圆锥曲线基础训练题集

合集下载

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)1.抛物线y=10x的焦点到准线的距离是()2答案:52.若抛物线y=8x上一点P到其焦点的距离为9,则点P的坐标为()。

答案:(7,±14)3.以椭圆x^2/25+y^2/16=1的顶点为顶点,离心率为2的双曲线方程是()。

答案:x^2/9 - y^2/16 = 14.F1,F2是椭圆x^2/16+y^2/27=1的两个焦点,A为椭圆上一点,且∠AF1F2=45,则ΔAF1F2的面积()。

答案:75.以坐标轴为对称轴,以原点为顶点且过圆x^2+y^2-2x+6y+9=0的圆心的抛物线的方程是()。

答案:y=3x或y=-3x6.若抛物线y=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()。

答案:(±1/4.1/8)7.椭圆x^2/48+y^2/27=1上一点P与椭圆的两个焦点F1、F2的连线互相垂直,则△PF1F2的面积为()。

答案:288.若点A的坐标为(3,2),F是抛物线y=2x的焦点,点M 在抛物线上移动时,使MF+MA取得最小值的M的坐标为()。

答案:(2/5.4/5)9.与椭圆4x^2+y^2=1共焦点且过点Q(2,1)的双曲线方程是()。

答案:x^2/3 - y^2/4 = 110.若椭圆x/√3 + y/√2 = 1的离心率为2/3,则它的长半轴长为_______________。

答案:√611.双曲线的渐近线方程为x±2y=0,焦距为10,这双曲线的方程为______________。

答案:x^2/4 - y^2/36 = 112.抛物线y=6x的准线方程为y=3,焦点为(0,3)。

13.椭圆5x^2+k^2y^2=5的一个焦点是(0,2),那么k=____________。

答案:√314.椭圆kx^2+8y^2=9的离心率为2/3,则k的值为____________。

答案:7/315.根据双曲线的定义,其焦点到准线的距离等于其焦距的一半,因此该双曲线的焦距为3.又根据双曲线的标准方程,8kx-ky=8,将焦点代入方程可得8k(0)-3k=8,解得k=-8/3.16.将直线x-y=2代入抛物线y=4x中,得到交点为(2,8)和(-1,-5)。

高二圆锥曲线基础练习题及答案

高二圆锥曲线基础练习题及答案

高二圆锥曲线基础练习题及答案一、选择题1. 下列关于椭圆的说法,正确的是:A. 所有椭圆都是对称图形。

B. 椭圆的离心率大于1。

C. 椭圆的长轴和短轴相等。

D. 椭圆的焦点个数与离心率有关。

答案:D2. 设椭圆的长轴长度为10,短轴长度为6,则该椭圆的离心率为:A. 3/5B. 1/2C. 2/3D. 5/6答案:C3. 下列关于双曲线的说法,正确的是:A. 所有双曲线都是开口向上的图形。

B. 双曲线的离心率等于1。

C. 双曲线的长轴和短轴相等。

D. 双曲线的焦点个数与离心率有关。

答案:D4. 设双曲线的长轴长度为8,短轴长度为4,则该双曲线的离心率为:A. 2B. 3/2C. 4/3D. 5/4答案:B5. 下列关于抛物线的说法,正确的是:A. 抛物线的焦点位于抛物线的顶点上。

B. 抛物线的离心率等于1。

C. 抛物线的长轴和短轴相等。

D. 抛物线的焦点个数与离心率有关。

答案:A二、填空题1. 设椭圆的长轴长度为12,短轴长度为8,则该椭圆的离心率为__________。

答案:2/32. 设直角双曲线的焦点到中心的距离为3,焦点到顶点的距离为5,则该直角双曲线的离心率为__________。

答案:4/53. 设抛物线的焦距为6,顶点到焦点的距离为4,则该抛物线的离心率为__________。

答案:3/2三、解答题1. 某椭圆的长轴长度为10,焦距为6,求离心率和短轴的长度。

解:设椭圆的离心率为e,短轴长度为b。

根据椭圆的定义,焦距的长度为ae,即6 = ae。

由此可以解得椭圆的离心率为e = 6/a。

又已知长轴长度为10,即2a = 10,解得a = 5。

将a = 5代入离心率的公式,可得e = 6/5。

由椭圆的定义可知,离心率e = √(1 - b²/a²),代入已知的离心率和a的值,可得√(1 - b²/25) = 6/5。

将等式两边平方化简,得到1 - b²/25 = 36/25,即1 - b² = 36,解得b = √(1 - 36) = √(-35)。

圆锥曲线基础训练题及答案

圆锥曲线基础训练题及答案

圆锥曲线基础训练题姓名____________分数______________一、选择题1 .抛物线y 2=ax 的焦点坐标为(-2,0),则抛物线方程为( )A .y 2=-4x B .y 2=4x C .y 2=-8x D .y 2=8x2 .如果椭圆的两个焦点三等分它所在的准线间的垂线段,那么椭圆的离心率为 ( )A .23 B .33 C .36 D .66 3 .双曲线191622=-y x 的渐近线方程为 ( )A . x y 34±= B .x y 45±= C .x y 35±= D .x y 43±= 4 .抛物线 x y 42= 的焦点坐标是( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)5 .双曲线221916y x -=的准线方程是 ( ) A 165x =±B 95x =±C 95y =±D 165y =± 6 .双曲线221169x y -=上的点P 到点(5,0)的距离是15,则P 到点(-5,0)的距离是 ( )A .7B .23C .5或23D .7或237 .双曲线1322=-y x 的两条渐近线方程是 ( )A .03=±y xB .03=±y xC .03=±y xD .03=±y x8 .以椭圆的焦点为圆心,以焦距为半径的圆过椭圆的两个顶点,则椭圆的离心率为 ( )A .43)D (23)C (22)B (219 .抛物线y x 42=上一点A 纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .510.抛物线()042<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛041,a B .⎪⎭⎫ ⎝⎛a 1610,C .⎪⎭⎫ ⎝⎛-a 1610,D .⎪⎭⎫⎝⎛0161,a 11.椭圆2x 2=1-3y 2的顶点坐标为( )A .(±3,0),(0,±2)B .(±2,0),(0,±3)C .(±22,0),(0,±33) D .(±12,0),(0,±13) 12.焦距是10,虚轴长是8,经过点(23, 4)的双曲线的标准方程是( )A .116922=-y x B .116922=-x y C .1643622=-y x D .1643622=-x y 13.双曲线22124x y -=-的渐近线方程为( )A .y =B .x =C .12y x =±D .12x y =±14.已知椭圆方程为1322=+y x ,那么左焦点到左准线的距离为 ( )A .22 B .223 C .2D .2315.抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x-4y-12=0上,此抛物线的方程是 ( )A .y 2=16xB .y 2=12xC .y 2= -16xD .y 2= -12x16.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12 D .217.下列表示的焦点在y 轴上的双曲线方程是( )A .13422=+y xB .14322=+y xC .13422=-y xD .13422=-x y 18.抛物线y =2px 2(p ≠0)的焦点坐标为( )A .(0,p )B .(10,4p ) C .(10,8p) D .(10,8p±) 19.与椭圆205422=+y x 有相同的焦点,且顶点在原点的抛物线方程是( )A .x y 42=B .x y 42±=C .y x 42=D .y y 42±=20.已知双曲线的渐近线方程为x y43±=,则此双曲线的( )A .焦距为10B .实轴和虚轴长分别是8和6C .离心率是45或35 D .离心率不确定21.双曲线122=-y x 的渐近线方程是( )A .±=x 1B .y =C .x y ±=D .x y 22±= 22.若命题“曲线C 上的点的坐标都是方程f(x ,y)=0的解”是正确的,则以下命题中正确的是( )A .方程(x ,y)=0的曲线是CB .坐标满足方程f(x ,y)=0的点都在曲线C 上 C .曲线C 是方程f(x ,y)=0的轨迹D .方程f(x ,y)=0的曲线不一定是C23.双曲线221916y x -=的准线方程是 ( )A .165x =±B .95x =±C .95y =±D .165y =±24.双曲线191622=-x y 的焦点坐标是 ( )A .()0,5和()0,5-B .()5,0和()5,0-C .()0,7和()0,7- D .()7,0和()7,0-25.已知抛物线的焦点坐标为(-3,0),准线方程为x =3,则抛物线方程是( )A .y 2+6x =0B .y 2+12x =0C .y +6x 2=0D .y +12x 2=0 26.双曲线 191622=-y x 的渐近线的方程是( )A .x y 43±= B .x y 34±= C .x y 169±= D .x y 916±= 27.对抛物线24y x =,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16 C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)1628.双曲线2y 2-x 2=4的一个焦点坐标是( )A .(0,-)6B .(6,0)C .(0,-2)D .(2,0)29.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-2B .2C .-4D .430.到直线x=-2与定点P (2,0)距离相等的点的轨迹是( )A .抛物线B .双曲线C .椭圆D .直线二、填空题31.(1)短轴长为6,且过点(1,4)的椭圆标准方程是(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是 32.与两坐标轴距离相等的点的轨迹方程是________________________33.椭圆4422=+y x 的焦点坐标为___________,__________. 34.抛物线x y 42=的准线方程为______ 35.到x 轴,y 轴距离相等的点的轨迹方程_________.36.已知两个定点1(4,0)F -,2(4,0)F ,动点P 到12,F F 的距离的差的绝对值等于6,则点P 的轨迹方程是 ;37.若双曲线22145x y -=上一点P 到右焦点的距离为8,则P 到左准线的距离为38.若定点(1,2)A 与动点(),Px y 满足,4OP OA ⋅=则点P 的轨迹方程是39.已知双曲线的离心率为2,则它的实轴长和虚轴长的比为 。

