北京初三数学同步练习题及答案:降次
初中数学(冀教版)九年级-同步习题(有答案)(课件免费下载)
21.2解一元二次方程21.2.1配方法第1课时直接开平方法1.若x2=a(a≥0),则x就叫做a的平方根,记为x=__±a___(a≥0),由平方根的意义降次来解一元二次方程的方法叫做直接开平方法.2.直接开平方,把一元二次方程“降次”转化为__两个一元一次方程___.3.如果方程能化为x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么x=__±p___或mx +n=__±p___.知识点1:可化为x2=p(p≥0)型方程的解法1.方程x2-16=0的根为( C)A.x=4B.x=16C.x=±4 D.x=±82.方程x2+m=0有实数根的条件是( D)A.m>0 B.m≥0C.m<0 D.m≤03.方程5y2-3=y2+3的实数根的个数是( C)A.0个B.1个C.2个D.3个4.若4x2-8=0成立,则x的值是__±2___.5.解下列方程:(1)3x2=27;解:x1=3,x2=-3(2)2x2+4=12;解:x1=2,x2=-2(3)5x2+8=3.解:没有实数根知识点2:形如(mx+n)2=p(p≥0)的解法6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( D)A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-47.若关于x的方程(x+1)2=1-k没有实数根,则k的取值范围是( D)A.k<1 B.k<-1C.k≥1 D.k>18.一元二次方程(x-3)2=8的解为__x=3±22___.9.解下列方程:(1)(x-3)2-9=0;解:x1=6,x2=0(2)2(x-2)2-6=0;解:x1=2+3,x2=2- 3(3)x2-2x+1=2.解:x1=1+2,x2=1- 210.(2014·白银)一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则a =__1___.11.若x 2-4x +2的值为0,则x =__2___.12.由x 2=y 2得x =±y ,利用它解方程(3x -4)2=(4x -3)2,其根为__x =±1___.13.在实数范围内定义一种运算“*”,其规则为a*b =a 2-b 2,根据这个规则,方程(x +2)*5=0的根为__x 1=3,x 2=-7___.14.下列方程中,不能用直接开平方法求解的是( C ) A .x 2-3=0 B .(x -1)2-4=0C .x 2+2x =0D .(x -1)2=(2x +1)2 15.(2014·枣庄)x 1,x 2是一元二次方程3(x -1)2=15的两个解,且x 1<x 2,下列说法正确的是( A )A .x 1小于-1,x 2大于3B .x 1小于-2,x 2大于3C .x 1,x 2在-1和3之间D .x 1,x 2都小于316.若(x 2+y 2-3)2=16,则x 2+y 2的值为( A ) A .7 B .7或-1 C .-1 D .19 17.解下列方程: (1)3(2x +1)2-27=0; 解:x 1=1,x 2=-2(2)(x -2)(x +2)=10; 解:x 1=23,x 2=-2 3(3)x 2-4x +4=(3-2x)2;解:x 1=1,x 2=53(4)4(2x -1)2=9(2x +1)2.解:x 1=-52,x 2=-11018.若2(x 2+3)的值与3(1-x 2)的值互为相反数,求x +3x2的值.解:由题意得2(x 2+3)+3(1-x 2)=0,∴x =±3.当x =3时,x +3x 2=23;当x =-3时,x +3x2=019.如图,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解:(1)ab-4x2(2)依题意有ab-4x2=4x2,将a=6,b=4代入,得x2=3,解得x1=3,x2=-3(舍去),即正方形的边长为 3第2课时配方法1.通过配成__完全平方形式___来解一元二次方程的方法叫做配方法.2.配方法的一般步骤:(1)化二次项系数为1,并将含有未知数的项放在方程的左边,常数项放在方程的右边;(2)配方:方程两边同时加上__一次项系数的一半的平方___,使左边配成一个完全平方式,写成__(mx+n)2=p___的形式;(3)若p__≥___0,则可直接开平方求出方程的解;若p__<___0,则方程无解.知识点1:配方1.下列二次三项式是完全平方式的是( B)A.x2-8x-16B.x2+8x+16C.x2-4x-16 D.x2+4x+162.若x2-6x+m2是一个完全平方式,则m的值是( C)A.3 B.-3C.±3 D.以上都不对3.用适当的数填空:x2-4x+__4___=(x-__2___)2;m2__±3___m+94=(m__±32___)2.知识点2:用配方法解x2+px+q=0型的方程4.用配方法解一元二次方程x2-4x=5时,此方程可变形为( D) A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=95.下列配方有错误的是( D)A.x2-2x-3=0化为(x-1)2=4B.x2+6x+8=0化为(x+3)2=1C.x2-4x-1=0化为(x-2)2=5D.x2-2x-124=0化为(x-1)2=1246.(2014·宁夏)一元二次方程x2-2x-1=0的解是( C)A.x1=x2=1B.x1=1+2,x2=-1- 2C.x1=1+2,x2=1- 2D.x1=-1+2,x2=-1- 27.解下列方程:(1)x2-4x+2=0;解:x1=2+2,x2=2- 2(2)x2+6x-5=0.解:x1=-3+14,x2=-3-14知识点3:用配方法解ax2+bx+c=0(a≠0)型的方程8.解方程3x 2-9x +1=0,两边都除以3得__x 2-3x +13=0___,配方后得__(x -32)2=2312___.9.方程3x 2-4x -2=0配方后正确的是( D ) A .(3x -2)2=6 B .3(x -2)2=7C .3(x -6)2=7D .3(x -23)2=10310.解下列方程: (1)3x 2-5x =-2;解:x 1=23,x 2=1(2)2x 2+3x =-1.解:x 1=-1,x 2=-1211.对于任意实数x ,多项式x 2-4x +5的值一定是( B ) A .非负数 B .正数 C .负数 D .无法确定12.方程3x 2+2x =6,左边配方得到的方程是( B )A .(x +26)2=-3718B .(x +26)2=3718C .(x +26)2=3518D .(x +26)2=611813.已知方程x 2-6x +q =0可以配方成(x -p)2=7的形式,那么x 2-6x +q =2可以配方成下列的( B )A .(x -p)2=5B .(x -p)2=9C .(x -p +2)2=9D .(x -p +2)2=514.已知三角形一边长为12,另两边长是方程x 2-18x +65=0的两个实数根,那么其另两边长分别为__5和13___,这个三角形的面积为__30___.15.当x =__2___时,式子200-(x -2)2有最大值,最大值为__200___;当y =__-1___时,式子y 2+2y +5有最__小___值为__4___.16.用配方法解方程: (1)23x 2=2-13x ; 解:x 1=32,x 2=-2(2)3y 2+1=23y.解:y 1=y 2=3317.把方程x 2-3x +p =0配方得到(x +m)2=12,求常数m 与p 的值.解:m =-32,p =7418.试证明关于x 的方程(a 2-8a +20)x 2+2ax +1=0,无论a 为何值,该方程都是一元二次方程.解:∵a 2-8a +20=(a -4)2+4≠0,∴无论a 取何值,该方程都是一元二次方程19.选取二次三项式ax 2+bx +c(a ≠0)中的两项,配成完全平方式的过程叫做配方.例如:①选取二次项和一次项配方:x 2-4x +2=(x -2)2-2;②选取二次项和常数项配方:x 2-4x +2=(x -2)2+(22-4)x ,或x 2-4x +2=(x +2)2-(4+22)x ;③选取一次项和常数项配方:x 2-4x +2=(2x -2)2-x 2.根据上述材料,解决下列问题:(1)写出x 2-8x +4的两种不同形式的配方; (2)已知x 2+y 2+xy -3y +3=0,求x y 的值. 解:(1)x 2-8x +4=x 2-8x +16-16+4=(x -4)2-12;x 2-8x +4=(x -2)2+4x -8x =(x-2)2-4x (2)x 2+y 2+xy -3y +3=0,(x 2+xy +14y 2)+(34y 2-3y +3)=0,(x +12y)2+34(y -2)2=0,又∵(x +12y)2≥0,34(y -2)2≥0,∴x +12y =0,y -2=0,∴x =-1,y =2,则x y =(-1)2=121.2.2 公式法1.一元二次方程ax 2+bx +c =0(a ≠0),当__b 2-4ac ≥0___时,x =-b±b 2-4ac2a,这个式子叫做一元二次方程ax 2+bx +c =0的__求根公式___.2.式子__b 2-4ac___叫做一元二次方程ax 2+bx +c =0根的判别式,常用Δ表示,Δ>0⇔ax 2+bx +c =0(a ≠0)有__有两个不等的实数根___;Δ=0⇔ax 2+bx +c =0(a ≠0)有__两个相等的实数根___;Δ<0⇔ax 2+bx +c =0(a ≠0)__没有实数根___.知识点1:根的判别式1.下列关于x 的方程有实数根的是( C )A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=0 2.(2014·兰州)一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,下列选项中正确的是( B )A .b 2-4ac =0B .b 2-4ac >0C .b 2-4ac <0D .b 2-4ac ≥03.一元二次方程x 2-4x +5=0的根的情况是( D ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根4.利用判别式判断下列方程的根的情况: (1)9x 2-6x +1=0;解:∵a =9,b =-6,c =1,∴Δ=(-6)2-4×9×1=0,∴此方程有两个相等的实数根(2)8x 2+4x =-3;解:化为一般形式为8x 2+4x +3=0,∵a =8,b =4,c =3,∴Δ=42-4×8×3=-80<0,∴此方程没有实数根(3)2(x 2-1)+5x =0.解:化为一般形式为2x 2+5x -2=0,∵a =2,b =5,c =-2,∴Δ=52-4×2×(-2)=41>0,∴此方程有两个不相等的实数根知识点2:用公式法解一元二次方程5.方程5x =2x 2-3中,a =__2___,b =__-5___,c =__-3___,b 2-4ac =__49___. 6.一元二次方程x 2-x -6=0中,b 2-4ac =__25___,可得x 1=__3___,x 2=__-2___. 7.方程x 2-x -1=0的一个根是( B )A .1- 5B .1-52C .-1+ 5D .-1+528.用公式法解下列方程: (1)x 2-3x -2=0;解:x 1=3+172,x 2=3-172(2)8x 2-8x +1=0;解:x 1=2+24,x 2=2-24(3)2x 2-2x =5.解:x 1=1+112,x 2=1-1129.(2014·广东)关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m的取值范围为( B )A .m >94B .m <94C .m =94D .m <-9410.若关于x 的一元二次方程kx 2-2x -1=0有实数根,则实数k 的取值范围是( C ) A .k >-1 B .k <1且k ≠0C .k ≥-1且k ≠0D .k >-1且k ≠011.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2___.12.关于x 的方程(a +1)x 2-4x -1=0有实数根,则a 满足的条件是__a ≥-5___. 13.用公式法解下列方程: (1)x(2x -4)=5-8x ;解:x 1=-2+142,x 2=-2-142(2)(3y -1)(y +2)=11y -4.解:y 1=3+33,y 2=3-3314.当x 满足条件⎩⎪⎨⎪⎧x +1<3x -3,12(x -4)<13(x -4)时,求出方程x 2-2x -4=0的根. 解:解不等式组得2<x<4,解方程得x 1=1+5,x 2=1-5,∴x =1+ 515.(2014·梅州)已知关于x 的方程x 2+ax +a -2=0.(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.解:(1)a =12,另一个根为x =-32(2)∵Δ=a 2-4(a -2)=(a -2)2+4>0,∴无论a 取何实数,该方程都有两个不相等的实数根16.关于x 的一元二次方程(a -6)x 2-8x +9=0有实数根. (1)求a 的最大整数值;(2)当a 取最大整数值时,求出该方程的根.解:(1)∵关于x 的一元二次方程(a -6)x 2-8x +9=0有实根,∴a -6≠0,Δ=(-8)2-4×(a-6)×9≥0,解得a≤709且a≠6,∴a的最大整数值为7(2)当a=7时,原一元二次方程变为x2-8x+9=0.∵a=1,b=-8,c=9,∴Δ=(-8)2-4×1×9=28,∴x=-(-8)±282=4±7,即x1=4+7,x2=4-717.(2014·株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)△ABC是等腰三角形.理由:∵x=-1是方程的根,∴(a+c)×(-1)2-2b+(a -c)=0,∴a+c-2b+a-c=0,∴a-b=0,∴a=b,∴△ABC是等腰三角形(2)∵方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形(3)当a=b=c时,可整理为2ax2+2ax=0,∴x2+x=0,解得x1=0,x2=-121.2.3 因式分解法1.当一元二次方程的一边为0,另一边可以分解成两个一次因式的乘积时,通常将一元二次方程化为__两个一次因式___的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解___法.2.解一元二次方程,首先看能否用__直接开平方法___;再看能否用__因式分解法___;否则就用__公式法___;若二次项系数为1,一次项系数为偶数可先用__配方法___.知识点1:用因式分解法解一元二次方程 1.方程(x +2)(x -3)=0的解是( C ) A .x =2 B .x =-3 C .x 1=-2,x 2=3 D .x 1=2,x 2=-32.一元二次方程x(x -5)=5-x 的根是( D ) A .-1 B .5C .1和5D .-1和5 3.(2014·永州)方程x 2-2x =0的解为__x 1=0,x 2=2___. 4.方程x 2-2x +1=0的根是__x 1=x 2=1___. 