电子科大微电子工艺(第五章)光刻工艺
光刻与刻蚀工艺
思考题:为什么光刻胶越薄,分辨率越高?
Jincheng Zhang
光刻工艺 Photolithography Process
光刻基本步骤
• 涂胶 Photoresist coating • 对准和曝光 Alignment and exposure • 显影 Development
Jincheng Zhang
Comparison of Photoresists
Jincheng Zhang
正胶 Positive Photoresist
曝光部分可以溶解在显影液中 正影(光刻胶图形与掩膜图形相同) 更高分辨率(无膨胀现象) 在IC制造应用更为普遍
Jincheng Zhang
Jincheng Zhang
预烘和底胶蒸气涂覆
Jincheng Zhang
光刻3-涂胶 (Spin Coating)
硅圆片放置在真空卡盘上 高速旋转 液态光刻胶滴在圆片中心 光刻胶以离心力向外扩展 均匀涂覆在圆片表面 设备--光刻胶旋涂机
Jincheng Zhang
光刻胶厚度与旋转速率和粘性的关系
问题
为什么不能用光学显微镜检查0.25um尺寸的图形? 因为特征尺寸 (0.25 µm = 250nm) 小于可见光的波长, 可见光波长为390nm (紫光) to 750nm (红光)
Jincheng Zhang
图形检测
未对准问题:重叠和错位 - Run-out, Run-in, 掩膜旋转,晶圆旋转,X方向错位,
Jincheng Zhang
光刻工序
Jincheng Zhang
1、清洗硅片 Wafer Clean
Jincheng Zhang
2、预烘和底膜涂覆 Pre-bake and Primer Vapor
光刻与刻蚀工艺ppt课件
6.1 概述
在集成电路制造中,主要的光刻设备是利用紫外光(≈0.2~ 0.4m)的光学仪器。
刻蚀:在光刻胶掩蔽下,根据需要形成微图形的膜层不同,采 用不同的刻蚀物质和方法在膜层上进行选择性刻蚀。
这样,去掉光刻胶以后,三维设计图形就转移到了衬底的相关 膜层上。图形转移工艺是如此重要,以至一种微电子工艺技术的水 平通常以光刻和刻蚀的图形线宽(特征尺寸)表示。
8.2 光刻工艺
以ULSI为例,对光刻技术的基本要求包括几个方面: a. 高分辨率:以线宽作为光刻水平的标志; b. 高灵敏度光刻胶:为提高产量,希望曝光时间尽量短; c. 低缺陷:光刻引入缺陷所造成的影响比其它工艺更为严重; d. 精密的套刻对准:一般器件结构允许套刻误差为线宽的10%; e. 对大尺寸基片的加工:在大尺寸基片上光刻难度更大。
下图(a)为典型的曝光反应曲线与正胶的影像截面图。反应曲线描述
在曝光与显影过程后,残存刻胶的百分率与曝光能量间的关系。值
得注意的是,即使未被曝光,少量刻胶也会溶于显影液中。 图 (a)的截面图说明了掩模 版图形边缘与曝光后光刻 胶图形边缘的关系。由于 衍射,光刻胶图形边缘一 般并不位于掩模版边缘垂 直投影的位置,而是位于 光总吸收能量等于其阈值 能量ET处。 图 (b)为负胶的曝光反应曲 线与图形的截面图。
8.2 光刻工艺
正胶和负胶图形转移
光刻胶通常可分为正性胶和负性 胶两类,两者经曝光和显影后得到的 图形正好相反。显影时,正胶的感光 区较易溶解而未感光区不溶解,所形 成的光刻胶图形是掩模版图形的正映 象。负胶的情况正相反,显影时感光 区较难溶解而未感光区溶解,形成的 光刻胶图形是掩模版图形的负映象。
6.1 概述
微电子单项工艺
掺杂 薄膜制备 图形转移
光刻工艺步骤介绍课件PPT
圆片低速渐静止或静止
喷显影液
圆片轻转(依靠圆片表面张力显影液在圆片表面停留一段时间)
较高速旋转(甩去圆片表面的显影液)
喷水旋转
加速旋转(甩干)
停止旋转并取片
显影后烘(坚膜)
圆片送回片架显影工艺完成
显影方式
显影方式 静态浸渍显影 圆片静止显影液喷在圆片表面,依靠圆片表面张
力使显影液停留在圆片上,圆片轻轻的转动,让显影液在圆片表 面充分浸润,一段时间后,高速旋转将显影液甩掉。如:SVG、 DNS、TEL设备。 旋转喷雾显影 圆片旋转由高压氮气将流经喷嘴的显影液打成微小 的液珠喷射在圆片表面,数秒钟显影液就能均匀地覆盖在整个圆 片表面。如:以前5寸SVG设备。 影响显影质量因素 显影时间 影响条宽控制精度 显影液的温度 影响显影的速率
曝光工艺流程 蚀工序就能将图形留在圆片上。
光刻工艺步骤实例-N-WELL的形成
高精度光刻图形与曝光光源有着直接的关系。
红其外中线 对 圆辐光片射刻加胶从热感片光起架主中要作取用出是波长为435. 预对位(找平边)
如:SVG、DNS、TEL设备。
圆片由机械手臂传输到载 片台(Stage)上
1光刻机自身的定位精度包括光学、机械、电子等系统的设计精度和热效应;
热板传导加热
