巴特沃斯低通滤波器

合集下载

低通巴特沃斯滤波C语言实现

低通巴特沃斯滤波C语言实现

低通巴特沃斯滤波C语言实现巴特沃斯滤波是一种常见的信号处理滤波器,能够将高频信号从输入信号中滤除,只保留低频信号。

它在信号处理、音频信号处理、图像处理等领域有广泛的应用。

下面是一个使用C语言实现的低通巴特沃斯滤波器的例子。

首先,我们需要定义一些常量和变量来表示滤波器的参数和状态。

我们将使用一个全局变量来保存滤波器的历史输入和输出数据:```c#define FILTER_ORDER 4 // 滤波器阶数#define FILTER_CUTOFF 200 // 截止频率,单位为Hzdouble input[FILTER_ORDER + 1]; // 输入历史数据double output[FILTER_ORDER + 1]; // 输出历史数据```接下来,我们需要初始化滤波器的历史数据。

这里使用一个函数来完成初始化操作:```cvoid initFiltefor (int i = 0; i <= FILTER_ORDER; i++)input[i] = 0.0;output[i] = 0.0;}```接下来,我们需要定义一个滤波函数来实现滤波的操作。

这里使用递归计算方式来实现滤波:```cdouble filter(double x)//更新历史输入数据for (int i = FILTER_ORDER; i > 0; i--)input[i] = input[i-1];}input[0] = x;//更新历史输出数据for (int i = FILTER_ORDER; i > 0; i--)output[i] = output[i-1];}//计算输出output[0] = (input[0] + 2 * input[1] + input[2] -(0.7408 * output[1]) - (0.2042 * output[2])) /1.3403;return output[0];```在上面的代码中,我们使用了巴特沃斯低通滤波器的差分方程来实现滤波。

三阶巴特沃斯低通滤波

三阶巴特沃斯低通滤波

三阶巴特沃斯低通滤波巴特沃斯(Butterworth)滤波器是一种常见的无失真滤波器,可作为低通滤波器用于信号处理中。

它具有平坦的幅频特性和无尖锐过渡带的特点。

本文将介绍三阶巴特沃斯低通滤波器的设计原理和应用。

一、设计原理:三阶巴特沃斯低通滤波器是基于巴特沃斯滤波器的一种改进,通过改变滤波器的阶数可以实现更陡的下降斜率。

巴特沃斯滤波器的传递函数表达式为:H(s) = 1 / (1 + (s / ω_c)^2N)其中,s为复频域变量,ω_c为截止频率,N为滤波器的阶数。

由于本文是关于三阶巴特沃斯低通滤波器的介绍,所以将N取为3。

将传递函数转换为标准形式,可得:H(s) = 1 / (1 + 1.732(s / ω_c) + (s / ω_c)^2 + 1.732(s / ω_c)^3 + (s / ω_c)^6)根据滤波器的模拟原理,将复频域变量s替换为复变量z,并进行双线变换,可以得到巴特沃斯低通滤波器的差分方程:y[n] = (x[n] + 3x[n-1] + 3x[n-2] + x[n-3] - 3y[n-1] - 3y[n-2] - y[n-3]) / (1 + 2.6136 + 2.1585 + 0.6723)二、应用:三阶巴特沃斯低通滤波器在实际应用中具有广泛的用途,如音频信号处理、图像处理等。

1. 音频信号处理:音频信号常常包含高频噪声,通过将音频信号输入三阶巴特沃斯低通滤波器,可以达到去除高频噪声的效果。

比如,对不希望出现的尖锐噪声或杂音进行滤除,以提高音频质量。

2. 图像处理:在图像处理中,低通滤波器常被用来去除图像中的高频噪声,以提高图像的清晰度和质量。

三阶巴特沃斯低通滤波器通过限制图像的高频分量,可以有效滤除图像中的噪声,使图像更加平滑。

3. 信号平滑:信号的平滑是一种常见的信号处理操作,可以去除信号中的高频噪声,使信号变得平缓。

三阶巴特沃斯低通滤波器在信号平滑方面表现出色,具有平坦的幅频特性和较陡的下降斜率,可以滤除信号中不需要的高频成分。

巴特沃斯低通滤波器衰减曲线和归一化频率关系

巴特沃斯低通滤波器衰减曲线和归一化频率关系

巴特沃斯低通滤波器衰减曲线和归一化频率关系
巴特沃斯低通滤波器衰减曲线和归一化频率关系
巴特沃斯低通滤波器(Butterworth Low Pass Filter)是一种线性阶跃函数的滤波器,其衰减曲线越来越近似正弦曲线,因此称为“Butterworth滤波器”,也称为“理想低通滤波器”。

Butterworth滤波器的灵敏度曲线是常见的滤波器衰减曲线,它有一些特殊的性质,其中最重要的是它有一个固定的相位滞后,也就是说,在频率越来越高的情况下,它的衰减曲线越来越接近正弦曲线。

这种曲线的端点是在-3db处。

在此之前,任何低于端点的衰减幅度均是线性的,因此,端点也被称为低通滤波器的截止频率。

在低通滤波器截止频率之前,不管是低通滤波器,高通滤波器,还是带通滤波器,其衰减曲线都是线性的,没有衰减。

但是,当输入的频率等于或大于截止频率时,低通滤波器开始衰减,而高通滤波器则开始通过,而带通滤波器则可以实现从高通到低通的转换。

归一化频率(Normalized Frequency)指的是把输入信号的频率标定到一个固定的范围内,这个范围通常是[0,1]或[-1,1],特别是在巴特沃斯滤波器中,它把输入信号的频率标定到[0,1]范围内,它的衰减曲线与输入信号的该范围有关。

