5.3.2命题定理证明
5.3.2命题、定理、证明
2:判断下列命题的真假。真的用“√”, 假的用“× 表示。
1)互为邻补角的两个角的平分线互相垂直( √ ) 2)一个角的补角大于这个角( × ) 3)相等的两个角是对顶角( × ) 4)两点可以确定一条直线( √ ) 5)若A=B,则2A = 2B( √ ) 6)锐角和钝角互为补角( × ) 7)两点之间线段最短( √ ) 8)同角的余角相等(√ ) 9)同旁内角互补( × )
如命题:“如果一个数能被4整除,那么它也能被 2整除”就是一个正确的命题。 如命题:“如果两个角互补,那么它们是邻补角” 就是一个错误的命题。
4.正确的命题叫真命题,错误的命题 叫假命题。
确定一个命题真假的方法: 利用已有的知识,通
过观察、验证、推理、 举反例等方法。
例将下列的命题写成“如果…..,那么 .….. ”的形式,并判断它的真假。
5.3.2 命题、定理、证明
1.定义:判断一件事情的语句叫做命题。
注意: (1)、只要对一件事情作出了判断, 不管正确与否,都是命题。
如:相等的角是对顶角。 (2)、如果一个句子没有对某一件事 情作出任何判断,那么它就不是命 题。 如:画线段AB=CD。
例:判断下列五个语句中,哪个是 命题, 哪个不是命题?并说明理由:
如图,已知直线b∥c,a⊥b,求证a⊥c
证明:∵a⊥b(已知) b ∴∠1=90°(垂直的定义) 又∵ b∥c(已知) 1 ∴∠1=∠2(两直线平行, 同位角相等) ∴ ∠1=∠2=90°(等量代换) ∴a⊥c(垂直的定义)
c
2
a
证明中每一步推理都要有根据, 不能“想当然”。这些根据,可以是 已知条件,也可以是学过的定义、 基本事实、定理等。
课堂小结
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
今天在教授《命题、定理、证明》这一章节时,我发现学生们对命题的概念接受得比较快,但是在理解定理和证明方法上遇到了一些困难。这让我意识到,虽然定理和证明在数学中非常重要,但它们的概念对学生来说可能比较抽象,需要更多的实际例证和练习来加深理解。
在讲解定理时,我尝试通过具体的例子来展示定理的形成和应用,但感觉效果并不如预期。我意识到,可能需要更多的生活实例或者图形辅助,让学生能够直观地感受到定理在解决问题时的作用。接下来,我会在准备教案时加入更多直观的教学素材,比如动画或者实物模型,以提高学生的兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句,它是数学逻辑推理的基础。定理则是经过严格证明的真命题,它在数学体系中扮演着重要的角色。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何通过已知的定理来证明一个新的命题,以及这个过程如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的结构和定理的应用这两个重点。对于难点部分,如证明方法的选择和使用,我会通过具体的例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的证明练习。这个练习将演示如何运用所学的证明方法来证实一个命题的正确性。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
一、教学内容
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案:
1.理解命题的概念,能识别简单命题的结构。
2.学习定理的定义,了解定理在数学证明中的作用。
人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例
3. 详细讲解证明的方法和步骤,包括直接证明、反证法和归纳法等,让学生掌握证明的基本方法。
4. 通过示例题目,演示如何运用命题、定理和证明的知识解决问题,让学生理解学习的实际意义。
(三)学生小组讨论
1. 将学生分成小组,每组选择一个定理进行证明,并用自己的语言解释证明的每一步。
这些亮点体现了本节课在教学设计、教学方法和教学评价等方面的优秀之处,有助于提高学生的学习兴趣、培养学生的思维能力和团队合作能力,促进学生的全面发展。同时,这些亮点也是我作为特级教师在教学实践中不断探索和尝试的结果,希望能够为其他教师提供一定的借鉴和参考。
4. 总结归纳环节:在课程结束时,引导学生回顾和总结所学内容,帮助学生巩固知识,提高学生的记忆和理解能力。总结归纳环节能够使学生对学习内容有一个清晰的认识,增强学生对知识的系统性和整体性的理解。
5. 作业小结环节:布置与课程内容相关的作业,要求学生运用所学知识解决问题,培养学生的应用能力和实践能力。作业小结环节能够及时巩固所学知识,帮助学生检验自己的学习效果,同时也为教师提供了了解学生学习情况的机会,为下一步的教学提供参考。
3. 设计一些评估题目,检验学生对命题、定理和证明的掌握程度,及时发现和纠正学生的错误。
4. 注重对学生的形成性评价,关注学生的进步和努力,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1. 利用生活实例引入命题的概念,例如:“如果今天是星期五,那么学校放假。”引导学生理解命题由题设和结论两部分组成。