基本原理:光刻工艺中最关键的工序它直接关系到光刻分辨率、留膜率、条宽控 制等。
2 硅片的加工精度和硅片在热加工氧化、扩散、注入、烘片等过程中的形变;
静态浸渍显影 圆片静止显影液喷在圆片表面,依靠圆片表面张力使显影液停留在圆片上,圆片轻轻的转动,让显影液在圆片表面充
分浸润,一段时间后,高速旋转将显影液甩掉。
基8n本m(原g理线:)光、刻3工65艺n流中m(最程i关线单键)的、上工24的序8n它批m直(号接DU关:V系远到紫光外刻线分)辨等率光、谱留线膜。率、条宽控 制等。
光刻工艺培训教程
光刻工艺培训教程光刻工艺是半导体制造中非常重要的一环,它通过光刻胶和光刻机等工具,将芯片设计图案显影到硅片上。
本文将为大家介绍一些光刻工艺的基本知识和培训教程,帮助大家更好地理解和掌握光刻工艺。
一、光刻胶光刻胶是光刻过程中最关键的材料之一,负责将芯片设计图案转移到硅片上。
常见的光刻胶有正胶和负胶两种。
正胶是根据光敏化剂的特性,在曝光后变性,形成湿润的胶层,通过显影后去除未曝光的部分,形成芯片的图案。
负胶则正好相反,曝光后未显影的部分形成了硬质胶,而显影后的部分被去除,形成芯片图案。
二、光刻机光刻机是将芯片设计图案显影到硅片上的关键设备。
光刻机工艺中的几个重要的工作步骤包括:底部对位,涂覆光刻胶,预烘烤,曝光,显影,清洗等。
其中,曝光是最核心的一步,通过光照的方式将芯片图案显影到硅片上。
三、光刻工艺步骤1.底片准备:底片要经过化学清洗,去除表面杂质,并在光刻胶附着的表面形成胶层的底板。
2.光刻胶涂覆:将准备好的光刻胶均匀涂覆在底片上,通常采用自旋涂覆的方式。
3.烘烤:将涂覆好光刻胶的底片放入烘烤炉中,通过高温烘烤,除去溶剂使胶层在底片上形成均匀的薄膜。
4.曝光:将底片放入光刻机中进行曝光,将芯片设计图案转移到胶层上。
曝光需要准确控制光源的强度和时间。
5.显影:使用合适的显影剂将未曝光部分的光刻胶去除,显现出想要芯片图案。
6.清洗:使用溶剂清洗去除显影后剩余的胶层和其他杂质。
7.检测:对显影后的芯片进行质量检测,确保芯片图案的质量和精确性。
四、光刻现场操作光刻工艺的实际操作需要在无尘室中进行,保证整个过程的工艺纯净性。
操作人员需要穿着特定的防静电服,并且使用无尘环境下的特殊工具和设备。
操作时需要严格按照工艺流程进行,并且进行各个步骤的记录和检查,确保工艺的可控性和稳定性。
五、光刻工艺注意事项1.要严格在无尘室环境下操作,避免因为杂质的干扰对芯片的影响。
2.每一步操作都需要精确控制,避免因为操作失误导致整个工艺的失败。
电子科大微电子工艺(第五章)光刻工艺
Example Viper defect clips
p
Hot Plate
Spin Station
光刻机
Track Robot
Developer dispenser
Hot Plate
Track
思考题: 如果使用了不正确型号的光刻胶进行光刻 会出现什么情况?
5.3 光学光刻
光学光刻是不断缩小芯片特征尺寸的主要限制因 素。 光源 光的能量能满足激活光刻胶,成功实现图形转移 的要求。光刻典型的曝光光源是紫外(UV ultraviolet)光源以及深紫外(DUV)光源、极 紫外(EUV)光源。 1.高压汞灯 2.准分子激光
美国的gca日本的canonnikon及荷兰的asml用较小的透镜尺寸获得较大的曝光场从而获得较大的芯片尺寸扫描过程调节聚焦透镜缺陷硅片平整度变化自动补偿步进扫描光刻机系统工作过程nsr2005i9c型nikon光刻机步进式序号性能参数参数要求分辨率045m焦深07m套刻精度110nm最大曝光面积2020mm曝光光强600mwcmnsr2005i9c型nikon光刻机主要性能指标nsr2005i9c型nikon光刻机光刻关键尺寸sem照片1nsr2005i9c型nikon光刻机光刻关键尺寸sem照片255硅片平坦化cmp减小表面的凹凸度显出边缘的相移层阻挡层1111硅片上光强上电场硅片上电场相移掩膜技术psm光学邻近修正级次衍射级次衍射针孔掩膜投影光学系统wafer离轴照明极紫外光刻技术示意图步进扫描承步进扫描4倍反射投影掩膜版大功率激光靶材料euv等离子多层涂层镜投影掩膜版的14图形真空腔电子束步进扫描静电透镜系统4
平均曝光 干涉增强 强度 过曝光 干涉相消 欠曝光
光刻胶表面
/nPR
衬底表面
光刻工艺
► 定影:选择一种既能溶解残存在乳胶层内的卤化银,又不
对乳胶层的明胶和构成影像的银质点发生侵蚀作用的定影液, 除去显影后残存在乳胶层内的卤化银,使显影所得的影响固 定下来。
► 硬面板:在玻璃基板上蒸发或溅射一层几十到几百纳米
厚的金属或金属氧化物,再在其上用光刻胶作为感光层。一 般使用铬、氧化铬和氧化铁等。
图形的形成
晶片上形成抗蚀膜图形是供形成晶片表面图形之用 的,形成方法有二:
