(完整版)湖南省2012-2018年对口升学考试数学试题
2012职高对口湖南升学考试数学试题
2012职高对口湖南升学考试数学试题一、 选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的)1、 设集合A ={x|x>1},B={x|0<x<1},则A ⋃B 等于( )A.{x|x>0}B.{x|x ≠1}C.{x|x>0或x ≠1}D.{x|x>0且x ≠1}2、 “x>3”是”x 2>9”的( )A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3、 不等式|2x-3|>1的解集为( )A.(1,2)B. (,1)(2,)-∞⋃+∞C. (,1)-∞D. (2,)+∞4、 已知tan α=-2,则2sin(2)cos παα+值为( ) A.4 B.2 C.-2 D.-45、 抛掷一枚骰子,朝上一面的点数大于3的概率为( ) A.16 B. 13 C. 12 D. 236、 若直线x+y-k=0过圆x 2+y 2-2x+4y-7=0的圆心,则实数k的值为( )A.-1B.-2C.1D.27、 已知函数f(x)=sinx ,若e m =2,则f(m)的值为( )A.sin2B.sineC.sin(1n2)D.1n(sin2)8、 设a,b,c为三条直线,,αβ为两个平面,则下列结论中正确的是( )A.若,a b b c ⊥⊥则a ∥c ,B.若,,a b a b αβ⊂⊂∥则a ∥β,C.若a ∥b,b α⊂,则a ∥α,D.若,a b c α⊥∥,则b ⊥α.9、 将5个培训指标全部分配给3所学校,每所学校至少有1个指标,则不同的分配方案有( )A. 5种B.6C.10种D.12种10、 双曲线221916x y -=的一个焦点到其渐近线的距离为( ) A .16 B .9 C .4 D.3二、 填空题(本大题共5小题,每小题4分,共20分,将答案填在答题卡中对应题号后的横线上)11、已知向量a =(1,-1),b =(2,y),若a ∥b 则y= ;12、某校高一年级有男生480人,女生360人。
湖南省2018年普通高等学校对口招生考试数学试卷与答案
湖南省 2018 年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三部分,共 4 页。
时量 120 分钟。
满分120 分一. 选择题(本大题共 10 小题,每小题 4 分,共 40 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合 A={1,2,3,4} , B={3,4,5,6} ,则 ( )A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6} 2. “ x 2 9 是 x 3的( ) 条件A. 充分必要B. 必要不充分C. 充分不必要D.既不充分也不必要3. 函数 y x 22 x 的单调增区间是 ( )A. (,1] B. [1, )C. ( , 2]D.[0, )4. 已知 cos3 ,且 为第三象限角,则 tan =( )A.45334B.C. D.3 4435. 不等式 | 2 x 1| 1的解集是 ()A. { x | x 0}B.{x | x 1}C.{ x | 0 x 1} D. { x | x 0 或 x 1}6. 点 M 在直线 3x+4y-12=0 上, O 为坐标原点,则线段 OM 长度的最小值是 ()A.3B.4C.12D.122557. 已知向量 a 、 b 满足 | a | 7,| b | 12 , a b 42 , 则向量 a 、 b 的夹角为 ()A.30 °B.60 °C.120° D.150°8. 下列命题中,错误 的是 ( )..A. 平行于同一个平面的两个平面平行B. 平行于同一条直线的两个平面平行C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交9.已知 a sin 15 , b sin 100 , c sin 200 , 则 a,b,c 的大小关系为 ( )A. a b cB.a c bC.c b aD.c a b面积的最10. 过点( 1,1 )的直线与圆x 224相交于A,B 两点,O 为坐标原点,则△大值为 ()yOABA.2B.4C.3D. 2 3二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11. 某学校有 900 名学生,其中女生 400 名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为 45 的样本,则应抽取男生的人数为 ______。
最新湖南2018年高考对口招生考试数学真题资料
精品文档湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A∩B=()A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}23x?9x?)”的( 2. “”是“必要不充分条件A.充分必要条件 B. 既不充分也不必要条件C.充分不必要条件D.2xx2?y?函数3.)的单调增区间是(∞∞,2] D.[0,+)) C.(-A.(-∞,1] B. [1,+∞3??cos???)4.已知=( , 且,为第三象限角则tan54433?? C. A. B. D.44331??2x1的解集是(不等式)5.1|?x|x0xx?} A.{} B.{1xx|??x0或1?0x|x?}} D.{C.{精品文档.精品文档0?y?123x?4OMO M长度的在直线为坐标原点,上,则线段点6. )最小值是(1212 A. 3 B. 4 C. D. 525????????12b?7a?b?42ba?b?aa的夹,,,7.已知向量则向量,满足, )角为(?30 D. 150°° C. 120A. ° B. 60 )错误下列命题中,的是( 8...平行于同一个平面的两个平面平行A. 平行于同一条直线的两个平面平行B.交线平行C. 一个平面与两个平行平面相交, 则必与另一个相交D. 一条直线与两个平行平面中的一个相交,c,b,a?200c?sinsina?sin15?b?100?的大小关系为,,则,9.已知)(b?ac?abca?c?c?b?ba?? A. B. D. C. 224?y?xO BA为坐标原,10.过点(1,1)的直线与圆相交于,两点OAB?)面积的最大值为(点,则33A. 2 B. 4 C. D. 2二、填空题(本大题共5小题,每小题4分,共20分)精品文档.精品文档11.某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .f(x)?cosx?bbb= .则12.函)的部分图像如图所示(,为常数6)?1(x13.展开式的5x的系中数为用数()字作答??????bybacaxc则,且=14.已知向量=(1,2),+=(3,4),=(11,16),??yx .再将这个正方形各边的中点相连,画一个边长为4的正方形,15.如图个则第.10个正方形这样一共画了依次类推个正方形得到第2,,10 .正方形的面积为精品文档.精品文档60满分22,小题为选做题.本大题共7小题,其中第21(三、解答题解答应写出文字说明、证明过程或演算步骤)分,)分16.(本小题满分10aaa,}为等差数列,=5=1,已知数列{31n a }的通项公式;(Ⅰ)求数列{n SaS nn. 若{}的前=100项和为,求 . (Ⅱ)设数列nnn分)17.(本小题满分10 .用,从中随机抽取2瓶检测瓶不合格6某种饮料共瓶,其中有2?求表示取出饮料中不合格的瓶数. 随机变量)的分布列;(Ⅰ?. 检测出有不合格饮料的概率(Ⅱ))分本小题满分18.(10精品文档.精品文档f(x)?log(x?3)(a?0,且a?1)的图像过点(5,1) 已知函数a f(x)f(x)的定义域;的解析式,并写出Ⅰ)求 (f(m)?1m的取值范围若,求(Ⅱ)19.(本小题满分10分)ABC?ABCAAAA?AB?BCABC,,在三棱柱中,,⊥底面如图11111?ABC?AC D的中点,.为90°AACC BD;(I)证明: ⊥平面11BAAACC所成的角. (Ⅱ)求直线与平面111精品文档.精品文档20.(本小题满分10分)22yx?1?FF0?a?b:C(1,0),(已知椭圆(-1,0))的焦点为、2122ba A(0,1)在椭圆C点上.C的方程; (I)求椭圆FAFCll M,且与与椭圆垂直,(II)(Ⅱ)直线过点相交于11NMN的长求.两点,选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)ABCDBC?CD?6?BCD?4AB?120°,,,如图在四边形中,,?ABC?ABCD的面积.,75°求四边形精品文档.精品文档22.)10分(本小题满分23.BA吨已知生产1两种原料某公司生产甲、乙两种产品均需用.,吨1每种产品所需原料及每天原料的可用限额如表所示.如果生产该公问:.生产1吨乙产品可获利润5万元4甲产品可获利润万元,?,才能使公司每天获得的利润最大司如何规划生产精品文档.。
