然后递归地对两个子数组进行排序。

4. 归并排序归并排序是一种稳定的排序算法,它通过将数组划分为多个子数组,然后将这些子数组逐个合并,最终得到有序的数组。

归并排序使用了分治的思想,对子数组进行递归排序。

二、查找算法查找算法用于在一个集合中寻找特定元素的算法。

C语言提供了多种查找算法,下面将介绍两种常用的查找算法。

1. 顺序查找顺序查找是一种简单的查找算法,它通过逐个比较集合中的元素,直到找到需要查找的元素或者遍历完整个集合。

2. 二分查找二分查找是一种高效的查找算法,它要求集合必须有序。

它通过将集合分成两半,然后比较需要查找的元素与中间元素的大小关系,从而确定下一步查找的范围。

三、图算法图算法用于解决图结构相关的计算问题。

C语言提供了多种图算法,下面将介绍两种常用的图算法。

1. 深度优先搜索深度优先搜索是一种用于遍历或搜索图的算法,它通过从一个顶点出发,依次访问与该顶点相邻的未访问过的顶点。

当无法再继续访问时,回退到上一个顶点继续搜索。

c语言中排序的各种方法解析

c语言中排序的各种方法解析

c语言中排序的各种方法解析一、引言在计算机编程中,排序是一个重要的操作,它按照一定的顺序排列数据元素,使得数据元素按照从小到大的顺序排列。

在C语言中,有多种方法可以实现排序,包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

这些排序算法都有各自的优缺点,适合不同的应用场景。

二、冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

算法步骤:1. 比较相邻的元素。

如果第一个比第二个大(升序),就交换它们两个。

2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。

这步做完后,最后的元素会是最大的数。

3. 针对所有的元素重复以上的步骤,除了最后一个。

4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

三、选择排序选择排序是一种简单直观的排序算法。

它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

算法步骤:1. 在未排序序列中找到最小元素,存放到排序序列的起始位置。

2. 再从剩余未排序元素中继续寻找最小元素,然后放到已排序序列的末尾。

3. 以此类推,直到所有元素均排序完毕。

四、插入排序插入排序的工作方式是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

插入排序在实现上通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

五、快速排序快速排序使用了分治的原则,它在每一层划分都比前面方法有所改进和精进,当切分到两边的子序列长度都大于某个值时,或者一个大于一个小于这个值时再进行交换的操作来结束此层的递归过程。

这层的结果又成为下一层的两个子数组来处理,最后就得到递归式的最终结果。

数组排序c语言数组排序方法

数组排序c语言数组排序方法

数组排序c语言数组排序方法在C语言中,可以使用多种排序算法对数组进行排序。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序等。

下面将详细介绍这些排序算法的原理、实现以及时间复杂度。

1. 冒泡排序(Bubble Sort):冒泡排序是一种简单的排序算法,其基本思想是重复地在相邻的元素之间进行比较和交换,将最大的元素逐渐“浮”到数组的尾部。

具体实现过程如下:cvoid bubbleSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {for (int j = 0; j < n-1-i; j++) {if (arr[j] > arr[j+1]) {交换相邻元素int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}}冒泡排序的时间复杂度为O(n^2),其中n为数组长度。

2. 选择排序(Selection Sort):选择排序也是一种简单的排序算法,其基本思想是每次从未排序的部分中选取最小(或最大)的元素,放到已排序部分的末尾。

具体实现过程如下:cvoid selectionSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {int minIndex = i;for (int j = i+1; j < n; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}将最小元素交换到已排序部分的末尾int temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}选择排序的时间复杂度为O(n^2)。