其一是直接扫描法,就是按照图形设计数据直接在晶片的抗 蚀膜上扫描曝光图形
其二是复印法,就是将掩摸图形复印到晶片上的抗蚀膜上。 首先制作掩模图形,然后通过涂抗蚀剂、预烘、曝光、显影 等步骤完成复印任务
曝光技术直接影响到微细图形加工的精度与质量
► 等离子体去胶,氧气在强电场作用下电离产生的活性氧,
使光刻胶氧化而成为可挥发的CO2、H2O 及其他气体而被带走。
光刻质量分析
浮胶 ► 1,操作环境的湿度过大; ► 2,二氧化硅表面不净; ► 3,前烘不足或过度; ► 4,曝光或显影不合适; ► 5,腐蚀不当造成浮胶。
钻蚀
1,光刻掩膜版质量不好,版上图形边缘不齐 并有毛刺等。 2,光刻胶过滤不好,颗粒密度大。 3,硅片有突出的颗粒,使掩膜版与硅片接触 不好,图形出现发虚现象。 4,氧化层的厚度差别太大。
等气体
铝是活泼金属,和氯很容易起化学反应,可用氯等离子体腐蚀
去胶
► 溶剂去胶,去胶剂常用含氯的烃化物,并含有表面湿润剂 ► 氧化去胶,常用的氧化剂有浓硫酸,H2SO4 : H2O2(3:1)混
合液,也可用Ⅰ号洗液(NH4OH : H2O2 : H2O=1:2:5)煮沸,使 胶层碳化脱落而除去;还有氧气去胶。
►
光刻工艺介绍
光刻工艺介绍一、定义与简介光刻是所有四个基本工艺中最关键的,也就是被称为大家熟知的photo,lithography,photomasking, masking, 或microlithography。
在晶圆的制造过程中,晶体三极管、二极管、电容、电阻和金属层的各种物理部件在晶圆表面或表层内构成,这些部件是预先做在一块或者数块光罩上,并且结合生成薄膜,通过光刻工艺过程,去除特定部分,最终在晶圆上保留特征图形的部分。
光刻其实就是高科技版本的照相术,只不过是在难以置信的微小尺寸下完成,现在先进的硅12英寸生产线已经做到22nm,我们这条线的目标6英寸砷化镓片上做到0.11um。
光刻生产的目标是根据电路设计的要求,生成尺寸精确的特征图形,并且在晶圆表面的位置正确且与其它部件的关联正确。
二、光刻工艺流程介绍光刻与照相类似,其工艺流程也类似:实际上,普通光刻工艺流程包括下面的流程:1)Substrate Pretreatment 即预处理,目的是改变晶圆表面的性质,使其能和光刻胶(PR)粘连牢固。
主要方法就是涂HMDS,在密闭腔体内晶圆下面加热到120℃,上面用喷入氮气加压的雾状HMDS,使得HMDS和晶圆表面的-OH健发生反应已除去水汽和亲水健结构,反应充分后在23℃冷板上降温。
该方法效果远比传统的热板加热除湿好。
2)Spin coat即旋转涂光刻胶,用旋转涂布法能提高光刻胶薄膜的均匀性与稳定性。
光刻胶中主要物质有树脂、溶剂、感光剂和其它添加剂,感光剂在光照下会迅速反应。
一般设备的稳定工作最高转速不超过4000rpm,而最好的工作转速在2000~3000rpm。
3)Soft Bake(Pre-bake)即软烘,目的是除去光刻胶中溶剂。
一般是在90℃的热板中完成。
4)Exposure即曝光,这也是光刻工艺中最为重要的一步,就是用紫外线把光罩上的图形成像到晶圆表面,从而把光罩上面的图形转移到晶圆表面上的光刻胶中。
光刻过程图片解说-PPT课件
光刻的基本步骤
硅片清洗
去除沾污 去除微粒 减少针孔和其他缺陷 提高光刻胶黏附性
硅片清洗工艺
光刻工艺-前烘
去水烘干 去除硅片表面的水份 提高光刻胶与表面的黏附性 通常在100°C 与前处理同时进行
光刻工艺-前处理
防止显影时光刻胶脱离硅片表面 通常和前烘一起进行 匀胶前硅片要冷却
机械安全 活动部件 热表面 高压灯 电安全 高压供电源 掉电 地面静电荷 标注清晰和锁紧 放射性安全 UV光可破坏化学键 有机分子有长化学键结构 更易因UV引起损伤 UV光通常用于消毒杀菌 如果直视UV光源会伤害眼睛 有时需要戴防UV护目镜
小结
光刻:形成暂时性图形的模块 IC制程中最重要的模块 要求:高分辨率,低缺陷密度 光刻胶:正胶和负胶 步骤:前烘和前处理,匀胶,匀胶后烘,曝光,曝光后烘, 显影,显影后烘,检查 用于65,45,and 32 nm的浸没式光刻,可达到22 nm NGL:离子束光刻和电子束光刻.
曝光后烘
玻璃转化温度Tg 烘烤温度大于Tg 光刻胶分子热迁移 过曝光和曝光不足的光刻胶分子重排 平衡驻波效应, 平滑光刻胶侧壁提高分辨率
硅片冷却
PEB后,显影前,硅片放置在冷却板上冷 却至环境温度 高温会加速化学反应引起过显影 光刻胶CD变小
显影
显影液溶解部分光刻胶 正胶显影液通常使用弱碱性的溶剂 最常用的是四甲基氢铵 将掩膜上的图形转移到光刻胶上 三个基本步骤:显影-清洗-干燥
光刻胶的成分
聚合物 溶剂 感光剂 添加剂
聚合物
固体有机材料(胶膜的主体) 转移图形到硅片上 UV曝光后发生光化学反应,溶解性质发 生改变.
