高三第一次月考试题(理数)

合集下载

高三第一次月考(数学)试卷含答案

高三第一次月考(数学)试卷含答案

高三第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1.若{}{}2|22,|log (1)M x x N x y x =-≤≤==-,则M N =( )A.{}|20x x -≤<B. ﹛x| -1<x<0﹜C.{}2,0-D.{}21|≤<x x 2.(5分)2.复数imi212+-=A+B i (m 、A 、B ∈R),且A+B=0,则m 的值是 ( ) A. 32- B. 32 C.2 D.23.(5分)3.下列命题中,真命题是 ( )A .,00≤∈∃x e R x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 4.(5分)4.函数212log 4f xx 的单调递增区间是( )A.(0,+∞)B. (-∞,0)C. (2,+∞)D. (-∞,-2)5.(5分)5.函数f(x)=-1x+log 2x 的一个零点落在下列哪个区间( ) A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.(5分)6.如果函数f(x)=x 2+bx+c 对任意实数t 都有f(2+t)=f(2-t),那么( )A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1) 7.(5分)7.函数()3cos 2xxf x x⋅=的部分图象大致是( )A .B .C .D .8.(5分)8.曲线y =e x +1在x =1处的切线与坐标轴所围成的三角形的面积为( )A.12e B .e 2 C .2e 2D .94e 2 9.(5分)9.已知函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,都有f(x +2)=f(x).当0≤x≤1时,2()f x x =.若直线y =x +a 与函数y =f(x)的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是 ( ) A .0 B .0或-14 C .-14或-12 D.0或-1210.(5分)10.若函数x x f xx2sin 3)(1212++=+-在区间[-k,k](k>0)上的值域为[m,n],则m+n 等于( )A.0B.2C.4D.611.(5分)11.已知函数f(x)在R 上满足f(x)=2f(2-x)-x 2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是 ( )A.y=-2x+3B.y=xC. y=2x-1D.y=3x-212.(5分)12.设定义域为R 的函数2lg (>0)()-2(0)x x f x x x x ⎧=⎨-≤⎩ 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为( )A .3B .7C .5D .6二、 填空题 (本题共计4小题,总分20分)13.(5分)13.函数24ln(1)x y x -=+的定义域为_______________14.(5分)14.函数y =log a (2x -3)+8的图象恒过定点A ,且点A 在幂函数f(x)的图象上,则f (3)=________.15.(5分)15.若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为________16.(5分)16.已知定义域为R 的函数f (x )满足f (4)=-3,且对任意x ∈R 总有)('x f <3,则不等式 f (x)<3x -15的解集为________.三、 解答题 (本题共计7小题,总分80分) 17.(12分)17.(本大题满分12分)设p :函数y =log a (x +1)(a >0且a≠1)在(0,+∞)上单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p∧q 为假,p∨q 为真,求实数a 的取值范围.18.(12分)18.(本大题满分12分)已知函数f (x )=x 2-2x +2.(1)求f (x )在区间[12,3]上的最大值和最小值;(2)若g (x )=f (x )-mx 在[2,4]上是单调函数,求m 的取值范围.19.(12分)19.(本大题满分12分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据: 编号 1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;(2)当产品中的微量元素x ,y 满足x≥175且y≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列.20.(12分)20. (本大题满分12分)设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-.(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.21.(12分)21. (本大题满分12分)已知函数f(x)=ax -ln x ,a ∈R.(1)求函数f(x)的单调区间; (2)当x ∈(0,e]时,求g (x )=e 2x -ln x 的最小值; (3)当x ∈(0,e]时,证明:e 2x -ln x -x x ln >52.22.(10分)22.(本大题满分10分)选修4-4:坐标系与参数方程已知直线l :⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 213235 (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA|·|MB|的值.23.(10分)23. (本大题满分10分) 选修4-5:不等式选讲已知关于x 的不等式|ax -1|+|ax -a |≥1(a >0). (1)当a =1时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围答案一、单选题(本题共计12小题,总分60分)1.(5分)D2.(5分)A3.(5分)D4.(5分)D5.(5分)B6.(5分)A7.(5分)D8.(5分)A9.(5分)B10.(5分)D11.(5分)C12.(5分)B二、填空题(本题共计4小题,总分20分)13.(5分)13.(-1,0)∪(0,2]14.(5分) 14. 2715.(5分) 15.[-3,1]16.(5分) 16.(4,+∞)三、解答题(本题共计7小题,总分80分)17.(12分)17.1/2≤a<1或a>5/218.(12分)18.(1)f(x)最大值为5,最小值为1;(2)m的取值范围为(-∞,2]∪[6,+∞)19.(12分)19.(1)35件;(2)35×2/5=14件;(3)由题意,ξ的取值有0,1,2,P(ξ=0)=3/10,P(ξ=1)=3/5,P(ξ=2)=1/10,分布列为(2)f(x)的最大值为18,最小值为-8221.(12分)21.(1)综上,a≤0时,f(x)的单调递减区间是(0,+∞),无单调增区间;a>0时,f(x)的单调递减区间是(0,1/a),单调增区间是(1/a,+∞);(2)g(x)最小值为3;(3)略22.(10分)22.(1)x2+y2=2x;(2)|MA|·|MB|=1823.(10分)23.(1)(-∞,1/2]∪[5/2.+∞); (2)[4,+∞)。