3. 插入排序(Insertion Sort):插入排序的基本思想是将数组分为已排序和未排序两部分,每次从未排序部分选择一个元素,插入到已排序部分的正确位置。

C语言常用算法总结

C语言常用算法总结

C语言常用算法总结1、冒泡排序算法:冒泡排序是一种简单的排序算法,它重复地遍历要排序的序列,一次比较两个相邻的元素如果他们的顺序错误就把他们交换过来。

时间复杂度为O(n^2)。

2、快速排序算法:快速排序是一种基于分治的排序算法,通过递归的方式将数组划分为两个子数组,然后对子数组进行排序最后将排好序的子数组合并起来。

时间复杂度为O(nlogn)。

3、插入排序算法:插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描找到相应位置并插入。

时间复杂度为O(n^2)。

4、选择排序算法:选择排序是一种简单的排序算法,每次循环选择未排序部分的最小元素,并放置在已排序部分的末尾。

时间复杂度为O(n^2)。

5、归并排序算法:归并排序是一种稳定的排序算法,基于分治思想,将数组递归地分为两个子数组,将子数组排序后再进行合并最终得到有序的数组。

时间复杂度为O(nlogn)。

6、堆排序算法:堆排序是一种基于完全二叉堆的排序算法,通过构建最大堆或最小堆,然后依次将堆顶元素与末尾元素交换再调整堆,得到有序的数组。

时间复杂度为O(nlogn)。

7、二分查找算法:二分查找是一种在有序数组中查找目标元素的算法,每次将待查找范围缩小一半,直到找到目标元素或范围为空。

时间复杂度为O(logn)。

8、KMP算法:KMP算法是一种字符串匹配算法,通过利用模式字符串的自重复性,避免不必要的比较提高匹配效率。

时间复杂度为O(m+n),其中m为文本串长度,n为模式串长度。

9、动态规划算法:动态规划是一种通过将问题分解为子问题,并通过组合子问题的解来求解原问题的方法。

动态规划算法通常使用内存空间来存储中间结果,从而避免重复计算。

时间复杂度取决于问题规模。

10、贪心算法:贪心算法是一种通过选择局部最优解来构建全局最优解的算法并以此构建最终解。

时间复杂度取决于问题规模。

11、最短路径算法:最短路径算法用于求解图中两个节点之间的最短路径,常见的算法包括Dijkstra算法和Floyd-Warshall算法。

c语言排序算法

c语言排序算法

C语言常用排序算法/************************************************************************************** ******平方阶(O(n2))排序一般称为简单排序,例如直接插入、直接选择和冒泡排序*************************************************************************************** *****//*插入排序*/extern int InsertSort(int source[], int array_size){int index = 1; //插入排序int i, j;for (i = 1; i < array_size; i++){index = source[i];j = i;while ((j > 0) && (source[j - 1] > index)){source[j] = source[j - 1];j--;}source[j] = index;}return 1;}/*冒泡排序*/extern int BubbleSort(int source[], int array_size){int i, j;int temp;for (i = 0; i < array_size; i++){for (j = 0; j < array_size - i - 1; j++)if (source[j] > source[j + 1]){temp = source[j];source[j] = source[j + 1];source[j + 1] = temp;}}return 1;}/*选择排序*/extern int SelectSort(int source[], int array_size){int temp, min;int i, j;for (i = 0; i < array_size; i++){min = i;//先假设最小下标为ifor (j = i + 1; j < array_size; j++)if (source[j] < source[min])min = j;//把i之后的最小值附给minif (min != i){temp = source[i];source[i] = source[min];source[min] = temp;}//判断min与i是否相等,若相等则说明原假设正确,反之:交换数值}return 1;}/************************************************************************************** *******线性对数阶(O(nlgn))排序如快速、堆和归并排序*************************************************************************************** *****//*快速排序接口*/static int Partition(int source[], int left, int right)int x = source[left];while (left < right){while (left < right && x <= source[right])right--;source[left] = source[right];while (left < right && x >= source[left])left++;source[right] = source[left];}source[left] = x;return left;}extern int QuickSort(int source[], int left, int right){int iPos;if (left >= right)return 1;iPos = Partition(source, left, right);QuickSort(source, left, iPos - 1); // 左边划分QuickSort(source, iPos + 1, right); // 右边划分return 1;}/*堆排序*/static void HeapAdjust(int source[], int root, int node)/*root根节点, node节点总数*/ {//已知source[root..node]中除source[root]之外均满足堆的定义,本函数调整source[root] //使source[root..node]成为一个大顶堆int j, rc;rc = source[root];for (j = 2 * root; j <= node; j *= 2) //沿关键字叫大的结点向下筛选{if (j < node && source[j] < source[j + 1])++j; //j为关键字较大的记录的下标if (rc >= source[j])break; //rc应插入在位置root上source[root] = source[j];root = j;}source[root] = rc; //插入extern int HeapSort(int source[], int array_size){int i, t;for (i = array_size / 2; i > 0; --i)//把a[1..L.length]建成大顶堆HeapAdjust(source, i, array_size);for (i = array_size; i > 1; --i){t = source[1]; //将堆顶记录和当前未经排序子序列a[1..i]source[1] = source[i]; //中的最后一个记录相互交换source[i] = t;HeapAdjust(source, 1, i - 1); //将r[1..i-1]重新调整为大顶堆}return 1;}/************************************************************************************** ********O(n1+£)阶排序£是介于0和1之间的常数,即0<£<1,如希尔排序*************************************************************************************** *****//*希儿排序*/extern int ShellSort(int source[], int array_size){int increament;int e, i, j;/*初始步长设为n/2*/for (increament = array_size / 2; increament > 0; increament = increament / 2) for (j = increament; j < array_size; j++){if (source[j] < source[j - increament]){e = source[j];for (i = j - increament; i >= 0 && source[i] > e; i = i - increament) source[i + increament] = source[i];source[i + increament] = e;}}return 1;。

c语言几种数组排序方法

c语言几种数组排序方法

常用的c语言排序算法主要有三种即冒泡法排序、选择法排序、插入法排序。

一、冒泡排序冒泡排序:是从第一个数开始,依次往后比较,在满足判断条件下进行交换。

代码实现(以降序排序为例)#include<stdio.h>int main(){int array[10] = { 6,9,7,8,5,3,4,0,1,2 };int temp;for (int i = 0; i < 10; i++){//循环次数for (int j = 0; j <10 - i-1; j++){if (array[j] < array[j+1]){//前面一个数比后面的数大时发生交换temp = array[j];array[j] = array[j+1];array[j + 1] = temp;}}} //打印数组for (int i = 0; i < 10; i++) printf("%2d", array[i]); return 0;}}二、选择排序以升序排序为例:就是在指定下标的数组元素往后(指定下标的元素往往是从第一个元素开始,然后依次往后),找出除指定下标元素外的值与指定元素进行对比,满足条件就进行交换。