归一化频率的定义是:
Normalized Frequency = Actual Frequency / Highest Frequency
Butterworth滤波器的归一化频率与它的衰减曲线有关,在低于
截止频率的通频区域,衰减曲线接近于0db,而在超过截止频率的阻带区域,则衰减曲线以-20db/decade(十进制)的速度衰减,因此,Butterworth滤波器的衰减曲线与归一化频率是成比例关系的。

设计一个巴特沃斯模拟低通滤波器

设计一个巴特沃斯模拟低通滤波器

1. 设计一个巴特沃斯模拟低通滤波器,要求通带截止频率为Hz f p 25=,通带最大衰减dB a p 3=,阻带起始频率Hz f s 50=,阻带最小衰减dB a s 25=。

解:根据已知条件确定巴特沃斯低通滤波器的阶数N :053.01010202520===--s a s δ()()2355.46021.05502.22lg 21053.01lg lg211lg 22==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-≥p s s ΩΩδN取N =5。

低通滤波器3dB 截止频率为)/(157502s rad πf πΩΩp p c ====则五阶巴特沃斯滤波器的传输函数为:1021.010719.110095.110326.510048.111236.3236.4236.4236.31)(2436495112345++⨯+⨯+⨯+⨯=+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=----s s s s s Ωs Ωs Ωs Ωs Ωs s H c c ccc2. 设计一个切比雪夫模拟低通滤波器,要求通带截止频率为kHz f p 3=,通带最大衰减dB a p 2.0=,阻带起始频率kHz f s 12=,阻带最小衰减dB a s 50=。

解:由()2.01lg 20-=-p δ,求得9772.0101202.0==--p δ。

则2171.019772.011)1(122=-=--=p δε 由50lg 20-=s δ,求得0032.0102050==-s δ,则23.31610032.011122=-=-=s δδ 所需滤波器的阶数为:()()()()8604.30634.29770.7312arccos 2171.0/23.316arccos arccos arccos ===≥h h ΩΩh εδh N p s取N =4。

则该模拟低通滤波器的幅度表示为:⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎪⎭⎫⎝⎛+=32422210322171.01111)(πΩC ΩΩC εΩj H p Na归一化的系统函数表示为:∏∏==--=-⋅=Nk k Nk k N a p p p p εp H 111)(7368.11)(21)(其中极点k p 为:0715.14438.01j p +-=,4438.00715.12j p +-=,4438.00715.13j p --=,0715.14438.01j p --=将)(p H a 去归一化,求得实际滤波器的系统函数)(s H a()()()8428426414107790.4100394.4107791.4106731.1102687.77368.1)()(⨯+⨯+⨯+⨯+⨯=-==∏==s s s s p Ωs Ωp H s H k k p pΩs p a a p3. 设计一个巴特沃斯模拟高通滤波器,要求通带截止频率为kHz f p 20=,通带最大衰减dB a p 3=,阻带起始频率kHz f s 10=,阻带最小衰减dB a s 15=。

c++ 3阶巴特沃斯低通滤波算法

c++ 3阶巴特沃斯低通滤波算法

C++ 3阶巴特沃斯低通滤波算法在信号处理领域,巴特沃斯低通滤波算法是一种常用的数字滤波算法,它能够有效地去除信号中高频成分,保留低频成分,常用于音频处理、图像处理等领域。

C++作为一种高效的编程语言,能够很好地支持这一算法的实现。

本文将结合C++语言,深入探讨3阶巴特沃斯低通滤波算法的原理、实现和应用。

1. 巴特沃斯低通滤波算法概述巴特沃斯低通滤波器是一种能够通过滤波器将信号中高频成分抑制、低频成分保留的数字滤波器。

其传输函数具有一定的特点,采用巴特沃斯低通滤波器可以实现对信号的平滑处理,去除高频噪声,保留低频信号。

3阶巴特沃斯低通滤波器具有更加优化的特性,能够更好地滤除高频噪声,保留低频信号,因此在实际应用中具有广泛的价值。

2. 3阶巴特沃斯低通滤波算法原理3阶巴特沃斯低通滤波算法是建立在巴特沃斯低通滤波器基础上的改进版本,其核心原理是通过多级滤波器级联的方式,增强滤波效果,同时减少不必要的波纹和相位失真。

其数学模型和传输函数较为复杂,需要通过C++编程语言实现。

3. C++实现3阶巴特沃斯低通滤波算法在C++中实现3阶巴特沃斯低通滤波算法,需要充分利用C++语言的面向对象特性、模板编程等特点。

可以采用模块化的设计思路,将滤波器的设计、参数设置、滤波处理等功能进行封装,从而提高代码的可复用性和可维护性。

C++的性能优势也能够保证算法的高效性。

4. 应用案例分析3阶巴特沃斯低通滤波算法在信号处理领域具有广泛的应用,比如在音频去噪、图像平滑处理、信号恢复等方面均有重要作用。

通过具体的应用案例分析,可以更好地展现算法的效果和实用性,也有助于读者深入理解算法的具体应用场景。

5. 个人观点和总结作为一种经典的数字滤波算法,3阶巴特沃斯低通滤波算法在实际应用中能够发挥重要作用。

在C++语言中实现该算法,既能够充分发挥C++语言的优势,也能够更好地与实际应用结合,为信号处理领域的工程实践提供技术支持。

在未来的发展中,可以进一步优化算法的性能、扩展算法的适用范围,从而更好地满足不同领域的需求。

巴特沃斯低通滤波器传递函数

巴特沃斯低通滤波器传递函数

巴特沃斯低通滤波器传递函数一、引言巴特沃斯滤波器是一种常见的滤波器,它可以用于信号处理、图像处理等领域。

其中,低通滤波器是最基本的一种。

本文将详细介绍巴特沃斯低通滤波器传递函数的计算方法。

二、巴特沃斯低通滤波器1. 巴特沃斯低通滤波器概述巴特沃斯低通滤波器是一种对频率响应有要求的低通滤波器,其传递函数为:H(s) = 1 / (1 + (s/wc)^2n)^0.5其中,s为Laplace变换中的复频率变量,wc为截止频率,n为阶数。