湖南省2012年对口升学数学试卷及答案
湖南省2012年普通高等学校对口招生考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合犃={狓|狓>1},犅={狓|0<狓<1},则犃∪犅等于( )A.{狓|狓>0}B.{狓|狓≠1}C.{狓|狓>0或狓≠1}D.{狓|狓>0且狓≠1}2.“狓>3”是“狓2>9”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.不等式|2狓-3|>1的解集为( )A.(1,2)B.(-∞,1)∪(2,+∞)C.(-∞,1)D.(2,+∞)4.已知tanα=-2,则sin(π+2α)cos2α的值为( )A.4B.2C.-2D.-45.抛掷一枚骰子,朝上一面的点数大于3的概率为( )A.16B.13C.12D.236.若直线狓+狔-犽=0过圆狓2+狔2-2狓+4狔-7=0的圆心,则实数犽的值为( )A.-1B.-2C.1D.27.已知函数犳(狓)=sin狓,若犲犿=2,则犳(犿)的值为( )A.sin2B.sin犲C.sin(ln2)D.ln(sin2)8.设犪,犫,犮为三条直线,α,β为两个平面,则下列结论中正确的是( )A.若犪⊥犫,犫⊥犮,则犪∥犮B.若犪 α,犫 β,犪∥犫,则α∥βC.若犪∥犫,犫 α,则犪∥αD.若犪⊥α,犫∥犪,则犫⊥α9.将5个培训指标全部分配给3所学校,每所学校至少有1个指标,则不同的分配方案有( )A.5种B.6种C.10种D.12种10.双曲线狓29-狔216=1的一个焦点到其渐近线的距离为( )A.16B.9C.4D.3二、填空题(本大题共5小题,每小题4分,共20分.将答案填在答题卡中对应题号后的横线上)11.已知向量犪=(1,-1),犫=(2,狔),若犪∥犫,则狔=.12.某校高一年级有男生480人,女生360人.若用分层抽样的方法从中抽取一个容量为21的样本,则抽取的男生人数应为.13.已知球的体积为4π3,则其表面积为.·1·14.(狓+1狓2)9的二项展开式中的常数项为.(用数字作答)15.函数犳(狓)=4狓-2狓+1的值域为.三、解答题(本大题共7小题,其中第21,22小题为选做题,共60分.解答应写出文字说明或演算步骤)16.(本小题满分8分)已知函数犳(狓)=lg(1-狓2).(1)求犳(狓)的定义域;(2)判断犳(狓)的奇偶性,并说明理由.17.(本小题满分10分)已知犪,犫是不共线的两个向量,设→ 犃犅=2犪+犫,→ 犅犆=-犪-2犫.(1)用犪,犫表示→ 犃犆;(2)若|犪|=|犫|=1,<犪,犫>=60°,求→ 犃犆·→ 犅犆.·2·18.(本小题满分10分)设{犪狀}是首项犪1=2,公差不为0的等差数列,且犪1,犪3,犪11成等比数列.(1)求数列{犪狀}的通项公式;(2)若数列{犫狀}为等比数列,且犫1=犪1,犫2=犪3,求数列{犫狀}的前狀项和犛狀.19.(本小题满分10分)某射手每次射击命中目标的概率为23,且各次射击的结果互不影响,假设该射手射击3次,每次命中目标得2分,未命中目标得-1分.记犡为该射手射击3次的总得分数.求:(1)犡的分布列;(2)该射手射击3次的总得分数大于0的概率.·3·20.(本小题满分10分)已知点犃(2,0)是椭圆犆:狓2犪2+狔2犫2=1(犪>犫>0)的一个顶点,点犅(65,45)在犆上.(1)求犆的方程;(2)设直线犾与犃犅平行,且犾与犆相交于犘,犙两点.若犃犘⊥犃犙,求直线犾的方程.注意:第21题(工科类),22题(财经、商贸与服务类)为选做题,请考生选择其中一题作答.21.(本小题满分12分)已知函数犳(狓)=sin狓槡+3cos狓.(1)将函数狔=犳(ω狓)(0<ω<3)图象上所有的点向右平移π6个单位长度,得到函数犵(狓)的图象.若犵(狓)的图象过坐标原点,求ω的值;(2)在△犃犅犆中,角犃,犅,犆所对的边分别为犪,犫,犮.若犳(犃)槡=3,犪=2,犫+犮=3,求△犃犅犆的面积.·4·22.(本小题满分12分)某股民拟用不超过12万元的资金,买入甲、乙两支股票,根据市场调查和行情分析,买入甲、乙两支股票可能的最大盈利率分别为200%和100%,可能的最大亏损率分别为60%和20%.该股民要求确保可能的资金亏损额不超过3.6万元.问该股民对甲、乙两支股票如何投资,才能使可能的盈利最大?并求可能的最大盈利值.··5湖南省2012年普通高等学校对口招生考试数学试卷参考答案一、选择题 1.D 2.A 3.B 4.A 5.C 6.A 7.C 8.D 9.B 10.C二、填空题 11.-2 12.12 13.4π 14.84 15.[-1,+∞]三、解答题 16.解:(1)1-狓2>0∴-1<狓<1∴函数的定义域为(-1,1).(2)犳(-狓)=lg[1-(-狓)2]=lg(1-狓2)=犳(狓)∴函数犳(狓)是偶函数. 17.解:(1)→ 犃犆=→ 犃犅+→ 犅犆=犪→-犫→(2)→ 犃犆·→ 犅犆=(犪→-犫→)·(-犪→-2犫→)=-|犪→|2+2|犫→|2-犪→·犫→=-|犪→|2+2|犫→|2-|犪→|·|犫→|cos60°=12 18.解:(1)设等差数列{犪狀}的公差为犱.∴(2+2犱)2=2(2+10犱)∴犱=3或犱=0(舍)∴数列{犪狀}的通项公式为犪狀=3狀-1(2)犫1=2,犫2=8∴等比数列{犫狀}的公比为4∴犛狀=2(1-4狀)1-4=23·4狀-23 19.解:(1)犡可能的值为-3,0,3,6.犘(犡=-3)=犆03(23)0(1-23)3=127犘(犡=0)=犆13(23)(1-23)2=29犘(犡=3)=犆23(23)2(1-23)=49犘(犡=6)=犆33(23)3(1-23)0=827∴犡的分布列为:犡-3036犘1272949827(2)犘(犡>0)=犘(犡=3)+犘(犡=6)=2027 20.解:(1)犪=2(65)2犪2+(45)2犫2烅烄烆=1∴犪=2,犫=1∴椭圆犆的方程为狓24+狔2=1.(2)直线犃犅的斜率=45-065-2=-1不妨设直线犾的方程为狔=-狓+犫,犘(狓1,狔1),犙(狓2,狔2)∴狔=-狓+犫狓24+狔2烅烄烆=1∴5狓2-8犫狓+4犫2-4=0∴狓1+狓2=8犫5,狓1狓2=4犫2-45∴狔1-0狓1-2×狔2-0狓2-2=(-狓1+犫)(-狓2+犫)(狓1-2)(狓2-2)=狓1狓2-犫(狓1+狓2)+犫2狓1狓2-2(狓1+狓2)+4=-1∴2狓1狓2-(狓1+狓2)(犫+2)+犫2+4=0∴2(4犫2-4)5-8犫5(犫+2)+犫2+4=0∴犫=2或65∴直线犾的方程为狓+狔-2=0或5狓+5狔-6=0 21.解:(1)犳(狓)=2sin(狓+π3)·6·∴狔=2sin(ω狓+π3)∴犵(狓)=2sin(ω狓+π3-ωπ6)∴π3-ωπ6=0 ∴ω=2(2)犳(犃)=2sin(犃+π3)槡=3∴犃=π3∴犪2=犫2+犮2-2犫犮cosπ3∴犫2+犮2-犫犮-4=0又犫+犮=3∴犫犮=53∴犛△犃犅犆=12犫犮sinπ3=槡5312 22.解:设该股民分别买入甲、乙两支股票狓万元、狔万元,盈利为犣万元.狓+狔≤120.6狓+0.2狔≤3.6狓≥0狔≥烅烄烆0,犣=2狓+狔由图解法可知,当狓=3,狔=9时,犣有最大值,即犣max=15万元.答:该股民分别买入甲、乙两支股票3万元、9万元时,可能的盈利最大,最大盈利为15万元.·7·。