与冒泡排序的区别可以理解为冒泡排序是相邻的两个值对比,而选择排序是遍历数组,找出数组元素与指定的数组元素进行对比。

(以升序为例)#include<stdio.h>int main(){int array[10] = { 6,9,7,8,5,3,4,0,1,2 };int temp, index;for (int i = 0; i < 9; i++) {index = i;for (int j = i; j < 10; j++){if (array[j] < array[index])index = j;}if(i != index){temp = array[i]; array[i] = array[index]; array[index] = temp; }for(int i=0;i<10:i++) printf("%2d"array[i])return 0;}三、快速排序是通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

C语言常用的入门算法

C语言常用的入门算法

C语言常用的入门算法C语言是一门广泛应用于计算机科学和软件开发领域的编程语言。

作为一门通用的编程语言,C语言提供了丰富的算法和数据结构库,使得开发人员能够解决各种不同类型的问题。

下面是C语言入门算法的一些常见示例:1.排序算法:-冒泡排序:通过不断比较相邻的元素,并交换它们的位置来排序。

-插入排序:将未排序的元素逐一插入已排序的列表中。

-选择排序:通过重复找到最小的元素并将其放置在已排序序列的末尾来排序。

-快速排序:通过选择一个基准元素,将列表划分成较小和较大的两部分,然后对其进行递归排序。

-归并排序:将列表分成较小的子列表,然后逐个合并这些子列表。

2.查找算法:-顺序查找:逐个比较列表中的元素,直到找到匹配的元素为止。

-二分查找:在已排序的列表中通过递归或循环的方式,将待查找的元素与中间元素进行比较,以确定它可能在哪一半中。

-哈希表:通过散列函数将元素映射到一个较小的固定大小的数组(哈希表)中,并通过索引快速查找。

3.字符串算法:-字符串长度:使用循环逐个字符遍历,直到遇到字符串结束符'\0'为止,统计字符个数。

-字符串比较:逐个字符比较两个字符串的对应位置,直到遇到不相等的字符或字符串结束符。

-字符串拼接:将一个字符串的字符逐个复制到另一个字符串的末尾,直到遇到字符串结束符'\0'。

-子字符串匹配:在一个较长的字符串中查找一个较短的子字符串,常用的算法有朴素算法和KMP算法。

4.数值算法和运算:-求和、平均值、最大/最小值:循环遍历列表,累加求和,计算平均值,找出最大/最小值。

-阶乘和斐波那契数列:使用循环或递归计算给定数字的阶乘和斐波那契数列。

-幂运算和开方:通过循环或递归计算给定数字的幂和开方。

- 线性方程求解:求解形如ax + b = 0的一元线性方程。

5.图算法:-广度优先(BFS):通过遍历图的邻居节点来逐层扩展区域,通常用于查找最短路径。

-深度优先(DFS):通过遍历图的邻居节点来递归到达所有可能的节点,通常用于查找所有路径、拓扑排序等。

C语言经典算法大全精选

C语言经典算法大全精选

C语言经典算法大全精选1.排序算法1.1冒泡排序:通过不断交换相邻元素的位置,将最大(最小)值“冒泡”到序列的末尾(开头)。

1.2插入排序:将未排序的元素逐个插入已排序的序列中,保持序列始终有序。

1.3选择排序:每次从未排序的元素中选择最小(最大)的元素,放到已排序序列的末尾(开头)。

1.4快速排序:通过递归地将序列分割为较小和较大的两部分,然后分别对两部分进行排序。

1.5归并排序:将序列递归地分割为两个子序列,分别排序后再将结果合并。

1.6堆排序:构建最大(最小)堆,然后逐步将堆顶元素与最后一个元素交换,并调整堆结构。

2.查找算法2.1顺序查找:逐个比较元素,直到找到目标元素或遍历完整个序列。

2.2二分查找:在有序序列中,通过不断缩小查找范围,找到目标元素。

2.3插值查找:根据目标元素与序列中最大、最小元素的关系,按比例选择查找范围。

2.4哈希查找:利用哈希函数将目标元素映射到一个唯一的位置,从而快速定位目标元素。

3.字符串算法3.1字符串匹配算法:在文本串中查找给定的模式串,并返回匹配位置。

3.2字符串翻转:将一个字符串逆序输出。

3.3字符串压缩:将连续出现多次的字符压缩为一个字符,并输出压缩后的字符串。

3.4字符串拆分:按照指定的分隔符将字符串拆分为多个子串,并返回子串列表。

3.5字符串反转单词:将一个句子中的单词顺序逆序输出。

4.图算法4.1深度优先:从起始顶点出发,递归地访问所有能到达的未访问顶点。

4.2广度优先:从起始顶点出发,逐层地访问与当前层相邻的未访问顶点。

4.3最小生成树:找到连接所有顶点的具有最小权值的无环边集合。

4.4最短路径:找到两个顶点之间最短路径的权值和。

4.5拓扑排序:找到一个顶点的线性序列,满足所有有向边的起点在终点之前。

5.数学算法5.1质数判断:判断一个数是否为质数(只能被1和自身整除)。

5.2求最大公约数:找到两个数的最大公约数。