5.用因式分解法解下列方程: (1)x 2-4=0;解:x 1=2,x 2=-2(2)x 2-23x =0; 解:x 1=0,x 2=2 3(3)(3-x)2-9=0; 解:x 1=0,x 2=6(4)x 2-4x +4=(3-2x)2.解:x 1=1,x 2=53知识点2:用适当的方法解一元二次方程6.解方程(x +1)2-5(x +1)+6=0时,我们可以将x +1看成一个整体,设x +1=y ,则原方程可化为y 2-5y +6=0,解得y 1=2,y 2=3.当y =2时,即x +1=2,解得x =1;当y =3时,即x +1=3,解得x =2,所以原方程的解为x 1=1,x 2=2.利用这种方法求方程(2x -1)2-4(2x -1)+3=0的解为( C )A .x 1=1,x 2=3B .x 1=-1,x 2=-3C .x 1=1,x 2=2D .x 1=0,x 2=-1 7.用适当的方法解方程: (1)2(x -1)2=12.5;解:用直接开平方法解,x 1=3.5,x 2=-1.5(2)x 2+2x -168=0;解:用配方法解,x 1=12,x 2=-14(3)2x 2=2x ;解:用因式分解法解,x 1=0,x 2= 2(4)4x 2-3x -2=0.解:用公式法解,x 1=3+418,x 2=3-4188.方程x(x -1)=-x +1的解为( D ) A .x =1 B .x =-1C .x 1=0,x 2=-1D .x 1=1,x 2=-19.用因式分解法解方程,下列方法中正确的是( A ) A .(2x +2)(3x +4)=0化为2x +2=0或3x +4=0 B .(x -3)(x +1)=1化为x -3=1或x +1=1 C .(x -2)(x -3)=2×3化为x -2=2或x -3=3 D .x(x -2)=0化为x -2=010.一个三角形的两边长分别为3和6,第三边的边长是方程(x -2)(x -4)=0的根,则这个三角形的周长是( C )A .11B .11或13C .13D .以上都不对11.(2014·陕西)若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值是( B )A .1或4B .-1或-4C .-1或4D .1或-4 12.已知x =1是关于x 的方程(1-k)x 2+k 2x -1=0的根,则常数k 的值为__0或1___. 13.已知(x 2+2x -3)0=x 2-3x +3,则x =__2___. 14.用因式分解法解下列方程: (1)x 2-3x =x -4; 解:x 1=x 2=2(2)(x -3)2=3(x -3). 解:x 1=3,x 2=615.用适当的方法解下列方程: (1)4(x -1)2=2;解:x 1=2+22,x 2=-2+22(2)x 2-6x +4=0;解:x 1=3+5,x 2=3- 5(3)x 2-4=3x -6; 解:x 1=1,x 2=2(4)(x +5)2+x 2=25. 解:x 1=-5,x 2=016.一跳水运动员从10 m 高台上跳下,他离水面的高度h(单位:m )与所用时间t(单位:s)的关系是h=-5(t-2)(t+1),那么运动员从起跳到入水所用的时间是多少?解:依题意,得-5(t-2)(t+1)=0,解得t1=-1(不合题意,舍去),t2=2,故运动员从起跳到入水所用的时间为2 s17.先阅读下列材料,然后解决后面的问题:材料:因为二次三项式x2+(a+b)x+ab=(x+a)(x+b),所以方程x2+(a+b)x+ab=0可以这样解:∵(x+a)(x+b)=0,∴x+a=0或x+b=0,∴x1=-a,x2=-b.问题:(1)用因式分解法解方程x2-kx-16=0时,得到的两根均为整数,则k的值可以为__-15,-6,0,6,15___;(2)已知实数x满足(x2-x)2-4(x2-x)-12=0,则代数式x2-x+1的值为__7___.专题训练(一) 一元二次方程的解法及配方法的应用一、一元二次方程的解法 1.用直接开平方法解方程: (1)(4x -1)2=225;解:x 1=4,x 2=-72(2)13(x -2)2=8; 解:x 1=2+26,x 2=2-2 6(3)9x 2-6x +1=9;解:x 1=43,x 2=-23(4)3(2x +1)2-2=0.解:x 1=-12+66,x 2=-12-662.用配方法解方程: (1)2t 2-3t =-1;解:t 1=12,t 2=1(2)2x 2+5x -1=0;解:x 1=-5+334,x 2=-5-334(3)(2x -1)(3x -1)=3-6x ;解:x 1=12,x 2=-23(4)(2x -1)2=x(3x +2)-7. 解:x 1=4,x 2=23.用公式法解方程: (1)x 2=6x +1;解:x 1=3+10,x 2=3-10(2)0.2x 2-0.1=0.4x ;解:x 1=2+62,x 2=2-62(3)2x -2=2x 2.解:原方程无实数根4.用因式分解法解方程: (1)(x -1)2-2(x -1)=0; 解:x 1=3,x 2=1(2)5x(x -3)=(x -3)(x +1);解:x 1=3,x 2=14(3)(x +2)2-10(x +2)+25=0. 解:x 1=x 2=35.用适当的方法解方程: (1)2(x -3)2=x 2-9; 解:x 1=3,x 2=9(2)(2x +1)(4x -2)=(2x -1)2+2;解:x 1=-1+62,x 2=-1-62(3)(x +1)(x -1)+2(x +3)=8. 解:x 1=1,x 2=-3二、配方法的应用 (一)最大(小)值6.利用配方法证明:无论x 取何实数值,代数式-x 2-x -1的值总是负数,并求出它的最大值.解:-x 2-x -1=-(x +12)2-34,∵-(x +12)2≤0,∴-(x +12)2-34<0,故结论成立.当x =-12时,-x 2-x -1有最大值-347.对关于x的二次三项式x2+4x+9进行配方得x2+4x+9=(x+m)2+n.(1)求m,n的值;(2)求x为何值时,x2+4x+9有最小值,并求出最小值为多少?解:(1)∵x2+4x+9=(x+m)2+n=x2+2mx+m2+n,∴2m=4,m2+n=9,∴m=2,n=5(2)∵m=2,n=5,∴x2+4x+9=(x+2)2+5,∴当x=-2时,有最小值是5(二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值.解:∵a2+b2+4a-2b+5=0,∴(a2+4a+4)+(b2-2b+1)=0,即(a+2)2+(b-1)2=0,∴a=-2,b=1.∴3a2+5b2-4=3×(-2)2+5×12-5=129.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b+c-5+25=0,请根据已知条件判断其形状.解:等式变形为a2-6a+9+b2-8b+16+c-5=0,即(a-3)2+(b-4)2+c-5=0,由非负性得(a-3)2=0,(b-4)2=0,c-5=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形21.2.4 一元二次方程的根与系数的关系1.若一元二次方程x 2+px +q =0的两个根分别为x 1,x 2,则x 1+x 2=__-p___,x 1x 2=__q___.2.若一元二次方程ax 2+bx +c =0(a ≠0)的两个根分别为x 1,x 2,则x 1+x 2=__-ba___,x 1x 2=__ca___.3.一元二次方程ax 2+bx +c =0的根与系数的关系应用条件:(1)一般形式,即__ax 2+bx +c =0___;(2)二次方程,即__a ≠0___;(3)有根,即__b 2-4ac ≥0___.知识点1:利用根与系数的关系求两根之间关系的代数式的值1.已知x 1,x 2是一元二次方程x 2+2x -1=0的两根,则x 1+x 2的值是( C ) A .0 B .2 C .-2 D .4 2.(2014·昆明)已知x 1,x 2是一元二次方程x 2-4x +1=0的两个实数根,则x 1x 2等于( C ) A .-4 B .-1 C .1 D .43.已知方程x 2-6x +2=0的两个解分别为x 1,x 2,则x 1+x 2-x 1x 2的值为( D ) A .-8 B .-4 C .8 D .44.已知x 1,x 2是方程x 2-3x -4=0的两个实数根,则(x 1-2)(x 2-2)=__-6___. 5.不解方程,求下列各方程的两根之和与两根之积: (1)x 2+3x +1=0;解:x 1+x 2=-3,x 1x 2=1(2)2x 2-4x -1=0;解:x 1+x 2=2,x 1x 2=-12(3)2x 2+3=5x 2+x.解:x 1+x 2=-13,x 1x 2=-16.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)x 12+x 22; (2)1x 1+1x 2.解:(1)x 12+x 22=(x 1+x 2)2-2x 1·x 2=11 (2)1x 1+1x 2=x 1+x 2x 1x 2=-3知识点2:利用根与系数的关系求方程中待定字母的值7.已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根互为相反数,则( B ) A .b >0 B .b =0 C .b <0 D .c =08.已知一元二次方程x 2-6x +c =0有一个根为2,则另一根和c 分别为( C ) A .1,2 B .2,4 C .4,8 D .8,169.若关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为x 1=-2,x 2=4,则b +c 的值是( A )A .-10B .10C .-6D .-1 10.(2014·烟台)关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( D ) A .-1或5 B .1 C .5 D .-111.若关于x 的一元二次方程x 2-4x +k -3=0的两个实数根为x 1,x 2,且满足x 1=3x 2,试求出方程的两个实数根及k 的值.解:由根与系数的关系得⎩⎨⎧x 1+x 2=4①,x 1x 2=k -3②,又∵x 1=3x 2③,联立①③,解方程组得⎩⎨⎧x 1=3,x 2=1,∴k =x 1x 2+3=3×1+3=612.已知一元二次方程x 2-2x +2=0,则下列说法正确的是( D )A .两根之和为2B .两根之积为2C .两根的平方和为0D .没有实数根13.已知α,β满足α+β=6,且αβ=8,则以α,β为两根的一元二次方程是( B )A .x 2+6x +8=0B .x 2-6x +8=0C .x 2-6x -8=0D .x 2+6x -8=014.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为( B ) A .5 B .-5 C .1 D .-115.方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( C )A .-2或3B .3C .-2D .-3或216.(2014·呼和浩特)已知m ,n 是方程x 2+2x -5=0的两个实数根,则m 2-mn +3m +n =__8___.17.在解某个方程时,甲看错了一次项的系数,得出的两个根为-8,-1;乙看错了常数项,得出的两个根为8,1,则这个方程为__x 2-9x +8=0___.18.已知x 1,x 2是一元二次方程x 2-4x +1=0的两个实数根,求(x 1+x 2)2÷(1x 1+1x 2)的值.解:由根与系数的关系得x 1+x 2=4,x 1x 2=1,∴(x 1+x 2)2÷(1x 1+1x 2)=x 1x 2(x 1+x 2)=419.已知关于x 的一元二次方程x 2-2kx +k 2+2=2(1-x)有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)若方程的两实数根x 1,x 2满足|x 1+x 2|=x 1x 2-1,求k 的值.解:(1)方程整理为x 2-2(k -1)x +k 2=0,由题意得Δ=4(k -1)2-4k 2≥0,∴k ≤12(2)由题意得x 1+x 2=2(k -1),x 1x 2=k 2,∵|x 1+x 2|=x 1x 2-1,∴|2(k -1)|=k 2-1,∵k ≤12,∴-2(k -1)=k 2-1,整理得k 2+2k -3=0,解得k 1=-3,k 2=1(舍去),∴k =-320.设x 1,x 2是方程x 2-x -2015=0的两个实数根,求x 13+2016x 2-2015的值.解:x 2-x -2015=0,∴x 2=x +2015,x =x 2-2015.又∵x 1,x 2是方程x 2-x -2015=0的两个实数根,∴x 1+x 2=1,∴x 13+2016x 2-2015=x 1·x 12+2016x 2-2015=x 1·(x 1+2015)+2016x2-2015=x12+2015x1+2016x2-2015=x1+2015+2015x1+2016x2-2015=2016(x1+x2)+2015-2015=2016。
北师大版九年级数学上册单元试题及答案第二单一元二次方程(一)
