金属自由电子经典理论
固体物理-第三章 金属自由电子论讲解
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:
第5章金属自由电子论
第5章金属自由电子论
5.2 量子自由电子论
于是自由电子的状态密度为:
3
g(E)d dE Z2V22m 2 2E1 2cE 1 2
可见自由电子的态密度g(E)乃是能量E的函数,显然g(E)~E 的关系曲线是抛物线的一支。g(E)
态数 ,电子态密度函数
kx
k与能量 E的关系:
kz
dK
ky
kx2ky 2kz22 m 2 , Ek22 m 2 E
第5章金属自由电子论
5.2 量子自由电子论
等k值面为球面,在零到k的范围内,K空间的体积为 4k 3 3
因为在K空间中每 2 3 的体积内有一个满足周期性边界的
V
k值,故从零到k的范围内,总的k的取值数目为:
室温下 1 mol 一价金属的比热为:
C vC vlC ve3R2 3R4.5R
实验表明:室温下,金属的比热接近3R,全部由晶格贡献。 金属中自由电子起着电和热的传导作用,却对比热几乎没 贡献。
第5章金属自由电子论
5.1 经典自由电子论
经典理论自由电子论无法解释这一现象。直到索末菲把量 子力学应用到自由电子系统,才得到圆满的解释。
L Y
5.2 量子自由电子论
于是电子能量可写为:
E 2 2m
k
2 x
k
2 y
k
2 z
2 2
2m L
2
nx2
n
2 y
nz2
可见,自由电子能量依赖 于一组量子数(nx,ny,nz),能量只能 是一系列分离的数值,这些分离的能量被称为能级。按照泡 利原理,每个电子能级允许容纳两个自旋相反的电子。
金属自由电子理论
多尺度模拟与计算
总结词
多尺度模拟与计算是金属自由电子理论的另一个重要 发展方向,能够综合考虑不同尺度的物理效应和相互 作用。
详细描述
金属自由电子理论涉及多个尺度和多个物理效应的相 互作用,因此多尺度模拟与计算在该领域具有重要意 义。通过结合微观尺度和宏观尺度的方法,可以更全 面地理解金属材料的性质和行为,为实际应用提供更 准确的预测和指导。例如,在材料性能模拟、器件设 计和优化等方面,多尺度模拟与计算具有广泛的应用 前景。
应用领域
01
02
03
物理学
金属自由电子理论在物理 学领域中广泛应用于描述 金属的物理性质,如热导 率和电导率等。
材料科学
在材料科学领域,金属自 由电子理论用于研究和理 解金属材料的各种性质, 如合金的组成和性质等。
工程应用
金属自由电子理论在工程 应用中也有广泛的应用, 如电子器件的设计和制造 等。
波函数与电子云
01
波函数是描述电子在空间中分布的函数,它可以用来计算电子 在某一点出现的概率。
02
在金属中,由于存在大量的自由电子,每个电子的波函数都与
其他电子的波函数相互重叠,形成了所谓的“电子云”。
电子云描述了电子在金属中的概率分布,对于理解金属的性质
03
如导电、导热等具有重要意义。
04
金属自由电子理论的计 算方法
无序性
自由电子在金属中的运动是无序的,不受单个原子或 分子的限制。
能量多样性
自由电子具有不同的能量状态,取决于其运动速度和 方向。
自由电子的分布与运动
分布
在金属中,自由电子的分布遵循 费米分布函数,取决于温度和费
米能级。
运动
自由电子在金属晶格中以波矢k描 述的运动状态,可以通过薛定谔方 程描述。
自由电子论
ne2 1 0 ' i " m 1 i 1 i
0
ne2
m
其中 0 是直流电导率。以上推导见阎守胜书 p22
'
1
0 2
2
,
"
0 1 2
2
,
实数部分体现了与电压同位相的电流,也就是产生焦耳热
的那个电流,而虚部则体现的是与电压有 2 位相差的电流, 也就是感应电流。
—— Richardson-Dushman公式
其中
A
mekB2
2 2 3
W V0 EF0
在上面的推导中,用到两个积分公式:
exp
mv
2 y
2kBT
dvy
exp
mvz2 2kBT
dvz
2 kBT
i t
H
0
i
E t
故相对介电常数为:r
0
1
i
0
将上面求出的交流电导率代入该式,有:
r r ' ir " 1 0
0 1 2 2
i
0
0 1 2 2
示为: Ey E0 exp i qx t
运动方程的稳态解为:
e 1 v y m 1 it E y
电流密度 jy n e vy
ne2 1 0 ' i " m 1 i 1 i
第五章:金属的电子理论
dN ( E ) 3 2me 2 dE 2
3/ 2
3/ 2
E1/ 2
V 3 2
V 2me 2 2 2 3N ( E ) 2E
E1/ 2
DOS: number of electrons/unit energy in a range E ~ E + dE