2. 巴特沃斯低通滤波器传递函数推导(1)将传递函数H(s)转化为标准形式:H(s) = 1 / (1 + (s/wc)^2n)^0.5= 1 / [(s/wc)^2n + 1]^0.5= 1 / [(s^2n + wc^2n) / wc^2n]^0.5= wc^n / [(s^2n + wc^2n)^0.5](2)将复平面上的频率变量s转化为极坐标形式:s = σ + jω= r * e^(jθ)其中,σ为实部,ω为虚部,r为模值,θ为相位角。

(3)将传递函数H(s)中的s用极坐标表示:H(s) = wc^n / [(s^2n + wc^2n)^0.5]= wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5](4)将传递函数H(s)中的分母进行有理化:H(s) = wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5] = wc^n * (r^2n * e^(j2nθ) - wc^2n)^-0.5(5)将传递函数H(s)中的极坐标形式转化为直角坐标形式:H(s) = wc^n * cos(nθ) - jwc^n * sin(nθ)----------------------------------(r^2n - wc^2n)^0.5(6)根据频率响应要求,令模值等于1时的频率为截止频率wc,则有:1 = |H(jwc)| = wc^n / (wc^2n - wc^2n)^0.5=> 1 = (wc/wc)^n=> n = 1 / [ln(1/√R)] / [ln(tan(π/4 + fc/fs/2))]其中,R为通带最大衰减,fc为通带截止频率,fs为采样频率。

巴特沃斯低通滤波器的设计精编资料

巴特沃斯低通滤波器的设计精编资料

巴特沃斯低通滤波器的设计巴特沃斯低通滤波器的设计1、巴特沃斯滤波器的介绍巴特沃斯低通滤波器的幅度平方函数定义为2221|()|1NH j C λλ=+其中C 为一常数参数,N 为滤波器阶数,λ为归一化低通截止频率,/p λ=ΩΩ。

式中N 为整数,是滤波器的阶次。

巴特沃斯低通滤波器在通带内具有最大平坦的振幅特性,这就是说,N 阶低通滤波器在0Ω=处幅度平方函数的前2N-1阶导数等于零,在阻带内的逼近是单调变化的。

巴特沃斯低通滤波器的振幅特性如图a 所示。

滤波器的特性完全由其阶数N 决定。

当N 增加时,滤波器的特性曲线变得更陡峭,这时虽然由a 式决定了在p Ω=Ω处的幅度函数总是衰减3dB ,但是它们将在通带的更大范围内接近于1,在阻带内更迅速的接近于零,因而振幅特性更接近于理想的矩形频率特性。

滤波器的振幅特性对参数N 的依赖关系如图a 所示。

设归一化巴特沃斯低通滤波器的归一化频率为λ,归一化传递函数为()H p ,其中p j λ=,则可得:2221()1(1)N Np jH j C pλλ==+-p 图a 巴特沃斯低通滤波器的振幅特性由于221()()()1()a a jsNcH s H s AsjΩ=--=Ω=+Ω所以巴特沃斯滤波器属于全极点滤波器。

2、常用设计巴特沃斯低通滤波器指标pλ:通带截止频率;pα:通带衰减,单位:dB;sλ:阻带起始频率;sα:阻带衰减,单位:dB。

说明:(1)衰减在这里以分贝(dB)为单位;即222110lg10lg1()NCH jαλλ⎡⎤==+⎣⎦(2)当3dBα=时p CΩ=Ω为通常意义上的截止频率。

(3)在滤波器设计中常选用归一化的频率/Cλ=ΩΩ,即1,p sp sp pλλΩΩ===ΩΩ图b 为巴特沃斯低通滤波器指标3、设计巴特沃斯低通滤波器的方法如下:(1)计算归一化频率1p p pλΩ==Ω,ss pλΩ=Ω。

(2) 根据设计要求按照210101pC α=-和lg lg saN λ=其中a =特沃斯滤波器的参数C 和阶次N ;注意当3p dB α=时 C=1。

巴特沃斯滤波器

巴特沃斯滤波器

巴特沃斯滤波器滤波器的作用顾名思义就是过滤掉不需要的信号,它可以将有用的信号与噪声分离,提高信号的抗干扰性及信噪比,滤掉不感兴趣的频率成分等。

巴特沃斯滤波器是三大原型模拟低通滤波器之一,今天小编要介绍的就是巴特沃斯滤波器。

巴特沃斯滤波器电路一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。

二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。

巴特沃斯滤波器原理巴特沃斯型滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。

其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。

滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。

滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的所有电容元件值来实现的。

巴特沃斯低通滤波器简介D0表示通带的半径,n表示的是巴特沃斯滤波器的次数。

随着次数的增加,振铃现象会越来越明显。

巴特沃斯低通滤波器原理图图3二阶巴特沃斯低通滤波器原理图基于以上对有源一阶RC 低通滤波器、积分器以及两者之间的区别于联系的分析,在此给出阶巴特沃斯低通滤波器的原理图如下图3 所示:根据巴特沃斯-阶低通滤波器的原理图可知,在该滤波电路中R和C,构成低通级,R3和G构成积分环节,这两级电路同时表现出低通特性。

巴特沃斯滤波器优点巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐渐减少,趋向负无穷大。

数字信号处理巴特沃斯滤波器设计

数字信号处理巴特沃斯滤波器设计

数字信号处理巴特沃斯滤波器设计数字信号处理在当今科技领域中扮演着至关重要的角色,滤波器作为数字信号处理领域中的重要组成部分,广泛应用于信号去噪、信号增强、信号分析等方面。