圆锥曲线基础练习与答案

圆锥曲线基础练习与答案

直线与圆一、考点容1、求直线斜率方法(1)知直线l 倾斜角)1800(00<≤αα,则斜率090(tan ≠=ααk 即倾斜角为090的直线没有斜率(2)知直线l 过两点),(11y x A ,),(22y x B ,则斜率___________=k )(21x x ≠ (3)知直线l 一般式方程0y x =++C B A ,则斜率________=k 知直线l 斜截式方程b kx y +=,可以直接写出斜率 2、求直线方程方法——点斜式知直线l 过点),(b a ,斜率为k ,则直线方程为__________________,化简即可! 特别在求曲线在点))(,(a f a 处切线方程,往往用点斜式! 4、平行与垂直问题若21//l l ,则1k ______2k ;若21l l ⊥,则1k =2k _________ 5、距离问题(1)两点间距离公式若点),(21x x A 、),(22y x B ,则=||AB _________________ (2)点到直线距离公式点),(n m 到直线0y x =++C B A 距离=d _________________ 注意:直线必须化为一般式方程! (3)两平行线间距离公式两平行线0y x 0y x 21=++=++C B A C B A 与的距离=d _________________ 注意:两平行线必须把x 与y 系数化为一样! 6、圆与方程(1)标准方程222)()(r b y a x =-+-,圆心坐标为__________,半径为______(2)一般方程022=++++F Ey Dx y x ,条件0422>-+F E D圆心坐标为__________,半径为____________ 7、直线与圆位置关系(1)相离:公共点个数为_____个,此时d ______ r (d 为圆心到直线距离)(2)相切:公共点个数为_____个,此时d ______r (圆心与切点连线垂直于切线) (3)相交:公共点个数为_____个,此时d ______r (弦长=L _________)二、课堂练习1.原点到直线052=-+y x 的距离为( D ) A .1B .3C .2D .52.经过圆x 2+2x +y 2=0的圆心G ,且与直线x +y =0垂直的直线方程是( C )A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=03.经过圆0222=+-y x x的圆心且与直线02=+y x 平行的直线方程是( A )A .012=-+y xB .220x yC .210x yD .022=++y x 4.以) 0 , 1 (为圆心,且与直线03=+-y x 相切的圆的方程是( A ) A .8)1(22=+-y x B .8)1(22=++y x C .16)1(22=+-y x D .16)1(22=++y x5.已知直线3430x y +-=与直线6140x my ++=平行,则它们之间的距离是( C )A .1710B .8C .2D .1756.直线3490x y +-=与圆()2211x y -+=的位置关系是( A )A .相离B .相切C .直线与圆相交且过圆心D .直线与圆相交但不过圆心7.圆:012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( B )A 、 2B 、21+C 、221+D 、221+ 8.圆心在原点,并与直线3x-4y-l0=0相切的圆的方程为___422=+y x _________.9.直线y x =被圆22(2)(4)10x y -+-=所截得的弦长等于.<十>圆锥曲线[椭圆]一、考点容:1、椭圆的定义: 12||||2MF MF a +=2、椭圆的简单几何性质:离心率(0,1)ce a=∈.,,a b c 间的关系 222a b c =+(0a b >>,0a c >>)二、基础练习:1 .已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是( D ) A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 2.已知椭圆C :x 2+2y 2=4. 则椭圆C 的离心率为_____22____ 3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).求椭圆的方程;(x 24+y 23=1.)4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63.求椭圆C 的标准方程;(x 26+y 22=1.)5.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O,焦点在x 轴上,短轴长为2,离心率为22,求椭圆C 的方程.6.已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点(23)P ,.求椭圆C 的方程;22184x y +=7.椭圆C:=1(a>b>0)的离心率,a+b=3(1) 求椭圆C 的方程;2214x C y ∴+=椭圆的方程为:[双曲线] 一、考点容:(1)双曲线定义:a PF PF 2|||-|||21=(2)标准方程: 焦点在x 轴上 焦点在y 轴上焦点坐标为:_______________________ ____________________________ 顶点坐标为:_______________________ ____________________________渐近线方程:_______________________ ____________________________ (3)性质:离心率_______=e )1(>e(4),,a b c 间的关系: ____________________________ 二、基础练习:1.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( D )A .2 B.62 C.52D .1 2.已知双曲线2222:1x y C a b -=(0,0)a b >>5则C 的渐近线方程为( C )A .14y x =±B .13y x =±C .12y x =±D .y x =±1 .双曲线122=-y x的顶点到其渐近线的距离等于( B )A .21 B .22 C .1D .24.双曲线221y x m-=2的充分必要条件是 ( C ) A .12m >B .1m ≥C .1m >D .2m >5.已知双曲线22x a-25y =1的右焦点为(3,0),则该双曲线的离心率等于( C )A14C 32D 436.双曲线 x 24-y 2=1的离心率等于___52_____.7.双曲线221169x y -=的离心率为___45_____.8.在平面直角坐标系xOy 中,若双曲线22214x ym m -=+m 的值为2.9.设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为___ x 2-y 2=1_____.[抛物线](1)定义:抛物线上任意一点P 到焦点的距离等于点P 到准线的距离. (2)标准方程与性质二、基础练习:1. 抛物线y =14x 2的准线方程是( A )A .y =-1B .y =-2C .x =-1D .x =-22.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( C )A .-43B .-1C .-34D .-123 .抛物线28y x =的焦点到直线0x =的距离是( D )A .B .2C D .12.若抛物线22y px =的焦点坐标为(1,0)则p =_2___;准线方程为_1x =-____.5.抛物线y 2=4x 的准线方程为_____ x =-1___.6.已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为___2213y x -=___.7. 已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为2,求抛物线C 的方程; 24x y =。

高二文科数学圆锥曲线基础训练(含答案)

高二文科数学圆锥曲线基础训练(含答案)

高二文科数学圆锥曲线基础训练1.k 为何值时,直线y=kx+2和椭圆632x 22=+y 有两个交点 ( )A .—36<k<36B .k>36或k< —36C .—36≤k ≤36D .k ≥36或k ≤ —36 【答案】B【解析】 试题分析:由⎩⎨⎧=++=632222y x kx y 可得 :(2+3k 2)x 2+12kx+6=0,由△=144k 2-24(2+3k 2)>0得k>36或k< —36,此时直线和椭圆有两个公共点。

2.抛物线4x y 2=上一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A. 0B. 1516C. 78D. 1716【答案】A 试题分析:设M ()00,y x ,因为M 到焦点的距离为1,所以110=+x ,所以00=x ,代入抛物线方程4xy 2=得00=y 。

3.过点(0,1)与双曲线221x y -=仅有一个公共点的直线共有 ( )A.1条B.2条C.3条D.4条 【答案】D4.椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为( ) A.21B.23C.22D.33【答案】C5.若椭圆)0(122>>=+n m ny m x 和双曲线)0(122>>=-b a b y a x 有相同的焦点1F 、2F ,P 是两曲线的一个公共点,则||||21PF PF ⋅的值是( )A .m-aB .)(21a m - C .22a m - D .a m -【答案】A【解析】设P是第一象限的交点,由定义可知1212PF PF PF PF ⎧+=⎪⎨-=⎪⎩ 12PF PF m a ∴=-6.已知点)0,4(1-F 和)0,4(2F ,曲线上的动点P 到1F 、2F 的距离之差为6,则曲线方程为()A.17922=-y x B .)0(17922>=-y x y C .17922=-y x 或17922=-x y D .)0(17922>=-x y x 【答案】D7.已知k <4,则曲线14922=+y x 和14922=-+-ky k x 有 ( ) A. 相同的准线 B. 相同的焦点C. 相同的离心率D. 相同的长轴【答案】B8.抛物线)0(2<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛0,21a B.⎪⎭⎫ ⎝⎛a 21,0 C.⎪⎭⎫⎝⎛a 41,0 D.⎪⎭⎫ ⎝⎛-a 41,0 【答案】C9.抛物线212y x =的准线与双曲线22193x y -=的两条渐近线所围成的三角形面积等于( )A. B. C.2 【答案】A10.已知椭圆)0(12222>>=+b a by a x 的左、右两焦点分别为21,F F ,点A 在椭圆上,0211=⋅F F ,4521=∠AF F ,则椭圆的离心率e 等于 ( )A.33B.12-C.13-D. 215- 【答案】B 由0211=⋅F F AF 得112AF F F ⊥,又4521=∠AF F ,112AF F F ∴=即22b c a=,整理的2220c ac a +-=2210,1e e e ∴+-==11.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的标准方程为___________【答案】1728122=+y x 【解析】试题分析:椭圆长轴的长为18,即2a=18,得a=9,因为两个焦点恰好将长轴三等分,∴2c=31•2a=6,得c=3,因此,b 2=a 2-c 2=81-9=72,再结合椭圆焦点在y 轴上,可得此椭圆方程为1817222=+y x . 12.过椭52x +42y =1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,求弦AB 的长_______【答案】35513.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 .14.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是 .【答案】2k <<3k <<-【解析】2222150x y kx y k ++++-=表示圆需要满足22224(15)0k k +-->,解得33k -<<,又因为过圆外一点可以作两条直线与圆相切,所以点(1,2)在圆外,所以2221222150k k +++⨯+->,所以3k <-或2k >,综上所述,实数k 的取值范围是2k <<3k <<-15.已知抛物线2:2(0)C x py p =>上一点(,4)A m 到其焦点的距离为5,则m = .【答案】4±. 16.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为22。

圆锥曲线基础训练题1

圆锥曲线基础训练题1

圆锥曲线基础测试题一、单选题1.双曲线222536x y -=1的渐近线方程为( ) A .6x ±5y =0 B .5x ±6y =0 C .25x ±36y =0 D .36x ±25y =02.已知椭圆22212x y a +=的一个焦点为 (2,0), 则这个椭圆的方程是 ( ) A .22142x y += B .22132x y += C .2212y x += D .22162x y += 3.若焦点在y 轴上的椭圆2212x y m+=的离心率为12,则m 的值为( ) A .3 B .4 C .83 D .64.双曲线的方程为221169x y -=,则其离心率为( ) A .45 B .54 C .43 D .345.双曲线2212x y -=的顶点到其渐近线的距离等于( )A B .2 C .3 D .36.在平面直角坐标系xoy 中,已知抛物线x 2=2y 的焦点为F ,准线为l ,则点F 到准线l 的距离为( ) A .12 B .1 C .2 D .47.点12F F 、分别为椭圆221167x y +=左右两个焦点,过1F 的直线交椭圆与A B 、两点,则2ABF 的周长为( )A .32B .16C .8D .4 8.对抛物线218y x =,下列描述正确的是( ) A .开口向上,焦点为()02, B .开口向上,焦点为1032⎛⎫ ⎪⎝⎭,C .开口向右,焦点为()20,D .开口向右,焦点为1032⎛⎫ ⎪⎝⎭, 9.如果椭圆2218125x y +=上一点M 到此椭圆一个焦点1F 的距离为2,N 是1MF 的中点,O 是坐标原点,则线段ON 的长为( )A .2B .4C .8D .3210.抛物线22y x =的焦点到准线的距离为( ).A .18B .14C .12D .111.焦点在x 轴上,过点()2,0 ). A .2214y x += B .2214x y += C .2241x y += D .221416x y += 12.抛物线24y x =的准线方程为( )A .2x =-B .1x =-C .1y =-D .2y =-二、填空题 13.以1F 、2F 为焦点作椭圆,椭圆上一点1P 到1F 、2F 的距离之和为10,椭圆上另一点2P 满足2122P F P F =,则21P F =______.14.设1F ,2F 为定点,126F F =,动点M 满足1210MF MF +=,则动点M 的轨迹是______.(从以下选择.椭圆.直线.圆.线段)15.若双曲线223x y m -=的虚轴长为2,则实数m 的值为__________.16.双曲线c =,且一个顶点坐标为()0,2,则双曲线的标准方程为_____________.三、解答题17.过原点O 作圆x 2+y 2-8x=0的弦OA .(1)求弦OA 中点M 的轨迹方程;(2)延长OA 到N ,使|OA|=|AN|,求N 点的轨迹方程.18.已知动圆经过点F (2,0),并且与直线x =-2相切(1)求动圆圆心P 的轨迹M 的方程;(2)经过点(2,0)且倾斜角等于135°的直线l 与轨迹M 相交于A ,B 两点,求|AB |19.已知抛物线2:2(0)C y px p =>的焦点为F ,点(1,2)P 在抛物线C 上.(1)求点F 的坐标和抛物线C 的准线方程;(2)过点F 的直线l 与抛物线C 交于,A B 两个不同点,若AB 的中点为(3,2)M -,求OAB 的面积.20.焦点在x 轴上的椭圆的方程为2214x y m+=,点P 在椭圆上. (1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率.21.已知条件p :空间向量(1,0,)a n =,(1,1,1)b =-,满足0a b ⋅>;条件q :方程2212x y n k -=-表示焦点在x 轴上的双曲线.(1)求使条件p 成立的n 的取值范围;(2)若p 成立是q 成立的充分条件,求实数k 的取值范围.22.已知ABC 的周长为8且点A ,B 的坐标分别是()-, (),动点C 的轨迹为曲线Q .(1)求曲线Q 的方程;(2)直线l 过点()1,1P ,交曲线Q 于M ,N 两点,且P 为MN 的中点,求直线l 的方程.。