光刻工艺.pptx
一、接触式曝光
由于掩膜版与硅片相接触磨损,是掩膜 版的寿命降低。
22
二、接近式曝光
接近式曝光是以牺牲分辨率来延长 了掩膜版的寿命 大尺寸和小尺寸器件上同时保持线 宽容限还有困难。另外,与接触式 曝光相比,接近式曝光的操作比较 复杂。
23
三、投影式曝光
避免了掩膜版与硅片表面的摩擦,延长 了掩膜版的寿命。
34
几种实用的光刻胶配方。 PMMA对210nm到260nm的紫外光有感光性, 感光性最佳的紫外光光谱约为220nm; PMIK的紫外光感光光谱为220nm到330nm, 峰值光谱约为190nm和285nm。
35
AZ240系列光刻胶的感光光谱为240nm到 310nm,峰值光谱约为248nm、300nm、 315nm。 ODVR系列光刻胶的感光光谱为200nm到 315nm,峰值光谱为230nm、280nm、 300nm。
3
打底膜(六甲基二硅亚胺HMDS)
六甲基二硅亚胺HMDS反应机理
OH
SiO2 +(CH3) 3SiNHSi(CH3)
3
OH
O-Si(CH3) 3
SiO2
+NH
O-Si(CH3) 33
4
5
6
曝光方法
曝光有多种方法:光学曝光就可分为接 触式、接近式、投影式、直接分步重复 曝光。此外,还有电子束曝光和X射线曝 光等。曝光时间、氮气释放、氧气、驻 波和光线平行度都是影响曝光质量
掩膜版的尺寸可以比实际尺寸大得多, 克服了小图形制版的困难。
消除了由于掩膜版图形线宽过小而产生 的光衍射效应,以及掩膜版与硅片表面接 触不平整而产生的光散射现象。
24
投影式曝光虽 有很多优点, 但由于光刻设 备中许多镜头 需要特制,设 备复杂
电子科大微电子工艺复习提纲
第三章 掺杂——离子注入
学习内容: 1. 离子注入概念及目的。 2. 离子注入工艺原理、参数及注入浓度分布。 3. 离子注入效应。 4. 离子注入设备。 5.离子注入的应用。 学习要求: 1. 掌握离子注入的概念及目的,与扩散工艺相比较离子注入
扩散的工艺目的主要是形成P-N结。结深是杂质扩散浓度 分布曲线与衬底掺杂浓度曲线的交点的位置。
6. 恒定表面源扩散杂质分布特征。 恒定表面源扩散,杂质分布满足余误差函数分布
a. 杂质表面浓度由该种杂质在扩散温度下的固溶度所决定。 当扩散温度不变时,表面杂质浓度维持不变
b. 扩散时间越长,扩散温度越高,则扩散进入硅片内的杂质 总量就越多
答:a.栅氧化层,用作MOS管栅和源漏之间的介质。 b.场氧化层,用于同型MOS管之间的电隔离。 c.掺杂阻挡层,作为扩散或注入杂质到硅中的掩蔽材料。 d.注入屏蔽氧化层,用于减小注入沟道效应和注入损伤。 e.垫氧化层,做氮化硅缓冲层以减小应力。 f.阻挡层氧化层,保护有源器件和硅免受后续工艺的影响
答:(1)初始状态时已有0.1μm的氧化层 初始时间τ = ( t2ox + Atox ) / B = 0.3 h 120τ分=0钟.3h氧代化入后,,得氧to化x=0硅.4总73厚um度:t2ox+Atox=B(t + τ),t=2h, 120分钟氧化的SiO2厚度为:0.473-0.1=0.373um (2) 120分钟内水汽氧化中所消耗的硅的厚度 0.373 ×0.45=0.168um
11. 已知线性-抛物线性模型为:t2ox+Atox=B(t + τ)。其中, tox为硅片上生长的SiO2总的厚度(μm);B为抛物线速率系数 (μm2/h);B/A为线性速率系数(μm/h);τ为生成初始氧化层所 用的时间(h)。假如硅片在初始状态时已有100nm的氧化层。 计算 (1) 在120分钟内,920℃水汽氧化过程中生长的SiO2的厚 度。(2) 在120分钟内水汽氧化中所消耗的硅的厚度是多少? 已知:在920℃下,A=0.50μm,B=0.20μm2/h。
微电子工艺技术
微电子工艺技术引言微电子工艺技术是现代电子工程领域中的关键技术之一。
它主要涉及到在微米或纳米尺度范围内,对半导体材料进行加工和制备的技术方法。
微电子工艺技术的发展使得集成电路的制造变得更加精细化和复杂化,从而推动了电子设备的发展和智能化。
本文将介绍微电子工艺技术的基本原理、常用的工艺步骤以及最新的研究进展。
基本原理微电子工艺技术主要基于半导体材料的特性和物理原理进行设计和研究。
它通过在半导体表面上进行一系列加工步骤,形成电子元件和电路。
这些加工步骤包括:光刻、沉积、蚀刻、离子注入、热处理等。
光刻是微电子工艺中最关键的步骤之一。
它通过将光敏感的光刻胶涂覆在半导体表面上,然后通过光学投影曝光和显影的方式,将电路的图形转移到光刻胶上。
接着,通过蚀刻的方式,将暴露在光刻胶上的区域去除,以形成所需的电路图形。
沉积是指在半导体表面上进行材料层的沉积,主要是用于形成导电层、绝缘层和敏感层等。
常用的沉积方法包括化学气相沉积(CVD)、物理气相沉积(PVD)和溅射沉积等。