(完整版)湖南省2012-2018年对口升学考试数学试题
机密 ★ 启用前湖南省2012年普通高等学校对口招生考试数学试题时量120分钟 总分:120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x |x >1},B={x |0<x <1},则A ∪B 等于 ·········· ( )A.{ x |x >0}B.{ x |x ≠1}C.{ x |x >0或x ≠1}D.{ x |x >0且x ≠1}2.“3x >”是” 29x >”的 ···················· ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.不等式|2x -3|>1的解集为 ···················· ( )A.(1,2)B.(−∞,1)∪(2,+∞)C.(−∞,1)D.(2,+∞)4.已知tan a =−2,则aa 2cos )2sin(+π= ·················· ( ) A. 4 B. 2 C. -2 D. -45. 抛掷一枚骰子,朝上的一面的点数大于3的概率为 ········· ( ) A. 61 B. 31 C. 21 D. 32 6. 若直线0x y k +-=过加圆222470x y x y +-+-=的圆心,则实数k 的值为······························· ( )A. -1B. -2C. 1D. 27. 已知函数f(x) =sinx,若e m =2,则f(m)的值为 ··········· ( )A. sin2B. sineC. sin(ln2)D. ln(sin2)8. 设a ,b ,c 为三条直线,α,β为两个平面,则下列结论中正确的是 ··· ( )A. 若a ⊥b ,b ⊥c ,则a ∥cB. 若a ⊂α,b ⊂β, a ∥b ,则α∥βC. 若a ∥b ,b ⊂α,则a ∥αD. 若a ⊥α, b ∥a ,则b ⊥α9. 将5个培训指标全部分配给三所学校,每所学校至少有一个指标,则不同的分配方案有( )A. 5种B. 6种C. 10种D. 12种10. 双曲线116922=-y x 的一个焦点到其渐近线的距离为 ········ ( ) A, 16 B. 9 C. 4 D. 3二、填空题(本大题共5个小题,每小题4分,共20分.将答案填在答题卡中对应题号后的横线上)11. 已知向量a =(1,−1), b =(2,y).若a ∥b , 则y= .12. 某校高一年级有男生480人,女生360人,若用分层抽样的方法从中抽取一个容量为21的样本,则抽取的男生人数应为 .13. 已知球的体积为34 ,则其表面积为 . 14. (x+21x)9的二项式展开式中的常数项为 .(用数字作答) 15. 函数f(x)=4x −2x+1的值域为 .三、解答题(本大题共7小题,其中第21,22小题为选做题,共60分.解答应写出文字说明或演算步骤))16. (本小题满分8分)已知函数f(x)=lg(1−x 2).(1) 求函数f(x)的定义域;(2) 判断f(x)的奇偶性,并说明理由.17. (本小题满分10分)已知a ,b 是不共线的两个向量.设AB =2a +b ,BC =-a -2b .(1)用a ,b 表示AC ;(2)若|a |=|b |=1,< a ,b >=60,求AB BC .18. (本小题满分10分)设{n a }是首项1a =2,公差不为0的等差数列,且1a ,3a ,11a 成等比数列,(1) 求数列{n a }的通项公式;(2) 若数列{n b }为等比数列,且1b =1a ,2a =3b ,求数列{n b }的前n 项和n s .19. (本小题满分10分) 某射手每次射击命中目标的概率为23,且各次射击的结果互不影响.假设该射手射击3次,每次命中目标得2分,未命中目标得-1分.记X 为该射手射击3次的总得分数.求(1) X 的分布列;(2) 该射手射击3次的总得分数大于0的概率.20. (本小题满分10分)()2222642,0:1(0),(.55x y A C a b B C a b +=>>已知点是椭圆的一个顶点点,)在上 (1) 求C 的方程;(2) 设直线l 与AB 平行,且l 与C 相交于P,Q 两点.若AP 垂直AQ,求直线l 的方程.四、选做题(注意:第21题(工科类),22题(财经,商贸与服务类)为选做题,请考生选择其中一题作答.)21. (本小题满分12分)已知函数()sin f x x x =(1) 将函数()(03)y f x ωω=<<图象上所有点向右平移6π个单位长度,得到函数g(x)的图象,若g(x)的图象经过坐标原点,求ω的值.(2) 在△ABC 中,角A,B,C 所对的边分别为a ,b ,c ,若()f A =a =2, b +c =3,求△ABC 的面积.湖南省2013年普通高等学校对口招生考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.已知集合A={3,4,5},B={4,5,6},则A ⋂B 等于A .{3,4,5,6}B .{4,5}C .{3,6}D .Φ2.函数y=x 2在其定义域内是A .增函数B .减函数C .奇函数D .偶函数3. “x=2”是“(x-1)(x-2)=0”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.已知点A (m ,-1)关于y 轴的对称点为B (3,n ),则m ,n 的值分别为A .m=3,n=-1B .m=3,n=1C .m=-3,n=-1D .m=-3,n=15. 圆(x+2)2+(y-1)2=9的圆心到直线3x+4y-5=0的距离为A .57 B .53 C .3 D .1 6.已知sin α=54,且α是第二象限的角,则tan α的值为 A . 43- B .34- C .34 D .43 7.不等式x 2-2x-3>0的解集为A .(-3,1)B .(-∞,-3)∪(1,+∞)C .(-1,3)D .(-∞,-1)∪(3,+∞)8.在100件产品中有3件次品,其余的为正品。
完整版)2018湖南省对口高考数学试卷
完整版)2018湖南省对口高考数学试卷湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三个部分,共4页,时量120分钟,满分120分。
一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、已知集合A={1,2,3,4},B={3,4,5,6},则A∩B=(C。
{3,4})2、"x^2=9"是"x=3"的(A。
充分必要条件)3、函数y=x^2-2x的单调递增区间是(B。
[1,+∞))4、已知cosα=-3/4,且α为第三象限角,则tanα=(D。
-4/3)5、不等式2x-1>1的解集是(B。
{x>x>1})6、点M在直线3x+4y-12=0上,O为坐标原点,则线段OM长度的最小值是(A。
3)7、已知向量a,b满足a=7,b=12,a·b=-42,则向量a,b的夹角为(B。
60°)8、下列命题中,错误的是(D。
一条直线与两个平行平面中的一个相交,则必与另一个相交)9、已知a=sin15°,b=sin100°,c=sin200°,则a,b,c的大小关系为(D。
c<a<b)10、过点(1,1)的直线与圆x^2+y^2=4相交于A、B两点,O为坐标远点,则△ABC面积的最大值为(C。
3)二、填空题(本大题共5小题,每小题4分,共20分。
)11、某学校有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为(25)。
12、函数f(x)=cosx+b(b为常数)的部分图像如图所示,则b=(1)。
13、(x+1)^6的展开式中x^5的系数为(6)。
14、已知向量a=(1,2),b=(3,4),c=(11,16),且c=xa+yb,则x+y=?解析:由题意可得:11=1x+3y16=2x+4y将以上两式联立解得:x=5,y=1,因此x+y=6.15、如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形,则第10个正方形的面积为。