自由电子模型总结
• 即使在金属中,传导电子的电荷分布( charge distribution)收到 离子芯强烈静电势的影响。因此,自由电子模型描述传导电子的运 动特性(kinetic properties)最为合适。传导电子与离子之间的相 互作用将在能带理论中讨论。 • 最简单的金属是碱金属:Li, Na, K, Rb, Cs。在这些单价金属中,N 原子构成的晶体有N 个电子和N 个正离子。 • 自由电子模型产生于在量子理论建立之前。经典Drude模型成功导 出欧姆定律(Ohm’s law),以及电导和热导的关系。但是,由于 使用了Maxwell经典统计分布,它不能解释比热容(heat capacity) 和磁化率(magnetic susceptibility )。后来Sommerfeld在量子理 论基础上重建了该模型。
~ 10eV
1/ 3 2 pF kF 3 N ~ 108 cm / sec vF V me me me
2/3 2 2 2 EF 2 3 N ~ 105 K TF kF kB 2me kB 2me kB V
态密度(Density of states, DOS)
L N (E) 2 2
dN ( E ) L 2me 1 N ( E ) 2me E , D( E ) dE E 2
金属自由电子气理论
金属自由电子气理论特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率特鲁德(Paul Drude )模型的基本假设11.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。
2.独立电子近似:电子与电子之间的相互作用可以忽略不计。
外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。
)特鲁德(Paul Drude )模型的基本假设23.玻尔兹曼统计:自由电子服从玻尔兹曼统计。
4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。
每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。
特鲁德模型的成功之处——成功解释了欧姆定律欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。
202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩2.经典模型的另一困难:传导电子的热容根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故333(),222A B e U U N k T RT C R T ∂====∂33/29v ph e C C C R R =+=+≈(卡/molK.)但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。
4.2 Sommerfeld 的自由电子论1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。
SSP第1章金属自由电子
Hˆ E
为能量算符的本征方程
为能量算符的本征函数
E 为能量算符的本征值
在量子力学中,粒子处在本征态,如:能量本征态 , 则,粒子能量具有确定值 E ----本征态 所对应的本征值。
2021/3/6
20
1.2 金属的量子电子气理论
1.2.2 量子力学及复数基本知识复习
三、量子力学中的力学量
力学量用算符来表示,
2021/3/6
14
1.2 金属的量子电子气理论
1.2.2 量子力学及复数基本知识复习
(4) 自由粒子的波函数描述
因为是自由粒子,其粒子属性 E,P 是常数,
由德布罗意关系,其波的属性 ,k 也是常数。
所以,自由粒子的波应当是平面波,可用函数 来描述
Aei(krt)
i
Ae
(PrEt
)
验明平面波 考察 t 时刻的波阵面 R 的振动
(3) 薛定鄂方程 量子力学中微观粒子状态的变化,由薛定鄂方程描述
i
2
2
U (r)
t 2m
薛定鄂方程人为构造,正确性由实验验证。
2021/3/6
17
1.2 金属的量子电子气理论
1.2.2 量子力学及复数基本知识复习
(4) 自由粒子波函数的验证
因为, U (r) 0
所以,薛定鄂方程为 i 2 2
如:坐标算符
rˆ r
动量算符 哈密顿算符
Pˆ i
Hˆ
2
2
U (r )
2m
关于量子力学算符的几个重要性质