5.3求最小公倍数:找到两个数的最小公倍数。

C语言的六种常用算法

C语言的六种常用算法

C语言的六种常用算法C语言是一种广泛使用的编程语言,它不仅支持基本的算术运算,还提供了一些常用的高级算法来解决各种问题。

下面将介绍C语言中的六种常用算法。

1.排序算法:排序算法用于按特定的顺序重新排列一组数据。

常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

这些算法的时间复杂度和空间复杂度各不相同,可以根据不同的需求选择合适的排序算法。

2.算法:算法用于在一组数据中查找特定的元素。

常见的算法包括线性、二分和哈希。

线性从列表的一端开始逐个比对,直到找到目标元素或完整个列表。

二分是一种高效的算法,它将目标元素与列表的中间元素进行比较,然后根据比较结果将范围缩小一半,重复此过程,直到找到目标元素。

3.图算法:图算法用于解决与图相关的问题,如最短路径问题、最小生成树问题和网络流问题。

常见的图算法包括广度优先(BFS)和深度优先(DFS),它们用于遍历图的节点。

Dijkstra算法用于求解最短路径问题,Prim算法用于求解最小生成树问题。

4.动态规划算法:动态规划算法用于解决最优化问题,将原始问题分解为子问题,并记录子问题的解,以避免重复计算。

常见的动态规划算法包括0/1背包问题、最长公共子序列问题和矩阵链乘法问题。

这些问题都可以通过建立递推关系和使用动态规划表格求解。

5.贪心算法:贪心算法每次取最优解,然后将剩余的子问题交给下一次迭代。

它通常适用于解决一些具有最优子结构的问题。

常见的贪心算法包括霍夫曼编码、最小生成树问题和拟阵问题。

6.分治算法:分治算法将问题分解为若干个规模较小且相互独立的子问题,然后分别解决子问题,最后合并子问题的结果得到原始问题的解。

常见的分治算法包括快速排序、归并排序和大整数乘法。

这些算法利用递归的思想,将问题逐层分解,直到问题规模足够小,可以直接解决。

以上是C语言中的六种常用算法。

每种算法都有其适用的场景和特点,根据实际需求选择合适的算法可以提高程序的效率和性能。

c语言常见排序算法

c语言常见排序算法

常见的C语言排序算法有以下几种:
1. 冒泡排序(Bubble Sort):比较相邻的元素,如果前一个元素大于后一个元素,则交换它们的位置,重复这个过程直到整个序列有序。

2. 插入排序(Insertion Sort):将未排序的元素逐个插入到已排序序列中的正确位置,直到整个序列有序。

3. 选择排序(Selection Sort):每次从未排序的元素中选择最小的元素,将其放到已排序序列的末尾,重复这个过程直到整个序列有序。

4. 快速排序(Quick Sort):选择一个基准元素,将序列分成两部分,一部分小于等于基准元素,一部分大于基准元素,然后对两部分递归地进行快速排序。

5. 归并排序(Merge Sort):将序列分成两部分,分别对两部分进行归并排序,然后将两个有序的子序列合并成一个有序的序列。

6. 堆排序(Heap Sort):将序列构建成一个最大堆,然后将堆顶元素与堆末尾元素交换,重复这个过程直到整个序列有序。

7. 希尔排序(Shell Sort):将序列按照一定的间隔分成若干个子序列,对每个子序列进行插入排序,然后逐渐减小间隔直到间隔为1,最后对整个序列进行插入排序。

8. 计数排序(Counting Sort):统计序列中每个元素出现的次数,然后按照元素的大小顺序将它们放入一个新的序列中。

9. 基数排序(Radix Sort):按照元素的个位、十位、百位等依次进行排序,直到所有位数都排完为止。

以上是常见的C语言排序算法,每种算法都有其特点和适用场景,选择合适的排序算法可以提高排序效率。

c语言常用算法

c语言常用算法

c语言常用算法一、前言C语言是一种高效、快速的编程语言,被广泛应用于各种领域。

在C 语言中,算法是非常重要的部分,因为它们能够帮助我们解决许多实际问题。

本文将介绍C语言中常用的算法。

二、排序算法1.冒泡排序冒泡排序是一种简单的排序算法,它通过不断交换相邻两个元素的位置来将最大的元素放到最后。

具体实现如下:```void bubble_sort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {int temp = arr[j];arr[j] = arr[j + 1];}}}}```2.选择排序选择排序也是一种简单的排序算法,它通过不断选择最小元素并放到前面来完成排序。

具体实现如下:```void selection_sort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {int min_index = i;for (int j = i + 1; j < n; j++) {if (arr[j] < arr[min_index]) {min_index = j;}}int temp = arr[i];arr[i] = arr[min_index];}}```3.插入排序插入排序是一种简单的排序算法,它通过将元素逐个插入到已排好序的序列中来完成排序。