高三数学第一次月考试题 理含解析 试题

高三数学第一次月考试题 理含解析 试题

阿左旗高级中学2021届高三年级第一次月考数学试卷〔理〕一、选择题(每一小题5分,一共60分)1. 设全集U={1,2,3,4,5,6,7},M={2,3,4,6},N={1,4,5},那么(∁U M)∩N等于( )A. {1,2,4,5,7}B. {1,4,5}C. {1,5}D. {1,4}【答案】C【解析】由∁U M={1,5,7},所以(∁U M)∩N={1,5,7}∩{1,4,5}={1,5}.应选:C点睛:1.用描绘法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进展集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍2. 函数f(x)在x=x0处导数存在.假设p:f ′(x0)=0,q:x=x0是f(x)的极值点,那么( )A. p是q的充分必要条件B. p是q的充分条件,但不是q的必要条件C. p是q的必要条件,但不是q的充分条件D. p既不是q的充分条件,也不是q的必要条件【答案】C【解析】由条件知由q可推出p,而由p推不出q.应选:C.3. 函数y=的定义域是( )A. [1,2]B. [1,2)C.D.【答案】D【解析】由≥0⇒0<2x-1≤1⇒<x≤1.应选:D4. f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,那么f(2 019)=( )A. -2B. 2C. -98D. 98【答案】A【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2 019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2 019)=-2.应选:A5. 假设函数f(x)= , 那么的值是( )A. B. 3 C. D.【答案】D【解析】由函数f(x)=可知:,+1=应选:D6. a=,b=,c=log1.5,那么a,b,c的大小关系是( )A. c<a<bB. c<b<aC. a<b<cD. b<a<c【答案】A【解析】由log1.5<1<<,得c<a<b.应选:A............7. 假设sinα= -,且α为第四象限角,那么tanα的值等于( )A. B. - C. D. -【答案】D【解析】由sinα=-,且α为第四象限角,那么cosα==,那么tanα==- .应选D.8. 的值是( )A. -B. 0C.D.【答案】D【解析】原式===tan30°=.应选:D.9. 假设=,那么cos(π-2α)=( )A. -B.C. -D.【答案】C【解析】因为=,所以sinα=.那么cos(π-2α)=-cos2α=2sin2α-1=-.应选:C10. 函数f(x)=2x-sinx的零点个数为( )A. 1B. 2C. 3D. 4【答案】A【解析】试题分析:,易知该函数导数恒大于0,所以是单增函数.f(0)=0.故只有一个零点.考点:函数的单调性,函数的零点,导数11. 函数y=(0<a<1)的图象的大致形状是( )A. B.C. D.【答案】D【解析】函数的定义域为{x|x≠0},所以y==当x>0时,函数是指数函数,其底数0<a<1,所以函数递减;当x<0时,函数图象与指数函数y=a x(x<0)的图象关于x轴对称,函数递增.应选:D.点睛:识图常用的方法(1)定性分析法:通过对问题进展定性的分析,从而得出图象的上升(或者下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.12. 函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f ′(x)>1,那么不等式e x·f(x)>e x+1的解集为( )A. {x|x>0}B. {x|x<0}C. {x|x<-1或者x>1}D. {x|x<-1或者0<x<1}【答案】A【解析】试题分析:定义,那么不等式的解集就是的解集,且,,∵,∴ 对于任意,,∴,即在实数域内单调递增;∵,∴,因此不等式的解集为:.考点:1、求导法那么;2、导数在解决函数性质中的应用〔单调性〕.二、填空题(每一小题5分,一共20分)13. sin585°的值是_____【答案】【解析】略14. =_____【答案】2【解析】.故答案为:215. 函数f(x)=,那么该函数的单调递增区间为_________【答案】[3,+∞)【解析】设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或者x≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x =1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f(x)的单调递增区间为[3,+∞).故答案为:[3,+∞)16. 假设不等式2xlnx≥-x2+ax-3对x∈(0,+∞)恒成立,那么实数a的取值范围是________.【答案】(-∞,4]【解析】2xlnx≥-x2+ax-3,那么a≤2lnx+x+,设h(x)=2lnx+x+(x>0),那么h′(x)=.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4,那么a≤h(x)min=4,故实数a的取值范围是(-∞,4].故答案为:(-∞,4]点睛:恒成立的问题:〔1〕根据参变别离,转化为不含参数的函数的最值问题;〔2〕假设就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,假设恒成立,转化为;〔3〕假设恒成立,可转化为.三、解答题(一共6小题,一共70分,解容许写出必要的文字说明、计算过程或者证明步骤)17. 函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)务实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.【答案】(1) f(x)的最小值是f(2)=-1,f(x)的最大值是35;(2) a≤-6,或者a≥4.【解析】试题分析:解:(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,∴,f(x)的最小值是f(2)=-1又f(-4)=35,f(6)=15,故f(x)的最大值是35.…………6分(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或者-a≥6,即a≤-6或者a≥4…………12分考点:二次函数性质点评:主要是考察了二次函数的性质以及单调性的运用,属于根底题。