1、量子力学中表示力学量的算符都是厄米算符
2、厄米算符的本征函数具有正交性
3、厄米算符的本征函数构成完备系
金属自由电子理论
dk
dZ
2
VC
2π3
4π k 2
dk
E dE ky
dZ
2
VC
2π3
4π
2mE 2
2
m dE 2m E
E
kx
4πVC
2π3
(2m)3 2 3
E1 2
dE
3
4πVC
2m h2
21
E 2dE
N (E) dZ cE1 2
dE
其中
C
4πVc
3
2
E
1
2
CE1
2
其中
C
4πVc
2m h2
3
2
4.1.3 自由电子气的费米能量
1.费米能量
在热平衡时,能量为E的状态被电子占据的概率是
1 f ( E ) e(EEF ) kBT 1
EF---费米能级(等于这个系统中电子的化学势),它的意 义是在体积不变的条件下,系统增加一个电子所需的自由能。 它是温度T和晶体自由电子总数N的函数。
k
(r)
Ae ikr
E
2k 2 2m
2 2m
(k
2 x
k
2 y
k
2 z
)
波函数为行波,表示当一个电子运动到表面时并不被反射
回来,而是离开金属,同时必有一个同态电子从相对表面的对
应点进入金属中来。
k
波矢, 2π
k
为电子的德布罗意波长。
电子的动量:p k
第四章 金属自由电子理论
1 E << EF 1 f (E) = E = EF 2 0 E >> EF
目录
绝对零度下
N = ∫ f (E)ρ(E)dE = ∫ ρ(E)dE = ∫
0 0
2 3
∞
0 EF
0 EF
0
3 2 0 2 CE dE = C(EF ) 3
1 2
3 N 23 ℏ2 3Nπ 2 ℏ2 2 2 3 E =( ) = (3nπ ) V = 2m c 2m 2C
∫
∂f (E) I( dE 先求积分I: 先求积分 : EF ) = − g(E) ∂E 0
∫
= I0 g(EF ) + I1g′(EF ) + I2 g′′(EF ) +⋯
= g(EF ) +
π2
6
(kBT)2 g′′(EF )
∞ ∂f (E) ∂f (E) I0 = − dE =1 I1 = −∫ (E − EF )dE ∂E ∂E 0 0 E − EF 令 = η kBT 1 − eη 1 ∂f (E) 1 − e−η ∂f (E) = = 则 η 2= kBT (e +1 ) kBT ∂η ∂E kBT (1+ e−η )2
f (E) = e
1
E−EF kBT
——费米分布 费米分布
增加一个电在所需的自由能.它是温度和电子数的函数 增加一个电在所需的自由能 它是温度和电子数的函数. 它是温度和电子数的函数 系统中电子总数: 系统中电子总数: = N
费米能量或化学势,物理意义:体积不变时, EF 费米能量或化学势,物理意义:体积不变时,系统
(2π )3 8π 3 ∆k = ∆kx∆ky∆kz = = Lx Ly Lz Vc
固体物理学 自由电子论
§1. 金属自由电子论的物理模型 1.Drude的金属自由电子论
Drude的经典理论将自由电子看 作是经典离子气体,服从波尔兹曼分 布(速度分布),与中性稀薄气体一样 去处理,认为电子之间无相互作用, 同时也不考虑原子实势场的作用,这 样一个简单的物理模型处理金属的许 多动力学问题是很成功的。
f ( T )D( )d N
0
当T《 TF时:
u
F
[1
2
12
(
kBT
F
)2
]
0(kB
T
F
)4
与处理点阵振动的热能相仿,由
电子气的轨道密度D(ε)可求出电子气
的内能,轨道密度定义为:
在能量ε附近,单位能量间隔中
的轨道数定义为轨道密度度,在dε能
量间隔中的轨道数为D(ε)dε,色散
关系为:
2 k 2
k2
2 2m
(k2x
k
2 y
kz2 )
这就是色散关系,能量随波矢的变化是抛物
线函数。
对于一个三维晶体,需要的量子数为:
(1)波矢k(三个分量kx、ky、kz)
(2)自旋量子数
ms
1 2
给定了 k 就确定了能级,k 代表同能级上
自旋相反的一对电子轨道。
在波矢空间自由电子的等能面是一个球面
εk
2 2m
此时 k(r) eikr (省去了归一化常数), 波矢 Kx.K y.KZ 取一系列分立值:
kx
2π L
nx
ky
2π L
ny
0. 1. 2......
kz
2π L
nz
将 (r) eikr ei(k xxk y yk zz) k 代回薛定锷方程可求出能级:
第三章 金属自由电子理论
FE
ma
• Why? ↑Temp ⇒ ↓τ, n same (same # conduction electrons) ⇒ ↑ρ
• Semiconductor: Resistance decreases with Temperature.