2. 强调定理证明的重要性,以及定理证明在数学中的应用,使学生认识到学习定理证明的意义。
3. 总结学生在小组讨论中的表现,对学生的学习成果进行肯定和鼓励,激发学生的学习动力。
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4一. 教材分析《人教版数学七年级下册5.3.2命题、定理、证明》这一节主要介绍命题、定理和证明的概念。
通过本节课的学习,学生能够理解命题、定理和证明的定义,掌握判断命题真假的方法,了解证明的两种方法——演绎法和归纳法,并能够运用这些知识解决实际问题。
二. 学情分析七年级的学生已经掌握了基本的数学运算能力和逻辑思维能力,但对命题、定理和证明的概念接触较少。
因此,在教学过程中,需要引导学生从实际问题中抽象出命题、定理和证明的概念,并通过实例让学生理解和掌握这些概念。
三. 教学目标1.了解命题、定理和证明的概念。
2.掌握判断命题真假的方法。
3.掌握证明的两种方法——演绎法和归纳法。
4.能够运用命题、定理和证明的知识解决实际问题。
四. 教学重难点1.重点:命题、定理和证明的概念,判断命题真假的方法,证明的两种方法。
2.难点:证明的两种方法——演绎法和归纳法的理解和运用。
五. 教学方法1.情境教学法:通过实际问题引入命题、定理和证明的概念。
2.实例教学法:通过具体的实例让学生理解和掌握命题、定理和证明的概念。
3.小组讨论法:引导学生分组讨论,培养学生的合作能力和解决问题的能力。
4.教学反馈法:通过提问、练习等方式及时了解学生的学习情况,调整教学进度和方法。
六. 教学准备1.教学PPT:制作含有命题、定理和证明的实例的PPT。
2.练习题:准备一些判断命题真假和运用证明方法的练习题。
3.教学素材:准备一些实际问题作为教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入命题、定理和证明的概念。
例如:在三角形中,如果一个角是直角,那么它的两条边分别是斜边。
这个命题是如何判断真假的?如何用数学语言来表达这个命题?2.呈现(10分钟)介绍命题、定理和证明的定义。
命题是判断某个陈述真假的语句,定理是被证明为真的命题,证明是用逻辑推理的方法来证明定理的过程。
5.3.2命题定理证明
∴∠2=∠1=90º(等量代换).
∴ a⊥c(垂直的定义).
问题3 请同学们判断下列两个命题的真假,并思 考如何判断命题的真假.
命题2 相等的角是对顶角. (1)判断这个命题的真假. (2)这个命题题设和结论分别是什么? 题设:两个角相等; 结论:这两个角互为对顶角.
问题3 请同学们判断下列两个命题的真假,并思 考如何判断命题的真假.
5.3.2
命题、定理、证明
复习
1、对顶角有什么性质?
对顶角相等。
2、平行公理的推论是什么?
如果两条直线都和第三条直线平行,那么这 两条直线也互相平行。
3、平行线的判定公理的内容是什么?
两条直线被第三条直线所截,如果同位角相 等,那么这两条直线平行。 4、两条平行线被第三条直线所截得的同旁内角有 什么性质?
例 指出下列命题的题设、结论:
(1)如果两条直线相交,那么它们只有一个交点;
(2)两条直线被第三条直线所截,如果同旁内角互补,
那么这两条直线平行; (3)两条平行线被第三条直线所截,内错角相等; (4)如果∠1= ∠2, ∠2= ∠3,那么∠1= ∠3。
答:(3)题设:两直线平行,结论:内错角 相等。
8、任意两个直角都相等。
请同学们判断下列命题哪些是真命题?哪些 是假命题?
(1)在同一平面内,如果一条直线垂直于两条平行 线中的一条,那么也垂直于另一条; (2)如果两个角互补,那么它们是邻补角; (3)如果 a b ,那么a=b; (4)经过直线外一点有且只有一条直线与这条直线 平行; (5)两点确定一条直线.
(4)你能结合图形用几何语言表述命题的题设和 结论吗?
已知:b∥c, a⊥b . 求证:a⊥c.
(5)请同学们思考如何利用已经学过的定义定理 来证明这个结论呢? 已知:b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知), ∴∠1=90º (垂直的定义). 又∵ b∥c(已知), ∴∠1=∠2(两直线平行,同位角相等).
5.3.2命题 定理 证明 课件(新人教版七年级数学下)
数学和活动二: 一. (一)下面语句哪些是命题,哪些不是命题: 1、对顶角相等. 2、等角的补角相等.3、过一点做一条直线。4、直线 AB与CD相交吗?. (二)分析并写出以上题目的题设和结论; 如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等; ④如果两条直线不平行,那么同位角不相等 (三)把②③小题改写成“如果……, 那么………”的形式. 二、区分下列命题的真假性 1.如果两个角相等,那么它们是对顶角. 2.如果a>b. b>c那么a=b 3.如果两个角互补,那么它们是邻补角 三.a⊥b,c⊥b,那么a与c的位置关系如何?为什么?