巴特沃斯滤波器作为数字信号处理领域中的一种重要类型,具有平滑的频率响应曲线和较陡的截止特性,被广泛应用于语音处理、图像处理、生物医学信号处理等领域。

本文将介绍数字信号处理中巴特沃斯滤波器的设计原理和方法。

在数字信号处理中,滤波器是一种通过对信号进行处理来实现滤除或增强某些频率成分的系统。

巴特沃斯滤波器是一种典型的低通滤波器,其特点是在通频带范围内频率响应平坦,截止频率处有较 steependifferentiation,可有效滤除非所需频率信号。

要设计一个巴特沃斯滤波器,首先需要确定滤波器的截止频率和阶数。

巴特沃斯滤波器的阶数决定了滤波器的频率选择性能,在实际应用中可根据信号处理的要求进行选择。

一般来说,阶数越高,滤波器的截止特性越陡,但相应的频率选择性能也会增强。

确定好阶数后,接下来需要进行巴特沃斯滤波器的参数计算,包括极点位置和幅频特性。

根据巴特沃斯滤波器的传递函数形式,可以通过公式计算各个极点的位置,并绘制出滤波器的幅频特性曲线。

设计完巴特沃斯滤波器的参数后,接下来是实现滤波器的数字化。

数字巴特沃斯滤波器一般通过模拟滤波器的模拟频率响应和数字频率响应之间的变换来实现。

常用的数字化方法包括脉冲响应不变法和双线性变换法,通过这些方法可以将模拟滤波器的参数转换为数字滤波器的参数,实现数字滤波器的设计。

在实际应用中,巴特沃斯滤波器的设计需要根据具体的信号处理要求和系统性能来选择合适的截止频率和阶数,确保滤波器设计的稳定性和性能。

同时,在设计过程中需要考虑到滤波器的实现复杂性和计算成本,选择合适的设计方法和参数计算技术,以实现滤波器设计的有效性和可靠性。

综上所述,巴特沃斯滤波器作为数字信号处理领域中的重要组成部分,在信号处理、通信系统、生物医学等领域中有着广泛的应用前景。

巴特沃斯低通滤波器设计

巴特沃斯低通滤波器设计

巴特沃斯低通滤波器一、设计要求(1)设计一巴特沃斯数字低通滤波器,在0.3π通带频率范围内,通带幅度波动小于1dB ,在0.5π~πrad 阻带频率范围内,阻带衰减大于12dB 。

二.设计过程巴特沃斯双线性变换法(1)数字指数:p w =0.3π,s w =0.5π,(2)求p Ω,s Ω利用频率预畸变公式得:p Ω=2T tan 2p w =2T tan 320π=1.019⨯1Ts Ω=2T tan 2s w =2T tan 4π=2T (3)确定滤波器阶数sp λ=s p ΩΩ=211.019TT ⨯=1.963 sp k≈0.132 N=—lg lg sp sp k λ=—lg 0.132lg1.963≈3.0023 N=4 (4)确定系统函数G(p)= 43212.613 3.4142 2.61311p p p p ++++ c Ω=p Ω()10.12101p a N --=1.019⨯1T⨯()10.1124101-⨯⨯-=1.2065T P=11211c s z s T z ---=Ω+=1c Ω⨯2T ⨯1111z z ---+=11211.20651z z ---+ H(z)=G(p)=12341234146434.1675441.3465432.542711.06234 1.69864z z z z z z z z--------++++-+-+三.软件仿真(1)将分子分母带入Matlab 验证b=[1 4 6 4 1];a=[34.16754 -41.34654 32.5427 -11.06234 1.69864];[H,w]=freqz(b,a,1000);plot(w,20*log10(abs(H)/max(H)),'-');grid;xlabel('frequency');ylabel('magnitude');-250-200-150-100frequency m a g n i t u d e图(a )频率——幅度衰减图0.3π≈0.940.9250.930.9350.940.9450.950.955frequency m a g n i t u d e图(b)0.5π≈1.57frequency m a g n i t u d e图(c)(2)用Matlab 直接仿真出低通滤波器wp=2*tan(0.3*pi/2)*1000;ws=2*tan(0.5*pi/2)*1000;ap=1;as=12;[n,wn]=buttord(wp,ws,ap,as,'s');[b,a]=butter(n,wn,'s');[bn,an]=bilinear(b,a,1000);[H,w]=freqz(bn,an);plot(w,abs(H),'-');grid;xlabel('frequency');ylabel('magnitude');legend('双线性变化法');figure(2);plot(w,20*log10(abs(H)/max(H)),'-');grid;00.51 1.522.533.5frequency m a g n i t u d e0.3π≈0.94图(d)0.5π≈1.57图(e)四.分析将计算得出的低通滤波器系统函数H(z)的分子分母各项系数用Matlab验证,得图(a)幅频关系图。

巴特沃斯二阶低通滤波器

巴特沃斯二阶低通滤波器

MEMS 陀螺的带宽为30HZ ,从采样频率100HZ 的数据序列中消除掉30HZ 以上的噪声。

巴特沃斯函数只是在ω=0处精确地逼近理想低通特性,在通带内随着ω增加,误差愈来愈大,在通带边界上误差最大,逼近特性并不很好,但是陀螺仪的有用输出信号本就在低频段,对通带边界的滤波要求不高,因此巴特沃斯滤波器就可以满足要求。

要求巴特沃斯滤波器通带上限截止频率fc=30HZ ,阻带下限截止频率fs=80HZ ,通带最大衰减3max =A db ,阻带最小衰减为15min =A db 。