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

大联考2024届高三月考试卷(一)数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4M x x =<,{}|21N x x =≥,则M N ⋂=()A.{}08x x ≤< B.182xx ⎧⎫≤<⎨⎬⎩⎭C.{}216x x ≤< D.1162xx ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.【详解】{}{}2|log 4|016M x x x x =<=<<,1|2N x x ⎧⎫=≥⎨⎩⎭,则1162M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:D.2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为()A.3 B.2C.-2D.-3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d =⎧⎨+=⎩即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7,设等差数列的公差为d ,所以11+27516a d a d =⎧⎨+=⎩,解之得3d =.故选:A.3.已知1z ,2z 是关于x 的方程2220x x +=-的两个根.若11i z =+,则2z =()A.2B.1C.D.2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=-的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z +=,所以()21221i 1i z z =-=-+=-,所以21i z =-=法二:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z ⋅=,所以21221i z z ==+,所以2221i 1i z ====++.故选:C .4.函数sin exx x y =的图象大致为()A.B.C.D.【答案】D 【解析】【分析】分析函数sin exx x y =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项.【详解】令()sin exx x f x =,该函数的定义域为R ,()()()sin sin eexxx x x x f x f x ----===,所以,函数sin exx x y =为偶函数,排除AB 选项,当0πx <<时,sin 0x >,则sin 0exx x y =>,排除C 选项.故选:D.5.已知220x kx m +-<的解集为()(),11t t -<-,则k m +的值为()A.1B.2C.-1D.-2【答案】B 【解析】【分析】由题知=1x -为方程220x kx m +-=的一个根,由韦达定理即可得出答案.【详解】因为220x kx m +-<的解集为()(),11t t -<-,所以=1x -为方程220x kx m +-=的一个根,所以2k m +=.故选:B .6.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为()(cos10°≈0.985)A.45.25mB.50.76mC.56.74mD.58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R AB AC ==,100tan10RBC =-=- ,25250.760.985R R ==故选:B.7.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==-=-.【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .8.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE ,则CE BE ==,AE DE ===,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==1R =,即1OM OF ==,则413AO =-=,故1sin 3OM EAF AO ∠==设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题为真命题的是()A.若2sin 23α=,则21cos 46πα⎛⎫+= ⎪⎝⎭B.函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度得到函数()2sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象C.函数()2sin cos cos 26f x x x x π⎛⎫=+- ⎪⎝⎭的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D.()22tan 1tan xf x x =-的最小正周期为2π【答案】AC 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα⎛⎫+⎪⎝⎭,知A 正确;根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确;利用特殊值判断D 错误.【详解】对于A ,21cos 21sin 212cos 4226παπαα⎛⎫++ ⎪-⎛⎫⎝⎭+=== ⎪⎝⎭,A 正确;对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π⎛⎫-= ⎪⎝⎭,即()2sin 2g x x =,B 错误;对于C ,()13sin 2cos 2sin 222222226f x x x x x x x π⎛⎫=++=+=+ ⎪⎝⎭,则由222262k x k πππππ-+≤+≤+,Z k ∈得:36k x k ππππ-+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C 正确;对于D ,()π002f f ⎛⎫= ⎪⎝⎭,无意义,∴2π不是函数的周期,D 错误.故选:AC.10.如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A -组成,12AB BC AC AA ====,则下列说法正确的是()A.若AD AC ⊥,则1AD A C⊥B.若平面11AC D 与平面ACD 的交线为l ,则AC //l C.三棱柱111ABC A B C -的外接球的表面积为143πD.当该几何体有外接球时,点D 到平面11ACC A 的最大距离为3-【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解.