5.3.2命题 定理 证明
【学习目标】
了解命题的概念,并能区分命题的题设和结论; 判断命题真假.
【重点难点】
重点:命题的概念和区分命题的题设与结论.. 难点:区分命题的题设和结论.
.
创设情景
1.平行线的判定方法有哪些? 2.平行线的性质有哪些. 这些判定和性质都有一个共同的名字——命题,我们 阅读教材,完成下列内容的学习: 1.命题的定义: 像上面判断一件事情的语句叫做命题 2. 命题的组成 命题是由题设(或已知条件)、结论两部分组成的.题设是已知事 项;结论是由已知事项推出的事项. 3. 命题的格式: 如果……, 那么……… 4.命题的分类 真命题:如果题设成立,那么结论一定成立。这样的命题叫做真命题 假命题:如果命题中题设成立,不能保证结论一定成立,这种错误的 命题叫做假命题。 真命题可分为1.基本事实;2.定理(正确性需要推理来证明).
【学习体会】
1.本节课你有哪些收获?还有那些疑惑? 2.在课上你参与了多少问题的讨论,哪些问题得到了其他同学的认可?你 最赞同哪一位同学的发言.
人教版七年级数学下册5.3.2《命题、定理、证明》说课稿
人教版七年级数学下册5.3.2《命题、定理、证明》说课稿一. 教材分析《人教版七年级数学下册5.3.2<命题、定理、证明>》这一节主要让学生了解命题、定理和证明的概念。
通过学习,学生能理解命题的含义,区分定理和证明,并学会运用证明的方法来解决数学问题。
教材通过丰富的实例和具有启发性的问题,引导学生主动探索、发现和证明数学结论,培养学生的逻辑思维能力和数学素养。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,例如了解四则运算、几何图形的性质等。
但部分学生可能对抽象的逻辑推理和证明过程感到困难,对定理和证明的概念理解不深。
因此,在教学过程中,要关注学生的个体差异,引导他们通过观察、思考、讨论和动手操作等方式,逐步理解和掌握知识。
三. 说教学目标1.知识与技能:使学生了解命题、定理和证明的概念,学会运用证明的方法来解决数学问题。
2.过程与方法:通过观察、思考、讨论和动手操作等方式,培养学生的逻辑思维能力和数学素养。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、坚持真理的精神。
四. 说教学重难点1.重点:命题、定理和证明的概念,证明的方法。
2.难点:对命题、定理和证明的理解,证明方法的运用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探索、发现和证明数学结论。
2.运用多媒体课件、实物模型等教学手段,辅助学生直观地理解概念和证明过程。
3.小组讨论,让学生在合作交流中提高逻辑思维能力。
4.注重实践操作,让学生动手动脑,增强对知识的理解和运用能力。
六. 说教学过程1.导入:通过一个有趣的数学故事,引发学生对命题、定理和证明的好奇心,激发他们的学习兴趣。
2.新课导入:介绍命题、定理和证明的概念,引导学生理解它们之间的关系。
3.实例讲解:分析具体的数学问题,讲解证明的方法,让学生学会如何运用证明来解决实际问题。
4.小组讨论:学生进行小组讨论,让他们分享自己的理解和方法,互相学习和借鉴。
【人教版数学七年级下册】《5.3.2 命题、定理、证明》教学设计教学反思
5.3.2 命题、定理、证明一、教学目标【知识与技能】1.理解命题,定理及证明的概念,会区分命题的题设和结论.2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.3.理解证明要步步有据,培养学生养成科学严谨的学习态度. 【过程与方法】经历判断命题真假的过程,对命题的真假有一个初步的了解. 【情感态度与价值观】初步培养学生不同几何语言相互转化的能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)让学生阅读课件中的两个例子,讨论句子含义。
(二)探索新知1.出示课件4-5,探究命题的概念教师出示问题:完成下列问题:请同学读出下列语句:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.这些句子有何特点?学生答:都对事情做出了判定.教师问:这样的句子叫做命题.什么叫做命题?学生答:像这样判断一件事情的语句,叫做命题.总结点拨:(出示课件5)教师强调:1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.考点1:命题的识别判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.(出示课件6)师生共同讨论解答如下:解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.总结点拨:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.出示课件7,学生自主练习后口答,教师订正.2.出示课件8-10,命题的构成教师问:观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.学生答:都是“如果……那么……”的形式.教师问:命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:“如果……那么……”的形式.学生答:如果这个动物是熊猫,那么它就没有翅膀.师生一起总结:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.总结点拨:(出示课件10)命题的组成:题设——已知事项命题结论——由已知事项推出的事项两直线平行,同位角相等考点2:命题表述形式的变换分别把下列命题写成“如果……那么……”的形式.(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等. (出示课件11)学生独立思考后,师生共同分析解答.