由式(1)-(4)可得巴特沃斯低通滤波器为二阶。

1110max 1.0≈-=A ε (1)49.1995.0622.30lg 110110lg 110110lg 3.05.11.01.0max min =⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--A A (2) 85.01.7lg 302802lg lg 2==⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛ππc s w w (3)75.185.049.1lg 110110lg lg max min 1.01.0==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-->c s A A w w n (4) 用302⨯⨯πs 代替121)(2++=s s s H 中的s 得到去归一化后的滤波器传递函数为式(5)所示。

6.354944.2666.35494)(2++=s s s H (5) 采用的低通滤波电路如图2所示,滤波增益为1,此电路传递函数如式(6)所示,只需将巴特沃斯滤波器的传递函数与此传递函数的系数一一对应即可以整定出滤波电路的参数。

图2 二阶低通滤波典型电路32212312112212111111)(R R C C s C R C R C R s R R C C s H +⎪⎪⎭⎫ ⎝⎛+++-= (6)式(5)与式(6)对比可得:6.3549411221=R R C C (7) 4.266111231211=++C R C R C R (8) 6.3549413221=R R C C (9) 令C 1=0.1uf ,R 2=R 1= R 3,解得R 2=R 1= R 3=6.6K ,C 2=0.6uf ,至此巴特沃斯滤波器构造完成。

巴特沃斯低通滤波器

巴特沃斯低通滤波器

巴特沃斯低通滤波器简介巴特沃斯低通滤波器(Butterworth low-pass filter)是一种常用的模拟滤波器,被广泛应用于信号处理和电子系统中。

它的设计原则是在通带中具有平坦的幅频特性,而在截止频率处具有最大衰减。

这种滤波器的设计目的是能够尽可能滤除高频噪声,而保留低频信号。

巴特沃斯滤波器的特性巴特沃斯低通滤波器具有以下特性:•通带幅度为1:在通带中,滤波器的增益保持不变,也就是幅度为1。

•幅度频率响应的过渡带是由通带到停带的渐变区域,没有任何波纹。

•幅度频率响应在通带之外都有指数衰减。

•巴特沃斯滤波器是最平滑的滤波器之一,没有任何截止角陡峭度。

巴特沃斯滤波器的传递函数巴特沃斯低通滤波器的传递函数由下式给出:H(s) = 1 / (1 + (s / ωc)^2n)^0.5其中,H(s)为滤波器的传递函数,s为复变量,ωc为截止频率,n为滤波器的阶数。

阶数决定了滤波器的过渡带宽度和滤波特性。

巴特沃斯滤波器设计步骤巴特沃斯滤波器的设计步骤如下:1.确定所需滤波器的阶数和截止频率。

2.根据阶数和截止频率选择巴特沃斯滤波器的标准传递函数,可以从经验图表或计算公式中得到。

3.将标准传递函数的复频域变量进行频率缩放,以得到实际的传递函数。

4.将传递函数进行因式分解,得到一系列一阶巴特沃斯滤波器的传递函数。

5.根据一阶传递函数设计电路原型。

6.将一阶电路原型按照阶数进行级联或并联,构成所需的滤波器电路。

巴特沃斯滤波器的优点和缺点巴特沃斯低通滤波器具有以下优点:•平坦的传递特性:在通带中,滤波器的增益保持不变,不会引入频率响应的波纹或衰减。

•平滑的过渡带:巴特沃斯滤波器的过渡带具有指数衰减特性,没有任何波纹或突变。

•简单的设计:巴特沃斯滤波器的设计步骤相对简单,可以通过标准传递函数和电路原型进行设计。

然而,巴特沃斯滤波器也具有一些缺点:•较大的阶数:为了达到较陡的阻带衰减,巴特沃斯滤波器需要较高的阶数,导致电路复杂度增加。

巴特沃斯滤波器实例讲解

巴特沃斯滤波器实例讲解

巴特沃斯滤波器实例讲解
巴特沃斯滤波器是信号处理中常用的一种滤波器,它可以用于信号的频域特征调整和信号脉冲响应的优化。

巴特沃斯滤波器的设计目标主要是滤波器的通带波动最小,因此在信号处理中应用广泛。

巴特沃斯滤波器主要包括低通滤波器和高通滤波器两种类型,它们分别适用于不同的信号处理需求。

低通滤波器可用于去除高频噪声,而高通滤波器则可用于去除低频噪声。

在设计巴特沃斯滤波器时,需要指定一些参数,如通带频率、截止频率、通带最大衰减等,这些参数可以根据信号的特性和处理需求来确定。

通过调整这些参数,可以得到不同类型的巴特沃斯滤波器。

举例来说,如果我们有一个频率在100Hz附近的信号,我们想要设计一个低通巴特沃斯滤波器来滤除高于100Hz的噪声。

我们可以确定通带频率为100Hz,截止频率为120Hz,通带最大衰减为3dB,通过这些参数,就可以设计出一个满足需求的滤波器。

巴特沃斯滤波器在信号处理中有着广泛的应用,例如在音频处理、通信系统中常见到它的身影。

通过合理设计巴特沃斯滤波器,可以有效地提高信号的质量和准确性,进而提升整个系统的性能。

总的来说,巴特沃斯滤波器是一种常用的滤波器,通过设计合适的滤波器参数,可以实现对信号的优化处理。

在实际应用中,需要根据具体的信号特性和需求来选择合适的滤波器类型和参数,以达到最佳的处理效果。

1。

巴特沃斯低通滤波器设计

巴特沃斯低通滤波器设计

L1'
2
600 1.304 104
0.7654H
5.61mH
C2
1 c RS
C2'
2
1 1.304 104
600
1.8478F
0.038uF
L3
RS c
L'3
2
600 1.304 104
1.8478H
13.53mH
C4
1 c RS
C4'
2
1 1.304 104
600
0.7654F
0.016uF
设计实现电路
巴特沃斯低通滤波器迅速设计总结
一:根据滤波器性
能指标(通带内旳
最大衰减 c ,阻带
内旳最小衰减 s ,
截至频率 c ,阻带
起始频率 s )利用
公式
N
lg
1
s2
-1
2 lg s / c
求巴特沃斯低通滤波 器旳阶次N。
二:根据阶次N和考尔 型电路
RS' 1
L1' 0.7654
L'3 1.8478
一般情况下,电路是在匹配情况下工作,所以取
信源内阻 Rs 和负载电阻 RL 相等。
此时满足
Ha ( j0)
RL RS RL
1 2
根据反射系数公式
(s)
(
s)=1- 4RS RL
s' s
H
a
s
H
a
-s
j
达林顿电路构造
Rs 源电阻 RL 负载电阻
RS
I1
Es
V1
1
2
LC
I2
无损