(完整版)2018对口高考数学试卷及答案(可编辑修改word版)
江苏省2018年普通高校对口单招文化统考数学试卷—、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、狳黑)1.设集合M={1, 3}, N={a+2, 5},若MPlN={3},则a 的值为A. -1B. 1C. 3D. 52.若实系数一元二次方程x2+mx + n = 0的一个根为1-z ,则另一个根的三角形式为. n . . 7T rr, 3苁..3苁、A. cos——I sin —B. V 2 (cos——+ zsin——)4 4 4 4C. y[2 (cos— + z sin —)D. x/2[cos(-—) + i sin(-—)]4 4 4 43.在等差数列{aj中,若a3, a2016是方程x2-2x-2018 = 0的两根,则3* *3a⑽的值为1A. -B. 1C. 3D. 934.已知命题P:(1101)2=(13) 10和命题q:A • 1=1(A为逻辑变量),则下列命题中为真命题的是A. ~tiB. p AqC. pVqD.-*pAq5.用1, 2, 3, 4, 5这五个数字,可以组成没有重复数字的三位偶数的个数是A. 18B. 24C. 36D. 486.在长方体ABCD-^CiDi中,AB=BC=2,AA I=2A/6,则对角线BD:与底面ABCD所成的角是— B. — C.—6 4 38.若过点P (-1,3)和点Q(1, 7)的直线&与直线mx + (3m - 7)y + 5 = 0平行,则m的值为人2 C. 69.设向量a=(cos2^, -), b= (4,6)、若sin(^--0 =-:则|25a-Z?| 的值为3 、A. -B. 3C. 4D. 5510.若函数/(x) = x2-bx+c满足/(I + x) = /(I - x),且 / ⑼=5,则f(b x)与/(O 的大小关系是A- /(dO</(C x) B. /(y)>/(c x) c. /«/)</(c x) D. /(//)>/(c x)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-l, 2, 4),b=(3, rn, -2),若a • b=l,则实数m= 。
湖南省历年对口升学数学试卷(2011-2023)
湖南省历年对口升学数学试卷(2011-2023)本文档收集了湖南省历年对口升学数学试卷的内容,范围为2011年至2023年。
以下是每年试卷的简要介绍:- 2011年:试卷内容包括数学基础知识、代数、几何、概率和统计等方面。
涵盖了中学数学的核心概念和考点。
- 2012年:试卷难度适中,重点考察了几何和代数的应用能力。
题目形式多样,涉及到填空、选择和解答等不同类型。
- 2013年:试卷难度相对较高,涉及到应用题的比例较多。
考察了学生对于数学概念的理解和运用能力。
- 2014年:试卷整体难度适中,注重对基本概念的考察。
试题内容丰富,包括了数列、函数、几何等多个知识点。
- 2015年:试卷难度适中偏易,注重运算和推理能力的考察。
题型形式多样,包括选择、解答和填空等。
- 2016年:试卷涵盖了数学各个领域的知识点,难度适中。
注重对学生思维方法和解题思路的考察。
- 2017年:试卷整体难度较大,涉及到一些较为复杂的数学题目。
对学生的推理能力和逻辑思维提出了较高要求。
- 2018年:试卷难度中等偏难,注重对学生综合运用数学知识解决实际问题的考察。
题目形式多样,包括了选择、解答和填空等。
- 2019年:试卷整体难度适中,注重对学生数学思维和解题能力的培养。
题型灵活多样,包括选择、填空和解答等。
- 2020年:试卷难度较大,注重对学生分析、推理和创新能力的考察。
试题形式多样,包括选择、填空和解答等。
- 2021年:试卷整体难度偏易,注重对学生数学基本知识和运算能力的考察。
题目形式多样,包括选择、填空和解答等。
- 2022年:试卷整体难度适中,覆盖了数学各个领域的知识点。
强调对学生分析和解决实际问题的能力培养。
- 2023年:试卷难度适中偏难,注重对学生运算和推理能力的考察。
试题形式多样,包括选择、填空和解答等。
以上是湖南省历年对口升学数学试卷的简要介绍,希望可以对您的学习和备考有所帮助。
(完整word版)湖南省2018年高考对口招生考试数学真题及参考答案.docx
湖南省 2018 年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分, 共 4 页 , 时量 120 分钟 , 满分 120 分一、选择题 ( 本大题共 10 小题 , 每小题 4 分, 共 40 分. 在每小题给出的四个选项中 , 只有一项是符合题目要求的 )1. 已知集合 A={1,2,3,4},B={3,4,5,6},则 A ∩ B=( )A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2. “ x 29 ”是“ x 3 ”的()A. 充分必要条件B.必要不充分条件C.充分不必要条件D. 既不充分也不必要条件3. 函数 y x22x 的单调增区间是()A.(- ∞ ,1]B. [1,+∞) C.(-∞,2]D.[0,+ ∞)4. 已知 cos3 , 且为第三象限角 , 则 tan=()54334A. 3B.4C.4D.35. 不等式 2x1 1 的解集是()A.{ x | x 0 }B.{C.{ x | 0 x 1}D.{x | x 1 }x | x 0或x 1 }6. 点 M 在直线 3x 4y 12 0 上, O 为坐标原点 , 则线段 OM 长度的最小值是()A. 3B. 4C.12 D.12 2557. 已知向量 a , b 满足 a7 , b12 ,a ?b42, 则向量a , b的夹角为( )数学试卷第1页(共9页)8. 下列命题中 , 错误的是()..A.平行于同一个平面的两个平面平行B.平行于同一条直线的两个平面平行C.一个平面与两个平行平面相交 , 交线平行D.一条直线与两个平行平面中的一个相交 , 则必与另一个相交9. 已知a sin15 , b sin100 , c sin 200 ,则 a, b,c 的大小关系为()A. a b cB. a c bC. c b aD. c a b10. 过点 (1,1) 的直线与圆x2y2 4 相交于A,B两点, O 为坐标原点,则OAB 面积的最大值为()A. 2B. 4C.3D. 23二、填空题 ( 本大题共 5 小题 , 每小题 4 分, 共 20 分)11.某学校有 900 名学生 , 其中女生 400 名. 按男女比例用分层抽样的方法 , 从该学校学生中抽取一个容量为45 的样本 , 则应抽取男生的人数为.12. 函f ( x)cosx b ( b 为常数)的部分图像如图所示,则 b = .6 13.(x 1)的展开式中x5的系数为( 用数字作答 )14.已知向量a=(1,2), b =(3,4), c =(11,16),且 c = xa + yb ,则 x y.15.如图 , 画一个边长为 4 的正方形 , 再将这个正方形各边的中点相连得到第 2 个正方形 , 依次类推 , 这样一共画了 10 个正方形 . 则第 10 个正方形的面积为.三、解答题 ( 本大题共 7 小题 , 其中第 21,22 小题为选做题 . 满分 60分, 解答应写出文字说明、证明过程或演算步骤)16.( 本小题满分 10 分 )已知数列 { a n } 为等差数列 , a1 =1, a3 =5,(Ⅰ)求数列 { a n } 的通项公式;(Ⅱ)设数列 { an } 的前n项和为Sn .若Sn=100,求n.17.( 本小题满分 10 分)某种饮料共 6 瓶,其中有 2 瓶不合格 , 从中随机抽取 2 瓶检测 . 用表示取出饮料中不合格的瓶数 . 求( Ⅰ ) 随机变量的分布列;( Ⅱ ) 检测出有不合格饮料的概率.18.( 本小题满分 10分 )已知函数 f ( x)log a ( x 3) (a0,且 a 1) 的图像过点(5,1)( Ⅰ ) 求f (x)的解析式,并写出 f (x) 的定义域;( Ⅱ ) 若f (m) 1, 求m的取值范围19.