蚀刻是指通过化学或物理的方式,使材料表面的部分区域被移除。
蚀刻可以用于去除不需要的材料,在半导体制造过程中起到精确控制电路形状和结构的作用。
离子注入是将离子注入到半导体材料中,改变其导电性质的过程。
离子注入可以形成导电层和控制器件的电性能。
热处理是通过高温处理,使材料发生结构和性能的改变。
热处理可以提高材料的晶格结构和电学性能,从而改善器件的性能。
工艺步骤微电子工艺技术涉及的步骤较为复杂,下面将介绍一般情况下的典型工艺步骤:1. 表面清洁表面清洁是微电子工艺中的第一步,它可以去除杂质、氧化物和有机物等对器件性能的影响。
常用的清洗方法包括浸泡清洗、超声波清洗和等离子体清洗等。
2. 沉积沉积是指在半导体表面上沉积材料层,形成所需的结构和功能。
常用的材料包括金属、绝缘层和敏感层等。
沉积方法根据要求的材料和性能不同,选择不同的方法,如化学气相沉积、物理气相沉积和溅射沉积等。
微电子工艺——光刻技术.ppt
例:转速 5000 r/min,时间 30 sec,膜厚 1.0 m 。 4、前烘(软烘) 目的是去除光刻胶中的大部分溶剂和稳定胶的感光特性。
5、曝光
6、显影
将曝光后的硅片放到显影液中。对于负胶,显影液将溶解 掉未曝光区的胶膜;对于正胶,显影液将溶解曝光区的胶膜。 几乎所有的正胶都使用碱性显影液,如 KOH 水溶液。
oxide
基本工艺
• Step 5: 去除光刻胶:
– Step 5A: 去胶
• S胶iO时2、碳S被iN还、原多析晶出硅,等微非小金的属碳材粒料会一污般染采衬用底浓表硫面酸,去因胶而。必由须于在浓浓硫硫酸酸去 中 3:加1 入H2O2等强氧化剂,使碳被氧化为CO2溢出。浓硫酸与H2O2的比值为
• 酸性腐蚀液对铝、铬等金属具有较强的腐蚀作用,因此金属衬底的去 胶需要专门的有机去胶剂。通常这类去胶剂中加入了三氯乙烯作为涨 泡剂,因此去胶后要用三氯乙烯和甲醇进行中间清洗,由于去胶液和 三氯乙烯都是有毒物质,处理比较困难
涂胶设备
• 动态移动臂分配 ( Dynamic Moving Arm Dispense )
涂胶设备
Resist Dispenser
– 光刻胶厚度的控制:
• 光刻胶黏度
• 旋涂速度
• 温度 • 湿度
Vacuum Chuck
• 废气流
Hollow Shaft
To House Vacuum
涂胶的问题
1985 年以前,几乎所有光刻机都采用 g 线 (436 nm) 光源, 当时的最小线宽为 1 m 以上。1985 年以后开始出现少量 i 线 (365 nm) 光刻机,相应的最小线宽为 0.5 m 左右。从 1990 年开 始出现 DUV 光刻机,相应的最小线宽为 0.25 m 左右。从1992 年起 i 线光刻机的数量开始超过 g 线光刻机。截止到 1998 年 , g 线、i 线和 DUV 光刻机的销售台数比例约为 1:4:2。
微电子技术中的光刻工艺是什么?
微电子技术中的光刻工艺是什么?在当今科技飞速发展的时代,微电子技术无疑是推动社会进步的关键力量之一。
而在微电子技术的众多环节中,光刻工艺占据着至关重要的地位。
那么,光刻工艺究竟是什么呢?要理解光刻工艺,我们首先得从微电子技术说起。
微电子技术,简单来说,就是使电子元器件和由它们组成的电子设备微型化的技术。
这其中包括了集成电路的设计、制造、封装等多个环节,而光刻工艺就是集成电路制造过程中的核心步骤之一。
光刻工艺的基本原理,就像是在微观世界里进行精细的“雕刻”。
想象一下,我们有一块平整的“基板”,类似于一张白纸,我们需要在这张白纸上精确地画出我们想要的图案。
在光刻工艺中,这个“图案”就是集成电路中各种电子元件的布局和连接线路。
具体的操作过程是这样的:首先,我们需要在基板上涂上一层叫做“光刻胶”的物质。
这层光刻胶就像是我们绘画时的画布,它对特定波长的光线非常敏感。
接下来,我们会使用一种叫做“光刻机”的设备,它能发出特定波长的光线,通过一系列复杂的光学系统,将预先设计好的集成电路图案投射到涂有光刻胶的基板上。
被光线照射到的光刻胶会发生化学变化,而没有被照射到的部分则保持不变。
然后,通过一系列的化学处理步骤,比如显影、蚀刻等,把被光线改变了性质的光刻胶部分去除掉,或者把没有光刻胶保护的基板部分蚀刻掉,从而在基板上留下我们所需要的图案。
这个图案就是集成电路的一部分,经过多次重复这样的光刻过程,就可以在基板上制造出完整的集成电路。
光刻工艺的精度对于集成电路的性能和集成度有着决定性的影响。
随着科技的不断进步,集成电路的集成度越来越高,这就要求光刻工艺能够实现更小的线宽和更高的分辨率。
在实际的光刻过程中,有很多因素会影响光刻工艺的精度和质量。
比如光刻机的性能、光刻胶的特性、曝光的时间和强度、环境的温度和湿度等等。
为了保证光刻工艺的稳定性和可靠性,工程师们需要对这些因素进行严格的控制和优化。
光刻机是光刻工艺中最为关键的设备之一。