巴特沃斯低通滤波器归一化参数表

巴特沃斯低通滤波器归一化参数表

巴特沃斯低通滤波器归一化参数表(原创实用版)目录1.巴特沃斯低通滤波器的概念和特点2.巴特沃斯低通滤波器的归一化参数表3.巴特沃斯低通滤波器的应用场景4.如何使用巴特沃斯低通滤波器5.总结正文一、巴特沃斯低通滤波器的概念和特点巴特沃斯低通滤波器是一种电子滤波器,它的主要特点是通频带内的频率响应曲线尽可能平坦,没有起伏,而在阻频带则逐渐下降为零。

在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。

这种滤波器可以有效地去除信号中的高频噪声,保留信号的低频成分,适用于许多信号处理领域。

二、巴特沃斯低通滤波器的归一化参数表巴特沃斯低通滤波器的归一化参数表是指在单位圆上,滤波器的截止频率和通带衰减的取值范围。

在这个表中,截止频率通常用角度表示,通带衰减则用分贝表示。

巴特沃斯低通滤波器的归一化参数表可以方便地用于设计和分析滤波器,因为它可以直观地反映滤波器的性能。

三、巴特沃斯低通滤波器的应用场景巴特沃斯低通滤波器广泛应用于各种信号处理领域,例如音频处理、图像处理、通信系统等。

例如,在音频处理中,巴特沃斯低通滤波器可以用来去除音频信号中的高频噪声,提高音质的清晰度;在图像处理中,巴特沃斯低通滤波器可以用来降低图像的频谱噪声,提高图像的质量;在通信系统中,巴特沃斯低通滤波器可以用来抑制信号中的干扰,提高通信的稳定性。

四、如何使用巴特沃斯低通滤波器要使用巴特沃斯低通滤波器,首先需要根据信号的特性和应用场景选择合适的滤波器参数,然后根据这些参数设计出巴特沃斯低通滤波器。

在实际应用中,通常需要使用巴特沃斯低通滤波器计算器来计算滤波器的参数,然后使用这些参数来设计和实现滤波器。

使用巴特沃斯低通滤波器计算器可以方便地得到滤波器的参数,从而简化滤波器的设计和实现过程。

五、总结巴特沃斯低通滤波器是一种性能优良的电子滤波器,它的特点是通频带内的频率响应曲线尽可能平坦,没有起伏,而在阻频带则逐渐下降为零。

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计引言巴特沃斯阶跃阻抗低通滤波器是一种常用于信号处理和电子电路设计中的滤波器类型。

它的设计原理是通过调整滤波器的阶数和截止频率,来实现对输入信号的频率成分进行筛选和衰减。

本文将详细介绍巴特沃斯阶跃阻抗低通滤波器的设计方法及其在实际应用中的一些注意事项。

巴特沃斯阶跃阻抗低通滤波器概述巴特沃斯阶跃阻抗低通滤波器是一种I IR(无无限冲激响应)滤波器,具有平坦的通带、陡峭的衰减特性以及相对较低的群延迟。

它广泛应用于音频处理、通信系统等领域。

巴特沃斯滤波器的设计步骤1.确定滤波器的阶数(n):阶数决定了滤波器的衰减程度和复杂度,一般取偶数值。

2.确定滤波器的截止频率(f c):截止频率即信号通过滤波器时频率衰减到原来的1/√2,是决定滤波器频率特性的关键参数。

3.计算滤波器的极点位置:根据巴特沃斯滤波器的特性方程,计算极点位置。

4.标准化滤波器:对计算得到的极点位置进行标准化处理,使得滤波器的截止频率为1。

巴特沃斯滤波器设计实例以下是一个以设计一个4阶巴特沃斯阶跃阻抗低通滤波器为例的设计过程。

步骤1:确定滤波器的阶数我们选择设计一个4阶的巴特沃斯阶跃阻抗低通滤波器。

步骤2:确定滤波器的截止频率假设我们需要将信号的截止频率设置在1k H z。

步骤3:计算滤波器的极点位置根据巴特沃斯滤波器的特性方程,我们可以计算出滤波器的极点位置。

对于一个4阶的巴特沃斯低通滤波器,其极点位置可以通过下式计算得到:p_k=-s in h(π*fc)*s in(π*(2k-1)/(2n)),k=1,2,...,n式中,f c是截止频率,n是滤波器阶数。

步骤4:标准化滤波器标准化滤波器是将计算得到的极点位置通过变换使得滤波器的截止频率为1。

标准化后的滤波器的特性方程为:H(s)=1/((s+p1)(s+p2)...(s+pn))巴特沃斯滤波器的应用注意事项-在实际设计中,应根据需要调整滤波器的阶数和截止频率,以满足对信号的频率特性要求。

巴特沃斯低通滤波器

巴特沃斯低通滤波器

《数字信号处理》课程设计报告设计课题滤波器设计与实现专业班级姓名学号报告日期 2012年12月《数字信号处理》课程设计任务书题目滤波器设计与实现学生姓名学号专业班级设计内容与要求一、设计内容:见所选题目。