( 本小题满分 10分 )如图 , 在三棱柱ABC A1B1C1 中,AA1 ⊥底面ABC , AA1 AB BC , ABC 90°,D为AC的中点 .(I)证明 : BD⊥平面AA1C1C;( Ⅱ ) 求直线BA1与平面AA1C1C所成的角 .20.( 本小题满分 10 分 )x2y21( a b 0) 的焦点为F1(-1,0)、 F2(1,0),已知椭圆C :2b2点Aa(0,1) 在椭圆 C上 .(I)求椭圆 C 的方程;(II)( Ⅱ) 直线l过点F1且与AF1垂直 , l与椭圆C相交于M,N两点 , 求MN 的长.选做题 : 请考生在第 21,22 题中选择一题作答 . 如果两题都做 , 则按所做的第 21 题计分 , 作答时 , 请写清题号 .21.( 本小题满分 10 分 )如图 , 在四边形ABCD中,BC CD 6 ,AB 4, BCD 120°,ABC75°, 求四边形ABCD的面积 .22.( 本小题满分 10 分)某公司生产甲、乙两种产品均需用 A , B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示 . 如果生产 1 吨甲产品可获利润 4 万元,生产 1 吨乙产品可获利润 5 万元 . 问: 该公司如何规划生产 , 才能使公司每天获得的利润最大 ?甲乙原料限额A (吨)128B (吨)3212参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8.B9. D 10. A二、填空题:11. 25 12.213. 6 14. 5 15.132三、解答题16. 解:(Ⅰ)数列 { an } 为等差数列 ,a1 =1,a3 =5公差 d=51231故 a n 1 2( n 1)2n 1(Ⅱ)∵等差数列 { an} 的前n项和为S S=100n ,nS n n(a1 a n ) 2n(1 2n 1) 100∴2∴n 1017.解:(Ⅰ)的可能取值有 0,1,2P (0)=C42 C202C 625P (2)=C40 C 221C 6215C41 C218P(1)= C6215故随机变量的分布列是:012 P28151515(Ⅱ)设事件A表示检测出的全是合格饮料,则A表示有不合格饮料检测出的全是全格饮料的概率P(A)C42 C20225C 6P(A) 1 23故检测出有不合格饮料的概率5518.解:(Ⅰ)∵函数 f ( x)log( x3) (a0, 且a1) 的图像过点(5,1)a∴log a 2 1∴ a2f (x)log 2 (x 3)有意义,则x3 0∴ x3函数 f (x)log 2( x3) 的定义域是 (3, )( Ⅱ) ∵f ( x) log2( x3) , f (m)1∴ log 2 (m3) 1log 2 2∴m 3 2∴m 5又f ( x)log2(x 3)的定义域是(3, ),即m 3∴3 m 5m的取值范围是( 3, 5)19.(Ⅰ)证明:∵在三棱柱 ABC A1 B1C1中,AA1⊥底面ABC∴AA1⊥BD又 AB BC ,ABC90° , D为AC的中点 .∴BD ⊥AC而AA1 AC A∴BD ⊥平面AA1C1C( Ⅱ) 由(Ⅰ)可知:BD⊥平面AA1C1C连结A 1D,则BA 1D 是直线 BA 1 与平面 AA 1C 1C 所成的角 在 Rt A BDBD12 ABA B2 AB中,AC122, 1∴ sin BA 1 DBD1A 1B2∴ BA 1 D 30即直线 BA 1 与平面 AA 1C 1C 所成的角是 30 .20. (Ⅰ) 椭圆 C :x2y 21( a b0 ) 的焦点为 F (-1,0) 、F (1,0)a 2 b2解: ∵1 2∴c1又点 A (0,1) 在椭圆 C 上∴b 21∴ a2b2c21 1 2∴椭圆 C的方程是x 2y212( Ⅱ ) 直线 AF 1 的斜率kAF 11而直线 l 过点 F 1 且与 AF 1 垂直∴直线 l 的斜率是 k1直线 l 的方程是yx 1yx1消去 y 得: 3x2由 x2y214x 02设M ( x 1, y 1 ),N ( x 2, y 2 ),则x 1 x 24 x x3 ,21xx(x x 2)24x x24 1211 3MNk 21 xx24 4 212334即MN的长是3221. 解:如图,连结BD在 BCD 中, BC CD6 ,BCD120°,由余弦定理得:BD2BC2CD22BC CD cos BCD62622 6 6 (1 )2623BD6 3四边形ABCD的面积S四边形 ABCD =SBCDSABD=1 BC CD sinBCD1 BA BD sin ABD2 2= 16 6 sin 1201 4 6 3 sin 452 2=1 6 6 3 1 4 6 32 2 2 22= 9 3 6 622. 解:设公司每天生产甲产品 x吨,乙产品 y吨,才能使公司获得的利润 z最大,则 z 4x 5 y , x、 y 满足下列约束条件:x0y 0x 2y 8 3x2y 12作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC作直线y4x 及其平行线54zl:y5 5,直线l表示斜率为4,纵截距为z的平行直线x55系,当它在可行域内滑动时,由图可知,直线l 过点A时,z取得最大值,x 2y8由3x 2y 12 得A(2,3)∴z max 4 2 5 323 万元即当公司每天生产甲产品 2 吨,乙产品 3 吨时,公司获得的利润最大,最大利润为 23 万元 .。
2018年湖南省对口高中高考数学试卷习题
湖南省2018年一般高等学校正口招生考试数学本试题卷包含选择题、填空题和解答题三个部分,共4页,时量120分钟,满分120分。
一、选择题(本大题共10小题,每题4分,共40分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1、已知会合A{1,2,3,4},B{3,4,5,6},则ABA.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2、“x29”是“x3”的A.充足必需条件B.必需不充足条件C.充足不用要条件D.既不充足也不用要条件3、函数y x22x的单一递加区间是A.(,1]B.[1,)C.(,2]D.[0,)4、已知cos3,且为第三象限角,则tanA.45B.334C. D.3443 5、不等式2x11的解集是A.{xx0}B.1} {xxC. D.或{x0x1}{xx0x1}6、点M在直线3x4y120上,O为坐标原点,则线段OM长度的最小值是A.3 C.12 D.122557、已知向量a,b知足a7,b12,ab42,则向量a,b的夹角为°°°°A.8、以下命题中,错误的选项是B.平行于同一个平面的两个平面平行C.平行于同一条直线的两个平面平行D.一个平面与两个平行平面订交,交线平行E.一条直线与两个平行平面中的一个订交,则必与另一个订交9、已知asin15,bsin100,csin200,则a,b,c 的大小关系为A.a b cc bC.b aD.c a bc10、过点(1,1)的直线与圆x 2 y 24订交于A 、B 两点,O 为坐标远点,则ABC 面积的最大值为C. 3D.23二、填空题(本大题共5小题,每题4分,共20分)11、某学校有900名学生,此中女生 400名,按男女比率用分层抽样的方法,从该学校学生中抽取一个容量为 45的样本,则应抽取男生的人数为。
12、函数 f(x)cosxb(b 为常数)的部分图像以下图,则b=。
湖南省对口高考数学试卷精编版
湖南省2018年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三个部分,共4页,时量120分钟,满分120分。