教师依次展示学生解答过程:学生1解:(1)如果有两个定点,那么过这两点有且只有一条直线;学生2解:(2)如果两个角分别是两个等角的补角,那么这两个角相等;学生3解:(3)如果两个角是内错角,那么这两个角相等.总结点拨:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.出示课件12,学生自主练习后口答,教师订正.3.出示课件13,探究真假命题的概念.教师问:有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立. 如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立吗?学生答:如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立.教师问:上面的命题:条件也成立,结论也成立.这样的命题是正确命题. 如命题:“如果一个数能被4整除,那么它也能被2整除”是一个正确的命题吗?学生答:是一个正确的命题.教师问:有些命题题设成立时,结论不一定成立.这样的命题是错误的命题.如命题:“如果两个角互补,那么它们是邻补角”就是一个怎样的命题呢?学生答:“如果两个角互补,那么它们是邻补角”就是一个错误的命题.教师问:正确的命题叫真命题,错误的命题叫假命题.则命题“内错角相等,两直线平行”是真命题还是假命题?学生答:是真命题.教师问:怎样确定定一个命题真假呢?师生一起解答:确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法.考点3:真假命题的识别下列命题哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.学生独立思考后,师生共同解答.解:真命题有(2)、(3)、(5);假命题有(1)、(4).总结点拨:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.出示课件15,学生自主练习后口答,教师订正.4.出示课件16-19,探究证明和反证法(举反例)教师出示问题:一天早上,张老汉来到公安局里告状说:王五刚刚在他地里偷了一袋子苹果.公安局长立即派干警将王五传唤到公安局审讯:公安局长问张老汉:“你怎知是王五偷了你的苹果?”“因为早上我发现王五从苹果园那边过来,把一袋东西背回家,还发现我果园的苹果被人偷了,我知道王五家没有苹果树.所以我家苹果肯定是王五偷的.”张老汉想证明什么?他是怎么证明的?学生答:张老汉想证明偷了他的苹果,王五从他家的苹果园那边经过,把一袋东西背回家.教师问:根据张老汉的证明,你能断定苹果是王五偷的吗?你觉得有疑点吗?学生答:根据张老汉的证明,不能断定苹果是王五偷的,有疑点:因为只是经过,张老汉的推断太牵强.总结点拨:(出示课件16)这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.教师出示问题:公安局长一时拿不定主意,就问旁边的梁副局长:“梁局长,你怎么看?”梁局长会如何回答呢?学生答:梁局长说“这事要证明是王五干的,还得弄清那袋子里装的是不是刚摘的苹果,还要看看地里的脚印是不是王五的才行.如果袋子里装的是刚摘的苹果,且地里的脚印是王五的,那就一定是他偷的.”总结点拨:(出示课件17)从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.总结点拨:(出示课件18)证明的概念在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.教师强调:证明的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.教师问:如何判定一个命题是假命题呢?学生答:举一个反例即可.教师问:例如,要判定命题“相等的角是对顶角”是假命题如何证明?师生一起解答:可以举出如下反例:如图,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.总结点拨:(出示课件19)确定一个命题是假命题的方法:只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.考点4:利用证明推理解决问题如图,∠1=∠2,试说明直线AB,CD平行.(出示课件20)师生共同分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它们相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2.这样我们就找到了∠1与∠3相等的确切条件了.学生独立思考后,师生共同解答.证明:∵∠2与∠3是对顶角,∴∠3=∠2.又∵∠1=∠2,∴∠1=∠3.∴AB∥CD.出示课件21,学生自主练习,教师给出答案。
人教初中数学七下 5.3.2 命题 定理 证明课件 【经典初中数学课件】
A
1 E
2 B
11. 如图,直线EF过点A, D是BA延长线上 的点 ,具备什么条件时,可以判定EF BC ? 为什么 ?
D
E
A
F
B
C
再见
(平行线的传递性) 5、垂直于同一条直线的两条直 线平行。
一、知识回顾
平行线的性质:
1、两直线平行,同位角相等。 2、两直线平行,内错角相等。 3、两直线平行,同旁内角互补。
中考题我能行!
(1). 2006年东莞)能由△AOB平移而得的图
形是哪个?
A
F
A
B
B
E
O
E
C
D
C
D
(2)(2006年四川省广安市)如图,AB ∥CD,
A. 1个 B. 2个 C. 3个 D. 4个
7. 如图OA⊥OC,OB⊥OD,
且∠BOC=α,则
∠AOD=_1_8_0_0_-_α__
B
A
CD O
8.如图,已知AB∥CD,直线EF分别交AB、CD 于点E 、F, ∠BEF的平分线与∠DFE的平分线 相交于点P,你能说明∠P的度数吗?为什么?