具体实现如下:```void insertion_sort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j--;}arr[j + 1] = key;}}```4.快速排序快速排序是一种高效的排序算法,它通过选取一个基准元素并将数组分为两部分来完成排序。

C语言三种基本排序方法

C语言三种基本排序方法

C语言三种基本排序方法
一、选择排序法。

选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量,接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换。

二、冒泡排序法。

冒泡排序算法的运作如下:(从后往前)比较相邻的元素。

如果第一个比第二个大,就交换他们两个。

对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。

在这一点,最后的元素应该会是最大的数。

针对所有的元素重复以上的步骤,除了最后一个。

持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

三、插入排序法。

所谓插入排序法,就是检查第i个数字,如果在它的左边的数字比它大,进行交换,这个动作一直继续下去,直到这个数字的左边数字比它还要小,就可以停止了。

插入排序法主要的回圈有两个变数:i和j,每一次执行这个回圈,就会将第i个数字放到左边恰当的位置去。

插入排序的基本思想是:每步将一个待排序的纪录,按其关
键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止(分为直接插入法和折半插入法)。

c语言常见算法

c语言常见算法

c语言常见算法C语言是一种非常流行的编程语言,广泛应用于软件开发和计算机科学领域。

在C语言中,算法是解决问题的关键步骤。

本文将介绍一些常见的C语言算法,包括排序算法、搜索算法和递归算法。

一、排序算法1. 冒泡排序算法冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较相邻的两个元素,并交换它们的位置,直到整个列表排序完成。

2. 插入排序算法插入排序算法通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

3. 快速排序算法快速排序是一种高效的排序算法,它通过选择一个元素作为基准,将列表分为两部分,一部分小于基准,一部分大于基准,然后递归地对两部分进行排序。

二、搜索算法1. 线性搜索算法线性搜索算法逐个地检查列表中的元素,直到找到目标元素或者遍历完整个列表。

2. 二分搜索算法二分搜索算法适用于已排序的列表。

它通过比较目标元素和列表的中间元素,将列表分为两部分,然后在适当的部分继续搜索,直到找到目标元素或者确定目标元素不存在。

三、递归算法递归算法是一种自我调用的算法,它将问题分解成更小的子问题,然后在子问题上递归地调用自身,直到达到基本情况。

对于C语言中的算法来说,递归函数的编写非常重要。

需要确保递归的终止条件,并正确处理递归调用中传递的参数。

四、其他常见算法1. 图算法图算法是解决与图相关的问题的算法。

它可以解决最短路径问题、最小生成树问题等。

2. 动态规划算法动态规划算法是一种通过将问题分解成更小的子问题来解决复杂问题的算法。

它通常用于解决最优化问题。

3. 贪心算法贪心算法通过每一步选择当前最优解来构建问题的解决方案。

它通常不能保证找到全局最优解,但在某些情况下可以得到较好的近似解。

总结C语言常见算法涵盖了排序算法、搜索算法、递归算法以及其他常用的算法。

对于每个算法,我们都介绍了其基本原理和应用场景。

在实际编程中,根据具体的问题,选择合适的算法是非常重要的。

熟悉C语言中的常见算法,可以帮助程序员更好地解决问题,提高代码的效率与质量。

C语言最常用的六种排序方法详解

C语言最常用的六种排序方法详解

1.冒泡排序:
2.简单选择排序:
3.快速排序:
设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。

4.直接插入排序:
5.折半插入排序:
折半插入排序(binary insertion sort)是对插入排序算法的一种改进,在将一个新元素插入已排好序的数组的过程中,寻找插入点时,将待插入区域的首元素设置为a[low],末元素设置为
a[high],则轮比较时将待插入元素与a[m],其中m=(low+high)/2相比较,如果比参考元素小,则选择a[low]到a[m-1]为新的插入区域(即high=m-1),否则选择a[m+1]到a[high]为新的插入区域(即low=m+1),如此直至low<=high不成立,即将此位置之后所有元素后移一位,并将新元素插入a[high+1]。