一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合=⋂==B A A ,则,{3,4,5,6}B {1,2,3,4}A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2、”的”是““392==x x A.充分必要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3、函数x x y 22-=的单调递增区间是A .]1,(-∞ B.),1[+∞ C.]2,(-∞ D.),0[+∞4、已知,53cos -=α且α为第三象限角,则=αtan A.34 B.43 C.43- D.34- 5、不等式112>-x 的解集是 A.}0{<x x B.}1{>x x C.}10{<<x x D.}10{><x x x 或6、点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是A.3B.4C.2512D.512 7、已知向量b a ,满足,42,12,7-=⋅==b a b a 则向量b a ,的夹角为A .30°B .60° C.120° D.150°8、下列命题中,错误的是A. 平行于同一个平面的两个平面平行B. 平行于同一条直线的两个平面平行C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交9、已知c b a c b a ,,,200sin ,100sin ,15sin 则︒=︒=︒=的大小关系为A .c b a <<B .b c a <<C.a b c <<D.b a c <<10、过点)(1,1的直线与圆422=+y x 相交于A 、B 两点,O 为坐标远点,则ABC ∆面积的最大值为A.2B.4C.3D.32二、填空题(本大题共5小题,每小题4分,共20分)11、某学校有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 。
2018年湖南省跨地区普通高等学校对口招生二轮联考数学试题答案
2018年湖南省跨地区普通高等学校对口招生二轮联考数学试题参考答案及评分标准一、选择题(本大题共10小题,每小题4分,共40分)1.C 2.A 3.B 4.D 5.B 6.C 7.A 8.D 9.A 10.B 二、填空题(本大题每小题4分,满分20分)11.18 12.2100x y --=或2100x y -+= 13.1214.-3 15.3 三、解答题(本大题每小题10分,满分60分) 16.(1)由(1)(1)4f f -+=-得2-2log a 3=-4,即log a 3=3, (2分) 所以a 3=3.由上可知33=a . (3分)由⎪⎩⎪⎨⎧≠>-0,0422x x 得-2<x <0或0<x <2. 因此,函数()f x 的定义域为(-2,0)∪(0,2). (5分) (2)因为函数()f x 的定义域为(-2,0)∪(0,2), 且()f x -=221log [4()]()a x x ---- 221log (4)a x x=-- (8分)()f x =. (9分)因此,函数()f x 是偶函数. (10分)17.(1)由11n n a a q -=得341a a q =, 即-16·q 3=2,解得21-=q . (3分)因此,数列{}n a 的通项公式为12116-⎪⎭⎫⎝⎛-⋅-=n n a . (5分)(2)假设存在n ,使得数列{}n a 的前n 项和S n =-11.因为121≠-=q , 所以由1(1)1nn a q S q-=-得11211211)16(-=⎪⎭⎫⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⋅-n , (7分) 即有32121-=⎪⎭⎫⎝⎛-n,解得n =5. (9分) 因此,存在n =5,使得S n =-11. (10分) 18.(1)ξ的所有可能取值为0,1,2,则 (1分)21411311)0(=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-==ξP , (2分)1253114141131)1(=⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯==ξP ,(3分) 111(2)3412P ξ==⨯=. (4分)因此随机变量ξ的分布列为(5分)(2)ξ的数学期望12712121251210)(=⨯+⨯+⨯=ξE . (7分)因为4312121251210)(2222=⨯+⨯+⨯=ξE ,所以ξ的方差[]1445912743)()()(222=⎪⎭⎫ ⎝⎛-=-=ξξξE E D . (10分)19.(1)由a ∥b 得3cos 0x x -=, (2分)于是sin tan cos xx x==. (3分) 因为[0,π]x ∈, 所以3x 2π=. (5分)(2)⎪⎪⎭⎫ ⎝⎛-=-=x x x x x f sin 23cos 2132sin 3cos 3)(3x π⎛⎫=+ ⎪⎝⎭. (8分)由[0,π]x ∈可知4,333x πππ⎡⎤+∈⎢⎥⎣⎦, 因此,当ππ33x +=,即0x =时,()f x(9分)当ππ3x +=,即2π3x =时,()f x有最小值- (10分) 20.(1)因为双曲线的渐近线方程为32y x =±,即320x y ±=,所以可设双曲线的方程为9x 2-4y 2=λ(λ≠0), (2分)则()λ=⨯⎪⎪⎭⎫ ⎝⎛⨯22343349-,解得λ=36. (4分)因此双曲线的标准方程为229436x y -=,即22149x y -=. (5分)(2)在双曲线22149x y -=中,因为22213,c a b c =+==所以双曲线的左焦点为(. (7分)当x =时,49141314922=-=-=x y ,解得29±=y . (9分) 因此,92929=⎪⎭⎫⎝⎛--=AB . (10分)21.(1)由A bc S ABC sin 21=△得182sin 2A ⨯⨯ (2分)解得15sin A =. (3分)于是,878151sin 1cos 22±=⎪⎪⎭⎫ ⎝⎛--±=-±=A A . (5分)(2)因为角A 为钝角,所以7cos 8A =-. (6分)由余弦定理2222cos a b c bc A =+-得96872824642=⎪⎭⎫ ⎝⎛-⨯⨯⨯-+=a , 解得64=a . (8分)于是,()()()()2442246i 66i 1362i 144---z ⎡⎤====-⎣⎦. (10分)22.设甲、乙两种饲料各生产x 车皮,y 车皮,产生的利润为z 万元,则有⎪⎪⎩⎪⎪⎨⎧∈>>≤+≤+≤+.,,0,0,300103,36058,20054*N y x y x y x y x y x目标函数23.z x y =+ (5分)作出可行域,如图所示.(7分)解方程组45200,310300x yx y+=⎧⎨+=⎩得20,24.xy=⎧⎨=⎩当x=20,y=24时,目标函数z有最大值,(8分)此时max 220324112z=⨯+⨯=. (9分)因此,甲、乙两种饲料各生产20车皮,24车皮,能够产生最大利润,最大利润为112万元. (10分)。
2018年湖南省一轮联考数学(对口)试题
2018年湖南省跨地区普通高等学校对口招生一轮联考本试卷包括选择题、填空题和解答题三部分,共4页.时量120分钟.满分120分.、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的)1 . 已知集合A - {1.23} , ,贝V A( )A. {2} B . {2,3} C . {2,3,4,5}2 .函数f(x) 1og2 x +丨.x?[j.4]的值域是A . [1,2] B. [0,4]C . [2,3]3 .已知sin a = 1, 口?[亍兀,则tx* «=D . {123,4,5}(D . [0,3](B.2 C-.4. 已知两条直线…' -互相平行,则C 1m=B、D、1或-“指数函数¥“在R上为减函数”是“九=了”的A.充要条件C.必要不充分条件6•下列函数为偶函数的是( )==■■B.充分不必要条件D .既不充分也不必要条件C. y=;: + 1 =x2■J L7•不等式|3-2x|>4的解集是8•已知三条不同的直线I 「匕;.丨'■! ■■ ' ■.则下列命题正确的是( ) A若“九则皿m B.1;m,则1张C.i 「I - 亍D. 一了」.'.L I >■ ■:-9•现有6个人站在一排照相,其中甲和已必须相邻的不同站法有( ) 种种种种10. 