二、设计要求1 设计报告一律按照规定的格式,使用A4纸,格式、封面统一给出模版。

2 报告内容(1)设计题目及要求(2)设计原理 (包括滤波器工作原理、涉及到的matlab函数的说明) (3)设计内容(设计思路,设计流程、仿真结果)(4)设计总结(收获和体会)(5)参考文献(6)程序清单起止时间2012年 12 月 3日至 2011年 12月11 日指导教师签名2011年 12月 2日系(教研室)主任签名年月日学生签名年 月 日《数字信号处理》课程设计报告一、设计题目及要求设计题目 基于MATLAB 的巴特沃斯低通滤波器的设计设计要求1. 通过实验加深对巴特沃斯低通滤波器基本原理的理解。

2.学习编写巴特沃斯低通滤波器的MATLAB 仿真程序3. 滤波器的性能指标如下:设计一个模拟低通巴特沃斯滤波器,技术指标:通带截止频率10000/rad s ,通带最大衰减3dB ;阻带起始频率30000/rad s,阻带最小衰减40dB ,画出其幅度谱和相位谱。

二、设计原理1. 巴特沃斯低通滤波器简介:巴特沃斯滤波器是电子滤波器的一种,特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth )在1930年发表在英国《无线电工程》期刊的一篇论文中提出的,可以构成低通、高通、带通和带阻四种组态,是目前最为流行的一类数字滤波器 ,经过离散化可以作为数字巴特沃思滤波器 ,较模拟滤波器具有精度高、稳定、灵活、不要求阻抗匹配等众多优点 ,因而在自动控制、语音、图像、通信、雷达等众多领域得到了广泛的应用,是一种具有最大平坦幅度响应的低通滤波器。

巴特沃斯滤波器基本原理及相关参数计算(初稿)

巴特沃斯滤波器基本原理及相关参数计算(初稿)

Vo ( s ) = Va ( s ) (1+
Vo ( s ) = - Vo ( s ) sR3C1 (1+
Vo ( s ) [1+ sR3C1 (1+
V ( s ) R2 R2 R + sR2C2 + 2 )]= - i ; R1 R3 R1 R1 R2 )]= - Vi ( s ) R2 ; R3
2.积分器
其中,积分器的原理图如下图 2 所示:
图 2 积分器原理图 根据运算放大器的“虚短”和“虚断”法则可得:
Vi ( s ) = - Vo ( s ) sC ; R
故积分器的传递函数 H1 ( s ) 为:
H 2 (s) =
Vo ( s ) 1 1 == - H ,其中 H ; Vi ( s ) sRC s RC

解之得: R1
2 2 2nf 0 AC1 (2nf 0 AC1 ) 2 16n 2 f 02 A 2 ( A 1)C1 Q 2 8n 2 f 02 A 2 C1 Q

2nf 0 AC1 (2nf 0 AC1 ) 2 [1 4( A 1)Q 2 / n] 1 1 4Q 2 ( A 1) / n = ; R1 2 4f 0 AC1Q 8n 2 f 02 A 2 C1 Q
巴特沃斯滤波器的原理与计算
由于二阶巴特沃斯低通滤波器是由 RC 低通级和积分级组成, 所以在此先对 对有源一阶 RC 低通滤波器、积分器以及两者之间的区别与联系做简要介绍:
1.有源一阶 RC 低通滤波器
其中,有源一阶 RC 低通滤波器的原理图如下图 1 所示:
图 1 有源一阶 RC 低通滤波器原理图 根据运算放大器的“虚短”和“虚断”法则可得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.1a p 0.1a s s sp
带最小衰减α =30dB,按照以上技术指标设计巴特沃斯低通滤波器。 0.1a s
1a p
1a s
2.4
0242 4.25, 2.4
2.4 10 1 2 f lg 0.0242 lg 0.0242 NN 2 4.25, 55 lgf 2.4 4.25, N N s sp lg 2.4 2.4 2 f p
H( a s)
N c
(s s
k 0
N 1
k
)
7 j 3
• 例如N=3, 通过下式可以计算出6个极点 5 2 4 j j j j s 3 c 3 s 2 c 3 s 0 c 3 s1 c
s 4 c
j2
s 5 c
要求
f i g u r e ; p l o t ( Q , H a s ) ; a x i s ( [ 0 5]);xlabel('f(kHz)'),ylabel('20lg(abs(H_{a}(j{\Omega})))(dB)');
3 0
- 7 0
• • • • •
L=length(Ha); Yt=Xt(1:L).*Ha; figure;plot(Q,abs(Yt));axis([0 60 0 150]); yt=ifft(Yt); figure;plot(Q,yt);
• 模拟低通滤波器的设计指标 • 构造一个逼近设计指标的传输函数Ha(s) • Butterworth(巴特沃斯)低通逼近
模拟低通滤波器的设计指标及逼近方法(续)
• 模拟低通滤波器的设计指标有αp, Ωp,αs和Ωs。 • Ωp;通带截止频率 • Ωs:阻带截止频率
• αp:通带中最大衰减系数
• αs;阻带最小衰减系数 • αp和αs一般用dB数表示。对于单调下降的幅度特性,可表示成:
2
2
逼近方法—用频率响应的幅度平方函数逼近 • 滤波器的技术指标给定后,需要构造一个传输函数Ha(s),希望其幅度平方函数 满足给定的指标αp和α 2 s,一般滤波器的单位冲激响应为实数,因此 H a ( j) H a ( s )G ( s ) s j
)H ()j H a ( j) H Haa((j s )G ( as s) j
,k 0,1 , N - 1
将极点展开可得到的Ha(p)的分母p的N阶多项式,用下式表示:
1 H a ( p) 2 N 1 N b0 b1 p b2 p bN 1 p p
H a ( p)
1 b0 b1 p b2 p 2 bN 1 p N 1 p N 因式分解形式中的各系数
10 p 1 k sp 0.0242 0.1as N • (1) 确定阶数 10 1 0.1a p 10 1 2 fs k 0.0242 a 2.4 sp 0.1 sp s 1 210 fp 10 1 2 0.0242 f s 0.1a p 1 0.0242 k lg 0.0242 N 10 2.4 10 11 N 5 sp 4.25, k sp 0.0242 1 2 f2.4 2 f 0.1a p lg s
sp
p
lg 0.0242 N 4.25, lg 2.4
N 5
N 5
• (2)求极点pk为
s0 e
3 j 5
,
s1 e s3 e
4 j 5
s2 e , s4 e
7 j 5
j
6 j 5
1 • (3)归一化传输函数为 H ( p)
a
(p p )
p s j j c c
• 令
,p称为归一化拉氏复变量。
a N -1
/ c