圆锥曲线基础题训练(word文档良心出品)

圆锥曲线基础题训练(word文档良心出品)

圆锥曲线单元检测1.一、选择题: (5*10=50)已知椭圆上的一点到椭圆一个焦点的距离为, 则到另一焦点距离为()A. B. C. D.2.若椭圆的对称轴为坐标轴, 长轴长与短轴长的和为, 焦距为, 则椭圆的方程为()A. B. C. 或 D. 以上都不对3(文).动点到点及点的距离之差为, 则点的轨迹是()A. 双曲线B. 双曲线的一支C. 两条射线D. 一条射线(理). 到两定点、的距离之差的绝对值等于6的点的轨迹()A. 椭圆B. 线段C. 双曲线D. 两条射线4. 方程表示双曲线, 则的取值范围是()A. B. C. D. 或5. 双曲线的焦距是()A. 4B.C. 8D. 与有关6.过双曲线左焦点F1的弦AB长为6, 则(F2为右焦点)的周长是()A. 28 B. 22 C. 14 D. 127.双曲线的渐近线方程是y=±2x, 那么双曲线方程是()A. x2-4y2=1B. x2-4y2=1C. 4x2-y2=-1D. 4x2-y2=18.设P是双曲线上一点, 双曲线的一条渐近线方程为、F2分别是双曲线的左、右焦点, 若, 则()A. 1或5B. 6C. 7D. 99(文). 抛物线的焦点到准线的距离是()A. B. C. D.(理).若抛物线上一点到其焦点的距离为, 则点的坐标为()A. B. C. D.10(理).抛物线上的一点M到焦点的距离为1, 则点M的纵坐标是()A. B. C. D. 0(文).抛物线的准线方程是()A. B. C. D.二、填空题(5*5=25)14. 若椭圆的离心率为, 则它的长半轴长为_______________.15.双曲线的渐近线方程为, 焦距为, 这双曲线的方程为_______________。

16.若曲线表示双曲线, 则的取值范围是。

17. 抛物线的准线方程为 .18.椭圆的一个焦点是, 那么。

三、解答题(75)16. 为何值时, 直线和曲线有两个公共点?有一个公共点?没有公共点?17. 在抛物线上求一点, 使这点到直线的距离最短。

圆锥曲线基础训练题集

圆锥曲线基础训练题集

椭圆基础训练题1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=12.椭圆5x 2+4y 2=1的两条准线间的距离是( )(A )52 (B )10 (C )15 (D )3503.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21 (B )22 (C )23 (D )33 4.椭圆25x 2+9y 2=1上有一点P ,它到右准线的距离是49,那么P 点到左准线的距离是( )。

(A )59 (B )516 (C )441 (D )5415.已知椭圆x 2+2y 2=m ,则下列与m 无关的是( )(A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率6.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( )(A )1 (B )1或2 (C )2 (D )21或17.椭圆的中心为O ,左焦点为F 1,P 是椭圆上一点,已知△PF 1O 为正三角形,则P 点到右准线的距离与长半轴的长之比是( )(A )3-1 (B )3-3 (C )3 (D )18.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值范围是 。

9.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是 。

10. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为354,求此椭圆的方程。

11.证明:椭圆上任意一点到中心的距离的平方与到两焦点距离的乘积之和为一定值。

12. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是( )。

13. (A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2=1(C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9y 2=113. 椭圆25x 2+16y 2=1的焦点坐标是( )。

圆锥曲线基础训练

圆锥曲线基础训练

一、选择题(25分)1.如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为( )A .(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)2.抛物线y 2=x 上一点M 到焦点的距离等于1,则点M 的横坐标是 ( )A .12B.32C.34D. 13.若方程15222=-+-ky k x 表示双曲线,则k 的取值范围是 ( ) A .k >5 B. 2<k <5 C. k <5 D. k >5或k <24.双曲线191622=-y x 上一点P 对两焦点F 1、F 2的视角为60°,则△F 1PF 2的面积为( ) A .23B . 33C .63D .935.椭圆1366422=-y x 上一点M 到它的右焦点的距离是4,则点M 到左焦点的距离为 ( ) A.8 B. 12 C .16 D . 4 二、填空题(35分)6、椭圆13422=+y x 的,短轴是_____,焦距是_____,离心率是_____ 7.双曲线13-422=y x 的离心率是_____,渐近线方程为___________ 8. 焦点为(0,-4)的抛物线标准方程是___________ 9.抛物线24y ax =的焦点坐标是____________10. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值是______ 11.准线方程x=4,则抛物线的标准方程是_________12. 抛物线24y x =的离心率是_______三、解答题(40分)13、已知:椭圆的焦距为12,离心率35,求椭圆的标准方程14、求与191622=-y x 有相同的渐近线,且过(4,23)的双曲线标准方程。

15、已知:抛物线的焦点F 的坐标是(2,0),M 是抛物线上一点,|MF|=5 (1)求抛物线的标准方程 (2) 求M 的坐标16、已知抛物线方程为24y x =,斜率为1的直线过抛物线的焦点与抛物线交与A 、B 两点 (1)求抛物线的准线和直线的方程 (2)求AB 的长基础训练一、圆锥曲线班级________姓名________成绩___________。

高中数学圆锥曲线基础练习题

高中数学圆锥曲线基础练习题

高中数学圆锥曲线基础练习题一、填空题1. 椭圆的离心率是0,此时椭圆是一个(圆)。

圆)。

2. 双曲线的离心率小于1,此时曲线是一个(双曲线)。

双曲线)。

3. 抛物线的离心率等于1,此时曲线是一个(抛物线)。

抛物线)。

4. 椭圆的离心率大于1,此时曲线是一个(椭圆)。

椭圆)。

二、选择题1. 以下哪个不是圆的方程?- A. x^2 + y^2 = 25- B. (x-3)^2 + (y+4)^2 = 9- C. x^2 + y^2 + 4x + 6y - 12 = 0- D. x^2 + y^2 + 2x - 6y + 9 = 0- (C)C)2. 双曲线的焦点在y轴上,离心率为2,那么双曲线方程的形式是:- A. x^2/4 - y^2/9 = 1- B. x^2/9 - y^2/4 = 1- C. x^2/36 - y^2/16 = 1- D. x^2/16 - y^2/36 = 1- (B)B)3. 抛物线的焦点在原点,准线在y轴上,那么抛物线方程的形式是:- A. y^2 = 4px- B. x^2 = 4py- C. x^2 = -4py- D. y^2 = -4px- (A)A)三、解答题1. 将椭圆的方程x^2/16 + y^2/4 = 1化简为标准形式,并给出该椭圆的长轴、短轴、焦距和离心率的值。

解:将方程 x^2/16 + y^2/4 = 1 化简为标准形式,得到 (x-0)^2/4^2 + (y-0)^2/2^2 = 1。

所以,该椭圆的长轴为2a=8,即a=4;短轴为2b=4,即b=2;焦距为2c=sqrt(4^2-2^2)=sqrt(12)=2sqrt(3);离心率为c/a=sqrt(3)/4。

2. 解方程组 {x^2 - y^2 = 4, x + y = 4}。

解:将第二个方程对y进行变量替换,得到 x - (4 - x) = 4,化简得到2x = 8,即x = 4。

将x的值代入第一个方程,得到4^2 - y^2 = 4,化简得到y^2 = 12,即y = ±2sqrt(3)。

(完整word版)圆锥曲线练习题含答案(很基础,很好的题)

(完整word版)圆锥曲线练习题含答案(很基础,很好的题)

厂15 “5 C .D . 1028x 上一点P 到其焦点的距离为y 2 x 上一点P 到准线的距离等于它到顶点的距离,则点 P 的坐标为(B . (8, J)C .(4,』)D .(=)8 4 4 4 8 4圆锥曲线练习题21.抛物线y 10x 的焦点到准线的距离是(A . (7,帀)B . (14, .14)C . (7,2•一 14 D . ( 7,2、、帀)2x3.以椭圆——25 2y161的顶点为顶点,离心率为2的双曲线方程(2 xA .162y 482厶1272x162y 48 2y 27D .以上都不对2 x 4 . F 1, F 2是椭圆一9 1的两个焦点,A 为椭圆上一点, 且/ AF 1F 2450,则△ AF 1F 2的面积(5.以坐标轴为对称轴, 以原点为顶点且过圆2x 6y 90的圆心的抛物线的方程是2 3x 或y 3x 23x 2 C . y 2 9x 或 y 3x 2D. 3x 2或2小y 9x5A .—22.若抛物线9,则点P 的坐标为(6.若抛物线7.椭圆 x49y 241上一点P 与椭圆的两个焦点 F 1、F 2的连线互相垂直, 则厶PF 1F 2的面积为20 B . 22 C . 28 D . 248 .若点A 的坐标为(3,2) , F 是抛物线y 2 2x 的焦点,点M 在抛物线上移动时,使 MF MA 取得 最小值的M 的坐标为()A . 00B . AC. 1-2 D . 2,229.与椭圆 — y 21共焦点且过点 Q (2,1)的双曲线方程是()4A.2 2 2 2 2抛物线y 2 6x 的准线方程为 ________ . 椭圆5x 2 ky 2 5的一个焦点是(0,2),那么k 11的离心率为一,则k 的值为 ___2双曲线8kx 2 ky 28的一个焦点为(0,3),则k 的值为 ______________若直线x y 2与抛物线y 2 4x 交于A 、B 两点,则线段 AB 的中点坐标是 _________________k 为何值时,直线y kx 2和曲线2x 2 3y 2 6有两个公共点?有一个公共点?没有公共点?在抛物线y 4x 2上求一点,使这点到直线 y 4x 5的距离最短。