代码:
6.希尔排序:。

c语言的排序方法

c语言的排序方法

c语言的排序方法C语言的排序方法排序是计算机科学中常见的操作,它的作用是将一组数据按照特定的规则进行重新排列。

在C语言中,有多种排序方法可以实现这个目标。

本文将介绍几种常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

一、冒泡排序冒泡排序是一种简单但效率较低的排序算法。

它的基本思想是多次遍历待排序的数据,每次比较相邻的两个元素,如果它们的顺序不对就交换它们的位置。

通过多次遍历,最大(或最小)的元素会逐渐“冒泡”到最后。

二、插入排序插入排序是一种稳定且效率较高的排序算法。

它的基本思想是将待排序的数据分为已排序和未排序两部分,每次从未排序部分选择一个元素插入到已排序部分的正确位置。

通过多次插入操作,最终得到完全有序的数据。

三、选择排序选择排序是一种简单但效率较低的排序算法。

它的基本思想是每次从待排序的数据中选择最小(或最大)的元素,然后放到已排序部分的末尾。

通过多次选择操作,最终得到完全有序的数据。

四、快速排序快速排序是一种常用且高效的排序算法。

它的基本思想是通过递归地将待排序的数据分为两部分,一部分小于某个基准值,另一部分大于该基准值。

然后对这两部分分别进行快速排序,直到每个部分只有一个元素或为空。

最后将所有部分合并起来,即得到完全有序的数据。

五、归并排序归并排序是一种稳定且效率较高的排序算法。

它的基本思想是将待排序的数据分成若干个长度相等(或接近)的子序列,然后对每个子序列进行排序。

最后将排好序的子序列两两合并,直到所有子序列合并成一个有序的序列。

不同的排序算法适用于不同的场景。

冒泡排序和选择排序适用于数据量较小的情况,插入排序适用于数据基本有序的情况,快速排序适用于数据量较大且无序的情况,归并排序适用于数据量较大且需要稳定排序的情况。

在C语言中,实现这些排序算法并不复杂。

通过使用循环和条件语句,可以很容易地编写出排序的代码。

同时,为了提高排序算法的效率,还可以使用一些优化技巧,例如设置哨兵、使用递归等。

C语言常见排序算法

C语言常见排序算法

6.1.5 选择排序
排序过程: 排序过程:
首先通过n-1次比较,从n个数中找出最小的, 将它与第一个数 次比较, 个数中找出最小的, 首先通过 次比较 个数中找出最小的 交换—第一趟选择排序, 交换—第一趟选择排序,结果最小的数被安置在第一个元素位 置上 再通过n-2次比较,从剩余的 次比较, 个数中找出关键字次小的记录, 再通过 次比较 从剩余的n-1个数中找出关键字次小的记录, 个数中找出关键字次小的记录 将它与第二个数交换— 将它与第二个数交换—第二趟选择排序 重复上述过程,共经过n-1趟排序后,排序结束 趟排序后, 重复上述过程,共经过 趟排序后
6.1.2 快速排序
算法特点:
快速排序是通过比较关键码、交换记录, 以某个记录为界(该记录称为支点),将待排序列分成两部分 一部分所有记录的关键码大于等于支点记录的关键码 另一部分所有记录的关键码小于支点记录的关键码
6.1.2 快速排序
算法描述:
任取待排序记录序列中的某个记录(例如取第一个记录)作为基准(枢),按照该记录的 关键字大小,将整个记录序列划分为左右两个子序列 左侧子序列中所有记录的关键字都小于或等于基准记录的关键字 右侧子序列中所有记录的关键字都大于基准记录的关键字 基准记录则排在这两个子序列中间(这也是该记录最终应安放的位置)。 然后分别对这两个子序列重复施行上述方法,直到所有的记录都排在相应位置上为 止。 基准记录也称为枢轴(或支点)记录。 取序列第一个记录为枢轴记录,其关键字为Pivotkey 指针low指向序列第一个记录位置 指针high指向序列最后一个记录位置
6.1.3 直接插入排序
算法分析:
关键字比较次数和记录移动次数与记录关键字的初始排列有关。 最好情况下, 排序前记录已按关键字从小到大有序, 每趟只需与前面有序 记录序列的最后一个记录比较1次, 移动2次记录, 总的关键字比较次数 为 n-1, 记录移动次数为 2(n-1)在平均情况下的关键字比较次数和记录 移动次数约为n2/4 。 直接插入排序是一种稳定的排序方法 直接插入排序最大的优点是简单,在记录数较少时,是比较好的办法

c语言十大排序算法

c语言十大排序算法

c语言十大排序算法C语言是一种广泛应用于计算机领域的编程语言,在数据处理过程中,排序算法是最常用的操作之一。

在C语言中,有许多经典的排序算法,下面将介绍十大排序算法并讨论其特点和适用场景。

1.冒泡排序算法冒泡排序算法是一种简单的排序方法,其基本思想是将要排序的数组分为两部分:已排序部分和未排序部分。

进入排序过程后,每一次排序将未排序部分中的第一个数与第二个数进行比较,若第二个数小于第一个数,则交换它们的位置,依次往后,直到最后一个未排序的数。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。

2.插入排序算法插入排序算法是一种稳定的排序方法,其中以第一个元素作为基准,与后面的元素进行比较,若后面的元素小于前一个元素,则将其插入到合适位置,依次往后,直到最后一个元素。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。

3.选择排序算法选择排序算法是一种简单的排序算法,其基本思想是每次选择一个最小(或最大)的元素,在未排序部分找出最小的元素,并放到已排序部分的最后一个位置。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。

4.归并排序算法归并排序算法是一种稳定的排序算法,其基本思想是将数组分成两半,然后递归地将每个子数组排序,最后将两个排好序的子数组归并到一起。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n),适用于数据量较大的排序场景。

5.快速排序算法快速排序算法是一种常用的排序算法,其基本思想是将待排序的数组分为两个子数组,设置一个基准值,小于基准值的元素放到左边,大于基准值的元素放到右边,然后递归地对左右两个子数组进行排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(nlogn),适用于数据量较大的排序场景。