A
E
A
1 E
2 B
11. 如图,直线EF过点A, D是BA延长线上 的点 ,具备什么条件时,可以判定EF BC ? 为什么 ?
D
E
A
F
B
C
再见
相交线与平行线
知识系统
3 12
一般情况 对顶角相等
4
两
条 直
邻补角互补
对顶角和邻补角的存在 前提是两条直线相交
线
相
过一点有且只有一条直线与已知直线垂直
人教版数学七年级下册5.3.2《命题、定理、证明》 课件(共23张PPT)
归纳总结
判断某一种事情的句子叫做命题,理清命题的 定义必须搞清楚两点: (1)命题必须是一个“完整的句子”; (2)命题必须作出判断,如“两条直线相交交 点唯一吗?”没有对事情作出判断,故不是命题。 定理和公理都是真命题,都可以作为证明其他 命题的依据,不同的是:公理是人们从长期实践 中总结出来的真命题,不用证明也不能证明;定 理是用推理证实为正确的命题。
命题1 在同一平面内,如果一条直线垂直 于两条平行线中的一条,那么它也垂直于 另一条. 已知:如图,b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知) ∴∠1=90º (垂直的定义) 又∵ b∥c(已知) ∴∠1=∠2(两直线平行,同位角相等) ∴∠2=∠1=90º(等量代换) ∴ a⊥c(垂直的定义)
题设是: a=b,b=c
结论是: a=c
③ 同位角相等.
如果两个角是同位角,那么这两个角相等.
条件是:两个角是同位角
结论是:这两个角相等 ④ 同角的补角相等. 如果两个角是同一个角的补角,那么这两个角相 等. 条件是:两个角是同一个角的补角 结论是:这两个角相等
讨论与归纳 思考:请问如何判断①是假命题?如何判断②是
真命题?
① 如果两个角相等,那么它们是对顶角. ② 如果两条平行线被第三条直线所截,那么同旁 内角互补. 注意:要判断一个命题是真命题要经过严格
的推理;是假命题只要举一个反例。
1.下列句子哪些是命题?是命题的,指出是真 命题还是假命题? 是 真命题 (1)兔子有四条腿; 是 假命题 (2)内错角相等; 否 (3)画一条直线; 是 假命题 (4)四边形是正方形; 否 (5)你的作业做完了吗? 是 真命题 (6)同位角相等,两直线平行; 是 真命题 (7)对顶角相等; 是 假命题 (8)垂直于同一直线的两直线平行; 否 (9)过点P画线段MN的垂线;
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计一. 教材分析《命题、定理、证明》是人教版七年级数学下册第五章第三节的内容,主要介绍了命题、定理和证明的概念。
这部分内容是学生学习几何证明的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
本节课的内容主要包括命题的定义、分类及定理的概念,以及证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于基本的几何概念和性质有一定的了解。
但是,学生在证明方面的知识和能力还有待提高,因此,在教学过程中需要注重引导学生理解和掌握证明的方法和技巧。
三. 教学目标1.理解命题、定理和证明的概念,能够区分它们之间的联系和区别。
2.学会用几何语言表达命题和定理。
3.掌握证明的方法和技巧,能够运用所学的知识解决一些简单的几何问题。
四. 教学重难点1.重点:命题、定理和证明的概念及它们之间的联系和区别。
2.难点:证明的方法和技巧,以及如何运用所学的知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作探究的方式掌握命题、定理和证明的概念。
2.利用几何图形和实例,帮助学生直观地理解命题、定理和证明的联系和区别。
3.通过练习和案例分析,培养学生的证明能力和解决实际问题的能力。
六. 教学准备1.准备相关的几何图形和实例,用于讲解和展示。
2.准备一些练习题和案例,用于巩固和拓展所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的几何问题引入命题、定理和证明的概念,激发学生的兴趣。
2.呈现(10分钟)讲解命题、定理和证明的定义及它们之间的联系和区别。
通过几何图形和实例,让学生直观地理解这些概念。
3.操练(10分钟)让学生分组讨论,分析一些给定的几何问题,尝试运用所学的命题、定理和证明方法解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固对命题、定理和证明的理解。
人教版七年级下册5.3.2命题、定理、证明教学设计
人教版七年级下册5.3.2命题、定理、证明教学设计一、教学目标1.理解命题、定理、证明的定义与本质;2.掌握命题、定理、证明的基本方法;3.培养学生正确的逻辑思维方式;4.提高学生的实际问题解决能力。
二、教学重点和难点1.命题、定理、证明的区别;2.掌握证明的基本方法和要素;3.发现并利用生活中的具体例子。
三、教学过程1.导入环节1.老师与学生对话,引导学生探讨“世界上有哪些真理?”;2.引出知识点——命题、定理、证明。
2.讲授环节(1)命题1.定义:能够判断真假的陈述句;2.给出多个例子,使学生彻底领悟命题的概念。
(2)定理1.定义:在一定条件下成立的命题;2.给出具体定理的例子,并与学生一起探讨它的证明方法。
(3)证明1.定义:利用已知的命题或定理,通过演绎推理来证明给定命题的正确性;2.讲解证明的基本方法和注意事项:–观察分析,找出已知条件、所求结论以及中间步骤;–运用基本运算法则和逻辑法则进行推理;–从已知条件出发,按照逻辑关系,步步深入推理,直至得到所求结论;–在证明中,要小心使用某些特殊的词句,比如“一定”、“必然”、“当且仅当”等。
3.实践环节1.老师出一些具体的例子,让学生按照证明的方法,证明其正确性;2.或者让学生先猜测一些规律,再通过证明来验证其是否成立。