(完整版)圆锥曲线基础测试题大全(可编辑修改word版)

(完整版)圆锥曲线基础测试题大全(可编辑修改word版)

(北师大版)高二数学《圆锥曲线》基础测试试题一、选择题LS 知椭圆+1上的一点P 到椭圆一个焦点的距离为3 •则P 到另一焦点距离为2516A • 2B • 3C - 5椭圆^+11=1的焦距等于()。

32 16A • 4若椭圆的对称轴为坐标轴•长轴长与短轴长的和为18 •焦距为6 .则椭圆的方程为 2222v2 V 2廿2A.令+怜=1B.冬+怜=1C. 1^)—=1或兰+ L = 1D.以上都不对9 16 25 16 25 16 16 25动点P 到点M(10)及点N(3,0)的距离之差为2 •则点P 的轨迹是()A.双曲线 B -双曲线的一支C -两条射线D . 一条射线设双曲线的半焦距为Q ・两条准线间的距离为〃,且c = d .那么双曲线的离心率丘等于A. 2 B • 3 C • 75D •抛物线=10工的焦点到准线的距离是()5 •15A * _B • 5C • _D • 102T抛物线/二取的准线方程是()。

(^ ) x= - 2 ( B ) x=2 ( C ) x= - 4 ( D ) y= - 2已知抛物线的焦点是F(0 . 4).则此抛物线的标准方程是() (A)x^=16y ( B ) x2=8y ( C) /= 16x ( D ) / = 8x9 •经过(1 • 2)点的抛物线的标准方程是( )(A ) / = 4x ( S ) = _y (C)/ = 4x 或 X = _ y (D) / = 4x 或 X = 4y2 210-若抛物线y2 = 8工上一点P 到M 焦点的距离为9・则点P 的坐标为A. (7,±皿B. (14.±7*4)C. (7, ±2^D. (-7, ±2^1^11.椭圆mx2 + / = l 的离心率是迴,则它的长半轴的长是()2(6)1 或 2( C)213. 抛物线尸•耳的准线方程是()。

(A ) y=—( S )尸2 ( C) y=i ( O ) y=432 4 14. 与椭圆兰+ r=i 共焦点■且经过点p (也,1)的椭圆方程是()。

圆锥曲线基础40练

圆锥曲线基础40练

圆锥曲线基础练习题1、离心率e =35,一条准线方程为x=503的椭圆的标准方程为、________________; 2、AB 是过椭圆x y 2249131+=的左焦点的弦,且两端点A 、B 的横坐标之和为-7,则A B =____________。

3、椭圆的中心在原点,一个焦点为F (0,6),中心到准线的距离为10,则椭圆方程为___。

4、椭圆的中心在原点,短轴端点到焦点的距离是6,一条准线方程是y=9,则椭圆方程为_____________.5、(1)已知椭圆x 24+y 2=1上点P 到右焦点F 的距离为32,则点P 到左准线的距离为______;(2)椭圆x y 225141+=上一点到左、右焦点的距离的比为1:3,则这点到左、右准线的距离分别为_______________。

6、(1)中心在原点,长半轴长与短半轴长的和为92,离心率为0.6的椭圆的方程为________;(2)对称轴是坐标轴,离心率等于32,且过点(2,0)的椭圆的方程是_______。

7、(1)短轴长为6,且过点(1,4)的椭圆标准方程是__________; (2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是__________。

8、已知椭圆x a y a2222+=1的焦距为4,则这个椭圆的焦点在_____轴上,坐标是_____。

9、已知椭圆1422=+y m x 的离率为12,则m= 。

10、一个椭圆的中心在原点,焦点在x 轴上,离心率为36,一条准线为x=3,则该椭圆的方程是____.11、椭圆的一个焦点和短轴两端点连成三角形,这个三角形有一个角为120°,则该椭圆的离心率为____.12、椭圆的准线间的距离是焦距的2倍,则它的离心率为____。