已知圆柱的高为2,它的两个底面所在的圆在直径为4的同一个的球的球面上,则圆柱体的体积是( )n n n n二、填空题(本大题共5小题,每小题4分,共20分)11. 已知一组样本数据5,8,7,9, x的均值为7,则x= ___________ .12. 已知直线< =工将圆宀 F .心.〜R •〕二厂平分,则实数k :.13. 函数i\x) = 2sin x.x E £TT]的最大值是 _______ .14. 已知关于x的不等式k+ m >0的解集为R,则实数的取值范围是___________________ .15. 已知双曲线C A-j^ = 1(fl >0,b >0)的一条渐近线方程为y = yx,且双曲线C与椭圆C;扌+ 有公共焦点,则双曲线的标准方程为____________ .三、解答题(本小题共7小题,其中21,22小题为选做题.满分60分解答应写出文字说明、证明过程或演算步骤)16. (本小题满分10分)已知函数fOO =卡吕十1呱(4 - x).(1)求函数也刘的定义域.(2)若也乃求实数a|的值.17. (本小题满分10分)在等差数列;讪中a l2=10( ai6 = 2^(1)求数列gn}的通项公式.(2)若卜- 、-I 丁I: <18. (本小题满分10分)在一个袋子里放着9个均匀的小球,其中红球2个, 黄球3个,蓝球4个,从中任意摸出两个球.(1)求两个求同色的概率.(2)用卜|表示摸出两个球中红球的个数,求随机变量的分布列和数学期望19. (本小题满分10分)已知向量卜'■ 111b-(L ⑻L(1)若・的值.(2)若向量a与b的夹角为瞎求宅数w的值.20. (本小题满分10分)已知抛物线. > 经过点A(1,-2),直线与抛物线交于点M和N.(1 )求抛物线的方程,并求其焦点坐标和准线方程(2)若| MN F二€,求直线L的方程选做题:请考生在第21、22题中选一题作答•如果两题都做,则按所做的第21小题计分, 作答时,请写清题号•21. (本小题满分10分)在厶ABC中,内角A,B,C的对边分别是気hQ且3 + [=4cosU h=L(1)若角A=90°,求厶ABC的面积.(2)若sin C = ~,求胡和c的值.<122. (本小题满分10分)某工厂生产甲、乙两种产品,已知生产1万件甲种产品需要A种原料1 t,B种原料1 t,生产1万件乙种产品需要A种原料2 t ,B种原料1 t,目前库存A种原料8 t ,B种原料5 t. 若每生产甲种产品1万件的利润为3万元,每生产乙种产品1万件的利润为4万元.那么该工厂在充分利用库存原料的前提下分别生产甲、乙两种产品各多少万件,可使产生的利润最大并求出最大利润。
湖南省对口招生数学高考试题.docx
填空题答案 11、 12 、 56 13、[ - 3, +∞) 14 、( 1,-1 ) 15 、k= - 316、 (1) 由已知的 a 2=4, 得 a=±2,又 a >0, a=2函数的解析式为 f(x)=2( 2)当 x [ - 1,2] 时2 -1 ≤ 2 x ≤ 2 2即1≤ f(x) ≤ 42xf(x) 的取值范围是[1,4]217、解:可能取值是0、 1、2f(=0)=C 525=C 82 14f(=1)= C 51C 31= 15C 82282f(=2)=C 3= 3C 8228的分布列为125 15 3 P282814(2)P( ≥ 1)= P(=1) +P(=2)=15 + 3 =928 28 149答:取出的两个球中至少有一个白球的概率是14D120、( 1)证明:在长方体 ABCD - A 1 B 1 C 1 D 1 中C 1A 1B 1A1 B 1 ∥AD 且 A 1 B 1 =ADDC四边形 A 1 B 1 CD 是平行四边形ABB 1C ∥ A 1 D又 A 1D 平面 A 1 BD 1B 1C 平面 A 1 BD 1B 1C ∥平面 A 1 BD 1( 2) V A BCD =1S BCD A 1 A=1( 1 4 4) 3=833 219、解:( 1) a 6 =2a 1 +5d=2 a 1 =- 8 a8 =6a1 +7d=6d=2a n =- 8+2(n - 1)即 a n =2n - 10(2) 解法 1 a 1 =-8 < 0,d=2 > 0数列 { a n } 是递增数列当 a n ≤ 0, 2n - 10≤ 0,得 n ≤5 时,即 n=4 或 5 时 , S n 有最小值,最小值为 S 4 =S 5 =(8 0) 5 =- 202解法 2: S = [-8 (2n 10)] n =n 2- 9n n2=(n-9 )2 -8124又 n N当 n=4 或 5 时, S n 有最小值, 最小值为 S 4 =S 5 =5 2 -9 5=- 2020、( 1) 抛物线 y 2=2Px 的焦点为 F (1,0 )P2=1, P=2抛物线方程为 y 2 =4x( 2)解法 1:直线与圆相交当直线 L 斜率不存在时,令 x=1,得 y=± 2AB =2-(-2)=4, 圆 M 的半径 r=2 ,圆心 M 到 Y 轴的距离 d=1d < r, 直线与圆相交。
湖南省对口高考2012年数学高考试题(精装版)
湖南省2012年普通高等学校对口招生考试数 学 试 题一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出四个选项中,只有一项符合题目要求,请将正确的选项填入下列答题栏内。
) 1(12年).设全集U ={0,1,2,3,4},集合A ={1,2},则U C A 等于 ( ) A .{0,3,4} B {3,4} C .{1,2} D .{0,1}2(12年).已知函数()()()2log 460,0x x f x a b a b =-+>>满()()211,2log 6f f ==()f x 则的最小值为 ( )A .B .C.D.C.D.4(12年).已知向量=(2,1),=(,3),且∥,则实数的值为A. B.3 C.6D.95(12年). 已知,则的值为( )A. -3B.3C. -4D. 46(12年).已知等比数列的前n项和为,则()A.0 B.C.D.7(12年).已知直线:与圆相切,则实数的值为()A.2 B.C.D.8(12年).为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm的株数=( )A.30 B.60 C.70 D.809(12年). 关于直线、与平面、,有下列四个命题:①且,则;②且,;③且,则;④且,则.其中正确命题的个数是()A.1 B.2 C.3 D.410(12年).某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A.14 B.24 C.28 D.48二.填空题(本大题共5小题,每小题4分,共20分.把正确答案填写在答题卷中对应题号的横线上)11(12年). 若函数是奇函数,则m 的值是。
12(12年).若()的展开式中的系数是-80,则实数= 。
13(12年).在△A B C中,角A、B、C所对的边分别是、、,已知=2,=3,B=, 则△ABC的面积=________. 14(12年). 计算:+—log.(精确到0.001)15(12年).(工科类考生做) 右面的程序框图给出了计算数列的前10项和s的算法,算法执行完毕后,输出的s为 .15.(12年)(财政类考生做)设变量,满足约束条件:则目标标函数的最大值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、函数 f( x)=3 x ( x [0,2] ) 的值域为( )
[0 ,9] B.[0 ,6] C.[1
,6] D.[1 ,9]
3、“x=y”是“ | x|=| y| ”的( )
充分不必要条件
B.
必要不充分条件
C. 充分必要条件
D.
既不充分也不必要条件
4、已知点 A(5,2 ),B(- 1,4 ),则线段 AB的中点坐标为(
g(x) 的图象 , 若 g(x) 的图象经过坐标原点 , 求 ω 的值 .
(2) 在△ ABC中, 角 A,B,C 所对的边分别为 a , b , c , 若 f ( A) 3 , a =2, b +c =3,
求△ ABC的面积 .