• Why? ↑Temp ⇒ ↓τ, ↑n (“free-up” carriers to conduct) ⇒ ↓ρ
⎧1 E << EF ⎪ ⎪1 f ( E) = ⎨ E = EF 2 ⎪ ⎪ ⎩0 E >> EF
k BT = 0
k BT = 1 kBT = 2.5
费米分布曲线
3.3费米面与态密度
三、费米面计算方法及态密度 系统中的电子总数:
∞
N =∑
E
1 e
E − EF k BT
N = ∫ f ( E ) g ( E ) dE
3.2 自由电子的量子理论
一、波函数与能级
薛定谔方程: 平面波形式的解 :
h2 2 − ∇ ψ = Eψ 2m
rr r ψ ( r ) = ψ 0 e ik ⋅ r
r r 其中 r 为电子的位置矢量, k
h 2k 2 E = 2m
为波矢量.
r r p = hk
上面讨论的是无任何限制的自由电子的性质,它的动量具有确定值,速度与波的 群速度一致,而坐标不受任何限制,电子在空间各电出现的几率相等.在金属的 自由电子论中,电子的势能为零,但它不完全自由,它的位置受金属边界的限制.
∞
N=
∫
∞
0
CE
1
2
f ( E ) dE
2 = 2 CE2 |∞ − C∫ E 2 f ′(E)dE 0 3 0 3
第二章 金属的自由电子论
d (1 e ) f e I0 d d (1 e ) 2 (1 e ) 2 1 此为 I0 | 0 (1) 1 奇函 此为 偶函 (1 e ) 数
I1
kx
2 ky ny L 2 kz nz L
2 nx L
( nx 0, 1, 2, )
( ny 0, 1, 2, ) ( nz 0, 1, 2, )
h
注: 由于德布洛意关系 P 所以 k 空间也称为动量空间。
,即 P k
,
上式告诉我们,沿 k 空间的每个坐标轴方向, 2 电子的相邻两个状态点之间的距离都是 L 。 2 所以三维 k 空间每个点所占的体积是 L 。
0
f dE E
f I1 ( E EF ) dE 0 E 2 f 1 I 2 ( E EF ) dE 0 2! E
f (E) e
1
E EF 1 k BT
E EF 1 令f ( ) , , e 1 k BT E 0, k BT EF时, f ( ) e , 2 (1 e ) E , E EF k BT f dE f ( ) d E 积分限发生变化
eBT ) 2
I g (E)
2
6
(k BT ) 2 g '' ( E )
3 2 g ( E ) CE 2 3 1 2 3 1 g ' (E) C E 2 C E 2 3 2 1 1 C 1 g '' ( E ) C E 2 E 2 2 2
1金属电子论1-Drude理论
在足够低温度下精心制备的样品中平均自由程可以达到厘米量级,大约是10^8倍的原子间距。 这表明 Drude所猜测的碰撞发生在电子和离子实之间是(很)不准确的,即电子散射机制是复杂的。
因此对于Drude理论的应用,我们主要关注不依赖于弛豫时间的物理量。
(x) (T (x))
x 处单个电子的能 量,取决于温度
计算 Lorenz number
1 3
v
2cv
ne2
m
κ σ
mv 2cv 3ne2
cv
3 2
nkB
1 2
mv2
3 2
kBT
κ σT
3 2
k
2 B
e2
1.1110 8W / K 2
这样,证明了 Wiedemann-Franz 定律,并得到了 Lorenz number。但计算得到的 Lorenz number 只有实验值的一半。但在Drude的原始文献中,他得到的电导率是 这里数值的一半,因此他得到了与实验一致的Lorenz number.