微电子晶体管制造中的光刻工艺与曝光技术研究
微电子晶体管制造中的光刻工艺与曝光技术研究在当今科技发展迅猛的时代,微电子晶体管的制造工艺和曝光技术成为了电子行业的重要研究方向。
微电子晶体管是现代电子设备的核心部件,其制造过程中的光刻工艺和曝光技术对晶体管的性能和稳定性起着至关重要的作用。
光刻工艺是微电子晶体管制造过程中的关键环节之一。
它通过使用光刻胶和光刻机,将光刻胶涂布在硅片上,然后通过曝光和显影的过程,将图案转移到硅片上。
光刻胶的选择和光刻机的参数设置对于制造出高质量的晶体管至关重要。
光刻胶的选择应考虑其分辨率、耐化学性和稳定性等因素。
而光刻机的参数设置则需要根据晶体管的要求来进行调整,以确保图案的精确度和一致性。
曝光技术是光刻工艺中的核心技术之一。
它通过使用特定的光源和光刻胶,将图案投射到硅片上。
曝光技术的研究主要集中在光源的选择和光刻胶的响应特性上。
光源的选择应考虑其波长、功率和稳定性等因素。
不同的光源对于不同的光刻胶有不同的曝光效果,因此需要根据具体的制造要求进行选择。
光刻胶的响应特性包括曝光剂的灵敏度和光刻胶的分辨率等。
曝光剂的灵敏度决定了曝光的能量和时间,而光刻胶的分辨率决定了图案的精确度和清晰度。
除了光刻工艺和曝光技术外,微电子晶体管制造中还涉及到其他关键技术。
例如,清洗工艺是制造过程中不可忽视的一环。
清洗工艺的目的是去除光刻胶残留和其他杂质,以确保晶体管的质量和稳定性。
清洗工艺的研究主要集中在清洗剂的选择和清洗参数的优化上。
清洗剂的选择应考虑其对光刻胶的溶解能力和对硅片的腐蚀性。
清洗参数的优化则需要根据具体的制造要求来进行调整,以确保清洗的效果和稳定性。
在微电子晶体管制造中,光刻工艺和曝光技术的研究是不可或缺的。
它们直接影响着晶体管的性能和稳定性。
随着科技的不断进步,人们对光刻工艺和曝光技术的要求也越来越高。
因此,加强对光刻工艺和曝光技术的研究,提高其精确度和稳定性,已成为微电子晶体管制造中的重要课题。
总之,微电子晶体管制造中的光刻工艺和曝光技术是电子行业的重要研究方向。
第5章光刻工艺
投影曝光机
STEPPER的对准曝光示意图
5.3 影响光刻质量的因素
5.3.1 硅片表面状况对光刻工艺的影响
硅片的表面状况对光刻工艺的影响有三个 方面:
表面清洁度
表面粘附性
表面平面度
5.3.2 硅片平面度对光刻工艺的影响
描述平面度的方法之一是用 “峰谷间 距(PV)”来表示,即:圆片表面上最高 点与最低点之间的高度差。为了保证分辨 率,曝光时必须要保证衬底上所有各点都 处于成像透镜的焦深范围之内。
前烘的方式有烘箱烘烤、红外线加 热和热板烘烤。
匀胶、前烘一体机
5.1.5 曝光
曝光就是把掩模版上的图形成像到硅片上
接触式光刻机掩模版
硅圆片
1:1曝光
投影(缩小)曝光
投影式光刻机掩模版
硅圆片
5.1.6 显影和坚膜
显影是把曝光后的硅片放在显影液里进行 处理。对于负胶,未曝光部分被溶解在显影液 里;对于正胶,曝光部分被溶解在显影液里。 要正确地控制曝光量和合适的显影条件(温度、 浓度、时间),既不能曝光、显影不足,也不 能曝光、显影过度。
真空接触
硬接触
软接触
20 μm 接近式 20 μm 接近式(胶中加了 增强对比度材料)
接触式曝光机
接近式曝光机
间隙 调整杆
接近式曝光机原理
掩膜版 硅片
正面图形对准
图形
掩膜版 硅片
背面图形对准
图形 有些工艺需要在没有对准记号的硅片背面 进行加工,这就需要利用正面图像上的对准记 号进行对准,对背面的光刻胶曝光。
涨性好; ● 去胶容易,不留残渣;
光刻胶的留膜率
光刻胶的留膜率是光刻胶的重要指标之一。 从理论上讲,正胶的未曝光部分(负胶则是曝 光部分)是不溶于显影液的(以下统称为“非 溶性胶膜”) ,实际上也被显影液溶解,只是 困难些。所以光刻胶的“留膜率”就是曝光显影 后非溶性胶膜厚度(如正胶的未曝光部分)与 曝光前胶膜厚度之比。要求光刻胶具有较高的 留膜率。
第05章光刻
在最初全场预对准测量或逐场曝 光中,可进行补偿
除整场对准和聚焦外,没有补偿
投影掩膜版缩影倍率和曝光场的比较
曝光光源
• 汞灯 • 准分子激光
电磁光谱的片段
可见
f (Hz)
γ射线
X射线 UV
红外线
微波
无线电波
1022 1020 1018 1016 1014 1012 1010 10 8 10 6 10 4
当使用正胶时要求掩膜版上 图形 (与想要的结构相同)
光刻胶的成分
溶剂: 使光刻胶具有流动性
树脂: 作为粘合剂的聚合物的 混合物,给予光刻胶机械和
化学性质
感光剂: 光刻胶材料的光敏成分
添加剂: 控制光刻胶材料特殊方面的
化学物质
负性光刻胶交联
未曝光的区域保留
可溶于显影液的化
UV
学物质
被曝光的区域发生交 联,并变成阻止显影
365 nm
80
h-line 405 nm
g-line 436 nm