【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC ,但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11AC D ,平面11AC D ⋂平面ACD l =,所以//AC l ,所以B 正确;对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO 的中点为该三棱柱外接球的球心,所以外接球的半径3R ==,所以外接球的表面积为22843R ππ=,所以C 不正确;对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A 的距离为3,点D 到平面11ACC A 的最大距离为33R -=,所以D 正确.故选:BD11.同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是()A.a b =是函数()f x 为偶函数的充分不必要条件;B.0a b +=是函数()f x 为奇函数的充要条件;C.如果0ab <,那么()f x 为单调函数;D.如果0ab >,那么函数()f x 存在极值点.【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误;对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb --',因为0ab <,若0,0a b ><,则()e e0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==e x xxxa ba b f x ---',令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>,当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值.若0,0a b <<,当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值.所以函数存在极值点,故D 正确.故答案为:BCD.12.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a -⋅-<,则下列选项正确的是()A.{}n a 为递减数列B.202220231S S +<C.2022T 是数列{}Tn 中的最大项D.40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为nT 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a -⋅-<可得:20221a -和20231a -异号,即202220231010a a ->⎧⎨-<⎩或202220231010a a -<⎧⎨->⎩.而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1.对于A :公比202320221a q a =<,因为11a >,所以11n n a a q -=为减函数,所以{}n a 为递减数列.故A 正确;对于B :因为20231a <,所以2023202320221a S S =-<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确;对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ⨯=()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知(2,),(3,1)a b λ=-=,若()a b b +⊥ ,则a = ______.【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=-= ,可得(1,1)a b λ+=+,又因为()a b b +⊥,可得()(1,1)(3,1)310b b a λλ=+⋅=++=⋅+ ,解得4λ=-,所以(2,4)a =--,所以a ==故答案为:14.已知函数51,2()24,2xx f x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,则函数()()g x f x =-的零点个数为______.【答案】3【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =,可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点,故答案为:3.15.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【答案】4【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D -中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边长为2,所以其面积为26424S ⎛⎫=⨯= ⎪ ⎪⎝⎭.故答案为:4.16.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y '',则20n n n y y ='=∑______.(参考数据:取221.18.14=.)【答案】914【解析】【分析】根据题意可得1, 1.1n n n y n y '=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y '=+=,则()202011920011.111.12 1.120 1.1211.1n n n n n y y n =='=+=⨯+⨯++⨯+⨯∑∑L ,可得2012202101.111.12 1.120 1.1211.1nn n yy ='⨯=⨯+⨯++⨯+⨯∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =-'-⨯=+++-⨯=-⨯-∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1-+⨯⨯++====----,所以20914nn n yy ='=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.【答案】(1)证明见解析(2)11【解析】【分析】(1)利用线面平行的判定定理证明;(2)利用等体积法求解.【小问1详解】连接1BC 交1B C 于点N ,连接MN ,则有N 为1BC 的中点,M 为AB 的中点,所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM ,所以1//AC 平面1B CM .