北师大版九年级数学上册单元试题及答案第二章一元二次方程(一)一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是()A.﹣3B.2C.0D.32.(3分)方程x2=2x的解是()A.x=0B.x=2C.x 1=0,x2=2D.x1=0,x2=3.(3分)方程x2﹣4=0的根是()A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x=44.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()A.﹣1B.0C.1D.25.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=96.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=07.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6B.8C.10D.128.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.不能确定9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是()A.1B.1或﹣1C.﹣1D.210.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12B.12或66C.15D.33二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分)11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b= ,另一个根是13.(3分)方程(2y+1)(2y﹣3)=0的根是14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0四、细心做一做17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q 由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是()A.﹣3B.2C.0D.3【考点】一元二次方程的一般形式【分析】一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有2.(3分)方程x2=2x的解是()A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=【考点】解一元二次方程-因式分解法;因式分解-提公因式法【专题】因式分解【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根【解答】解:x2﹣2x=0x(x﹣2)=0∴x1=0,x2=2故选C【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根3.(3分)方程x2﹣4=0的根是()A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x=4【考点】解一元二次方程-直接开平方法【分析】先移项,然后利用数的开方解答【解答】解:移项得x2=4,开方得x=±2∴x1=2,x2=﹣2故选C【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b (a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”(2)运用整体思想,会把被开方数看成整体(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()A.﹣1B.0C.1D.2【考点】根的判别式;一元二次方程的定义(2k﹣1)x2﹣8x+6=0,【分析】先把方程变形为关于x的一元二次方程的一般形式:要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0解得k>,则满足条件的最小整数k为2故选D【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根5.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9【考点】解一元二次方程-配方法【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案【解答】解:移项得:x2﹣4x=5配方得:x2﹣4x+22=5+22(x﹣2)2=9故选D【点评】本题考查了解一元二次方程,关键是能正确配方6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0【考点】由实际问题抽象出一元二次方程【专题】几何图形问题【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可【解答】解:依题意得:(80+2x)(50+2x)=5400即4000+260x+4x2=5400化简为:4x2+260x﹣1400=0即x2+65x﹣350=0故选:B【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6B.8C.10D.12【考点】勾股定理【分析】设三边长分别为x,x+1,x+2,根据勾股定理可得(x+2)2=(x+1)2+x2,解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可【解答】解:设这三边长分别为x,x+1,x+2根据勾股定理得:(x+2)2=(x+1)2+x2解得:x=﹣1(不合题意舍去),或x=3∴x+1=4,x+2=5则三边长是3,4,5∴三角形的面积=××4=6故选:A【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.不能确定【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是()A.1B.1或﹣1C.﹣1D.2【考点】根的判别式【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可【解答】解:根据题意得△=22﹣4(k+2)=0解得k=﹣1故选C【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生A.12B.12或66C.15D.33【考点】一元二次方程的应用.【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可【解答】解:设全组共有x名学生,由题意得x(x﹣1)=132解得:x1=﹣11(不合题意舍去),x2=12答:全组共有12名学生故选:A【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分)11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:﹣3x2+2x﹣3=0【考点】一元二次方程的一般形式【专题】开放型【分析】根据一元二次方程的一般形式和题意写出方程即可【解答】解:由题意得:﹣3x2+2x﹣3=0故答案为:﹣3x2+2x﹣3=0【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=﹣4,另一个根是5【考点】一元二次方程的解【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可【解答】解:∵x=﹣1是方程x2+bx﹣5=0的一个实数根∴把x=﹣1代入得:1﹣b﹣5=0解得b=﹣4即方程为x2﹣4x﹣5=0(x+1)(x﹣5)=0解得:x1=﹣1,x2=5即b的值是﹣4,另一个实数根式5故答案为:﹣4,5【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解13.(3分)方程(2y+1)(2y﹣3)=0的根是y1=﹣,y2=【考点】解一元二次方程-因式分解法【专题】因式分解【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得【解答】解:∵(2y+1)(2y﹣3)=0∴2y+1=0或2y﹣3=0解得y1=,y2=【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=3【考点】根与系数的关系【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,代入计算即可【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2∴x1+x2=3故答案为:3【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是y2﹣3y﹣1=0【考点】换元法解分式方程【专题】换元法【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看作一个整体【解答】解:原方程可化为﹣(x2﹣2x)+3=0设y=x2﹣2x﹣y+3=0∴1﹣y2+3y=0∴y2﹣3y﹣1=0【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式(2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解(3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解(4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可【解答】解:(1)4x2﹣8x+1=0(配方法)移项得,x2﹣2x=﹣配方得,x2﹣2x+1=﹣+1(x﹣1)2=∴x﹣1=±∴x1=1+,x2=1﹣(2)7x(5x+2)=6(5x+2)(因式分解法)7x(5x+2)﹣6(5x+2)=0(5x+2)(7x﹣6)=0∴5x+2=0,7x﹣6=0∴x1=﹣,x2=(3)3x2+5(2x+1)=0(公式法)整理得,3x2+10x+5=0∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40∴x===∴x1=,x2=(4)x2﹣2x﹣8=0(x+4)(x﹣2)=0∴x+4=0,x﹣2=0∴x1=﹣4,x2=2【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程四、细心做一做17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?【考点】一元二次方程的应用【专题】几何图形问题【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150解这个方程;x2=10当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去当养鸡场的宽为x1=10m时,养鸡场的长为15m答:鸡场的长与宽各为15m,10m【点评】本题考查的是一元二次方程的应用,难度一般18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?【考点】一元二次方程的应用【专题】几何图形问题【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解【解答】解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米由题意得(32﹣2x)(15﹣x)=32×15×(1﹣)即x2﹣31x+30=0解得x1=30 x2=1∵路宽不超过15米∴x=30不合题意舍去答:小路的宽应是1米【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?【考点】一元二次方程的应用【专题】增长率问题【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率)(1)可先求出增长率,然后再求2007年的盈利情况(2)有了2008年的盈利和增长率,求出2009年的就容易了【解答】解:(1)设每年盈利的年增长率为x根据题意,得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2007年该企业盈利1800万元(2)2160(1+0.2)=2592答:预计2009年该企业盈利2592万元【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a 为起始时间的有关数量,b为终止时间的有关数量20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?【考点】一元二次方程的应用【专题】销售问题【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可【解答】解:设涨价4x元,则销量为(500﹣40x),利润为(10+4x)由题意得,(500﹣40x)×(10+4x)=8000整理得,5000+2000x﹣400x﹣160x2=8000解得:x1=,x2=当x1=时,则涨价10元,销量为:400件当x2=时,则涨价30元,销量为:200件答:当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由【考点】一元二次方程的应用;相似三角形的判定【专题】几何动点问题【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ =S△ABC列出方程求解(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有=或=,分别代入可得到关于t的方程,可求得t的值(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么=,依此列出比例式=,解方程即可【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的由题意得:PC=2xm,CQ=(6﹣x)m则×2x(6﹣x)=××8×6解得:x=2或x=4故经过2秒或4秒,△PCQ的面积为△ACB的面积的(2)设运动时间为ts,△PCQ与△ACB相似当△PCQ与△ACB相似时,则有=或=所以=,或=解得t=,或t=因此,经过秒或秒,△OCQ与△ACB相似(3)有可能由勾股定理得AB=10∵CD为△ACB的中线∴∠ACD=∠A,∠BCD=∠B又PQ⊥CD∴∠CPQ=∠B∴△PCQ∽△BCA∴=,=解得y=因此,经过秒,PQ⊥CD【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解。
人教版数学2020-2021学年九年级上册精选同步练习及答案:22-2-降次解一元二次方程(1)
2020-2021学年人教版九年级上册精选同步练习及答案22.2 降次——解一元二次方程同步练习第1课时1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,x1= ,x2= .3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .8.用配方法解方程:x2-6x+7=0.第2课时1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .2.填空:(1)x2-2·x·13+ =(x- )2;(2)x2+5x+ =(x+ )2;(3)x2-32x+ =(x- )2;(4)x2+x+ =(x+ )2.3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方,.开平方,得,x1= ,x2= .4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.第3课时1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得 .配方,.开平方,得 ,x 1= ,x 2= .2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得 .配方 , .开平方,得 ,x 1= ,x 2= .3.用配方法解方程:(2x+1)(x-3)=x-9.第4课时1.完成下面的解题过程:用公式法解下列方程:(1)2x 2-3x-2=0.解:a= ,b= ,c= .b 2-4ac= = >0.,1x =_________,1x =__________.(2)x解:整理,得 .a= ,b= ,c= .b 2-4ac= = ., 12x =x =_________.(3)(x-2)2=x-3.解:整理,得 .a= ,b= ,c= .b 2-4ac= = <0.方程 实数根.2.利用判别式判断下列方程的根的情况:(1)x 2-5x=-7;(2)(x-1)(2x+3)=x ;(3)x 2x.第5课时1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3)解:整理,得 .a= ,b= ,c= .b 2-4ac= = >0.x=__________________=______,1x =_________,2x =__________.2.完成下面的解题过程:用因式分解法解方程:x 2x.解:移项,得 .因式分解,得 .于是得 或 ,x 1= ,x 2= .3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.第6课时1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、 .2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:3x2-x-4=0;解:移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .(3)用公式法解方程:x(2x-4)=2.5-8x.解:整理,得 .a= ,b= ,c= .b2-4ac= = >0.,x1= ,x2= .(4)用因式分解法解方程:x(x+2)=3x+6.解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.小结1.注重备课。