4.总结环节1.结合今天的学习内容,带领学生发现:命题、定理、证明有哪些联系和区别;2.老师总结本节课的内容,帮助学生理顺知识脉络;3.常见错题集讲解,总结容易犯的错误。
四、教学评估1.课堂上通过观察和听取学生的解答来了解他们掌握的程度;2.布置课后作业,检验学生学习效果;3.半个月后,再对此知识点进行检测,检查学习效果是否稳定。
5.3.2命题定理证明
辽河油田兴隆台第二初级中学王欣情景导入同学们,在数学中也有很多表示判断的语句,例如:两条平行线被三条直线所截,同位角相等。
你能举出向上面这样表示判断的语句吗?辨一辨数学中还有一些这样的语句,与表示判断的语句相同吗?1、取线段AB 的中点。
2、画两条相等的线段。
3、如果∠1=∠2,那么∠3=∠4吗?定义:命题:表示判断的语句。
注意事项:1、命题是肯定一个事物是什么或者不是什么。
2、命题是陈述句。
3、几何作图的陈述不是命题。
问题1判断下面语句是否是命题?1、两条直线相交有且只有一个交点。
()2、对顶角相等。
()3、相等的两个角是对顶角。
()4、长度相等的两条线段相等吗?()5、若a=b,那么|a |=|b |. ()6、过直线外一点作已知线段的垂线。
()7、互为相反数的两个数的和是零。
()是是是是否否是命题的结构命题由题设和结论两部分组成。
题设:是已知事项(已知条件)结论:是由已知事项推出的事项问题2找出下列命题的题设和结论。
1、同位角相等,两直线平行。
2、如果a∥b,b∥c。
那么a∥c。
3、若a=b,那么|a|=|b|。
4、互为相反数的两个数的和是零。
5、两条直线相交有且只有一个交点。
6、对顶角相等。
命题改写命题改写:如果……那么……例:对顶角相等。
如果两个角是对顶角,那么这两个角相等。
改写要求:1、命题意义不能改变。
2、改写句子要完整。
3、语句要通顺。
4、可以适当增加词语。
问题3仿照例题改写下列命题。
1、同位角相等,两直线平行。
2、两直线平行,同旁内角互补。
3、两条直线相交有且只有一个交点。
4、相等的两个角是对顶角。
5、同角的补角相等。
问题4找一找,那些命题是正确的,那些是错误的?1、同位角相等,两直线平行。
2、两直线平行,同旁内角互补。
3、两点之间直线最短。
4、互为相反数的两个数的和是零。
5、相等的两个角是对顶角。
6、过一点有且只有一条直线与已知直线平行。
不正确正确正确正确不正确不正确命题的种类命题包括真命题和假命题。
人教版数学七年级下册教案5.3.2《 命题、定理、证明》
人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。
通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。
本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。
但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。
三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。
2.学会用逻辑推理的方法证明几何命题。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。
2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。
六. 教学准备1.教学PPT课件。
2.相关例题及练习题。
3.几何画图工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。
通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。
2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。
让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。
3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。
教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。
4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。
教师及时批改、讲解,巩固学生所学知识。
5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。
5.3.2 命题、定理、证明 (2)
17.(姜堰市期末)如图,直线AB和直线CD,直线BE和直线CF都被直线 BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一 个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF ,③∠1=∠2.
8 . 如 图 , BD 平 分 ∠ ABC , 若 ∠ BCD = 70 ° , ∠ ABD = 55 ° . 求 证 : CD∥AB.
证明:∵BD平分∠ABC,∠ABD=55°, ∴∠ABC=2∠ABD=110°. 又∵∠BCD=70°, ∴∠ABC+∠BCD=180°. ∴CD∥AB.
9.把下列命题写成“如果……那么……”的形式,并判断其真假. (1)等角的补角相等; (2)不相等的角不是对顶角; (3)相等的角是内错角.
条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正
确命题的个数为(D
)
A.0
B.1
C.2
D.3
13.“直角都相等”的题设是 两个角是直角,结论是这两个角相等.
14.对于下列假命题,各举一个反例写在横线上.