x
可见简谐振荡的频率等于 plasma frequency
4. 热输运
热传导的傅里叶定律
jq T
温度变化不剧烈时成立
Wiedemann-Franz Law
实验发现很多金属具有满足:热导率与电导率的比值正比于 温度,且比例系数对不同的金属近似相等。
jq T
T
热流 温度梯度的负值 热导率
Lorenz number
p
称为 plasma frequency
2 p
ne2
0m
金属自由电子气模型
求(1)电子态密度(考虑自旋); (2)该系统的费米能(只考虑温度为绝对 零度
北京工业大学 固体物理学
第二节 自由电子气的热性质
费米-狄拉克分布函数 T≠0K时,电子在本征态上的分布服从费 米-狄拉克分布
fi
1 e
( i )/ k BT
vF/108cm/s TF/104K
1.29 1.07 0.86 0.81 0.75 1.57 1.39 1.40 2.25 1.58 1.28 1.83 2.03 1.74 1.90 1.83 1.87 5.51 3.77 2.46 2.15 1.84 8.16 6.38 6.42 16.6 8.23 5.44 11.0 13.6 10.0 11.8 11.0 11.5
T=0 T1
北京工业大学 固体物理学
1、化学势随温度的变化 ① T≠0K,自由电子气单位体积的内能
2 u ( k ) f g( ) f ( )d k 0 V k
② T≠0K,分布函数中的化学势可由电子数 密度算出
2 n V
k
fk g( ) f ( )d 0
北京工业大学 固体物理学
代入
f f I Q( ) ( )d Q( ) ( )( )d 1 f 2 Q( ) ( ) ( )d 2
(**)
(**)第一项积分项等于1 (**)第二项
1 ik (r ) e r V
电子的本征能量:
将波函数代入薛定谔方程,得
k (k ) 2m
2
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属自由电子经典理论
• 金属中的正离子形成的电场是均匀的,价电子不被原子所 束缚,可以在整个金属中自由地运动,形成自由电子。这 些电子起着导电和导热的作用,他们的行为像理想气体一 样,故被称作自由电子气体,其运动规律遵循经典力学气 体分子的运动定律。 • 在没有外电场作用时,金属中的自由电子沿着各方向运动 的几率相同,故不产生电流。当施加外电场后,自由电子 获得附加速度,于是便沿外电场方向发生定向迁移,从而 形成电流。自由电子在定向迁移过程中,因不断与正离子 发生碰撞,使电子的迁移受阻,因而产生了电阻。
金属自由电子经典理论的产生背景
18世纪末: 1、人们已熟悉金属导电和导热特性,但是还不具备解释这 些传导电子是如何形成和运动的理论基础。 2、1897年汤姆逊发现金属中存在电子(e/m测定)。
3、分子运动论处理理想气体十分成功。
金属自由电子经典理论的提出
•1900年,特鲁德首先将金属中的价电子与理想气体类比,提 出了金属电子气理论,即认为金属中存在有自由电子气体。 •1904年,洛伦兹将麦克斯韦-玻尔兹曼统计分布规律引入电 子气,据此就可用经典力学定律对金属自由电子气体模型作 出定量计算. •这样就构成了特鲁德-洛伦兹自由电子气理论,称为经典自 由电子理论.
金属中自由电子在电场中的运动
当金属中有电流时,每个自由电子都因受到电场力的作用而 加速,即在无规则的热运动上叠加一个定向运动。
自由电子在运动过程中频繁的与晶格碰撞,碰后电子向各个 方向运动的几率相等,因此可认为每个电子在相邻两次碰撞 间做初速度为零的匀加速直线运动。 大量自由电子的统计平均,就是以平均定向漂移速度逆着电 场线方向漂移。
电导率σ的推导
设导体内的恒定电场为 ,则电子的加速度为
v0 电子两次碰撞的时间间隔为t,上次碰撞后的初速度为
则有
F eE a m m
统计平均后,初速度的平均值为零,则统计平均速度
假设某处电子密度为n,则电流பைடு நூலகம்度
根据欧姆定律有电流密度:
从而有
从电导率的表达式可知,电导率与自由电子密度成 正比
金属自由电子经典理论
• 电子气体除在和离子实发生不断碰撞之外,其余时间在离 子实之间的运动是自由的
• 金属中的正离子按一定的方式排列为晶格
特鲁德的金属凝胶模型
特鲁德模型的基本假设
1、独立电子近似-无碰撞时,电子-电子,电子-离子实无相互作用。则无外 场时电子做匀速直线运动,有外场时服从牛顿定律 2、自由电子近似-近似认为单个电子在与离子实的相继两次碰撞之间做自由 运动,所以金属中的传导电子也常称为自由电子。 3、弛豫时间近似-假设电子在金属中的碰撞遵循泊松过程。每个电子在单位 时间内发生碰撞的几率是τ ,即在dt时间内发生碰撞的概率为dt/τ ,被 称为弛豫时间(又叫平均自由时间,为二次碰撞平均间隔时间)并令τ 与电子位置及速度无关。 4、假设电子只能通过碰撞才能与周围环境达到热平衡,碰撞前后电子速度无 关联,方向随机,大小与碰撞处的温度相适应(热平衡实现途径)