13、椭圆的长、短轴都在坐标轴上,长、短轴的长度之和为36,离心率为53,则椭圆方程为_____。

14、椭圆的中心在原点,一个顶点为(2,0)且短轴长等于焦距则椭圆的方程为 ___。

圆锥曲线30道基础题

圆锥曲线30道基础题

一.解答题(共30小题)1.(2015•徐汇区一模)已知椭圆γ:=1的右焦点为F,左顶点为R,点A(2,1),B(﹣2,1),O为坐标原点.(1)若P是椭圆γ上任意一点,,求m2+n2的值;(2)设Q是椭圆γ上任意一点,S(t,0),t∈(2,5),求的取值范围;(3)过F作斜率为k的直线l交椭圆γ于C,D两点,交y轴于点E,若,,试探究λ1+λ2是否为定值,说明理由.2.(2015•洛阳一模)已知F1,F2是椭圆C+=1的左,右焦点,以线段F1F2为直径的圆与圆C关于直线x+y﹣2=0对称.(l)求圆C的方程;(2)过点P(m,0)作圆C的切线,求切线长的最小值以及相应的点P的坐标.3.(2015•大庆二模)抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.4.(2015•杨浦区一模)如图,曲线Γ由曲线和曲线组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点;(1)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(2)对于(1)中的曲线Γ,若过点F4作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求三角形ABF1的面积;(3)如图,若直线l(不一定过F4)平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上.5.(2014•北京模拟)已知椭圆C:+=1(a>b>0)的过点(0,1),且离心率等于.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为坐标原点,椭圆C与直线y=kx+1相交于两个不同的点A,B,求△OAB面积的最大值.6.(2013•曲靖二模)已知椭圆C:+=1(a>b>0)的焦距为4且过点(,﹣2).(1)求椭圆C方程;(2)过椭圆上焦点的直线与椭圆C分别交于点E,F,求•的取值范围.7.(2011•厦门模拟)已知椭圆E:+=1(a>b>0)的长轴长为12,右顶点为A,F1,F2分别是椭圆E的左、右焦点,且|AF1|=5|AF2|.(Ⅰ)求椭圆E的方程;(Ⅱ)圆C:(x﹣2)2+y2=4,点P是椭圆E上任意一点,线段CP交圆C于点Q,求线段PQ长度的最小值.8.(2006•天津)如图,双曲线=1(a>0,b>0)的离心率为、F2分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且.(I)求双曲线的方程;(II)设A(m,0)和(0<m<1)是x轴上的两点.过点A作斜率不为0的直线l,使得l交双曲线于C、D两点,作直线BC交双曲线于另一点E.证明直线DE垂直于x轴.中心O为圆心.9.已知P为⊙B:(x+2)2+y2=36上一动点,点A(2,0),线段AP垂直平分线交直线BP于点Q,求点Q的轨迹方程.10.已知A,B是⊙0:x2+y2=4与x轴的两个交点,C是⊙O上异于点A,B的任意一点,过点B作直线l的垂线BP,且与AC的延长线交于点P,求点P的轨迹方程.11.设F1,F2,分别是椭圆+=1的左右焦点,已知定点A(0,﹣1),B(0,3),C(3,3),以点C为焦点作过A,B两点的椭圆.(1)求另一焦点D的轨迹G的方程;(2)过点A的直线l交曲线G于P,Q两点,若=3,求直线l的方程.12.已知直线x+y﹣1=0与椭圆+=1(a>b>0)相交于A,B两点,线段AB中点M在直线l:y=x上.(1)若椭圆右焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程;(2)过D(0,2)的直线与(1)中的椭圆相交于不同两点E、F,且E在D、F之间,设=λ,试确定实数λ的取值范围.13.已知点M到点F(1,0)和直线x=﹣1的距离相等,记点M的轨迹为C.(1)求轨迹C的方程;(2)过点F作相互垂直的两条直线l1、l2,曲线C与l1交于点P1、P2,与l2交于点Q1、Q2,试证明:.(2)设抛物线方程的焦点为F,过焦点F的直线交抛物线于AB两点,且交准线l于点M,已知=λ1,=λ2,求λ1+λ2的值.15.已知抛物线C:y2=2px(p>0)的焦点为F(2,0)(Ⅰ)求抛物线的标准方程;(Ⅱ)抛物线C在x轴上方一点A的横坐标为2,过点A作两条倾斜角互补的直线,与曲线C的另一个交点分别为B,C,求证:直线BC的斜率为定值.16.已知抛物线C:y2=2px(p>0)过点A(1,m),点A到焦点的距离为2.(1)求抛物线C的方程及m的值.(2)是否存在斜率为﹣2的直线l,使得l与C有公共点,且l与直线y=﹣2x的距离为?若存在,求出l的方程:若不存在,说明理由.17.已知抛物线C:y=mx2(m>0),焦点为F,直线2x﹣y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标;(2)若抛物线C上有一点R(x R,2)到焦点F的距离为3,求此时m的值.18.过双曲线﹣=1的右焦点F2作实轴的垂线,交双曲线于A、B两点.(1)求线段AB的长;(2)若△AF1F2为等腰直角三角形,求双曲线的离心率(F1为左焦点).19.如图,若F1,F2是双曲线﹣=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)若P是双曲线左支上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.20.如图所示,椭圆过点,点F、A分别为椭圆的右焦点和右顶点且有.(1)求椭圆的方程.(2)若动点P(x,y),符合条件:,当y≠0时,求证:动点P(x,y)一定在椭圆内部.21.设椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线交椭圆E于A,B两点,满足AF1=2F1B,且AB=3,△ABF2的周长为12.(1)求AF2;(2)若cos∠F1AF2=﹣,求椭圆E的方程.22.已知抛物线y2=4x,椭圆+=1,它们有共同的焦点F2,并且相交于P、Q两点,F1是椭圆的另一个焦点,试求:(1)m的值;(2)P、Q两点的坐标;(3)△PF1F2的面积.23.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(Ⅰ)求抛物线C的方程;(Ⅱ)设直线l为抛物线C的切线且l∥MN,求直线l的方程.24.过抛物线C:y2=2px上的点M(4,﹣4)作倾斜角互补的两条直线MA、MB,分别交抛物线于A、B两点.(1)若|AB|=4,求直线AB的方程;(2)不经过点M的动直线l交抛物线C于P、Q两点,且以PQ为直径的圆过点M,那么直线l是否过定点?如果是,求定点的坐标;如果不是,说明理由.25.已知双曲线x2﹣=1的顶点、焦点分别为椭圆C:+=1(a>b>0)的焦点、顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.26.抛物线的顶点在原点,它的准线过椭圆C:=1(a>b>0)的一个焦点,并与椭圆的长轴垂直,已知抛物线与椭圆的一个交点为.(1)求抛物线的方程和椭圆C的方程;(2)若双曲线与椭圆C共焦点,且以y=±x为渐近线,求双曲线的方程.27.已知椭圆C1:+=1,其左准线为l1,右准线为l2,抛物线C2以坐标原点O为顶点,l2为准线,C2交l1于A,B两点.(1)求抛物线C2的标准方程;(2)求线段AB的长度.28.P是椭圆=1上一点,F1,F2是焦点.(1)若∠F1PF2=,求△F1PF2的面积和P点坐标;(2)求|PF1||PF1|的最大值.29.已知椭圆C:+=1(a>b>0)的两个焦点分别为F1,F2,点P是椭圆上任意一点,|PF1|•|PF2|的最大值为4,且椭圆C的离心率是双曲线﹣=1的离心率的倒数.(1)求椭圆C的标准方程;(2)若O为坐标原点,B为椭圆C的右顶点,A,M为椭圆C上任意两点,且四边形OABM为菱形,求此菱形面积.30.已知椭圆C:+=1(a>b>0)经过点P(1,),且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆的方程;(2)动直线l:mx+ny+n=0(m,n∈R)交椭圆C于A、B两点,求证:以AB为直径的动圆恒经过定点(0,1).参考答案与试题解析一.解答题(共30小题)1.(2015•徐汇区一模)已知椭圆γ:=1的右焦点为F,左顶点为R,点A(2,1),B(﹣2,1),O为坐标原点.(1)若P是椭圆γ上任意一点,,求m2+n2的值;(2)设Q是椭圆γ上任意一点,S(t,0),t∈(2,5),求的取值范围;(3)过F作斜率为k的直线l交椭圆γ于C,D两点,交y轴于点E,若,,试探究λ1+λ2是否为定值,说明理由.)把),得时,时,最小值为综上所述:的取值范围为,得,得,同理==2.(2015•洛阳一模)已知F1,F2是椭圆C+=1的左,右焦点,以线段F1F2为直径的圆与圆C关于直线x+y﹣2=0对称.(l)求圆C的方程;(2)过点P(m,0)作圆C的切线,求切线长的最小值以及相应的点P的坐标.=1,此时切线长取最小值3.(2015•大庆二模)抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.:﹣,,﹣﹣t=的方程为+=1上,故有+=1代入上式,得:c=a+2+.)=4.(2015•杨浦区一模)如图,曲线Γ由曲线和曲线组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点;(1)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(2)对于(1)中的曲线Γ,若过点F4作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求三角形ABF1的面积;(3)如图,若直线l(不一定过F4)平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上.,可得,解得即可.:,点CDF1=(,由数形结合知x∴的方程为+和,点,化为(.=CDF1=t=SCDF1==t=时等号成立.n=CDF1=(,,=﹣5.(2014•北京模拟)已知椭圆C:+=1(a>b>0)的过点(0,1),且离心率等于.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为坐标原点,椭圆C与直线y=kx+1相交于两个不同的点A,B,求△OAB面积的最大值.+椭圆的离心率等于a=,代入中,+kd=|AB|d=||=||的最大值为6.(2013•曲靖二模)已知椭圆C:+=1(a>b>0)的焦距为4且过点(,﹣2).(1)求椭圆C方程;(2)过椭圆上焦点的直线与椭圆C分别交于点E,F,求•的取值范围.,根据椭圆的定义点(,从而求得.)椭圆焦距是∴,所以的方程是;则点,=,所以7.(2011•厦门模拟)已知椭圆E:+=1(a>b>0)的长轴长为12,右顶点为A,F1,F2分别是椭圆E的左、右焦点,且|AF1|=5|AF2|.(Ⅰ)求椭圆E的方程;(Ⅱ)圆C:(x﹣2)2+y2=4,点P是椭圆E上任意一点,线段CP交圆C于点Q,求线段PQ长度的最小值.c=;,则∴=时,有最小值8.(2006•天津)如图,双曲线=1(a>0,b>0)的离心率为、F2分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且.(I)求双曲线的方程;(II)设A(m,0)和(0<m<1)是x轴上的两点.过点A作斜率不为0的直线l,使得l交双曲线于C、D两点,作直线BC交双曲线于另一点E.证明直线DE垂直于x轴.中心O为圆心.满足,解得.,得,于是的方程为.)两点坐标满足.于是,得)两点坐标满足.9.已知P为⊙B:(x+2)2+y2=36上一动点,点A(2,0),线段AP垂直平分线交直线BP于点Q,求点Q的轨迹方程.+10.已知A,B是⊙0:x2+y2=4与x轴的两个交点,C是⊙O上异于点A,B的任意一点,过点B作直线l的垂线BP,且与AC的延长线交于点P,求点P的轨迹方程.1+,,))(11.设F1,F2,分别是椭圆+=1的左右焦点,已知定点A(0,﹣1),B(0,3),C(3,3),以点C为焦点作过A,B两点的椭圆.(1)求另一焦点D的轨迹G的方程;(2)过点A的直线l交曲线G于P,Q两点,若=3,求直线l的方程.,结合=3,∴=3,∴得k=的方程:12.已知直线x+y﹣1=0与椭圆+=1(a>b>0)相交于A,B两点,线段AB中点M在直线l:y=x上.(1)若椭圆右焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程;(2)过D(0,2)的直线与(1)中的椭圆相交于不同两点E、F,且E在D、F之间,设=λ,试确定实数λ的取值范围.=1(,x(,),联立(y=∴⇒由对称性知∴+椭圆的标准方程为=;,联立,又),λ∴=,∴⇒+2=<<,解得<13.已知点M到点F(1,0)和直线x=﹣1的距离相等,记点M的轨迹为C.(1)求轨迹C的方程;(2)过点F作相互垂直的两条直线l1、l2,曲线C与l1交于点P1、P2,与l2交于点Q1、Q2,试证明:.,以﹣代入,可得,∵+p=代入,可得∴.14.已知抛物线的顶点在原点,图象关于y轴对称,且抛物线上一点N(m,﹣2)到焦点的距离为6(1)求此抛物线的方程;(2)设抛物线方程的焦点为F,过焦点F的直线交抛物线于AB两点,且交准线l于点M,已知=λ1,=λ2,求λ1+λ2的值.,可得:,由,=1,2,,=+=015.已知抛物线C:y2=2px(p>0)的焦点为F(2,0)(Ⅰ)求抛物线的标准方程;(Ⅱ)抛物线C在x轴上方一点A的横坐标为2,过点A作两条倾斜角互补的直线,与曲线C的另一个交点分别为B,C,求证:直线BC的斜率为定值.∴16.已知抛物线C:y2=2px(p>0)过点A(1,m),点A到焦点的距离为2.(1)求抛物线C的方程及m的值.(2)是否存在斜率为﹣2的直线l,使得l与C有公共点,且l与直线y=﹣2x的距离为?若存在,求出l的方程:若不存在,说明理由.的距离为,求出1+=2的距离为∴,17.已知抛物线C:y=mx2(m>0),焦点为F,直线2x﹣y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标;(2)若抛物线C上有一点R(x R,2)到焦点F的距离为3,求此时m的值.yy2+=3.18.过双曲线﹣=1的右焦点F2作实轴的垂线,交双曲线于A、B两点.(1)求线段AB的长;(2)若△AF1F2为等腰直角三角形,求双曲线的离心率(F1为左焦点).)作出双曲线﹣,得∴|AB|=e=19.如图,若F1,F2是双曲线﹣=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)若P是双曲线左支上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.的面积为|PF×=1620.如图所示,椭圆过点,点F、A分别为椭圆的右焦点和右顶点且有.(1)求椭圆的方程.(2)若动点P(x,y),符合条件:,当y≠0时,求证:动点P(x,y)一定在椭圆内部.,再由c满足条件∵a=b=.)符合条件得:公共点仅为21.设椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线交椭圆E于A,B两点,满足AF1=2F1B,且AB=3,△ABF2的周长为12.(1)求AF2;(2)若cos∠F1AF2=﹣,求椭圆E的方程.﹣∴,c=椭圆的方程为:22.已知抛物线y2=4x,椭圆+=1,它们有共同的焦点F2,并且相交于P、Q两点,F1是椭圆的另一个焦点,试求:(1)m的值;(2)P、Q两点的坐标;(3)△PF1F2的面积.即得)解得,∴∴23.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(Ⅰ)求抛物线C的方程;(Ⅱ)设直线l为抛物线C的切线且l∥MN,求直线l的方程.,代入,,3px+24.过抛物线C:y2=2px上的点M(4,﹣4)作倾斜角互补的两条直线MA、MB,分别交抛物线于A、B两点.(1)若|AB|=4,求直线AB的方程;(2)不经过点M的动直线l交抛物线C于P、Q两点,且以PQ为直径的圆过点M,那么直线l是否过定点?如果是,求定点的坐标;如果不是,说明理由.,得,由弦长公式的直线为=,恒25.已知双曲线x2﹣=1的顶点、焦点分别为椭圆C:+=1(a>b>0)的焦点、顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.∴a的方程是)则××26.抛物线的顶点在原点,它的准线过椭圆C:=1(a>b>0)的一个焦点,并与椭圆的长轴垂直,已知抛物线与椭圆的一个交点为.(1)求抛物线的方程和椭圆C的方程;(2)若双曲线与椭圆C共焦点,且以y=±x为渐近线,求双曲线的方程.∵∴,∴由于点(﹣,解得,∴则设双曲线的方程为,∴27.已知椭圆C1:+=1,其左准线为l1,右准线为l2,抛物线C2以坐标原点O为顶点,l2为准线,C2交l1于A,B两点.(1)求抛物线C2的标准方程;(2)求线段AB的长度.:+.因此,解得)联立+,∴)联立,解得28.P是椭圆=1上一点,F1,F2是焦点.(1)若∠F1PF2=,求△F1PF2的面积和P点坐标;(2)求|PF1||PF1|的最大值.椭圆+,cost×﹣)的斜率是=的斜率是∴,﹣,,10,29.已知椭圆C:+=1(a>b>0)的两个焦点分别为F1,F2,点P是椭圆上任意一点,|PF1|•|PF2|的最大值为4,且椭圆C的离心率是双曲线﹣=1的离心率的倒数.(1)求椭圆C的标准方程;(2)若O为坐标原点,B为椭圆C的右顶点,A,M为椭圆C上任意两点,且四边形OABM为菱形,求此菱形面积.代入椭圆方程得)而双曲线=1的离心率为,故椭圆的离心率为=c=+y,代入椭圆方程得±面积为|OB||AM|=××=30.已知椭圆C:+=1(a>b>0)经过点P(1,),且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆的方程;(2)动直线l:mx+ny+n=0(m,n∈R)交椭圆C于A、B两点,求证:以AB为直径的动圆恒经过定点(0,1).,所以,),由此可知所求)点.当y+=.由a=,∴a=,故所求椭圆方程为)点.y+=﹣,又因为==﹣= =0。