【小问2详解】连接1AB ,因为2CA CB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ⋂=,所以CM ⊥平面11ABB A ,又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC是等腰直角三角形,112CM AB MB ====,所以1112222CMB S CM MB =⋅=△,1111222ACM ACB S S CA CB ==⨯⋅=△△,设点A 到平面1B CM 的距离为d ,因为11A B CM B ACM V V --=,所以111133B CM ACM S d S AA ⨯⨯=⨯⨯ ,所以1132211ACM B CM S AA d S ⨯== .18.记锐角ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin()sin()cos cos A B A C B C--=.(1)求证:B C =;(2)若sin 1a C =,求2211a b+的最大值.【答案】(1)见解析;(2)2516.【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12b a C R A b A R === ,然后等量代换出2211a b+,再运用降次公式化简,结合内角取值范围即可求解.【小问1详解】证明:由题知sin()sin()cos cos A B A C B C--=,所以sin()cos sin()cos A B C A C B -=-,所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B -=-,所以cos sin cos cos sin cos A B C A C B =因为A 为锐角,即cos 0A ≠,所以sin cos sin cos B C C B =,所以tan tan =B C ,所以B C =.【小问2详解】由(1)知:B C =,所以sin sin B C =,因为sin 1a C =,所以1sin C a=,因为由正弦定理得:2sin ,sin 2b a R A B R==,所以sin 2sin sin 12ba C R Ab A R===,所以1sin A b=,因为2A B C C ππ=--=-,所以1sin sin 2A C b==,所以222211sin sin 2a bC C +=+221cos 2(1cos 2)213cos 2cos 222CC C C -=+-=--+因为ABC 是锐角三角形,且B C =,所以42C ππ<<,所以22C ππ<<,所以1cos 20C -<<,当1cos 24C =-时,2211a b+取最大值为2516,所以2211a b+最大值为:2516.19.甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1-分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望;(2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率.【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算.【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立,由题意得:()1111233P A ⎛⎫=⨯-= ⎪⎝⎭,()1111224P B ⎛⎫=⨯-= ⎪⎝⎭,甲的得分X 的可能取值为1,0,1-,()()()()11111346P X P AB P A P B ⎛⎫=-===-⨯= ⎪⎝⎭,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ⎛⎫⎛⎫==+=+=⨯+-⨯-=⎪ ⎪⎝⎭⎝⎭()()()()11111344P X P AB P A P B ⎛⎫====⨯-= ⎪⎝⎭,所以X 的分布列为:X 1-01p1671214()1711101612412E X =-⨯+⨯+⨯=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1-分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ⎛⎫== ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得1-分的概率为2233111C 4632P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P ⎛⎫=⨯⨯= ⎪⎝⎭,所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20.已知数列{}n a 中,10a =,()12n n a a n n N*+=+∈.(1)令11n n n b a a +=-+,求证:数列{}n b 是等比数列;(2)令3nn n a c =,当n c 取得最大值时,求n 的值.【答案】(1)证明见解析;(2)3n =.【解析】【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +-+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c --=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=,11n n n b a a +=-+ ,则12112b a a =-+=,则()()()111112211212n n n n n n n n b a a a n a n a a b ++--=-+=+-+-+=-+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b -=⨯=;(2)由(1)可知,2nn b =即121n n n a a +-=-,可得2123211212121n n n a a a a a a ---=-⎧⎪-=-⎪⎨⎪⎪-=-⎩,累加得()()()()1211212222112112n n n n a a n n n ----=+++--=--=--- ,21n n a n ∴=--.213n n n n c --∴=,()111112112233n n n n n n n c +++++-+---==,11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=,令()212nf n n =+-,则()11232n f n n ++=+-,所以,()()122nf n f n +-=-.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =-<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> .所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n 1-项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n 1-项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1b m k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n N *∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.21.