初三数学第一学期同步练习题及解析:降次4
初三数学第一学期同步练习题及解析:降次4 前言初三数学第一学期是非常重要的阶段,这时候同学们需要掌握更加深入的知识,来为进入高中做好准备。
在这一阶段,掌握降次4是非常关键的,下面提供一些同步练习题及解析,希望对同学们有所帮助。
降次4练习题题目1将5y3+3y2−xy降次4。
解析:将每个单项式的次数减去4,即可得到结果,如下:5y3+3y2−xy=(5y−1+3y−2−x)y4因此,将5y3+3y2−xy降次4后的结果为(5y−1+3y−2−x)y4。
题目2将下列各式中的含有x的单项式降次4:$$ 3x^4+\\sqrt{2}x^2+x $$解析:将每个单项式的次数减去4,含有x的单项式得到 $(x^{-3}+\\sqrt{2}x^{-5}+x^{-4})x^4$,因此将 $3x^4+\\sqrt{2}x^2+x$ 中含有x的单项式降次4后的结果为 $(x^{-3}+\\sqrt{2}x^{-5}+x^{-4})x^4+\\sqrt{2}x^2$。
降次4练习题解析解析题目1将5y3+3y2−xy降次4后,得到的结果为(5y−1+3y−2−x)y4,这也符合降次4的定义。
可以尝试将答案与原题代入验证其正确性,如下:(5y−1+3y−2−x)y4=5y3+3y2−xy因此,答案正确。
解析题目2将 $3x^4+\\sqrt{2}x^2+x$ 中含有x的单项式降次4后,得到的结果为 $(x^{-3}+\\sqrt{2}x^{-5}+x^{-4})x^4+\\sqrt{2}x^2$,这也符合降次4的定义。
同样可以尝试将答案与原题代入验证正确性,如下:$$ (x^{-3}+\\sqrt{2}x^{-5}+x^{-4})x^4+\\sqrt{2}x^2=3x^4+\\sqrt{2}x^2+x $$ 因此,答案正确。
总结降次4是初三数学中的重要知识点,需要同学们细心掌握。
通过本文的练习题及解析,相信同学们已经有了一定的掌握,希望能够在学习中更上一层楼。
九年级数学上册 2 降次--解一元二次方程练习 试题
轧东卡州北占业市传业学校22.2降次--解一元二次方程◆根底过关1、关于x 的方程0232=+-x ax是一元二次方程,那么〔 〕 A 、0>a B 、0≠a C 、1=a D 、0≥a2、用配方法解以下方程,其中应在左右两边同时加上4的是〔 〕A 、522=-x xB 、5422=-x xC 、542=+x xD 、522=+x x3、方程x x x =-)1(的根是〔 〕 A 、2=xB 、2-=xC 、0,221=-=x xD 、0,221==x x4、2-是一元二次方程240x x c -+=的一个根,那么方程的另一个根是______________.5、假设〔2x+3y 〕2+3〔2x+3y 〕-4=0,那么2x+3y 的值为_________.6、用适当的方法解以下方程:〔1〕0672=+-x x; 〔2〕)15(3)15(2-=-x x ; 〔3〕0362=+-x x ; 〔4〕22510x x --=.●拓展提高1、方程062=--x x的解是__________________. 2、1x =-是关于x 的方程2220x ax a +-=的一个根,那么a =_______.3、写出一个两实数根符号相反的一元二次方程:_________________.4、当代数式532++x x 的值为7时,代数式2932-+x x 的值为〔 〕A 、4B 、2C 、-2D 、-45、解方程 〔1〕0132=++x x 〔2〕022=--x x .6、x 是一元二次方程2310xx +-=的实数根,求代数式235(2)362x x x x x -÷+---的值. ●中考链接 1、 请你写出一个有一根为1的一元二次方程: .2、 如图,在□ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,那么□ABCD 的周长为〔 〕A.4+ B.12+.2+ D.212+3、 反比例函数ab y x=,当0x >时,y 随x 的增大而增大,那么关于x 的方程220ax x b -+=的根的情况是〔 〕A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根4、 三角形的每条边的长都是方程2680x x --=的根,那么三角形的周长是_________________. A DCE B。
人教版九年级数学上同步练习卷:214 一元二次方程解法-直接开平方法(知识讲解)(人教版)
专题21.4 一元二次方程解法-直接开平方法(知识讲解)【学习目标】1. 掌握直接开平方法解方程,会应用此判定方法解决有关问题;2.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】直接开平方法解一元二次方程(1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x 2=a(a ≥0)的方程,根据平方根的定义可解得x 1=a ,x 2=a -.(2) 直接开平方法适用于解形如x 2 = p 或(mx+a)2= p(m ≠0)形式的方程,如果p ≥0,就可以利用直接开平方法。
(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4) 直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
【典型例题】【知识点一】用直接开平方法解一元二次方程1.一元二次方程()2116x +=可转化为两个一元一次方程,其中一个一元一次方程是14x +=,则另一个一元一次方程是( )A .14x -=-B .14x -=C .14x +=D .14x +=- 【答案】D【分析】根据直接开平方法可以解答本题.解:∵(x +1)2=16,∵x +1=±4,∵x +1=4或x +1=-4,故选:D .【点拨】本题考查解一元二次方程,解答本题的关键是明确解方程的方法. 举一反三:【变式1】若(a 2+b 2﹣3)2=25,则a 2+b 2=( )A .8或﹣2B .﹣2C .8D .2或﹣8【答案】C【分析】先直接开平方求得a 2+b 2﹣3=±5,然后再整体求出a 2+b 2即可.解:∵(a 2+b 2﹣3)2=25,∵a 2+b 2﹣3=±5,∵a 2+b 2=3±5,∵ a 2+b 2=8或a 2+b 2=﹣2∵a 2+b 2≥0∵a 2+b 2=8.故选:C .【点拨】本题主要考查了一元二次方程的解法和代数式求值,掌握运用直接开平方法解一元二次方程和整体思想是解答本题的关键.【变式2】方程()23250x --=的根是( )A .5和5-B .2和8-C .8和2-D .3和3-【答案】C【分析】利用直接开平方法解方程即可得答案.解:()23250x --=(x -3)2=25,∵x -3=±5,∵x=8或x=-2,故选:C .【点拨】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.已知方程(x 2+y 2﹣1)2=16,则x 2+y 2的值为______.【答案】5【分析】根据直接开平方解得2214x y +-=±,再根据220≥+x y 计算即可; 解:∵(x 2+y 2﹣1)2=16,∵2214x y +-=±,∵225x y +=或223x y +=-,∵220≥+x y ,∵225x y +=;故答案是5.【点拨】本题主要考查了直接开平方法解方程,准确计算是解题的关键.举一反三:【变式1】方程42=x -320的实数解为__________.【答案】1=2x ;2=2x -【分析】通过移项、系数化为1、开平方先求出2x ,舍去负值后进一步开平方即可. 解:移项后可得:4232,x =416x ∴=24x ∴=或24x =-(舍)122,2x x ∴==-故答案为: 122,2x x ∴==-.【点拨】本题考查了高次方程的求解问题,解题步骤参照解一元二次方程的步骤,将方程逐步转化为n x a =(n 为偶数,a 为常数)的形式,再通过逐步开平方降次即可求解,注意解题过程中不符合条件的值舍去即可.【变式2】已知()222181x y ++=,则22x y +=_________. 【答案】8【分析】将等号两边同时开平方,解出22xy +的值,再根据22x y +的非负性进行取舍即可.解:()222181x y ++=,221x y ++= 22x y +=8或-10,22x y +≥0,∴22x y +=8.故答案为:8.【点拨】本题主要考查直接开平方法解一元二次方程的步骤,方程若能化为形如2()(0)ax b p p +=≥的形式,那么可得ax b +=3.解下列方程:(1)(x -1)2=9; (2)32160x -=.【答案】(1)x 1=4,x 2=-2; (2)x = 2【分析】(1)根据直接开平方法求解一元二次方程,即可得到答案;(2)根据立方根的性质求解,即可得到答案.解:(1)∵(x -1)2=9∵x -1=±3∵x 1=4,x 2=-2.(2)移项,得3216x =∵38x = ∵x = 2.【点拨】本题考查了一元二次方程、立方根的知识;解题的关键是熟练掌握直接开平方法求解一元二次方程、立方根的性质,从而完成求解.举一反三:【变式1】解方程:2(1)40x 【答案】x =1或x = -3【分析】移项,利用直接开平方法,求解即可.解:∵2(1)40x ,∵2(1)4x +=,∵x +1=2或x +1=-2,解得x =1或x = -3.【点拨】本题考查了直接开平方法解一元二次方程,熟练掌握解方程的基本步骤是解题的关键.【变式2】解方程:()22240x --=.【答案】12x =22x =【分析】方程整理后,用开平方法进行解方程.解:()22240x --=整理得:()222x -=两边开平方得:2x -=即2x -=2x -=所以12x =22x =【点拨】本题考查了解一元二次方程的方法,根据方程的特点选择合适的方法是提高解题效率的关键.【知识点二】用直接开平方法解一元二次方程的应用4.给出一种运算:对于函数n y x =,规定1n y nx -'=.例如:若函数41y x =,则有314y x '=.若函数32y x =,求方程212y '=的解. 【答案】12x =,22x =-【分析】根据题中新定义的运算,先求出2y ',代入已知条件,然后求解一元二次方程即可.解:∵32y x =,∵223y x '=,∵2=12y '∵2 312x =∵24x =∵12x =,22x =-,∵2y '的解为:12x =,22x =-.【点拨】题目主要考查求一元二次方程的解,理解新运算的计算方法,并结合一元二次方程是解题关键.举一反三:【变式1】定义:等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程.如()222924,3210x x x x =-=+-=,...都是一元二次方程.根据平方根的特征,可以将形如()20x a a =≥的一元二次方程转化为一元一次方程求解.如:解方程29x =的思路是:由x =123,3x x ==-.解决问题:()1解方程2(2)4x -=解:2x -=22,x ∴-=,或2x -=124,x x ∴==()2解方程:()231250x --=【答案】(1)2,0-;(2)1242,3==-x x 【分析】(1 (2)根据例题的解答方法求解即可.解:(1)2x -=22,x ∴-=,或2x -=-2,124,x x ∴==0,故答案为:-2,0;(2)()231250x --=,315x ∴-=±,315x ∴-=或315,x -=-1242,3x x ∴==-. 【点拨】此题考查解一元二次方程的方法,运用平方根的特征将一元二次方程直接开方化为一元一次方程,正确理解题目中解方程的方法是解题的关键.【变式2】如图,用两个边长为cm 的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为3:2且面积为60cm 2若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.【答案】(1)10cm (2)能,理由见分析【分析】(1)根据已知正方形的边长即可求出大正方形的边长;(2)先求出长方形的边长,再判断即可.解:(1)大正方形的边长10=;(2)设长方形纸片的长为3xcm ,宽为2xcm ,则3260x x ⋅=,解得:x =,331010x =,所以沿此大正方形边的方向剪出一个长方形,能使剪出的长方形纸片的长宽之比为3:2,且面积为260cm .【点拨】本题考查了算术平方根、勾股定理,解一元二次方程,能根据题意列出算式是解此题的关键.祝福语祝你考试成功!。
北师大版九年级数学上学期 用配方法求解一元二次方程同步试卷含答案解析