(1)“如果ac=bc,那么a=b”是一个假命题.
反例: 3×0=(-2)×0
;
(2)“如果a2=b2,则a=b”是一个假命题.
6.下列命题中,是假命题的是( A ) A.相等的角是对顶角 B.垂线段最短 C.同一平面内,两条直线的位置关系只有相交和平行两种 D.两点确定一条直线
5.3.2命题、定理、证明(第1课时)
课题:5.3.2命题、定理、证明【学习目标】1、了解命题的概念以及命题的构成(如果……那么……的形式).2、知道什么是真命题和假命题.【学习重点】命题的概念和区分命题的题设与结论【学习难点】区分命题的题设和结论【学前准备】填空:①平行线的3个判定方法的共同点是。
②平行线的判定和性质的区别是。
【自主学习】(一)命题:1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②两条平行线被第三条直线所截,同旁内角互补③对顶角相等;④等式两边都加同一个数,结果仍是等式.这些句子都是对某一件事情作出“是”或“不是”的判断2、定义:的语句,叫做命题3、练习:判断下列语句是不是命题?(1)两点之间,线段最短(2)请画出两条互相平行的直线(3)过直线外一点作已知直线的垂线(4) 如果两个角的和是90º,那么这两个角互余(二)命题的构成:1、许多命题都由和两部分组成.是已知事项, 是由已知事项推出的事项.2、命题常写成"如果……那么……"的形式,这时,"如果"后接的部分.....是,"那么"后接的的部分......是.3、练习下列语句是命题吗?如果是,请将它们改写成“如果……,那么……”的形式. (1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.(三)命题的分类真命题:。
假命题:。
上面练习哪些命题是正确的,哪些命题是错误的?【合作探究】1、指出下列命题的题设和结论:(1)如果两个数互为相反数,这两个数的商为-1;(2)两直线平行,同旁内角互补;(3)同旁内角互补,两直线平行;(4)等式两边乘同一个数,结果仍是等式;(5)绝对值相等的两个数相等.(6)如果AB⊥CD,垂足是O,那么∠AOC=90°2、把下列命题改写成"如果……那么……"的形式:(1)互补的两个角不可能都是锐角:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公理、定理、证明
1、数学中有些命题的正确性是人们在长期实践 中总结出来的,并把它们作为判断其他命题真 假的原始依据,这样的真命题叫做公理。
2、有些命题可以从公理或其他真命题出发,用 逻辑推理的方法判断它们是正确的,并且可以 进一步作为判断其他命题真假的依据,这样的 真命题叫做定理。
公理和定理都可作为判断其他命题真假的依据。
(3)请同学们思考如何利用已经学过的定义定理 来证明这个结论呢? 已知:b∥c,a⊥b .
求证:a⊥c. 证明:∵ a⊥b(已知), ∴∠1=90º (垂直的定义). 又∵ b∥c(已知), ∴∠1=∠2(两直线平行,同位角相等).
∴∠2=∠1=90º(等量代换).
∴ a⊥c(垂直的定义).
例2:请同学们判断下列命题的真假,并思考如何 判断命题的真假. 命题2: 相等的角是对顶角.
结论
命题一般都能写成“如果…,那么…”的形式 。 “如果”后接的部分是题设,“那么”后接的 部分是结论。 如命题:熊猫没有翅膀。改写为: 如果这个动物是熊猫,那么它就没有翅膀。 注意:添加“如果”、“那么”后,命题的意 义不能改变,改写的句子要完整,语句要通顺, 使命题的题设和结论更明朗,易于分辨,改写 过程中,要适当增加词语。
命题的概念
问题:请同学读出下列语句
(1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补;
(3)对顶角. 像这样判断一件事情的语句,叫做命题(proposition).
1. 判断下列语句是不是命题?
(1)这个命题题设和结论分别是什么? 题设:两个角相等; 结论:这两个角互为对顶角. (2)判断这个命题的真假. 假命题. 我们知道假命题是在条件成 立的前提下,结论不一定成立,你 能否利用图形举例说明当两个角相 等时它们不一定是对顶角的关系.
练习: 填空 已知:如图1,∠1=∠2,∠3=∠4, 求证:EG∥FH. 证明:∵∠1=∠2(已知) ∠AEF=∠1 ( 对顶角相等 ); ∴∠AEF=∠2 ( 等量代换 ). ∴AB∥CD (同位角相等,两直线平行). ∴∠BEF=∠CFE (两直线平行,内错角相等 ). ∵∠3=∠4(已知); ∴∠BEF-∠4=∠CFE-∠3. 即∠GEF=∠HFE ( 等式性质 ). ∴EG∥FH ( 内错角相等,两直线平行 ).