已知双曲线2222:1(0,0)x y E a b a b-=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接PA ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)221169x y -=(2)直线CD 过定点,定点坐标为(8,0).【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值.【小问1详解】法一.由222225,64271,a b ab ⎧+=⎪⎨-=⎪⎩解得2216,9a b ==,∴双曲线E 的标准方程为221169x y -=.法二.左右焦点为()()125,0,5,0F F -,125,28c a MF MF ∴==-=,22294,a b c a ∴===-,∴双曲线E 的标准方程为221169x y -=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+,联立221169x my t x y =+⎧⎪⎨-=⎪⎩消去x 得()()2222916189144=0,9160m y mty t m -++--≠,12218916mt y y m -∴+=-,21229144916t y y m -=-,122916y y m -=±-,AC 的方程为11(4)4y y x x =++,令2x =,得1164p y y x =+,BD 的方程为22(4)4y y x x =--,令2x =,得2224p y y x -=-,1221112212623124044y y x y y x y y x x -∴=⇔-++=+-()()21112231240my t y y my t y y ⇔+-+++=()()1212431240my y t y t y ⇔+-++=()()()()12121242480my y t y y t y y ⇔+-++--=()222249144(24)1824(8)9160916916916m t t mt t t m m m m ---⇔-±=---3(8)(0m t t ⇔-±-=(8)30t m ⎡⇔-=⎣,解得8t =3m =±,即8t =或4t =(舍去)或4t =-(舍去),∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+,联立22,1,169x my t x y =+⎧⎪⎨-=⎪⎩,消去x 得()2229161891440m y mty t -++-=,2121222189144,916916mt t y y y y m m --∴+==--,AC 的方程为(4)6n y x =+,BD 的方程为(4)2n y x =--,,C D 分别在AC 和BD 上,()()11224,462n n y x y x ∴=+=--,两式相除消去n 得()211211223462444x y y y x x x y ---=⇔+=+-,又22111169x y -=,()()211194416x x y ∴+-=.将()2112344x y x y --+=代入上式,得()()1212274416x x y y ---=⇔()()1212274416my t my t y y -+-+-=()()221212271627(4)27(4)0m y y t m y y t ⇔++-++-=⇔()22222914418271627(4)27(4)0916916t mt m t m t m m --++-+-=--.整理得212320t t +=-,解得8t =或4t =(舍去).∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22.设函数()()2cos 102x f x x x =-+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i i i A g i n n ⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =-,证明:1217 (6)n k k k n -+++>-.【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.(2)见解析【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥-≥,结合二倍角的正弦可证:2271162i i k +>-⨯,结合等比数列的求和公式可证题设中的不等式.【小问1详解】()sin f x x x '=-+,设()sin s x x x =-+,则()cos 10s x x '=-+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数,故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥-≥,证明:设()3sin ,06x u x x x x =-+≥,则()2cos 1()02x u x x f x '=-+=≥(不恒为零),故()u x 在[)0,∞+上为增函数,故()()00u x u ≥=即3sin (0)6x x x x ≥-≥恒成立.当*N i ∈时,11111111222sin sin 112222i i i i i i i i g g k ++++⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎝⎭⎝⎭==- ⎪⎝⎭-11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++⎛⎫⎛⎫=-=⨯- ⎪ ⎪⎝⎭⎝⎭由(1)可得()2cos 102x x x ≥->,故12311cos 1022i i ++≥->,故111112311112sin 2cos 12sin 2112222i i i i i i ++++++⎡⎤⎛⎫⎛⎫⨯-≥-- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦1112213322111112sin121222622i i i i i i i +++++++⎛⎫⎛⎫⎛⎫=⨯-≥-- ⎪ ⎪⎪⨯⎝⎭⎝⎭⎝⎭2222224422117111711111622626262i i i i i +++++⎛⎫⎛⎫=--=-⨯+⨯>-⨯ ⎪⎪⨯⎝⎭⎝⎭,故1214627111...16222n n k k k n -⎛⎫+++>--+++ ⎪⎝⎭ 41111771112411166123414n n n n -⎛⎫- ⎪⎛⎫⎝⎭=--⨯=--⨯ ⎪⎝⎭-771797172184726n n n n =--+⨯>->-.。