九年级数学上册同步测试:2.2 用配方法求解一元二次方程一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥23.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣44.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=25.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=196.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=157.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+98.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=99.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.510.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=10912.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.4014.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=215.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3二、填空题(共7小题)16.方程x2=2的解是.17.一元二次方程x2+3﹣2x=0的解是.18.若将方程=.19.将=.20.方程x2﹣2x﹣2=0的解是.21.方程x2﹣2﹣4,则=.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)25.解方程:(2x﹣1)2=x(3x+2)﹣7.26.解方程(1)x2﹣2x﹣1=0(2)=.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.29.解方程:x2﹣4x+1=0.30.用配方法解关于x的一元二次方程ax2+bx+c=0.北师大版九年级数学上册同步测试:2.2 用配方法求解一元二次方程参考答案与试题解析一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根【考点】解一元二次方程-直接开平方法.【分析】根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.【点评】此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥2【考点】解一元二次方程-直接开平方法.【分析】首先移项把﹣m移到方程右边,再根据直接开平方法可得m的取值范围.【解答】解;(,∵一元二次方程(≥0,故选:B.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.3.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣4【考点】解一元二次方程-直接开平方法.【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】解:(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=﹣4,故选:D.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.4.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.【点评】考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9【考点】解一元二次方程-配方法.【分析】根据配方法,可得方程的解.【解答】解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.【点评】本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.8.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.9.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.5【考点】解一元二次方程-直接开平方法.【分析】首先同时除以a得:(x﹣b)2=,再两边直接开平方可得:x﹣b=±,然后把﹣b移到右边,再根据方程的两根可得a、b的值,进而算出a+b的值.【解答】解:a(x﹣b)2=7,两边同时除以a得:(x﹣b)2=,两边直接开平方可得:x﹣b=±,则x=±+b,∵两根为±,∴a=4,b=,∴a+b=4=,故选:B.【点评】此题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.10.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程变形后,配方得到结果,开方即可求出值.【解答】解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.故选:C.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=109【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项,利用完全平方公式化简得到结果即可.【解答】解:方程x2+10x+9=0,整理得:x2+10x=﹣9,配方得:x2+10x+25=16,即(x+5)2=16,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.12.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=【考点】解一元二次方程-配方法.【专题】转化思想.【分析】先移项,把二次项系数化成1,再配方,最后根据完全平方公式得出即可.【解答】解:ax2+bx+c=0,ax2+bx=﹣c,x2+x=﹣,x2+x+()2=﹣+()2,(x+)2=,故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.40【考点】解一元二次方程-配方法.【分析】配方得出(2x+3)2=1156,推出2x+3=34,2x+3=﹣34,求出x的值,求出a、b的值,代入3a+b求出即可.【解答】解:4x2+12x﹣1147=0,移项得:4x2+12x=1147,4x2+12x+9=1147+9,即(2x+3)2=1156,2x+3=34,2x+3=﹣34,解得:x=,x=﹣,∵一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,∴a=,b=﹣,∴3a+b=3×+(﹣)=28,故选B.【点评】本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.14.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】利用直接开平方法得方程m(x+h)2+k=0的解x=﹣h±,则﹣h﹣=﹣3,﹣h+=2,再解方程m(x+h﹣3)2+k=0得x=3﹣h±,所以x1=0,(,h,k均为常数,m ≠0)得x=﹣h±,而关于≠0)的解是x1=﹣3,x2=2,所以﹣h﹣=﹣3,﹣h+=2,方程m(x+h﹣3)2+k=0的解为x=3﹣h±,所以x1=3﹣3=0,x2=3+2=5.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.15.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3【考点】解一元二次方程-直接开平方法;估算无理数的大小.【专题】计算题.【分析】利用直接开平方法解方程得出两根进而估计无理数的大小得出答案.【解答】解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x2=1+>3,x1=1﹣<﹣1,故选:A.【点评】此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.二、填空题(共7小题)16.方程x2=2的解是±.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=2,x=±.故答案为±.【点评】本题考查了解一元二次方程﹣直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.17.一元二次方程x2+3﹣2x=0的解是x1=x2=.【考点】解一元二次方程-配方法.【分析】先分解因式,即可得出完全平方式,求出方程的解即可.【解答】解:x2+3﹣2x=0(x﹣)2=0∴x1=x2=.故答案为:x1=x2=.【点评】此题考查了解一元二次方程,熟练掌握求根的方法是解本题的关键.18.若将方程=3.【考点】解一元二次方程-配方法.【分析】此题实际上是利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,配方,得(=3.故答案为:3.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.将=3.【考点】配方法的应用.【专题】计算题.【分析】原式配方得到结果,即可求出m的值.【解答】解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(=3,故答案为:3【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.20.方程x2﹣2x﹣2=0的解是x1=+1,x2=﹣+1.【考点】解一元二次方程-配方法.【分析】首先把常数﹣2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.【解答】解:x2﹣2x﹣2=0,移项得:x2﹣2x=2,配方得:x2﹣2x+1=2+1,(x﹣1)2=3,两边直接开平方得:x﹣1=,则x1=+1,x2=﹣+1.故答案为:x1=+1,x2=﹣+1.【点评】此题主要考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.22.若一元二次方程a+1与2m﹣4,则=4.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法得到x=±,得到方程的两个根互为相反数,所以m+1+2m﹣4=0,解得m=1,则方程的两个根分别是2与﹣2,则有=2,然后两边平方得到=4.【解答】解:∵x2=,∴x=±,∴方程的两个根互为相反数,∴m+1+2m﹣4=0,解得m=1,∴一元二次方程ax2=b的两个根分别是2与﹣2,∴=2,∴=4.故答案为:4.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【考点】解一元二次方程-配方法.【专题】阅读型.【分析】(1)移项要变号;(2)移项后配方,开方,即可得出两个方程,求出方程的解即可.【解答】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n x2=﹣4n.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.25.解方程:(2x﹣1)2=x(3x+2)﹣7.【考点】解一元二次方程-配方法.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.26.解方程(1)x2﹣2x﹣1=0(2)=.【考点】解一元二次方程-配方法;解分式方程.【专题】计算题.【分析】(1)方程常数项移到右边,两边加上1,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,则x1=1+,x2=1﹣;(2)去分母得:4x﹣2=3x,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,利用配方法解方程时,首先将二次项系数化为1,常数项移到右边,然后两边加上一次项系数以一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.【考点】解一元二次方程-配方法.【专题】阅读型.【分析】第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.【考点】解一元二次方程-配方法;解一元一次不等式组.【专题】计算题.【分析】(1)方程两边都加上1,配成完全平方的形式,然后求解即可;(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1)x2﹣2x+1=2,(x﹣1)2=2,所以,x1=1+,x2=1﹣;(2),解不等式①得,x≥﹣2,解不等式②得,x<,所以,不等式组的解集是﹣2≤x<.【点评】(1)考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.(2)主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).29.解方程:x2﹣4x+1=0.【考点】解一元二次方程-配方法.【专题】计算题;配方法.【分析】移项后配方得到x2﹣4x+4=﹣1+4,推出(x﹣2)2=3,开方得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=﹣1,配方得:x2﹣4x+4=﹣1+4,即(x﹣2)2=3,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.【点评】本题考查了用配方法解一元二次方程、解一元一次方程的应用,关键是配方得出(x﹣2)2=3,题目比较好,难度适中.30.用配方法解关于x的一元二次方程ax2+bx+c=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵关于x的方程ax2+bx+c=0是一元二次方程,∴a≠0.∴由原方程,得x2+x=﹣,等式的两边都加上,得x2+x+=﹣+,配方,得(x+)2=﹣,当b2﹣4ac>0时,开方,得:x+=±,解得x1=,x2=,当b2﹣4ac=0时,解得:x1=x2=﹣;当b2﹣4ac<0时,原方程无实数根.【点评】本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.。
初中数学九年级上册《降次——解一元二次方程》基础典型练习题(整理含答案)