称为归一化频率。
1 • 经过归一化后巴特沃斯滤波器的传输函数为: H(p)
K 0
(p - p
k
p k s k / c

sk
pk
1 2 k 1 为归一化极点, j( 为位于左半平面的极点用下式表示: ) 2 2N
2
H a ( j ) H a ( j) 2 • 将幅度平方函数|Ha(jΩ)| 写成s的函数:
1 H( a s)H( a - s) s 2N 1 ( ) j c
• 此式表明幅度平方函数有2N个极点,极点sk用下式表示:
s0
j
s5
sk (1)
1 2N
( jc ) ce

• • •
b3=b2;
b4=b1; Q=(0:128); %取样点 Ha=Qc^5./((j*Q).^5+b4*Qc*(j*Q).^4+b3*Qc^2*(j*Q).^3+b2*Qc^3*(j*Q).^2+ b1*Qc^4*(j*Q)+b0*Qc^5);
• •
Has=20*log10(abs(Ha));%对数幅频响应10lg|Gs(jΩ)|在Ωp、Ωs处分别达到ap、as的
2 5.2755krad / s
1)

• (5)将p=s/Ωc代入Ga(p)中得到:
5 c (10 1) 2 10.525 krad /4s H ( s ) s c Ga 5 4 2 3 3 2 s b4c s b3 c s b2 c s b1 c s b05c
巴特沃思 低通滤波器
LOREM IPSUM
• 模拟滤波器的理论和设计方法已发展得相当成熟,这些滤 波器都有严格的设计公式、现成的曲线和图表供设计人员 使用。 • 下面我们先介绍低通滤波器的技术指标和逼近方法,然介
绍巴特沃斯滤波器的设计方法。
• 巴特沃思滤波器是典型的模拟滤波器
模拟低通滤波器的设计 指标及逼近方法
j • 位于左半平面的三个分别为 : 3 s j -
2
s 0 c
1
c
c
s 2 c
4 j 3
H( a s)
• 传输函数:
3 c
2 j 3 c
(s c)(s -
)(s -
2 -j 3 c

归一化系统函数
• 由于各滤波器的幅频特性不同,为使设计统一,将所有的频率归一化。这里采用对3dB截止频率Ω c归一化, 1 归一化后的Ha(s)表示为 H( s ) a N -1 sk s ( ) c c k 0

figure;plot(f,abs(fft_y));title('原始信号频谱
');xlabel('f/Hz');ylabel('幅度');axis([0 60 0 150]);

Qc=5.2775;%3dB截止频率Ω c
• • •
b0=1;%因式分解形式中的各系数 b1=3.2361; b2=5.2361;
下面来确定N • 确定技术指标: p
p
s
s
• 根据技术指标求出滤波器阶数N
10 p - 1 sp s / p,k sp 10s / 10 1
/ 10
N-
lgk sp lgsp
• 经过总结,巴特沃斯低通滤波器的设计步骤大致为:
• 设计通带截止频率fp=5kHz,通带最大衰减αp=2dB,阻带截止频率fs=12kHz,阻
t=linspace(0,1,N);%时间间隔
xt=cos(2*pi*4*t)+cos(2*pi*10*t)+cos(2*pi*20*t)+cos(2*p i*30*t);%原始信号 figure;plot(t,xt);title('原始信号');xlabel('t/s');ylabel('幅度'); Xt=fft(xt,N); fft_y=fftshift(Xt); f=linspace(-N/2,N/2,N);
c p (10
0.1a p
1)

1 2N
2 5.2755krad / s
• (4)为将Ha(p)去归一化,先求3dB截止频率Ω c,得到:
s c (100.1as 1)
c p (10
0.1a p

1 2N
1 2N
2 10.525krad / 开成为五阶多项式,或者将共轭极点放在一起,形成因式分解 形式。
1 H G a ( p ) p5 b p 4 b p 3 b p 2 b p b 4 3 2 1 0
• 由N=5,直接查表得到: • b0=1.0000,b1=3.2361,b2=5.2361,b3=5.2361,b4=3.2361
H( j0) p 20lg dB jp H( )
H( j0) s 20lg dB js H( )
• 如果Ω=0处幅度已归一化到1,即|Ha(j0)|=1,αp和αs表示为
p -10lg H( a j p) a j p) p -10lg H(
• 以上技术指标用图所示。图中Ωc称为3dB截止频率
1 2 k 1 j ( ) 2 2N
s1
s4
• k=0,1,2,3,······,2N-1。
0
s2

1
s3
• 2N个极点等间隔分布在半径 c 为的圆上,间隔是
/N rad。
• 为形成稳定的滤波器,2N个极点中只取s平面左半平面的N个极点构成 H( ,而右半平面的 a s)
a s) a s) N个极点构成 H( , H( 的表示式为
0.1as
1 2N
• • •
Qc=5.2775;%3dB截止频率Ω c b0=1;%因式分解形式中的各系数 b1=3.2361;
相关文档
最新文档