6.计数排序算法计数排序算法是一种稳定的排序算法,其基本思想是先统计序列中每个元素出现的次数,将其存入临时数组中,然后从临时数组中按照顺序取出元素。

C语言常用算法归纳

C语言常用算法归纳

C语言常用算法归纳C语言是一种常用的编程语言,广泛应用于各种计算机领域。

在C语言中,算法是一种解决问题的方法论,是实现程序的关键所在。

本文将介绍C语言常用的算法,并对其进行归纳总结。

1.排序算法排序算法是将一组数据按照一定的顺序重新排列的过程。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

-冒泡排序:该算法比较相邻的两个元素,并将较大的元素向后移动,重复此过程直到序列有序。

-选择排序:该算法通过不断选择最小的元素,并放到已排序部分的末尾,重复此过程直到整个序列有序。

-插入排序:该算法将元素逐个插入到已排好序的序列中,重复此过程直到整个序列有序。

-快速排序:该算法通过选择一个基准元素,将元素分为两个分区,并对每个分区递归地快速排序,最终将整个序列有序。

-归并排序:该算法将序列分为两个部分,并对每个部分递归地归并排序,最后将两个有序的部分归并。

上述排序算法中,冒泡排序和选择排序的时间复杂度为O(n^2),插入排序的时间复杂度为O(n^2)或O(n),快速排序和归并排序的平均时间复杂度为O(nlogn)。