人教九上《降次——解一元二次方程》典型练习题一、选一选!1. 把方程23402x x ++=左边配成一个完全平方式后,所得方程是( ). (A )2355()416x += (B )2315()24x +=- (C )2315()24x += (D )2355()416x +=- 2. 已知方程260x x q -+=可以配方成2()7x p -=的形式, 那么262x x q -+=可以配方成下列的 ( )(A) 2()5x p -= (B) 2()9x p -=(C) 2(2)9x p -+= (D) 2(2)5x p -+=3. 一元二次方程2230x x --=的两个根分别为( ).(A)X l =1, x 2=3 (B)X l =1, x 2=-3(C)X 1=-1,X 2=3 (D)X I =-1, X 2=-34. 若2222()(1)60m n m n +--+=,则22m n +的值为( ). (A )3 (B )-2 (C )3或-2 (D )-3或25. 方程(3)x x x +=的根是( ).(A )-2 (B )0 (C )无实根 (D )0或-26. 已知x 满足方程2310x x -+=,则1x x+的值为( ). (A )3 (B )-3 (C )32 (D )以上都不对 7. 要使分式2544x x x -+-的值为0,x 等于( ). (A )1 (B )4或1 (C )4 (D )-4或-18. 关于x 的方程22(2)0a a x ax b --++=是一元二次方程的条件是( ).(A )2a ≠-且1a = (B )2a ≠ (C )2a ≠-且1a =- (D )1a =-二、填一填! 9. 222(_____)[(____)]3y y y -+=+.10. x =__________.11. 若代数式2713x x -+的值为31,则x =_________________.12.用公式法解方程2815x x =--,其中24b ac -=__________,1x =__________,2x =_______________.13. 一元二次方程x 2-2x-1=0的根是__________.14. 若方程x 2-m=0的根为整数,则m 的值可以是________(只填符合条件的一个即可)15. 若(2x+3y )2+3(2x+3y )-4=0,则2x+3y 的值为_________.16. 请写出一个根为x= 1, 另一根满足-1< x< 1 的一元二次方程_______.三、做一做!17.用配方法解下列方程:(1)210257x x -+=;(2)261x x +=;(3)23830x x +-=;(4)2310x x -+=.18.用公式法解下列方程:(1)27180x x --=;(2)22980x x -+=;(3)29610x x ++=;(4)21683x x +=.19.用因式分解法解下列方程:(1)(41)(57)0x x -+=;(2)3(1)22x x x -=-;(3)2(23)4(23)x x +=+;(4)222(3)9x x -=-.20. 阅读材料,解答问题:材料:为解方程(x 2-1)2-5(x 2-1)+4=0我们可以将x 2-1视为一个整体,然后设x 2-1=y ,•则(x 2-1)2=y 2,原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=;当y=4时,x 2-1=4,∴x 2=5,∴x=x 1,x 2,x 3x 4解答问题:(1)填空,在解原方程得到①的过程中利用_________法达到了降次的目的,体现了_______•数学思想;(2)利用上述方法解方程x 4-x 2-6=0.21. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4•×2•×6=48(1)求3※5的值;(2)求x※x+2※x-2※4=0中x的值;(3)若无论x是什么数,总有a※x=x,求a的值.参考答案:一、选一选!1.D ;2.B ;3.C ;4.A ;5.D ;6.A ;7.A ;8.C ;二、填一填! 9. 19,13-; 10. -5或3;11.9或-2;12.4,-3,-5;13. x 1;x 2;14.如4 , 提示:m 应是一个整数的平方,此题可填的数字很多.15. -•4或1;16.略;三、做一做!17.(1)15x =25x =(2)13x =-23x =-(3)113x =,23x =-;(4)132x +=,232x =; 18.(1)19x =,22x =-;(2)1x =2x =; (3)1213x x ==-; (4)114x =,234x =-; 19.(1)175x =-,214x =; (2)123x =-,21x =; (3)132x =-,212x =; (4)13x =,29x =.20. (1)换元,转化;(2)x=;21. (1)3※5=4×3×5=60,(2)由x ※x+2※x-2※4=0得4x 2+8x-32=0,即x 2+2x-8=0,∴x 1=2,x 2=-4,(3)由a*x=x 得4ax=a ,无论x 为何值总有4ax=x , ∴a=14.。
初中数学代数式求值,反复升次和降次是此类题的通用解法
代数式求值是初中数学中常见的问题,其中反复升次和降次是解决此类问题的一种通用方法。
首先,我们需要理解代数式求值的基本概念。
代数式是由数字、字母通过有限次的四则运算得到的数学式子。
求代数式的值就是将字母代入具体的数值,然后进行计算得到结果。
对于一些复杂的代数式,我们可以采用反复升次和降次的方法来简化计算。
具体来说,升次是指将代数式中的某项次数提高,而降次则是将某项的次数降低。
通过升次和降次,我们可以将复杂的代数式转化为更简单的形式,从而更容易地求出其值。
下面是一个具体的例子来说明如何使用反复升次和降次的方法来求代数式的值。
例题:求代数式 (a^2 + 1)^2 - 4a(a^2 - 1) + 4a^2 的值,其中 a = 2。
分析:首先观察原式,我们可以发现其中包含平方和乘法运算,因此可以考虑使用完全平方公式进行化简。
解:原式 = (a^2 + 1)^2 - 4a(a^2 - 1) + 4a^2
= (a^2 + 1)^2 - 4a^2 + 4a + 4a^2
= (a^2 + 1)^2 + 4a
= (a^2 + 1 + 2a)(a^2 + 1 - 2a)
= (a + 1)^2(a - 1)^2
当 a = 2 时,原式 = (2 + 1)^2(2 - 1)^2 = 9。
2020-2021学年数学人教版九年级上册同步练习:22.2-降次解一元二次方程()
2020-2021学年数学人教版九年级上册同步练习22.2降次——解一元二次方程一、选择题:1.下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+2 2.下列方程:①x 2=0,② 21x -2=0,③22x +3x=(1+2x)(2+x),④32x -x =0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(x-5)(x+5)+(2x-1)2=0化为一元二次方程的一般形式是( ) A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=04.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=05.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( )A.11B.15C.-15D.±157.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1B.4x 2+4x+54=0; C. 2230x x --= D.(x+2)(x-3)==-5 8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题: 9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______. 10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________.11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________. 13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=23y; (3)(x-a)2=1-2a+a2(a是常数) 18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.参考答案一、DAABC,DBD二、9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或23 13.2 14.18 15.115k >≠且k 16.30% 三、17.(1)3,25-;(2)33;(3)1,2a-1 18.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) 14k =±四、20.20% 21.20%附送考试必备心理素质一、强化信心1、经常微笑:经常有意识地让自己发自内心地对别人、对自己微笑。
初三数学降次——解一元二次方程试题
初三数学降次——解一元二次方程试题1.方程的根是()A.B.C.D.【答案】C【解析】x2-4=0变形得:x2=4,开方得:x1=2,x2=-2,则方程的根为2或-2.故选C考点: 解一元二次方程-直接开平方法.2.在解一元二次方程时,粗心的甲、乙两位同学分别抄错了同一道题,甲抄错了常数项,得到的两根分别是8和2;乙抄错了一次项系数,得到的两根分别是-9和-1.你能找出正确的原方程吗?若能,请你用配方法求出这个方程的根.【答案】x2-10x+9=0;x1=9,x2=1【解析】本题主要考查了根与系数的关系及用配方法解一元二次方程. 先设这个方程的两根是α、β,由于乙把一次项系数看错了,而解得方程的两根为-9和-1,则有αβ==9,甲把常数项看错了,解得两根为8和2,则有α+β=-=10,令a=1,那么关于α、β的一元二次方程即为所求.解:设此方程的两个根是α、β,根据题意得:α+β=-=10,αβ==9,令a=1,那么关于α、β的一元二次方程是x2-10x+9=0.x2-10x+9=(x-5)2-25+9=0,故(x-5)2=16,解得:x=9或x=1,故方程两根为:9,1.3.方程x2=6x的根是( )A.x1=0,x2=-6B.x1=0,x2="6"C.x=6D.x=0【答案】B【解析】本题考查了利用因式分解法解一元二次方程. 先把方程变形为x2-5x=0,把方程左边因式分解得x(x-5)=0,则有x=0或x-5=0,然后解一元一次方程即可.解:x2=6x,∴x(x-6)=0,∴x=0或x-6=0,∴x1=0,x2=6.故选B4.方程2x2-3x+1=0经过配方化为(x+a)2=b的形式,正确的是( )A.;B.;C.;D.以上都不对【答案】C【解析】本题主要考查了解一元二次方程-配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.解:移项得2x2-3x=-1,把二次项系数化为1,x2-x=-,配方得x2-x+=-+即(x-)2=,故选C.5.用______法解方程3(x-2)2=2x-4比较简便.【答案】因式分解法【解析】本题考查了因式分解法解一元二次方程.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.此题通过观察可知等式的右边可提出公因式2,变为2(x-2),移项后可把(x-2)看作是公因式,用提公因式的方法把左边分解因式,从而解出方程,所以用因式分解法比较简便.解:由方程3(x-2)2=2x-4知:两边有公因式x-2,∴用因式分解法解方程3(x-2)2=2x-4比较简便.6.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.【答案】1或【解析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法.根据条件把题转化为求一元二次方程的解的问题,然后用因式分解法求解比较简单,先移项,再提取公因式,可得方程因式分解的形式,即可求解.解:∵2x2+1与4x2-2x-5互为相反数,∴2x2+1+4x2-2x-5=0,⇒3x2-x-2=0,∴(x-1)(3x+2)=0,解得x1=1,x2=-.7.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)="6-2x;" (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)【答案】(1)3,;(2);(3)1,2a-1【解析】本题主要考查了解一元二次方程. (1)、(2)根据求根公式求解;(3)直接开平方解一元二次方程.解:(1)由原方程,得5x2-13x-6=0,根据求根公式解得,∴x1=3,x2=(2)由原方程,得3y2-2y+1=0,根据求根公式,得,即x=(3)由原方程,得(x-a)2=(1-a)2,∴x-a=±(1-a),即x=±(1-a)+a,∴原方程的根是x1=1,x2=2a-1.8.已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?【答案】m=-6,n=8【解析】本题考查的是一元二次方程的解. 先解方程(x+4)2-52=3x,有一个正根和一个负根,其中正根是方程x2+mx+n=0的解,把这个节和2代入方程x2+mx+n=0,就可以求出m,n的值.解:解方程(x+4)2-52=3x,x2+8x+16-52-3x=0x2+5x-36=0,(x+9)(x-4)=0∴x1=-9,x2=4,所以方程x2+mx+n=0的另一个根是4,把2和4代入方程x2+mx+n=0,得:4+2m+n=0 ①,16+4m+n=0 ②解得:m=-6,n=8.9.解下面方程:(1)(2)(3),较适当的方法分别为()A.(1)直接开平法方(2)因式分解法(3)配方法B.(1)因式分解法(2)公式法(3)直接开平方法C.(1)公式法(2)直接开平方法(3)因式分解法D.(1)直接开平方法(2)公式法(3)因式分解法【答案】D【解析】本题考查了根据所给方程,选择适当的方法解方程,在选择方法时,应首选因式分解法,当用因式分解法不能解答时,再根据系数特点,选择配方法或公式法.(1)所给出的方程,符合用直接开平方法解的方程的结构特点,应用直接开平方法.(2)所给出的方程,系数较小,是整数,且左边不能进行因式分解,因此应用公式法.(3)给出的方程,左边可以进行因式分解,应用因式分解法.解:根据所给方程的系数特点,(1)应用直接开平方法;(2)应用公式法;(3)应用因式分解法.故选D.10.解方程(每题6分,共48分);①(直接开平方法)②(用配方法)③(用因式分解法)④.⑤⑥.⑦.⑧.x-2)(x-5)=-2【答案】①x1=2,x2=-1②x1="1," x2=-4③x1=-2, x2=4④x1=-4,x2=1⑤x1=x2=1⑥x1="1," x2=-2⑦x1= x2=⑧x1="3," x2=4【解析】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.①、2x-1=±3,∴x1=2,x2=-1;②、,∴x+=±,∴x1="1," x2=-4③ (x+2)(x-4)=0,∴x1=-2, x2=4;④∴x1=-4,x2=1⑤、x2+2x+1-4x=0 x2-2x+1=0 (x-1)2=0 ∴x1=x2=1⑥、x2+x-2=0 (x-1)(x+2)=0 ∴x1="1," x2=-2⑦,2x2-10x-3=0 ∴x1= x2=⑧x2-7x+12="0,(x-3)(x-4)=0," ∴x1="3," x2=4。
人教版九年级上册数学同步练习及答案合集
21.3 二次根式的加减同步测试题 一、选择题(本题共10小题,每题3分,共30分)
1.与 2 3 是同类二次根式的是( )
A. 18
B. 2 3
2.下列运算正确的是( )
C. 9
A. x 5x 6x B. 3 2 2 2 1
D. 27
C. 2 5 2 5
D. 5 x b x (5 b) x
( 1 3 ) (3) 2
3x y 9 y 22. 解: 5x 2 6 y
3x 5x
2y 9 y8
x y
1 3
23.原式=( 5 3 )2- ( 2 )2 =5-2 15 +3-2=6-2 15 .
( 2 7 4)2 ( 2 7 4)2 22
24.解:( 菱形的边长)2= 2
2
22,面积 1 (2 7 4)(2 7 4) 6
∴菱形的边长=
2
10
人教版九年级上册数学同步练习题及答案
25. 5
26.解:原式=(2 5 +1)( 2 1 + 3 2 + 4 3 +…+ 100 99 )
12.在 8, 12, 18, 20 中,与 2 是同类二次根式的 是
。
13. 5- 5 的整数部分是_________
14.计算: 12 3 3
15.方程 2 (x-1)=x+1 的解是____________.