圆锥曲线复习+练习+答案(基础)

圆锥曲线复习+练习+答案(基础)

圆锥曲线复习高二圆锥曲线练习题1、F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段2、已知ABC ∆的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x3、已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .C .12D 4、设椭圆1C 的离心率为513,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A .2222143x y -=B .22221135x y -=C .2222134x y -=D .222211312x y -=5、设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ). (A )4 (B )3 (C )2 (D )16、双曲线8222=-y x 的实轴长是( )(A )2 (B ) 22 (C ) 4 (D )427、双曲线24x -212y =1的焦点到渐近线的距离为( )A ..2 C .18、以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .221090x y x +-+= B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=9、、过椭圆2222x y a b+=1(a >b >0)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若∠1F 2PF 60=°,则椭圆的离心率为( )A .2 B .3 C .12 D .1310. “0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆的 ( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件11、写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18,焦距为6; (2)离心率为23,经过点(2,0); (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31;12、与椭圆且短有相同的焦点,y x 14922=+轴长为2的椭圆方程是:13、在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过1F 的直线l 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为:14、已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .15、 已知1F 、2F 是椭圆C :22221x y a b +=(0a b >>)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥ ,若12PF F △的面积是9,则b = .16.设圆C 与两圆22224,4x y x y +=+=((中的一个内切,另一个外切.求C 的圆心轨迹L 的方程.17.设P 是圆2225x y +=上的动点,点D 是P 在x 轴上的投影,M 为P D 上一点,且45MD PD = (Ⅰ)当P 的在圆上运动时,求点M 的轨迹C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的长度。

完整版)高二数学圆锥曲线基础练习题(一)

完整版)高二数学圆锥曲线基础练习题(一)

完整版)高二数学圆锥曲线基础练习题(一)高二数学圆锥曲线基础练题(一)1.抛物线 $y^2=4x$ 的焦点坐标为()A.$(1,0)$ B.$(0,1)$ C.$(-1,0)$ D.$(0,-1)$2.双曲线 $mx+y=1$ 的虚轴长是实轴长的2倍,则$m=$()A.$-\frac{1}{2}$ B.$-4$ C.$4$ D.$\frac{1}{4}$3.双曲线 $\frac{x^2}{9}-\frac{y^2}{16}=1$ 的一个焦点到渐近线距离为3,则双曲线的另一个焦点到渐近线的距离为()A.$6$ B.$5$ C.$4$ D.$3$4.已知 $\triangle ABC$ 的顶点 $B$、$C$ 在椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$ 上,顶点 $A$ 是椭圆的一个焦点,且椭圆的另一个焦点在 $BC$ 边上,则 $\triangleABC$ 的周长是()A.$23$ B.$6$ C.$43$ D.$12$5.已知椭圆 $\frac{x^2}{4}+\frac{y^2}{9}=1$ 右支上的一点,双曲线 $\frac{x^2}{16}-\frac{y^2}{9}=1$ 的一条渐近线方程为 $3x-y=0$。

设该点到该渐近线的距离为 $a$,则该点到双曲线的焦点距离为()A.$5\sqrt{2}$ B.$4\sqrt{2}$ C.$3\sqrt{2}$ D.$2\sqrt{2}$6.已知 $P$ 是双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的右焦点为 $F_1$、左焦点为 $F_2$。

若$PF_2=3$,则 $PF_1=$()A.$5\sqrt{2}$ B.$4$ C.$3$ D.$2$7.将抛物线 $y=(x-2)^2+1$ 按向量 $a$ 平移,使顶点与原点重合,则向量 $a$ 的坐标是()A.$(-2,-1)$ B.$(2,1)$ C.$(2,-1)$ D.$(-2,1)$8.已知双曲线的两个焦点为 $F_1(-5,0)$,$F_2(5,0)$,$P$ 是此双曲线上的一点,且 $PF_1\perp PF_2$,$|PF_1|\cdot|PF_2|=2$,则该双曲线的方程是()A.$\frac{x^2}{16}-\frac{y^2}{9}=1$ B.$\frac{x^2}{9}-\frac{y^2}{16}=1$ C.$y^2=1-\frac{x^2}{16}$ D.$x^2-\frac{y^2}{9}=1$9.设 $A(x_1,y_1)$,$B(4,0)$,$C(x_2,y_2)$ 是右焦点为$F$ 的椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$ 上三个不同的点,则“$AF,BF,CF$ 成等差数列”是“$x_1+x_2=8$”的()A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既非充分也非必要条件10.已知双曲线 $\frac{x^2}{9}-\frac{y^2}{16}=1$ 的左右焦点分别为 $F_1$,$F_2$,$P$ 为此双曲线上一点,且$PF_2=F_1F_2$,则 $\triangle PF_1F_2$ 的面积等于()A.$24$ B.$36$ C.$48$ D.$96$11.已知点 $P$ 在抛物线 $y=4x$ 上,那么点 $P$ 到点$Q(2,-1)$ 的距离与点 $P$ 到抛物线焦点距离之和取得最小值时,点 $P$ 的坐标为()A.$(\frac{1}{3},1)$ B.$(-\frac{1}{3},-1)$ C.$(1,2)$ D.$(1,-2)$12.设 $P$ 是双曲线 $\frac{x^2}{4}-\frac{y^2}{2}=1$ 上的一点,若 $2P$ 是该双曲线上的点,则 $P$ 的坐标为()A.$(\sqrt{2},\sqrt{2})$ B.$(\sqrt{2},-\sqrt{2})$ C.$(-\sqrt{2},\sqrt{2})$ D.$(-\sqrt{2},-\sqrt{2})$1.在第一行加上“已知”,并且将“F1、F2”改为“左、右焦点”,将“ab圆”改为“以线段PF2为直径的圆”,将“双曲线的实轴”改为“实轴”,最后将选项改为“内切、外切或不相切”。

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题21.抛物线x y 102=的焦点到准线的距离是( ) A .25 B .5 C .215 D .10 2.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。

A .(7,B .(14,C .(7,±D .(7,-±3.以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 4.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积( ) A .7 B .47 C .27 D .257 5.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -=B .23x y =C .x y 92-=或23x y =D .23x y -=或x y 92=6.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A .1(,44± B .1(,)84± C .1(44 D .1(,84 7.椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为( ) A .20 B .22 C .28 D .248.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫ ⎝⎛1,21C .()2,1 D .()2,2 9.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( )A .1222=-y xB .1422=-y xC .13322=-y xD .1222=-y x10.若椭圆221x my +=_______________. 11.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为______________。

圆锥曲线基础训练

圆锥曲线基础训练

圆锥曲线基础训练卷1.抛物线x 2=﹣8y 的焦点坐标是( )A . (0,2)B .(0,﹣2)C .(0,4)D .(0,﹣4)2.已知椭圆上的一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离( )A . 2B . 3C . 5D . 7 3.设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为()A .B .y=±2xC .D . 4.已知点F ,直线l :,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A . 双曲线B .椭圆C .圆D . 抛物线5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )A .B .3C .D .6.椭圆1422=+y x 的离心率为 ( )A .21B .23C . ±21 D .±23 7.设12,F F 为双曲线2214x y -=的两个焦点,点P 在双曲线上,且满足120PF PF ⋅=,则12F PF ∆的面积是( ) 238. 若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m= ( ) A. 3 B.23 C. 38 D. 329.已知F 是抛物线y 2=4x 的焦点,M 是这条抛物线上的一个动点,P (3,1)是一个定点,则|MP|+|MF|的最小值是________.10.如果双曲线的焦距、虚轴长、实轴长成等比数列,则离心率e 为 . 11. 若焦点在x 轴上的椭圆19822=++y k x 的离心率为21,则k 的值等于 ________.12.顶点在原点,焦点在y 轴的正半轴的抛物线的焦点到准线的距离为2.(1)求抛物线的标准方程;(2)若直线l :y=2x+1与抛物线相交于A ,B 两点,求AB 的长度.13. 在直角坐标系xoy 中,点P 到两点)0,3()0,3(21F F ,-的距离之和等于4,设P 点的轨迹为曲线C ,过点M (1,0)的直线l 与曲线C 交于A 、B 两点。