60
40
DUV
20 248 nm
0
200
300
400
500
600
波长(nm)
Mercury lamp spectrum used with permission from USHIO Specialty Lighting Products
微电子工艺
第五章 光刻
第一章 引言 第二章 晶体生长 第三章 工艺中的气体、化试、水、环境和硅片的清洗 第四章 硅的氧化 第五章 光刻 第六章 刻蚀 第七章 扩散 第八章 离子注入 第九章 薄膜淀积 第十章 工艺集成 第十一章 集成电路制造
硅片制造工艺流程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型高压汞灯的发射光谱
I-line (365)
G-line (436) H-line (405)
Intensity (a.u)
Deep UV (<260)
300
400
500
600
Wavelength (nm)
光刻光源
名称
G-line 汞灯 H-line I-line XeF XeCl 准分子激光 KrF (DUV) ArF 氟激光 F2 248 193 157 0.25 to 0.15 0.18 to 0.13 0.13 to 0.1
显影液
漂洗液
四甲基氢氧化铵 二甲苯
TMAH 去离子水 DI water
七、坚膜烘培 工艺目的:
使存留的光刻胶溶剂彻底挥发,提高光刻胶的粘 附性和抗蚀性。这一步是稳固光刻胶,对下一步 的刻蚀或离子注入过程非常重要。
八、显影检查
工艺目的: 1.找出光刻胶有质量问题的硅片 2.描述光刻胶工艺性能以满足规范要求
正性光刻胶
传统胶片相机正片
负性光刻胶
传统胶片相机负片
光刻三个基本条件——光刻机
光刻机
传统相片放大机
三、光刻技术要求
光源
分辨率,是将硅片上两个相邻的特征尺寸图形 区分开的能力。 套准精度,掩膜版上的图形与硅片上的图形的 对准程度。按照光刻的要求版上的图形与片上 图形要精确对准。 工艺宽容度,工艺发生一定变化时,在规定范 围内仍能达到关键尺寸要求的能力。
Developer puddle
Wafer Form puddle Spin spray Spin rinse and dry
经曝光的正胶逐层溶解,中和反应只在光 刻胶表面进行。 非曝光区的负胶在显影液中首先形成凝胶 体,然后再分解,这就使整个负胶层被显影液 浸透而膨胀变形。
正性光刻胶 负性光刻胶 Xylene 醋酸正丁酯 n-Butylacetate
5.2 光刻工艺步骤及原理
光刻工艺的八个基本步骤 一、气相成底膜 二、旋转涂胶 三、软烘 四、对准和曝光 五、曝光后烘培(PEB) 六、显影 七、坚膜烘培 八、显影检查
光刻工艺的八个基本步骤 涂胶 曝光
显影
检查
一、气相成底膜
工艺目的:增加光刻胶与硅片的粘附性。 工艺过程: 1. 在气相成底膜之前,硅片要进行化学清洗、甩 干以保证硅片表面洁净。 2. 用N2携带六甲基二硅胺烷(HMDS)进入具有 热板的真空腔中,硅片放在热板上,形成底膜。
工艺过程:
1.上掩膜版、硅片传送 2. 掩膜版对准( RA )(掩膜版标记与光刻机基准 进行激光自动对准)
3. 硅片粗对准( GA )(掩膜版与硅片两边的标记 进行激光自动对准) 4. 硅片精对准( FA )(掩膜版与硅片图形区域的 标记进行激光自动对准)
经过8次的对准和曝光,形成了CMOS器件结构
平均曝光 干涉增强 强度 过曝光 干涉相消 欠曝光
光刻胶表面
/nPR
衬底表面
/nPR
Photoresist Substrate Overexposure Underexposure
驻波效应降低了光刻 胶成像的分辨率,影 响线宽的控制。
Photoresist Substrate
六、显影 工艺目的:溶解硅片上光刻胶可溶解区域,形成 精密的光刻胶图形。
光刻是集成电路制造的关键工艺
一、光刻技术的特点
产生特征尺寸的关键工艺; 复印图像和化学作用相结合的综合性技术; 光刻与芯片的价格和性能密切相关,光刻成本占 整个芯片制造成本的1/3。
二、光刻三个基本条件
掩膜版 光刻胶 光刻机
掩膜版(Reticle或Mask)的材质有玻璃 版和石英版,亚微米技术都用石英版,是 因为石英版的透光性好、热膨胀系数低。 版上不透光的图形是金属铬膜。 Reticle
五、曝光后烘培(PEB)
工艺目的:使得曝光后的光敏感物质在光刻胶内 部进行一定的扩散,可以有效地防止产生驻波效 应。 对DUV深紫外光刻胶,曝光后烘焙提供了酸扩散 和放大的热量,烘焙后由于酸致催化显著的化学 变化使曝光区域图形呈现。
入射光和反射光发生干涉并引起光刻胶在厚度方 向上的不均匀曝光,这种现象称为驻波效应。驻 波效应降低了光刻胶成像的分辨率。深紫外光刻 胶由于反射严重驻波效应严重。
未正确套刻情形
放大
缩小
旋转 X轴方向偏移