7、平行线的性质定理:
两直线平行,内错角相等。 两直线平行,同旁内角互补。
例1:命题:在同一平面内,如果一条直线垂直于 两条平行线中的一条,那么它也垂直于另一条. (1)这个命题的题设和结论分别是什么呢? 题设:在同一平面内,一条直线垂直于两条平行线 中的一条; 结论:这条直线也垂直于两条平行线中的另一条. (2)你能结合图形用几何语言表述命题的题设和 结论吗? 已知:b∥c, a⊥b . 求证:a⊥c.
确定一个命题真假的方法: 利用已有的知识,通过观察、验证、推理、举 反例等方法。
下列句子哪些是命题?是命题的,指出 是真命题还是假命题? 是 真命题 1、猪有四只脚; 2、内错角相等; 是 假命题 否 3、画一条直线; 是 假命题 4、四边形是正方形; 否 5、你的作业做完了吗? 6、同位角相等,两直线平行; 是 真命题 7、对顶角相等; 是 真命题 8、同垂直于一直线的两直线平行;是 假命题 9、过点P画线段MN的垂线; 否 10、x>2 否
(1)两点之间,线段最短;( √ ) (2)请画出两条互相平行的直线; (
)
(3)过直线外一点作已知直线的垂线; (
)
(4)如果两个角的和是90º,那么这两个角互余.( ) √
2.你能举出一些命题的例子吗?
对事情作了判断的语句是否正确? 3.下列语句在表述形式上,哪些是对事情作了 判断?哪些没有对事情作出判断? 1、对顶角相等; 是 √ 2、画一个角等于已知角; 否 √ 3、两直线平行,同位角相等; 是 否 4、a、b两条直线平行吗? 否 5、温柔的李明明; 是 6、玫瑰花是动物; × 否 7、若a2=4,求a的值; 是 8、若a2=b2,则a=b。 ×
课堂小结
1、命题:判断一件事情的语句叫命题。 (1)正确的命题称为真命题,错误的命题称为假命题。 (2)命题的结构:命题由题设和结论两部分构成,常可写成 “如果„,那么„”的形式。 2、公理:人们长期以来在实践中总结出来的,并作为判断其他 命题真假的根据的命题,叫做公理。 3、定理:经过推理论证为正确的命题叫定理。也可作为继续推 理的依据。 4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推 理的方法证明(公理和定理都是真命题); 判断一个命题是假命题,只要举出一个例子,说明该命题不 成立就可以了,这种方法称为举反例。
2. 指出下列各命题的题设和结论,并 改写成“如果„„那么„„”的形式。
1、对顶角相等; 2、内错角相等; 3、两平线被第三直线所截,同位角相等; 4、同平行于一直线的两直线平行; 5、直角三角形的两个锐角互余; 6、等角的补角相等;
7、正数与负数的和为0。
有些命题如果题设成立,那么结论一定成立; 而有些命题题设成立时,结论不一定成立。 真命题:如果题设成立,那么结论一定成立, 这样的命题叫做真命题. 假命题:如果题设成立时,不能保证结论一定成立, 这样的命题叫做假命题. 如命题:“对顶角相等”就是一个真命题。 如命题:“两条直线被第三条直线所截,同旁内角 互补”就是一个假命题。
2、余角的性质:
同角或等角的余角相等。
3、对顶角的性质: 对顶角相等。
4、垂线的性质:
①过一点有且只有一条直线 与已知直线垂直; ②垂线段最短。
5、平行公理的推论: 如果两条直线都和第三条 直线平行,那么这两条直 线也互相平行。
定理举例:
6、平行线的判定定理:
内错角相等,两直线平行。 同旁内角互补,两直线平行。
注意: 1、只要对一件事情作出了判断,不管正确与否, 都是命题。如:相等的角是对顶角。
2、如果一个句子没有对某一件事情作出任何判 断,那么它就不是命题。 如:画线段AB=CD。 命题是由题设(或条件)和结论两部分组成。题设 是已知事项,结论是由已知事项推出的事项。 两直线平行, 同位角相等。
题设(条件)
1. 下列语句是命题吗?如果是,请将它们改 写成“如果„„,那么„„”的形式. (1)两条直线被第三条直线所截,同旁内角互补; 如果两条直线被第三条直线所截,那么同旁内角互补; (2)等式两边都加同一个数,结果仍是等式; 如果等式两边都加同一个数,那么结果仍是等式; (3)互为相反数的两个数相加得0; 如果两个数互为相反数,那么这两个数相加得0; (4)同旁内角互补; 如果两个角是同旁内角,那么这两个角互补;
公理举例: 1、直线公理:经过两点有且只有一条直线。 2、线段公理:两点的所有连线中,线段最短。 3、平行公理:经过直线外一点,有且只有一条 直线与已知直线平行。
4、平行线判定公理: 同位角相等,两直线平行。
5、平行线性质公理: 两直线平行,同位角相等。
定理举例: 1、补角的性质:
同角或等角的补角相等。