x 1
x1
16.已知
5 2 ,则 x 的值等于
。
17.如图,矩形内两相邻正方形的面积分别是 2 和 6,那么矩形内阴影部分的面积
是
.(结果可用根号表示)
2
6
18.图 7 是由边长为 1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从 A→B →C 所走的路程为_______m.(结果保留根号)
(人教版数学)初中9年级上册-同步练习-21.2.3 因式分解法-九年级数学人教版(上)(解析版)
第二十一章一元二次方程21.2.3因式分解法一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程x2=2x的根是A.x=2 B.x=﹣2C.x1=0,x2=2 D.x1=0,x2=﹣2【答案】C【名师点睛】此题考查用因式分解法解一元二次方程.因式分解法只适用于一些可以整理为2个一次项的积等于0的方程.2.一元二次方程x2−3x=0的解为A.x=0 B.x=3C.x1=x2=−3 D.x1=0 ,x2=3.【答案】D【解析】x=0或x−3=0所以故选D.【名师点睛】本题考查了解一元二次方程−因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.3.方程的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为A.6 B.8C.10 D.8或10【答案】C【解析】,或,,,当2为腰,4为底时,,不符合三角形三边的关系,等腰三角形的底为2,腰为4,这个等腰三角形的周长,故选C.【名师点睛】本题考查了解一元二次方程因式分解法,等腰三角形的性质和三角形三边关系,熟练掌握解一元二次方程的方法是解题的关键.4.一元二次方程x2+3x=0的根为A.﹣3 B.3C.0,3 D.0,﹣3【答案】D【名师点睛】本题考查了因式分解法解一元二次方程,能利用因式分解法进行求解的一元二次方程左侧能进行因式分解,右侧为0,熟练掌握是解题的关键.5.一元二次方程3x2– 2x=0的解是A.23x=B.x=0C.x1=23-,x2=0 D.x1=23,x2=0【答案】D【解析】x(3x−2)=0,x=0或3x−2=0,所以x1=0,x2=23.故选D.【名师点睛】解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.关于x的一元二次方程x2−2x−3=0的根是A.x1=1,x2=3 B.x1=−1,x2=3C.x1=1,x2=−3D.x1=−1,x2=−3【答案】B二、填空题:请将答案填在题中横线上.7.方程(x﹣3)(x﹣9)=0的根是_____.【答案】x1=3,x2=9【解析】(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.8.方程x2+x=0的根为__________.【答案】x 1=−1,x2=0【解析】故答案为:9.若实数a、b满足(a+b)(a+b−2)−8=0,则a+b=_________.【答案】−2或4.【解析】设t=a+b,则由原方程得到:t(t−2)−8=0,整理得:(t+2)(t−4)=0,解得t=−2或t=4,即a+b=−2或a+b=4.故答案是:−2或4.10.用换元法解方程+=,设y =,那么原方程化为关于y 的整式方程是__. 【答案】26520y y -+=【解析】原式=, ∵, ∴原式=,化为整式方程为26520y y -+=. 【名师点睛】本题主要考查的是换元法的应用,属于基础题型.换元法的关键就是把某个式子看成一个整体,然后用另外一个字母来替换它.11.一元二次方程x 2﹣x ﹣2=0的解是_____.【答案】2或﹣1【名师点睛】考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,此题方程的公因式较明显,所以本题运用的是因式分解法.12.我们知道方程x 2﹣2x +1=0的解是x 1=x 2=1,则给出的另一个方程(x ﹣1)2﹣2(x ﹣1)+1=0的解是_____.【答案】x 1=x 2=2【解析】∵方程x 2﹣2x +1=0的解是x 1=x 2=1,∴方程(x ﹣1)2﹣2(x ﹣1)+1=0的解满足:x −1=1,∴x 1=x 2=2.【名师点睛】本题考查了换元法解一元二次方程,认真观察所给两个方程的特点,合理换元是解答本题的突破点.13.关于x 的一元二次方程260x mx +-=的一个根的值为3,则另一个根的值是_____.【答案】−2【解析】由题意把3x =代入方程260x mx +-=得:9360m +-=,解得: 1m =-,∴原方程为: 260x x --=,解此方程得: 1232x x ==-,,∴原方程的另一根为:−2.三、解答题:解答应写出文字说明、证明过程或演算步骤.14.解方程:(2x+1)2=(2﹣x)2.【答案】x1=﹣3,x2=【名师点睛】此题考查用公式法和因式分解法解一元二次方程.公式法适用于所有的方程,因式分解法只适用于一些可以整理为2个一次项的积等于0的方程.15.根据要求,解答下列问题:(1)①方程x2﹣x﹣2=0的解为;②方程x2﹣2x﹣3=0的解为;③方程x2﹣3x﹣4=0的解为;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x﹣10=0的解为;②请用配方法解方程x2﹣9x﹣10=0,以验证猜想结论的正确性.(3)应用:关于x的方程的解为x1=﹣1,x2=n+1.【答案】①x1=﹣1,x2=2;②x1=﹣1,x2=3;③x1=﹣1,x2=4;(2)①x1=﹣1,x2=10;②x1=﹣1,x2=10;(3)x2﹣nx﹣(n+1)=0【解析】①∵x2﹣x﹣2=0,∴(x+1)(x−2)=0,∴x1=﹣1,x2=2;②∵x2﹣2x﹣3=0,∴(x+1)(x−3)=0,∴x1=﹣1,x2=3;③∵x2﹣3x﹣4=0,∴(x+1)(x−4)=0,∴x1=﹣1,x2=4;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x﹣10=0的解为x1=﹣1,x2=10;②x2﹣9x﹣10=0,移项,得x2﹣9x=10,配方,得x2﹣9x+814=10+814,即(x﹣92)2=1214,开方,得x﹣92=112.x1=﹣1,x2=10;(3)应用:关于x的方程x2﹣nx﹣(n+1)=0的解为x1=﹣1,x2=n+1.【名师点睛】本题考查了用因式分解法和配方法解一元二次方程,数字类探索与规律,掌握因式分解法是解(1)的关键,掌握配方法是解(2)的关键,观察出二次项系数、一次项系数、常数项与两根之间的关系是解(3)的关键.。
人教版九年级数学上册降次解一元二次方程(第三课时)同步练习题
22.2降次--解一元二次方程(第三课时)22.2.2 公式法◆随堂检测1、一元二次方程2210x x --=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根2、若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值范围是( ) A .1m < B .1m >- C .1m > D .1m <-3、若关于x 的一元二次方程230x x m -+=有实数根,则实数m 的取值范围是_____________.4、用公式法解下列方程.(1)22410x x --=;(2)2523x x +=;(3)24310x x -+=.分析:用公式法解一元二次方程,首先应把它化为一般形式,然后正确代入求根公式12b x a -+=,2x =2b a-即可.◆典例分析2+= 有一位同学解答如下:这里,a =b =,c =∴224432b ac -=-=,∴x =2==,∴12x =,22x =.请你分析以上解答有无错误,如有错误,找出错误的地方,并写出正确的结果.分析:本题所反映的错误是非常典型的,在用公式法求解方程时,一定要求先将方程化为一元二次方程的一般形式才行.解:这位同学的解答有错误,错误在c =-,而不是c =并且导致以后的计算都发生相应的错误.正确的解答是:20+-=,∴a =b =,c =-∴2244(64b ac -=--=,∴x ===,∴1x =,2x =.◆课下作业●拓展提高1、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .240x += B .24410x x -+= C .230x x ++= D .2210x x +-= 2、如果关于x 的方程022=--k x x 没有实数根,则k 的取值范围为_____________. 3、用公式法解下列方程.(1)1)4(2=+x x ;(2)(2)(35)1x x --=;(3)20.30.8y y +=. 4、求证:关于x 的方程01)12(2=-+++k x k x 有两个不相等的实数根.5、若关于x 的一元二次方程2(2)210a x ax a --++=没有实数解,求30ax +>的解集(用含a 的式子表示).提示:不等式30ax +>中含有字母系数a ,要想求30ax +>的解集,首先就要判定a 的值是正、负或0.利用条件一元二次方程2(2)210a x ax a --++=没有实数根可以求出a 的取值范围.●体验中考1、(2008年,河南)如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A .14k >-B .14k >-且0k ≠C .14k <-D .14k ≥-且0k ≠ 注意:一元二次方程22(21)10k x k x -++=的二次项系数含有字母k .2、(2009年,湖南株洲)定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.已知20(0)ax bx c a ++=≠是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a c =B .a b =C .b c =D .a b c ==参考答案: ◆随堂检测1、B ∵△=224(2)41(1)80b ac -=--⨯⨯-=>,∴方程有两个不相等的实数根,故选B . 2、C ∵△=224(2)41440b ac m m -=--⨯⨯=-<,∴1m >.故选C . 3、94m ≤∵△=224(3)41940b ac m m -=--⨯⨯=-≥,∴94m ≤. 4、解:(1)2a =,4b =-,1c =-,∴224(4)42(1)240b ac -=--⨯⨯-=>,∴x =(4)422242--±±±==⨯,∴122x =,222x =.(2)将方程化为一般形式23520x x --=,∴3a =,5b =-,2c =-,∴224(5)43(2)490b ac -=--⨯⨯-=>,∴x =(5)57236--±±=⨯,∴12x =,213x =-.(3)4a =,3b =-,1c =,∴224(3)44170b ac -=--⨯⨯=-<,∵在实数范围内,负数不能开平方,∴此方程无实数根.◆课下作业 ●拓展提高1、D 只有选项D 中△=224241(1)80b ac -=-⨯⨯-=>,方程有两个不相等的实数根.故选D . 2、1k <- ∵△=224(2)41()440b ac k k -=--⨯⨯-=+<,∴1k <-. 3、(1)将方程化为一般形式22810x x +-=,∴2a =,8b =,1c =-,∴224842(1)720b ac -=-⨯⨯-=>,∴42x -±==,∴142x -+=,242x --=.(2)将方程化为一般形式231190x x -+=,∴3a =,11b =-,9c =,∴224(11)439130b ac -=--⨯⨯=>,∴x =(11)11236--±=⨯,∴1116x +=,2116x =.(3)将方程化为一般形式20.30.80y y +-=,∴0.3a =,1b =,0.8c =-,∴224140.3(0.8) 1.960b ac -=-⨯⨯-=>,∴y =1101420.36--±=⨯,∴14y =-,223y =.4、证明:∵△=2224(21)41(1)450b ac k k k -=+-⨯⨯-=+>恒成立,∴方程有两个不相等的实数根.5、解:∵关于x 的一元二次方程2(2)210a x ax a --++=没有实数根, ∴2(2)4(2)(1)480a a a a ---+=+<,∴20a <-<. ∵30ax +>即3ax >-,∴3x a<-. ∴所求不等式的解集为.3x a<-. ●体验中考1、B 依题意得,222(21)410k k k ⎧≠⎪⎨+-⨯>⎪⎩,解得14k >-且0k ≠.故选B . 2、A 依题意得,2040a b c b ac ++=⎧⎨-=⎩,代入得2()4a c ac +=,∴2()0a c -=,∴a c =.故选A .高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图2.(2016·抚顺中考)如图所示几何体的主视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
初中数学降次解一元二次方程的计算题及答案
初中数学降次解一元二次方程的计算题及答案篇一:九年级数学降次解一元二次方程同步测试降次——解一元二次方程习题精选直接开平方法1.如果(x-2)=9,则x=.2.方程(2y-1)-4=0的根是.3.方程(x+m)=72有解的条件是.4.方程3(4x-1)=48的解是.因式分解法9.方程(x+1)=x+1的正确解法是( )A.化为x+1=0B.x+1=1C.化为(x+1)(x+l-1)=0D.化为x+3x+2=010.方程9(x+1)-4(x-1)=0正确解法是( )A.直接开方得3(x+1)=2(x-1)B.化为一般形式13x2+5=0C.分解因式得[3(x+1)+2(x-1)][3(x+1)-2(x—1)]=0D.直接得x+1=0或x-l=011.(1)方程x(x+2)=2(x+2)的根是.(2)方程x-2x-3=0的根是.12.如果a-5ab-14b=0,则公式法13.一元二次方程ax+bx+c=0(a≠0)的求根公式是,其中b—4ac.14.方程(2x+1)(x+2)=6化为一般形式是,b—4ac ,用求根公式求得222222222222222a?3b= .5bx1=,x2=,x1+x2=,x1x2?,15.用公式法解下列方程.(1)(x+1)(x+3)=6x+4.(2)x2?1)x??0.(3) x-(2m+1)x+m=0.216.已知x-7xy+12y=0(y≠0)求x:y的值.综合题17.三角形两边的长是3,8,第三边是方程x—17x+66=0的根,求此三角形的周长.18.关于x的二次三项式:x+2rnx+4-m是一个完全平方式,求m的值.19.利用配方求2x-x+2的最小值.20.x+ax+6分解因式的结果是(x-1)(x+2),则方程x+ax+b =0的二根分别是什么?21.a是方程x-3x+1=0的根,试求的值.22.m是非负整数,方程mx-(3m—8m)x+2m-13m+15=0至少有一个整数根,求m的值.23.利用配方法证明代数式-10x+7x-4的值恒小于0.由上述结论,你能否写出三个二次三项式,其值恒大于0,且二次项系数分别是l、2、3.24.解方程(1)(x+x)·(x+x-2)=24;(2)x?x?6?025.方程x2-6x-k=1与x-kx-7=0有相同的根,求k 值及相同的根.26.张先生将进价为40元的商品以50元出售时,能卖500个,若每涨价1元,就少卖10个,为了赚8 000元利润,售价应为多少?这时,应进货多少?27.两个不同的一元二次方程x+ax+b=0与x+ax+a=0只有一个公共根,则( )A.a=bB.a-b=lC.a+b=-1D.非上述答案28.在一个50米长30米宽的矩形荒地上设计改造为花园,使花园面积恰为原荒地面积的寺,试给出你的设计.29.海洲市出租车收费标准如下22222222222222222222(规定:四舍五入,精确到元,N≤15)N是走步价,李先生乘坐出租车打出的电子收费单是:里程11公里,应收29.1元,你能依据以上信息,推算出起步价N的值吗?30.方程(x-1)(x+2)(x-3)=0的根是.31.一元二次方程x—2x=0的解是( )A.0 B.2 C.0,-2 D.0,232.方程x+kx—6=0的一根是2,试求另一个根及k的值.33.方程(m?2)xm22?3mx?1?0是一元二次方程,则这方程的根是什么? 34.x1、x2是方程2x—3x—6=0的二根,求过A(x1+x2,0)B(0,xl·x2)两点的直线解析式.35.a、b、c都是实数,满足(2?a)c?c?8?0,ax+bx+c=0,求代数222式x+2x+1的值.2a?b?8??36.a、b、c满足方程组求方程?的解。
北师大版九年级数学2.6应用一元二次方程同步练习2(含答案)
优异当先 翱翔梦想2.6 应用一元二次方程一 选择题(每题 5 分,共 25 分)1 市政府为认识决市民看病难的问题,决定下调药品的价钱。
某种药品经过连续两次降价后,由每盒200元下调至 128 元,这类药品均匀每次降 价的百分率是 ( )A10%B 15% C20% D25%2 一架长为 10 米的梯子斜靠在墙上, 梯子的顶端距地面的垂直距离为6 米,假如梯子的顶端沿墙壁下滑1米,那么梯子的底端向后滑动的距离()A 等于1米B 大于1米C 小于1米D 不可以确立3 在一幅长 80cm ,宽 50cm 的 矩形景色画的周围镶一条金色纸边,制成一幅矩形图.假如要使整个挂图的面积是 5400cm 2,设金色纸边的宽为 xcm ,那么 x 知足的方程是( ? )A . x 2+130x-1400=0B .x 2+65x- 350=0C . x 2-130x-1400=0 D. x 2-65x-350=04 某电视机厂计划两年后产量为此刻的2 倍,假如每年增添率为 x ,则可得 方程()2B 1+x=2 C1+2x=2 D1 x2A 1 x =3,=25 借助一 面墙为一边,再用13 米的铁丝网围成一个面积为 20 平方米的长方形,求长方形的长和宽,设长为 x 米,依据题意可得方程( )A x (13-x)=20B x?13x=20C x (13-0.5x)=20 Dx ?13 2 x=2022二 填空题(每题 5 分,共 25 分)6 某印刷厂今年一季度印刷了 50 万册书,第三季度印刷了 72 万册书,假如每个季度的增添率相同,设为 x, 依题意可得方程 __________________;7 某村家用电脑总量,2007 年比 2005 年增添 69 %,若设均匀每年的增添率为x, 依题意得方程:______________________;8 某生活小区准备在每幢楼房之间,开拓面积为200 平方米的一块长方形绿地,而且长比宽多10 米,则绿地的长为 _____米,宽为 _______米 ;9 用长为 24 厘米的铁丝围成一个斜边为 10cm 的直角三角形,则两直角边分别为 _______;10 如图,某小区规划在一个长40 米,,宽 26 米的矩形场所 ABCD 上修筑三条相同宽的小道,使此中两条与 AB 平行,另 一条与 BC 平行,其余部分种草,若使每一块草坪面积都为 144 平方米 , 求小道的宽。