2.查找算法查找算法是在一组数据中找到指定的元素的过程。

常见的查找算法包括线性查找、二分查找、哈希查找等。

-线性查找:该算法从序列的首个元素开始,逐个比较元素,直到找到指定元素或遍历完整个序列。

-二分查找:该算法通过比较中间元素和目标元素的大小关系,逐渐缩小查找范围,最终找到目标元素。

-哈希查找:该算法通过将元素与哈希函数的运算结果关联,将元素存储在哈希表中;查询时,通过哈希函数确定元素的位置,从而快速查找。

二分查找的时间复杂度为O(logn),哈希查找的平均时间复杂度为O(1)。

3.字符串算法字符串算法是对字符串进行处理和操作的一系列算法。

常见的字符串算法包括字符串复制、字符串连接、字符串比较、字符串截取等。

- 字符串复制:可以使用strcpy函数实现字符串复制。

例如,strcpy(dest, src)将将src字符串复制到dest字符串中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优点:快,比较次数少;
缺点:不适用于较少数据的排序,s的临界值无法确切获知,只能凭经验取。
我设计的算法或许优于某些算法,但它也有它的优点、缺点和适用范围。不仅排序算法如此,任何算法都一样。没有任何一个人干说自己的算法是最好的。设计新算法的过程其实就是增加其优点,减少其缺点和拓宽其适用范围的过程。我最崇尚的一句话就是:“没有最好,只有更好。”
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比较a[3]与a[4],依此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对a[1]~a[n-1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,依此类推。共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。
算法分析:定义外部n-1次循环,假设第一个为最值,放在参数中,在从下一个数以后找最值若后面有比前面假设的最值更大的就放在k中,然后在对k进行分析。若k部位最初的i值。也就是假设的i不是最值,那么就交换最值和当前序列的第一个数
三、插入法
算法要求:用插入排序法对10个整数进行降序排序。
算法分析:将序列分为有序序列和无序列,依次从无序序列中取出元素值插入到有序序列的合适位置。初始是有序序列中只有第一个数,其余n-1个数组成无序序列,则n个数需进n-1次插入。寻找在有序序列中插入位置可以从有序序列的最后一个数往前找,在未找到插入点之前可以同时向后移动元素,为插入元素准备空间。
for(i=0;i<10;i++)
printf("%d ",a[i]);
printf("\n");
}
四、两路归并
main()
{
int a[3]={5,9,10};
int b[5]={12,24,26,37,48};
int c[10],i,j,k;
i=j=k=0;
while(i<3&&j<5)
{if(a[i]>b[j])
算法源代码:
# include <stdio.h>
main()
{
int a[10],i,j,t;
printf("Please input 10 numbers: ");
/*输入源数据*/
for(i=0;i<10;i++)
scanf("%d",&a[i]);
/*排序*/
for(j=0;j<9;j++)/*外循环控制排序趟数,n个数排n-1趟*/
{
t=a[i];/*将待插入数暂存于变量t中*/
for(j=i-1;j>=0 && t>a[j]; j-- )/*在有序序列(下标0 ~ i-1)中寻找插入位置*/
a[j+1]=a[j];/*若未找到插入位置,则当前元素后移一个位置*/
a[j+1]=tf("The sorted numbers: ");
优点:稳定,快;
缺点:比较次数不一定,比较次数越少,插入点后的数据移动越多,特别是当数据总量庞大的时候,但用链表可以解决这个问题。
四、缩小增量排序
由希尔在1959年提出,又称希尔排序。
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。发现当n不大是,插入排序的效果很好。首先取一增量d(d<n),将a[1]、a[1+d]、a[1+2d]……列为第一组,a[2]、a[2+d]、a[2+2d]……列为第二组……,a[d]、a[2d]、a[3d]……列为最后一组依此类推,在各组内用插入排序,然后取d'<d,重复上述操作,直到d=1。
优点:快,数据移动少;
缺点:不稳定,d的取值是多少,应取多少个不同的值,都无法确切知道,只能凭经验来取。
五、快速排序
快速排序是冒泡排序的改进版,是目前已知的最快的排序方法。
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先任取数据a[x]作为基准。比较a[x]与其它数据并排序,使a[x]排在数据的第k位,并且使a[1]~a[k-1]中的每一个数据<a[x],a[k+1]~a[n]中的每一个数据>a[x],然后采用分治的策略分别对a[1]~a[k-1]和a[k+1]~a[n]两组数据进行快速排序。
main()
{
int a[10],i,j,k,t,n=10;
printf("Please input 10 numbers:");
for(i=0;i<10;i++)
scanf("%d",&a[i]);
for(i=0;i<n-1;i++)/*外循环控制趟数,n个数选n-1趟*/
{
k=i;/*假设当前趟的第一个数为最值,记在k中*/
优点:极快,数据移动少;
缺点:不稳定。
经过一段时间的学习和编程,我已对上述几种排序方法熟练掌握或有所了解。在此基础上,经过我的思考和实践,我研究出了一种新的排序算法:分段插入排序。
分段插入排序
已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、b[2]、……b[m],需将二者合并成一个升序数列。先将数组a分成x等份(x<<n),每等份有n/x个数据。将每一段的第一个数据先储存在数组c中:c[1]、c[2]、……c[x]。运用插入排序处理数组b中的数据。插入时b先与c比较,确定了b在a中的哪一段之后,再到a中相应的段中插入b。随着数据的插入,a中每一段的长度会有变化,所以在每次插入后,都要检测一下每段数据的量的标准差s,当其大于某一值时,将a重新分段。在数据量特别巨大时,可在a中的每一段中分子段,b先和主段的首数据比较,再和子段的首数据比较,可提高速度。
优点:稳定,比较次数与冒泡排序一样,数据移动次数比冒泡排序少;
缺点:相对之下还是慢。
三、插入排序
已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、b[2]、……b[m],需将二者合并成一个升序数列。首先比较b[1]与a[1]的值,若b[1]大于a[1],则跳过,比较b[1]与a[2]的值,若b[1]仍然大于a[2],则继续跳过,直到b[1]小于a数组中某一数据a[x],则将a[x]~a[n]分别向后移动一位,将b[1]插入到原来a[x]的位置这就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若无数组a,可将b[1]当作n=1的数组a)
for(j=i+1;j<n;j++)/*从下一个数到最后一个数之间找最值*/
if(a[k]<a[j])/*若其后有比最值更大的*/
k=j;/*则将其下标记在k中*/
if(k!=i)/*若k不为最初的i值,说明在其后找到比其更大的数*/
{ t=a[k]; a[k]=a[i]; a[i]=t; }/*则交换最值和当前序列的第一个数*/
通过查阅图书、教材,搜索资料、教程,我了解到:排序的本质其实就是比较。对于任何一种排序方法来说,比较都是其最重要的一个组成部分。但它也是最简单的部分,因为排序方法的好坏、快慢取决于比较的方法、比较的顺序和比较的次数,而与比较本身关系不大。那么,排序具体有那些方法呢?下面介绍几种我研究学习了的算法。
一、冒泡排序
二、选择法
算法要求:用选择法对10个整数按降序排序。
算法分析:每趟选出一个最值和无序序列的第一个数交换,n个数共选n-1趟。第i趟假设i为最值下标,然后将最值和i+1至最后一个数比较,找出最值的下标,若最值下标不为初设值,则将最值元素和下标为i的元素交换。
算法源代码:
# include <stdio.h>
优点:稳定,比较次数已知;
缺点:慢,每次只能移动相邻两个数据,移动数据的次数多。
二、选择排序
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[1]与a[3]的值,若a[1]大于a[3]则交换两者的值,否则不变。再比较a[1]与a[4],依此类推,最后比较a[1]与a[n]的值。这样处理一轮后,a[1]的值一定是这组数据中最小的。再将a[2]与a[3]~a[n]以相同方法比较一轮,则a[2]的值一定是a[2]~a[n]中最小的。再将a[3]与a[4]~a[n]以相同方法比较一轮,依此类推。共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。
for(i=0;i<9-j;i++)/*内循环每趟比较的次数,第j趟比较n-j次*/
if(a[i]>a[i+1])/*相邻元素比较,逆序则交换*/
{ t=a[i];
a[i]=a[i+1];
a[i+1]=t;
}
/*输出排序结果*/
printf("The sorted numbers: ");
for(i=0;i<10;i++)
几种排序的概念
在数据的处理中,数据的排序是相当重要的。它可以使数据更有条理,方便数据的其它处理。在学习生活中,也经常用到数据的排序,如:考完试后个人成绩的排名、运动会上班级总分的排名、常规评比分数的排序。这些排序当然不是人工完成的,它们大多数是用excel软件来代劳的。那么excel软件的排序的本质方法是什么呢?这就是我所要研究学习的内容。
相关文档
最新文档