Y轴方向偏移
曝光场
驻波与抗反射涂层 当光刻胶下面的底层是反光的衬底(如金属和多 晶),光线将从衬底反射并可能损害临近未曝光 的光刻胶,这种反射现象会造成反射切入。在反 光衬底上增加一层抗反射涂层(如TiN)可消除反 射切入和驻波现象。
底部抗反射涂层(BARC)
光的衍射
数值孔径(NA) 透镜能够把一些衍射光会聚到一点成像,把 透镜收集衍射光的能力称为透镜的数值孔径。
透镜半径 NA (n) Sinq m (n) 透镜焦长
n为图像介质的折射率,θm为主光轴和透镜 边缘线夹角。透镜半径越大数值孔径越大成 像效果越好。
数值孔径在成像中的作用
分辨率(R) 将硅片上两个相邻的关键尺寸图形区分开的能力。
热 板
对流烘箱
微波烘箱
四、对准和曝光
工艺目的: 对准和曝光是将掩膜板上的图形通过镜头由紫外 光传递到涂有光刻胶的硅片上, 形成光敏感物质的 空间精确分布,从而实现精确的图形转移。
对准——同轴和离轴对准系统
曝光
对准标记
对准标记
1. 投影掩膜版的对位标记(RA) :在版的左右两 侧, RA与步进光刻机上的基准标记对准 2. 整场对准标记(GA):第一次曝光时被光刻在硅 片左右两边,用于每个硅片的粗对准 3. 精对准标记(FA):每个场曝光时被光刻的,用 于每个硅片曝光场和投影掩膜版的对准
6.抗蚀性好(在后续刻蚀工艺中,光刻胶很好 地保护衬底表面,胶的这种性质称为抗蚀性)
7.颗粒少
旋转涂胶参数
光刻胶厚度∝1/(rpm)1/2
传统正性I线光刻胶
1. 树脂是悬浮于溶剂中的酚醛甲醛聚合物 2. 感光剂化合物作为强的溶解抑制剂(不溶解于显影液)被加到线性酚 醛树脂中 3. 在曝光过程中,感光剂(通常为DNQ)发生光化学分解产生羟酸 4. 羟酸提高光刻胶曝光区域的线性酚醛树脂的溶解度
Example Viper defect clips
p
Hot Plate
Spin Station
光刻机
Track Robot
Developer dispenser
Hot Plate
Track
思考题: 如果使用了不正确型号的光刻胶进行光刻 会出现什么情况?
5.3 光学光刻
光学光刻是不断缩小芯片特征尺寸的主要限制因 素。 光源 光的能量能满足激活光刻胶,成功实现图形转移 的要求。光刻典型的曝光光源是紫外(UV ultraviolet)光源以及深紫外(DUV)光源、极 紫外(EUV)光源。 1.高压汞灯 2.准分子激光
PR Film
PR Film
Substrate
Substrate
(a)对比度差
(b)对比度好
3.敏感度好(是指硅片表面光刻胶中产生良好 图形所需要的一定波长光的最小能量值,以 mJ/cm2为单位) 4.粘滞性好(表征液体光刻胶流动性的一个指 标,即粘度,单位用cps表示)
5.粘附性好(指光刻胶与衬底表面的粘附性好)
DOF
2( NA) 2
分辨率和焦深的关系
套准精度 掩膜版上的图形与硅片上的图形的对准程度。 按照光刻的要求版上的图形与片上图形要精确 对准。套准精度也是光刻中一个重要的性能指 标。套准精度一般是关键尺寸的1/4 ~ 1/3。 通过对不同层次之间的千分尺结构套刻记号的 位置误差或来测定套准精度。
脱水烘干
HMDS成膜
二、旋转涂胶
工艺目的:在硅片表面涂上液体光刻胶来得到一 层均匀覆盖层。 工艺过程: 1.分滴 2.旋转铺开 3.旋转甩掉 4.溶剂挥发 5.去除边圈
Wafer
PR
EBR
Chuck PR dispenser Exhaust nozzle nozzle
Wafer Wafer Chuck Chuck Spindle To vacuum vacuum To pump pump pump
Drain
分滴
Solvent Solvent
PR PR suck suck back back
Vacuum
旋转铺开
旋转甩掉
溶剂挥发
去除边圈
丙烯乙二醇一甲胺以太醋酸盐PGMEA 乙烯乙二醇一甲胺以太醋酸盐EGMEA
光刻胶作用: 1. 将掩膜版图案转移到硅片表面顶层的光刻胶中; 2. 在后续工艺中,保护下面的材料(例如刻蚀或 离子注入阻挡层) 光刻胶成分:
PR
Substrate 正确显影 PR Substrate 显影不足
PR
Substrate 不完全显影 PR Substrate 过显影
Litho process-Auto ADI
Array Misplacement on first layer Wrong Reticle (RV option)
k R NA
k为工艺因子,范围是0.6~0.8, λ为光源的波长, NA为曝光系统的数值孔径 要提高曝光系统的分辨率即减小关键尺寸,就要 降低光源的波长λ 。
焦深(DOF) 是焦点上下的一个范围,在这个范围内图像连 续保持清晰。焦深也就是景深,集成电路光刻 中的景深很小,一般在1.0μm左右或更小。
顶部抗反射涂层(TARC)