2021年高三第一次月考 理科数学 含答案

2021年高三第一次月考 理科数学 含答案

2021年高三第一次月考 理科数学 含答案一.选择题(共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知向量a =(m 2,4),b =(1,1),则“m =-2”是“a ∥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件.2.设等比数列{a n }的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .83.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c 且a cos C , b cos B ,c cos A 成等差数列,则B 的值为( ) A.π6 B.π3 C.2π3D.5π64.已知f (x )=cos 2x -1,g (x )=f (x +m )+n ,则使g (x )为奇函数的实数m ,n 的可能取值为( )A .m =π2,n =-1B .m =π2,n =1C .m =-π4,n =-1D .m =-π4,n =15.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=06.已知函数f (x )=cos 2x +sin x ,那么下列命题中是假命题的是( )A .f (x )既不是奇函数也不是偶函数B .f (x )在[-π,0]上恰有一个零点C .f (x )是周期函数D .f (x )在⎝⎛⎭⎫π2,56π上是增函数7.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3 C .π D.4π38.已知数列a n :11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,则a 99+a 100的值为( )A.3724B.76C.1115D.7159.偶函数f (x )在[0,+∞)上为增函数,若不等式f (ax -1)<f (2+x 2)恒成立,则实数a 的取值范围是( )A .(-23,2)B .(-2,2)C .(-23,23)D .(-2,23)10.O 是锐角三角形ABC 的外心,由O 向边BC ,CA ,AB 引垂线,垂足分别是D ,E ,F 给出下列命题:①OA →+OB →+OC →=0; ②OD →+OE →+OF →=0; ③|OD →|∶|OE →|∶|OF →|=cos A ∶cos B ∶cos C ; ④∃λ∈R ,使得AD →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|sin B +AC →|AC →|sin C .以上命题正确的个数是( ) A .1 B .2 C .3D .4二:填空题(共5小题,每小题5分,共25分)11.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.12.曲线y =1x +2x +2e 2x ,直线x =1,x =e 和x 轴所围成的区域的面积是________.13.已知f (x )=sin x ,x ∈R ,g (x )的图象与f (x )的图象关于点⎝⎛⎭⎫π4,0对称,则在区间[0,2π]上满足f (x )≤g (x )的x 的取值范围是________..14.对向量a =(a 1,a 2),b =(b 1,b 2)定义一种运算“⊗”:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知动点P ,Q 分别在曲线y =sin x 和y =f (x )上运动,且OQ →=m ⊗OP →+n (其中O 为坐标原点),若向量m =()12,3,n =()π6,0,则y =f (x )的最大值为________.15.对于定义在区间D 上的函数f (x ),若满足对∀x 1,x 2∈D 且x 1<x 2时都有f (x 1)≥f (x 2),则称函数f (x )为区间D 上的“非增函数”.若f (x )为区间[0,1]上的“非增函数”且f (0)=1, f (x )+f (1-x )=1,又当x ∈⎣⎡⎦⎤0,14时,f (x )≤-2x +1恒成立.有下列命题: ①∀x ∈[0,1],f (x )≥0;②当x 1,x 2∈[0,1]且x 1≠x 2时,f (x 1)≠f (x 2); ③f()18+f ()511+f ()713+f ()78=2;④当x ∈⎣⎡⎦⎤0,14时,f (f (x ))≤f (x ). 其中你认为正确的所有命题的序号为________.三:解答题(本大题共六小题,共75分)16.(本题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,2b cos C =2a -c ,(1)求B ;(2)若△ABC 的面积为3,求b 的取值范围.17.(本题满分12分)已知a 2、a 5是方程x 2-12x +27=0的两根,数列{a n }是公差为正数的等差数列,数列{b n }的前n 项和为T n ,且T n =1-12b n (n ∈N *).(1)求数列{a n }、{b n }的通项公式;(2)记c n =a n b n ,求数列{c n }的前n 项和S n .18.(本题满分12分)已知函数f (x )=2sin π3sin ()x +π12cos ()x +π12-sin π6cos ()2x +π6.(1)求函数f (x )的最小正周期与单调递减区间;(2)若函数f (x )(x >0)的图象上的所有点的横坐标伸长到原来的2倍,所得的图象与直线y =1113交点的横坐标由小到大依次是x 1,x 2,…,x n ,求数列{x n }的前200项的和. 19.(本题满分12分)已知数列{}前n 项和为S n ,且),2(353,2*111N n n S a a S a n n n n ∈≥+-==--(Ⅰ)求数列的通项公式;(Ⅱ)若,且数列是单调递增数列,求实数的取值范围。