北京第一一九中学九年级数学上册第一单元《一元二次方程》测试(有答案解析)
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM 2.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( ) A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-4 3.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x +=B .()238x += C .()2310x -=D .()238x -=4.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( ) A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠5.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .166.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有且只有一个实数根D .没有实数根7.方程(2)2x x x -=-的解是( ) A .2B .2-,1C .1-D .2,1-8.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+=B .220x -=C .2(1)0x -=D .2(1)20x ++=9.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=010.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( ) A .x (40-x )=75B .x (20-x )=75C .x (x +40)=75D .x (x +20)=711.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定 12.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( )A .4B .1C .﹣1D .﹣4二、填空题13.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______. 14.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.15.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.16.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________. 17.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.18.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______19.当x=______时,−4x 2−4x+1有最大值.20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.商店销售某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么该商品每件售价多少元? 22.解下列方程: (1)2x 2﹣4x +1=0; (2)(2x ﹣1)2=(3﹣x )2. 23.解方程:2420x x ++=.24.(12. (2)解一元二次方程:x 2﹣4x ﹣5=0.25.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变. (1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表:26.解方程(1)2420x x -+= (2)()255210x x ++=(3)2560x x -+= (4)()3133x x x +=+【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案. 【详解】解:设正方形的边长为1,AF =AM =x , 则BE =EF =12,AE =x+12, 在Rt △ABE 中, ∴AE 2=AB 2+BE 2, ∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B.【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型.2.B解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m的一元一次不等式,解不等式即可得出k的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14,∴k=0符合题意;当k≠0时,∵方程kx2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k的取值范围是k≥-4.故选:B.【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.A解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x2+6x-1=0,∴x2+6x=1,∴x2+6x+9=10,∴(x+3)²=10,故选:A.【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可. 【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D 【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式: (1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根; (2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根; (3)当△=b 2﹣4ac <0时,方程没有实数根.5.B解析:B 【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可. 【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2, 设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b , 如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12. 故答案为:B . 【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.6.D解析:D 【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边, ∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根. 故选:D . 【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.7.D解析:D 【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程. 【详解】解:x (2﹣x )+(2﹣x )=0, (2﹣x )(x +1)=0, 2﹣x =0或x +1=0, 所以x 1=2,x 2=﹣1. 故选:D . 【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.D解析:D 【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得. 【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D . 【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.9.A解析:A 【分析】本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可. 【详解】解:依题意得:(80+2x )(50+2x )=5400, 即4000+260x+4x 2=5400, 化简为:4x 2+260x-1400=0, 即x 2+65x-350=0. 故选:A . 【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.10.B解析:B 【分析】根据长方形的周长可以用x 表示另一边,然后根据面积公式即可列出方程. 【详解】解:设矩形的一边为x 米,则另一边为(20-x )米, ∴x (20-x )=75, 故选:B. 【点睛】此题考查一元二次方程的实际应用,根据题意抽象出一元二次方程是解题的关键.11.C解析:C 【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案. 【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8. ∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根. 故选:C . 【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.12.C解析:C 【分析】据一元二次方程的根与系数的关系得到两根之和即可. 【详解】解:∵方程x 2-4x-1=0的两个根是x 1,x 2, ∴x 1∙x 2=-1. 故选:C . 【点睛】本题考查了一元二次方程ax 2+bx+c=0的根与系数关系,两根之和是-b a ,两根之积是c a. 二、填空题13.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4 【分析】根据一元二次方程根的判别式可直接进行求解. 【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根, ∴224440b ac k ∆=-=-=, 解得:4k =; 故答案为:4. 【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.14.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解解析:8 【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即可求解. 【详解】由题可得:1212132x x x x +==,,∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8. 【点睛】本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键.15.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729 【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染. 【详解】设每轮传染中平均每个人传染的人数为x 人, 由题意可列得,()1181x x x +++=, 解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人). 故答案为:729. 【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.16.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8 【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可 【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8 【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键17.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3 【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值. 【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=, ∴()()()2223110a b c -+++-=,∴a=3,b=-1,c=1, ∴a+b+c=3-1+1=3, 故答案为3. 【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键.18.【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的 解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可. 【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2, 由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-. 故答案为:6-. 【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.19.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键. 20.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p ﹣3×(﹣1)=q 所以p =﹣4q =3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p ,﹣3×(﹣1)=q ,所以p =﹣4,q =3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q 是解题的关键.三、解答题21.每件售价为45元【分析】设该商品的单价为x 元,根据题意得到方程,解方程即可求解.【详解】解:设该商品的单价为x 元.根据题意,得()()3020010402250---=⎡⎤⎣⎦x x .解这个方程,得1245x x ==.答:每件售价为45元.【点睛】本题考查一元一次方程的应用,解题的关键是根据利润得到相应的等量关系是解题的关键.22.(1)x 1=1,x 2=1;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=±2,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.23.12x =-22x =-【分析】方程利用配方法求出解即可.【详解】∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=, ∴2x =-±∴12x =-22x =-【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.24.(1)2;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京初三数学同步练习题及答案:降次
【模拟试题】(答题时间50分钟)一. 选择题1. 方程x(x-1)=
0的根是()A. 0 B. 1 C. 0,-1 D. 0,
12. 方程9(x+1)2-4(x-1)2=0的正确解法是()A. 直接开方
得3(x+1)=2(x-1)B. 化为一般形式13x2+5=0C. 分解因式得[3
(x+1)+2(x-1)][3(x+1)-2(x-1)]=0D. 直接得x+1=0
或x-1=03. 解方程(5x-1)2=3(5x-1)的适当是()A. 直接
开 B. 配 C. 公式法 D. 因式分解法4. 若实数x、y满足
(x+y+2)(x+y-1)=0,则x+y的值为()A. 1 B.
-2 C. 2或-1 D. -2或15. 方程3x(x-2)=0的解是
()A. x1=3,x2=2 B. x1=0,x2=2 C. x1=,x2=2 D. x1
=0,x2=-2*6. 若a使得x2+4x+a=(x+2)2-1成立,则a的值
为()A. 5 B. 4 C. 3 D. 2*7. 如果
x2+x-1=0,那么代数式x3+2x2-7的值是()A. 6 B. 8 C. -6 D. -8**8. 已知(x+y)(1-x-y)+6=0,则x+
y的值为()A. 2 B. -3 C. -2或3 D. 2或-
3二. 填空题1. 一元二次方程x2-2x=0的根是__________.2. 方程
(x-1)(x+2)=2(x+2)的根是__________.*3. 方程(x-1)(x
+2)(x-3)=0的根是__________.4. 方程x(2x-1)=3(2x-1)
的根是__________.*5. 使代数式x2+x-2的值为0的x的值是
__________.6. 一个数平方的2倍等于这个数的7倍,这个数是
__________.**7. 三角形两边的长分别是8和6,第三边的长是方程x2
-12x+20=0的一个实数根,则三角形的周长是__________.*8. 一元。