(完整版)圆锥曲线基础知识专项练习

(完整版)圆锥曲线基础知识专项练习

..圆锥曲线练习一、选择题(本大题共13小题,共65.0分)1.若曲线表示椭圆,则k的取值范围是()A.k>1B.k<-1C.-1<k<1D.-1<k<0或0<k<12.方程表示椭圆的必要不充分条件是()A.m∈(-1,2)B.m∈(-4,2)C.m∈(-4,-1)∪(-1,2)D.m∈(-1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3B.1C.3D.64.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B. C. D.5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么( )A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6.“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件7.方程+=10,化简的结果是()A.+=1B.+=1C.+=1D.+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A. B. C. D.9.若点P到点F(4,0)的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是()A.y2=-16xB.y2=-32xC.y2=16xD.y2=32x10.抛物线y=ax2(a<0)的准线方程是()A.y =-B.y =-C.y =D.y =11.设抛物线y2=4x上一点P到直线x=-3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812.已知点P是抛物线x =y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为()A.2B.C.-1D.+113.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=()A.2B.-1C.2或-1D.1±二、填空题(本大题共2小题,共10.0分)14.在平面直角坐标系x O y中,已知△ABC顶点A(-4,0)和C(4,0),顶点B 在椭圆上,则= ______ .15.已知椭圆,焦点在y轴上,若焦距等于4,则实数k=____________.三、解答题(本大题共6小题,共72.0分)16.已知三点P (,-)、A(-2,0)、B(2,0).求以A、B为焦点且过点P的椭圆的标准方程.17.已知椭圆+=1(a>b>0)的离心率为,短轴长为4.椭圆与直线y=x+2相交于A、B两点.(1)求椭圆的方程;(2)求弦长|AB|高中数学试卷第2页,共10页..18.设焦点在y轴上的双曲线渐近线方程为y=±x,且焦距为4,已知点A(1,)(1)求双曲线的标准方程;(2)已知点A(1,),过点A的直线L交双曲线于M,N两点,点A为线段MN的中点,求直线L方程.19.已知抛物线的标准方程是y2=6x,(1)求它的焦点坐标和准线方程,(2)直线L过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为A、B,求AB 的长度.20.已知椭圆的离心率,直线y=bx+2与圆x2+y2=2相切.(1)求椭圆的方程;(2)已知定点E(1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使得以CD为直径的圆过定点E?若存在,求出k的值;若不存在,请说明理由.21.已知椭圆C:4x2+y2=1及直线L:y=x+m.(1)当直线L和椭圆C有公共点时,求实数m的取值范围;(2)当直线L被椭圆C截得的弦最长时,求直线L所在的直线方程.答案和解析【答案】1.D2.B3.A4.B5.B6.C7.C8.D9.C10.B11.A12.C13.A14.15.816.解:(1)2a =PA+PB=2,所以a =,又c=2,所以b2=a2-c2=6则以A、B为焦点且过点P的椭圆的标准方程为:+=1.17.解:(1)∵椭圆+=1(a>b>0)的离心率为,短轴长为4,∴,解得a=4,b=2,∴椭圆方程为=1.(2)联立,得5x2+16x=0,解得,,∴A(0,2),B(-,-),∴|AB|==.18.解:(1)设双曲线的标准方程为(a>0,b>0),则∵双曲线渐近线方程为y=±x,且焦距为4,∴,c=2∵c2=a2+b2∴a=1,b =∴双曲线的标准方程为;(2)设M(x1,y1),N(x2,y2),代入双曲线方程可得,两式相减,结合点A(1,)为线段MN 的中点,可得∴=∴直线L 方程为,即4x-6y-1=0.高中数学试卷第4页,共10页..19.解:(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,∴=∴焦点为F(,0),准线方程:x=-,(2)∵直线L过已知抛物线的焦点且倾斜角为45°,∴直线L的方程为y=x-,代入抛物线y2=6x化简得x2-9x+=0,设A(x1,y1),B(x2,y2),则x1+x2=9,所以|AB|=x1+x2+p=9+3=12.故所求的弦长为12.20.解:(1)因为直线l:y=bx+2与圆x2+y2=2相切,∴,∴b=1,∵椭圆的离心率,∴,∴a2=3,∴所求椭圆的方程是.(2)直线y=kx+2代入椭圆方程,消去y可得:(1+3k2)x2+12kx+9=0∴△=36k2-36>0,∴k>1或k<-1,设C(x1,y1),D(x2,y2),则有,,若以CD为直径的圆过点E,则EC⊥ED,∵,,∴(x1-1)(x2-1)+y1y2=0∴(1+k2)x1x2+(2k-1)(x1+x2)+5=0∴,解得,所以存在实数使得以CD为直径的圆过定点E.21.解:(1)由方程组,消去y,整理得5x2+2mx+m2-1=0.(2分)∴△=4m2-20(m2-1)=20-16m2(4分)因为直线和椭圆有公共点的条件是△≥0,即20-16m2≥0,解之得-.(5分)(2)设直线L和椭圆C相交于两点A(x1,y1),B(x2,y2),由韦达定理得,(8分)∴弦长|AB|===,-,∴当m=0时,|AB|取得最大值,此时直线L方程为y=x.(10分)【解析】1. 解:∵曲线表示椭圆,∴,解得-1<k<1,且k≠0.故选:D.曲线表示椭圆,可得,解出即可得出.本题考查了椭圆的标准方程及其性质、不等式的解法,考查了推理能力与计算能力,属于基础题.2. 解:方程表示椭圆的充要分条件是,即m∈(-4,-1)∪(-1,2).由题意可得,所求的m的范围包含集合(-4,-1)∪(-1,2),故选:B.由条件根据椭圆的标准方程,求得方程表示椭圆的充要条件所对应的m的范围,则由题意可得所求的m的范围包含所求得的m范围,结合所给的选项,得出结论.本题主要考查椭圆的标准方程,充分条件、必要条件,要条件的定义,属于基础题.3. 解:①椭圆+=1,中a2=2,b2=k,则c =,∴2c =2=2,解得k=1.高中数学试卷第6页,共10页..②椭圆+=1,中a2=k,b2=2,则c=,∴2c=2=2,解得k=3.综上所述,k的值是1或3.故选:A.利用椭圆的简单性质直接求解.本题考查椭圆的简单性质,考查对椭圆的标准方程中各字母的几何意义,属于简单题.4. 解:设椭圆方程为=1(a>b>0),由题意可得c=1,a=2,b=,即有椭圆方程为+=1.故选:B.设椭圆方程为=1(a>b>0),由题意可得c=1,a=2,再由a,b,c的关系,可得b,进而得到椭圆方程.本题考查椭圆的方程的求法,注意运用待定系数法,考查椭圆的焦点的运用,属于基础题.5. 解:命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆∵当一个动点到两个顶点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分条件故选B.6. 解:a>0,b>0,方程ax2+by2=1不一定表示椭圆,如a=b=1;反之,若方程ax2+by2=1表示椭圆,则a>0,b>0.∴“a>0,b>0”是“方程ax2+by2=1表示椭圆”的必要分充分条件.故选:C.直接利用必要条件、充分条件及充分必要条件的判断方法结合椭圆标准方程得答案.本题考查必要条件、充分条件及充分必要条件的判断方法,考查了椭圆的标准方程,是基础题.7. 解:由+=10,可得点(x,y)到M(0,-3)、N(0,3)的距离之和正好等于10,再结合椭圆的定义可得点(x,y)的轨迹是以M、N为焦点的椭圆,且2a=10、c=3,∴a=5,b=4,故要求的椭圆的方程为+=1,故选:C.有条件利用椭圆的定义、标准方程,以及简单性质,求得椭圆的标准方程.本题主要考查椭圆的定义、标准方程,以及简单性质的应用,属于中档题.8. 解:椭圆的左焦点为F(-,0),右焦点为(,0),∵P 为椭圆上一点,其横坐标为,∴P 到右焦点的距离为∵椭圆的长轴长为4∴P到左焦点的距离|PF|=4-=故选D.确定椭圆的焦点坐标,利用椭圆的定义,即可求得P到左焦点的距离.本题考查椭圆的标准方程与几何性质,考查椭圆的定义,属于中档题.9. 解:∵点P到点(4,0)的距离比它到直线x+5=0的距离少1,∴将直线x+5=0右移1个单位,得直线x+4=0,即x=-4,可得点P到直线x=-4的距离等于它到点(4,0)的距离.根据抛物线的定义,可得点P的轨迹是以点(4,0)为焦点,以直线x=-4为准线的抛物线.设抛物线方程为y2=2px,可得=4,得2p=16,∴抛物线的标准方程为y2=16x,即为P点的轨迹方程.故选:C根据题意,点P到直线x=-4的距离等于它到点(4,0)的距离.由抛物线的定义与标准方程,不难得到P点的轨迹方程.本题给出动点P到定直线的距离比到定点的距离大1,求点P的轨迹方程,着重考查了抛物线的定义与标准方程和动点轨迹求法等知识,属于基础题.10. 解:抛物线y=ax2(a<0)可化为,准线方程为.故选B.抛物线y=ax2(a<0)化为标准方程,即可求出抛物线的准线方程.本题考查抛物线的性质,考查学生的计算能力,抛物线方程化为标准方程是关键.11. 解:抛物线y2=4x的准线为x=-1,∵点P到直线x=-3的距离为5,∴点p到准线x=-1的距离是5-2=3,根据抛物线的定义可知,点P到该抛物线焦点的距离是3,故选A.先根据抛物线的方程求得抛物线的准线方程,根据点P到直线x=-3的距离求得点到准线的距离,进而利用抛物线的定义可知点到准线的距离与点到焦点的距离相等,从而求得答案.本题主要考查了抛物线的定义.充分利用了抛物线上的点到准线的距离与点到焦点的距高中数学试卷第8页,共10页..离相等这一特性.12. 解:抛物线x=y2,可得:y2=4x,抛物线的焦点坐标(1,0).依题点P到点A(0,2)的距离与点P到y轴的距离之和的最小值,就是P到(0,2)与P到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P到点A(0,2)的距离与P到该抛物线焦点坐标的距离之和减1,可得:-1=.故选:C.先求出抛物线的焦点坐标,再由抛物线的定义转化求解即可.本小题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.13. 解:联立直线y=kx-2与抛物线y2=8x,消去y,可得k2x2-(4k+8)x+4=0,(k≠0),判别式(4k+8)2-16k2>0,解得k>-1.设A(x1,y1),B(x2,y2),则x1+x2=,由AB中点的横坐标为2,即有=4,解得k=2或-1(舍去),故选:A.联立直线y=kx-2与抛物线y2=8x,消去y,可得x的方程,由判别式大于0,运用韦达定理和中点坐标公式,计算即可求得k=2.本题考查抛物线的方程的运用,联立直线和抛物线方程,消去未知数,运用韦达定理和中点坐标公式,注意判别式大于0,属于中档题.14. 解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为先利用椭圆的定义求得a+c,进而由正弦定理把原式转换成边的问题,进而求得答案.本题主要考查了椭圆的定义和正弦定理的应用.考查了学生对椭圆的定义的灵活运用.15. 解:将椭圆的方程转化为标准形式为,显然k-2>10-k,即k>6,,解得k=8故答案为:8.16.利用椭圆定义,求出2a,得出a,可求得椭圆的标准方程.本题考查了椭圆方程的求法,是基础题,解题时要注意椭圆的简单性质的合理运用.17.(1)由椭圆的离心率为,短轴长为4,列出方程组,能求出椭圆方程.(2)联立,得5x2+16x=0,由此能求出弦长|AB|.本题考查椭圆方程的求法,考查弦长的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.18.(1)设出双曲线的标准方程,利用双曲线渐近线方程为y=±x,且焦距为4,求出几何量,即可求双曲线的标准方程;(2)利用点差法,求出直线的斜率,即可求直线L方程.本题考查双曲线的标准方程,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.19.(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,即可求出抛物线的焦点坐标和准线方程,(2)先根据题意给出直线l的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可.本题考查了直线与抛物线的位置关系中的弦长问题,因为是过焦点的弦长问题,所以利用了焦半径公式.属于基础题.20.(1)利用直线l:y=bx+2与圆x2+y2=2相切,求出b,利用椭圆的离心率求出a,得到椭圆方程.(2)直线y=kx+2代入椭圆方程,消去y可得:(1+3k2)x2+12kx+9=0,设C(x1,y1),D(x2,y2),则利用韦达定理结合EC⊥ED,求解k ,说明存在实数使得以CD为直径的圆过定点E.本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的应用,考查存在性问题的处理方法,设而不求的应用,考查计算能力.21.(1)由方程组,得5x2+2mx+m2-1=0,由此利用根的判别式能求出实数m的取值范围.(2)设直线L和椭圆C相交于两点A(x1,y1),B(x2,y2),由韦达定理求出弦长|AB|=,由此能求出当m=0时,|AB|取得最大值,此时直线L方程为y=x.本题考查实数的取值范围的求法,考查直线方程的求法,解题时要认真审题,注意根的判别式、韦达定理、弦长公式的合理运用.高中数学试卷第10页,共10页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆基础训练题1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=1 2.椭圆5x 2+4y 2=1的两条准线间的距离是( ) (A )52 (B )10 (C )15 (D )350 3.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21 (B )22 (C )23 (D )33 4.椭圆25x 2+9y 2=1上有一点P ,它到右准线的距离是49,那么P 点到左准线的距离是( )。

