七年级数学上册全册单元试卷专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册全册单元试卷专题练习(解析版)

一、初一数学上学期期末试卷解答题压轴题精选(难)

1.

(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;

(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .

证明:过点 E 作 EH∥AB,

∴∠FEH=∠BFE(▲),

∵AB∥CD,EH∥AB,(辅助线的作法)

∴EH∥CD(▲),

∴∠HEG=180°-∠CGE(▲),

∴∠FEG=∠HFG+∠FEH=▲ .

(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.

【答案】(1)90°

(2)解:∠GEF=∠BFE+180°−∠CGE,

证明:过点 E 作 EH∥AB,

∴∠FEH=∠BFE(两直线平行,内错角相等),

∵AB∥CD,EH∥AB,(辅助线的作法)

∴EH∥CD(平行线的迁移性),

∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),

∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,

故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平

行,同旁内角互补;∠BFE+180°−∠CGE;

(3)解:∠GPQ+∠GEF=90°,

理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,

∴∠BFQ=∠BFE,∠CGP=∠CGE,

在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,

∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.

即∠GPQ+∠GEF=90°.

【解析】【解答】(1)解:如图1,过E作EH∥AB,

∵AB∥CD,

∴AB∥CD∥EH,

∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,

∵∠CGE=130°,

∴∠HEG=50°,

∴∠GEF=∠HEF+∠HEG=40°+50°=90°;

故答案为:90°;

【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平

分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=

∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.

2.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,

(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.

(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);

(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.

【答案】(1)解:如图1,

∵∠AOC与∠BOC互余,

∴∠AOC+∠BOC=90°,

∵∠AOC=40°,

∴∠BOC=50°,

∵OC平分∠MOB,

∴∠MOC=∠BOC=50°,

∴∠BOM=100°,

∵∠MON=40°,

∴∠BON=∠MON-∠BOM=140°-100°=40°,

(2)解:β=2α-40°,理由是:

如图1,∵∠AOC=α,

∴∠BOC=90°-α,

∵OC平分∠MOB,

∴∠MOB=2∠BOC=2(90°-α)=180°-2α,

又∵∠MON=∠BOM+∠BON,

∴140°=180°-2α+β,即β=2α-40°;

(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,

理由是:如图2,

∵∠AOC=α,∠NOB=β,

∴∠BOC=90°-α,

∵OC平分∠MOB,

∴∠MOB=2∠BOC=2(90°-α)=180°-2α,

∵∠BOM=∠MON+∠BON,

∴180°-2α=140°+β,即2α+β=40°,

答:不成立,此时此时α与β之间的数量关系为:2α+β=40.

【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.

3.结合数轴与绝对值的知识回答下列问题:

(1)探究:

①数轴上表示5和2的两点之间的距离是多少.

②数轴上表示﹣2和﹣6的两点之间的距离是多少.

③数轴上表示﹣4和3的两点之间的距离是多少.

(2)归纳:

一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.

应用:

①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.

②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.

③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.

(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.

【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.

相关文档
最新文档