数学试题 第 4页 (共 29页)
湖南省 2013 年普通高等学校对口招生考试 数学试卷
四、选做题 (注意 : 第 21 题( 工科类 ),22 题( 财经 , 商贸与服务类 ) 为选做题 , 请考生选 择其中一题作答 . ) 21. ( 本小题满分 12 分 )
已知函数 f ( x) sin x 3 cos x
(1) 将函数 y f ( x)(0
3) 图象上所有点向右平移 个单位长度 , 得到函数 6
B. 2
C. -2
D. -4
5. 抛掷一枚骰子 , 朝上的一面的点数大于 3 的概率为 ········· ( )
A. 1 6
B. 1 3
C. 1 2
D. 2 3
6. 若直线 x y k 0过加圆 x2 y2 2x 4 y 7 0 的圆心 , 则实数 k 的值为
······························· ( )
数学试题 第 6页 (共 29页)
18、(本小题满分 10 分) 已知向量 a ( 2,1) , b ( 1,m) 不共线。 (1) 若 a b ,求 m的值;(2)若 m<2,试判断 < a , b >是锐角还是钝角明理由 .
19、(本小题满分 10 分) 已知数列{ a n }为等差数列, a 2 =5,a 3 =8. (1)求数列{ a n }的通项公式 . (2)设 b n =2 n 1 ,c n = a n + b n , n N * ,求数列{ c n }的前 n 项和 Sn .
19. ( 本小题满分 10 分) 某射手每次射击命中目标的概率为 2 , 且各次射击的结果互不影响 . 假设 3
该射手射击 3 次, 每次命中目标得 2 分, 未命中目标得 -1 分 . 记 X 为该射手射击 3 次的总得分数 . 求 (1) X 的分布列 ; (2) 该射手射击 3 次的总得分数大于 0 的概率 .
A.{ x | x >0}
B.{ x | x ≠1}
C.{ x | x >0 或 x ≠1}
D.{ x | x >0 且 x ≠1}
2. “ x 3 ”是” x2 9 ”的 ···················· ( )
A. 充分不必要条件
B. 必要不充分条件
C.充分必要条件
D. 既不充分也不必要条件
)
A.(3 ,- 1) B.(4 ,6) C.( -3,1) D.(2 ,3)
5、( x 1)6的二项展开式中 x2的系数为 (
)
x
A、 -30 B 、 15
C
、-15 D
6、函数 f( x) sin x cos x( x R)的最大值为 (
、 30 )
2
A、
B 、1
C
、2
D 、2
2
7、若 a <0,则关于 x 的不等式 ( x 3a )( x 2a ) 0 的解集为(
数学试题 第 7页 (共 29页)
20、(本小题满分 10 分)
已知双曲线
C:
x a
2 2
y2 b2
1(a>0 ,b>0)的一条渐近线方程为 y
2 x ,且焦距为 2
2 3.
( 1)求双曲线 C的方程 . ( 2)设点 A 的坐标为( 3,0),点 P 是双曲线 C 上的动点,当 |PA| 取最小值时, 求点 P 的坐标 .
数学试题 第 3页 (共 29页)
20. ( 本小题满分 10 分 )
x2 y2
64
已知点 A 2,0 是椭圆 C : a2
b2
1(a
b
0)的一个顶点 ,点 B( , ) 在 C上. 55
(1) 求 C 的方程 ; (2) 设直线 l 与 AB平行 , 且 l 与 C相交于 P,Q 两点 . 若 AP垂直 AQ,求直线 l 的方 程.
A. -1
B. -2
C. 1
D. 2
7. 已知函数 f(x) =sinx, 若 em=2, 则 f(m) 的值为 ··········· ( )
A. sin2
B. sine
C. sin(ln2)
D. ln(sin2)
8. 设 a , b , c 为三条直线 , α, β 为两个平面 , 则下列结论中正确的是 ··· ( )
案有 ( )
A. 5 种
B. 6 种
C. 10 种
2
2
10. 双曲线 x y 1 的一个焦点到其渐近线的距离为
9 16
A, 16
B. 9
C. 4
D. 12 种 ········ ( )
D. 3
二、填空题 ( 本大题共 5 个小题 , 每小题 4 分 , 共 20 分. 将答案填在答题卡中对应题号
后的横线上 )
.
14、( 2x+
1 x2
)
6 的二项展开式中,
x 2 项的系数为
.
(用数字作答)
15、在三棱锥 P-ABC中,底面 ABC是边长为 3 的正三角形, PC 平面 ABC,PA=5,
则该三棱锥的体积为
.
三、解答题(本大题共 7 小题,其中第 21、 22 小题为选做题,共 60 分. 解答应
写出文字说明或演算步骤)
数学试题 第 1页 (共 29页)
11. 已知向量 a =(1, - 1), b =(2,y). 若 a ∥ b , 则 y= .
12. 某校高一年级有男生 480 人 , 女生 360人 , 若用分层抽样的方法从中抽取一个容量
为 21 的样本 , 则抽取的男生人数应为
.
13. 已知球的体积为 4 , 则其表面积为
D
.5 件产品都是次品
9. 如图,在正方体 ABCD-A1 B1 C1D1 中,直线 BD1 与平面 A1 ADD1 所成角的正切值
为
A. 3 3
了 B .2 2
C. 1
D
.2
数学试题 第 5页 (共 29页)
10、已知椭圆 x 2 4
y2 m2
1(m 0) 的离心率为 1 ,则 m = 2
A. 3 或 5
17. ( 本小题满分 10 分 )
uuur
uuru
已知 a , b 是不共线的两个向量 . 设 AB =2a +b , BC =- a -2 b .
uuur
uuur uuru
(1)用 a , b 表示 AC ;( 2)若 | a |=| b |=1,< a , b >=60o , 求 AB BC .
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分. 在每小题给出的四个选
项中,只有一项是符合要求的)
1. 已知集合 A={3,4,5 }, B={ 4,5,6 },则 A B 等于
A. {3,4,5,6} B
.{4,5}
C
. {3,6}
D
.
2. 函数 y=x 2 在其定义域内是
A.增函数
机密 ★ 启用前
湖南省 2012 年普通高等学校对口招生考试 数 学试题
时量 120 分钟 总分: 120 分
一、选择题 ( 本大题共 10 小题 , 每小题 4 分, 共 40 分. 在每小题给出的四个选项中 , 只
有一项是符合题目要求的 )
1. 设集合 A={ x | x >1},B={ x |0< x <1}, 则 A∪B 等于 ·········· ( )
数学试题 第 2页 (共 29页)
18. ( 本小题满分 10 分) 设{ an } 是首项 a1 =2, 公差不为 0 的等差数列 , 且 a1 , a3 , a11 成等比数列 , (1) 求数列 { an } 的通项公式 ; (2) 若数列 { bn } 为等比数列 , 且 b1 = a1 , a2 =b3 , 求数列 { bn } 的前 n 项和 sn .
B .减函数
C .奇函数
D .偶函数
3. “x=2”是“( x-1 )( x-2 )=0”的
A.充分不必要条件
B
.必要不充分条件
C.充分必要条件
D
.既不充分又不必要条件
4. 已知点 A(m,-1 )关于 y 轴的对称点为 B(3,n),则 m, n 的值分别为
A.m=3,n=-1 B .m=3,n=1 C .m=-3,n=-1 D .m=-3,n=1
数学试题 第 8页 (共 29页)
湖南省 2014 年普通高等学校对口招生考试 数学
(时量: 120 分钟;满分: 120 分)
一、选择题(本大题 10 小题,每小题 4 分,共 40 分。)
1、已知集合 A={1,4} ,B={4,5,6} ,则 A B=(
)
{4,5,6} B. {1,4,5,6} C.{1,4} D.{4}
注意:第 21 题(工科类), 22 题(财经、商贸与服务类)为选做题,请考生选 择其中一题作答 .