(A )59 (B )516 (C )441 (D )541 5.已知椭圆x 2+2y 2=m ,则下列与m 无关的是( )(A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率6.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )21或1 7.椭圆的中心为O ,左焦点为F 1,P 是椭圆上一点,已知△PF 1O 为正三角形,则P 点到右准线的距离与长半轴的长之比是( )(A )3-1 (B )3-3 (C )3 (D )18.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值范围是 。

9.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是 。

10. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为354,求此椭圆的方程。

11.证明:椭圆上任意一点到中心的距离的平方与到两焦点距离的乘积之和为一定值。

12. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是( )。

13. (A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2=1 (C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9y 2=113. 椭圆25x 2+16y 2=1的焦点坐标是( )。

(A )(±3, 0) (B )(±31, 0) (C )(±203, 0) (D )(0, ±203) 14. 椭圆4x 2+y 2=4的准线方程是( )。

(A )y =334±x (B )x =334±y (C )y =334± (D )x =334± 15. 椭圆22ax +22b y =1 (a >b >0)上任意一点到两个焦点的距离分别为d 1,d 2,焦距为2c ,若d 1, 2c , d 2,成等差数列则椭圆的离心率为( )。

(A )12 (B )22 (C )32 (D )3416. 曲线25x 2+9y 2=1与曲线k 25x 2-+k 9y 2-=1 (k <9),具有的等量关系是( )。

(A )有相等的长、短轴 (B )有相等的焦距(C )有相等的离心率 (D )一相同的准线17. 椭圆22ax +22b y =1的两个焦点F 1, F 2三等分它的两条准线间的距离,那么它的离心率是( )。

(A )32 (B )33 (C )63 (D )6618. P (x , y )是椭圆16x 2+9y 2=1上的动点,过P 作椭圆长轴的垂线PD ,D 是垂足,M 是PD 的中点,则M 的轨迹方程是( )。

(A )4x 2+9y 2=1 (B )64x 2+9y 2=1 (C )16x 2+9y 42=1 (D )16x 2+36y 2=1 19. 已知椭圆的准线为x =4,对应的焦点坐标为(2, 0),离心率为21, 那么这个椭圆的方程为( )。

(A )8x 2+4y 2=1 (B )3x 2+4y 2-8x =0(C )3x 2-y 2-28x +60=0 (D )2x 2+2y 2-7x +4=020. 椭圆100x 2+36y 2=1上的一点P 到它的右准线的距离是10,那么P 点到它的左焦点的距离是( )。

(A )14 (B ) 12 (C )10 (D )821. 椭圆4x 2+9y 2=144内有一点P (3, 2),过P 点的弦恰好以P 为中点,那么这条弦所在的直线方程是( )。

(A )3x -2y -12=0 (B )2x +3y -12=0(C )4x +9y -144=0 (D )4x -9y -144=022. 椭圆4x 2+16y 2=1的长轴长为 ,短轴长为 ,离心率为 ,焦点坐标是 ,准线方程是 。

23. 已知两点A (-3, 0)与B (3, 0),若|PA |+|PB |=10,那么P 点的轨迹方程是 。

24. 椭圆3x 2+y 2=1上一点P 到两准线的距离之比为2 : 1,那么P 点坐标为 。

25. 已知椭圆2x 2+y 2=1的两焦点为F 1, F 2,上顶点为B ,那么△F 1BF 2的外接圆方程为 。

26. 椭圆的长、短轴都在坐标轴上,两准线间的距离为5185,焦距为25,则椭圆的方程为 。

27. 椭圆的长、短轴都在坐标轴上,和椭圆14y 9x 22=+共焦点,并经过点P (3, -2),则椭圆的方程为 。

28. 椭圆的长、短轴都在坐标轴上,经过A (0, 2)与B (21, 3)则椭圆的方程为 。

29. 椭圆的长、短轴都在坐标轴上,焦点间的距离等于长轴和短轴两端点间的距离,且经过点P (23,23), 则椭圆的方程为 。

30. 在椭圆40x 2+10y 2=1内有一点M (4, -1),使过点M 的弦AB 的中点正好为点M ,求弦AB 所在的直线的方程。

31. 在椭圆25x 2+16y 2=1上求一点P ,使它到两焦点的距离之积等于短半轴的平方数。

32. 椭圆32x 2+16y 2=1的焦距等于( )。

(A )4 (B )8 (C )16 (D )12333. F 是椭圆的一个焦点,BB ′是椭圆的短轴,若△BFB ′是等边三角形,则椭圆的离心率e 等于( )。

(A )41 (B )21 (C )22 (D )23 34. 椭圆20x 2+4y 2=1的两条准线间的距离是( )。

(A )10 (B )5 (C )5 (D )25 35. 椭圆22mx +22)1m (y +=1的焦点在y 轴上,则m 的取值范围是( )。

(A )全体实数 (B )m <-21且m ≠-1 (C )m >-21且m ≠0 (D )m >036. 与椭圆2x 2+5y 2=1共焦点,且经过点P (23, 1)的椭圆方程是( )。

(A )x 2+4y 2=1 (B )2x 2+8y 52=1 (C )4x 2+y 2=1 (D )4x 2+7y 2=1 37. 到定点(7, 0)和定直线x =7716的距离之比为47的动点轨迹方程是( )。

(A )9x 2+16y 2=1 (B )16x 2+9y 2=1 (C )8x 2+y 2=1 (D )x 2+8y 2=1 38. 直线y =kx +2和椭圆4x 2+y 2=1有且仅有一个公共点,则k 等于( )。

(A )32 (B )±32 (C )34 (D )±3439. 过椭圆x 29+y 2=1的一个焦点且倾角为6π的直线交椭圆于M 、N 两点,则 |MN |等于( )。

(A )8 (B )4 (C )2 (D )140. 如果椭圆25x 2+9y 2=1上有一点P ,它到左准线的距离为,那么P 点到右焦点的距离与到左焦点的距离之比是( )。

(A )3 : 1 (B )4 : 1 (C )15 : 2 (D )5 : 141. 如果椭圆的两个焦点将长轴三等分,那么这个椭圆的两条准线的距离与焦距的比是( )。

(A )4 : 1 (B )9 : 1 (C )12 : 1 (D )18 : 142. 已知椭圆的两个焦点是F 1(-2, 0)和F 2(2, 0),两条准线间的距离等于13,则此椭圆的方程是 。

43. 方程4x 2+my 2=1表示焦点在y 轴上的椭圆,且离心率e =23, 则m = 。

44. 椭圆6x 2+2y 2=1上一点P 到左准线的距离等于2,则P 点到右焦点的距离是 。

45. 已知直线y =x +m 与椭圆16x 2+9y 2=1有两个不同的交点,则m 的取值范围是 。

46. 椭圆22mx +22)1m (y -=1的准线平行于x 轴,则m 的取值范围是 。

47. 椭圆8k x 2++9y 2=1的离心率e =21, 则k 的值是 。

48. 如果椭圆25x 2+9y 2=1上一点A 到左焦点的距离是4,那么A 到椭圆两条准线的距离分别是 。

49. 如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x 轴上,且a -c =3, 那么椭圆的方程是 。

50. 已知过定点A (4, 0)且平行于y 轴的直线l , 定点F (1, 0), 设动点P (x , y )到定点F 的距离与它到定直线l 的距离之比为1:2,则P 点的轨迹方程是 。

51. 在椭圆20x 2+56y 2=1上求一点P ,使P 点和两个焦点的连线互相垂直。

52. 直线l 过点M (1, 1), 与椭圆16x 2+4y 2=1交于P ,Q 两点,已知线段PQ 的中点横坐标为21, 求直线l 的方程。

53. 直线x =3和椭圆x 2+9y 2=45交于M ,N 两点,求过M ,N 两点且与直线x -2y +11=0相切的圆的方程。

54. 短轴长为5,离心率为32的椭圆的两个焦点分别为F 1,F 2,过F 1作直线交椭圆于A ,B 两点,则△ABF 2的周长为( )。

(A )24 (B )12 (C )6 (D )355. 设A (-2, 3),椭圆3x 2+4y 2=48的右焦点是F ,点P 在椭圆上移动,当|AP |+2|PF |取最小值时P 点的坐标是( )。

(A )(0, 23) (B )(0, -23) (C )(23, 3) (D )(-23, 3)双曲线基础训练题1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足条件|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )。

(A )16x 2-9y 2=1 (x ≤-4) (B )9x 2-16y 2=1(x ≤-3) (C )16x 2-9y 2=1 (x >≥4) (D )9x 2-16y 2=1 (x ≥3) 2.双曲线36x 2-49y 2=1的渐近线方程是 ( ) (A )36x ±49y =0 (B )36y ±49x =0 (C )6x ±7y =0 (D )7x ±6y =0 3.双曲线5x 2-4y 2=1与5x 2-4y 2=k 始终有相同的( ) (A )焦点 (B )准线 (C )渐近线 (D )离心率4.直线y =x +3与曲线4y 4x x 2+-=1的交点的个数是( ) (A )0个 (B )1个 (C )2个 (D )3个5.双曲线x 2-ay 2=1的焦点坐标是( )(A )(a +1, 0) , (-a +1, 0) (B )(a -1, 0), (-a -1, 0) (C )(-a a 1+, 0),(a a 1+, 0) (D )(-a a 1-, 0), (aa 1-, 0) 6.一个动圆与两个圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( )(A )圆 (B )椭圆 (C )双曲线的一支 (D ) 抛物线7.设双曲线1by a x 2222=-(b >a >0)的半焦距为c ,直线l 过(a , 0)、(0, b )两点,已知原点到直线l 的距离是43c ,则双曲线的离心率是( ) (A )2 (B )3 (C )2 (D )332 8.若双曲线x 2-y 2=1右支上一点P (a , b )到直线y =x 的距离是2,则a +b 的值为( )。

相关文档
最新文档