高三数学第一次月考试卷及解答试题

高三数学第一次月考试卷及解答试题

卜人入州八九几市潮王学校2021届一中高三第一次月考数学试卷〔理科〕本套试卷总分值是150分,考试时间是是120分钟.一.选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面, 只有一项为哪一项哪一项符合题目要求的.请把答案填在答卷页的表格内.}6,5,4,3,2,1,0{=U ,集合}4,3,1,0{=A ,集合}6,5,3,1{=B ,那么)(B C A U =〔〕A.}3,1{ B.}4,0{ C.}4,1,0{ D.}4,3,2,1,0{1:+x p ≤4,条件65:2+-x x q ≤0,那么p ⌝是q ⌝的〔〕 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.假设011<<b a ,那么以下结论中,不正确的选项是〔〕A .2b ab<B .22b a<C .2>+b a a bD .||||||b a b a -=-“,R x ∈∀x 2cos ≤x 2cos 〞的否认为()A.,R x ∈∀x 2cos x 2cos >B.,R x ∈∃x 2cos x 2cos >C.,R x ∈∀x 2cos <x 2cos D.,R x ∈∃x 2cos ≤x 2cos0>a ,假设关于x 的不等式2+ax ≥bx +2的解集为R ,那么b 的取值范围是〔〕A.<b2B.b ≤2 C.0<b ≤2D.0<<b 26.在极坐标系中,直线1cos =θρ与圆θρcos =的位置关系为〔〕A .相切B .相离C .直线过圆心D .直线与圆相交但不过圆心7.现从甲、乙、丙等6名学生中安排4人参加4×100m 接力赛跑。

第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,那么不同的安排方案一共有〔〕A .24种B .36种C .48种D .72种α+=+n 2009)310(,其中n 是正整数,α是小数,且10<<α,那么n 的值是〔〕A.αα-1B.21αα- C.αα21- D.αα-1二.填空题:〔只要求写出最后结果,并把结果写在答卷页的相应位置上,每一小题5分,一共35分〕x x x f 2666)(-+-=的最大值为nxx )1(+的展开式中,只有第6项的系数最大,那么,nx x )2(+展开式中2x 项的 系数为22cos lg(9)cos lg(9)x x x x +-<+-的解集为12.有10名同学先站成了前排3人后排7人来照毕业纪念像,但如今摄影师要从后排7人中抽2人 调整到前排,并使另外8个人的相对顺序不变,那么不同调整方法的总数是〔用数字答题〕13.假设参数方程⎩⎨⎧-=+=--θθsin )(cos )(t t t t e e y e e x (其中t 为参数,θ为常数,且θ为锐角)所表示的是离心率为2的双曲线,那么锐角θ的值是11)(--+=x x x f ,那么使)2()12(+=+x f x f 成立的x 取值范围是Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h1,那么有:2221111CB CA h +=;类比此性质,在四面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h , 那么得到的正确结论为:一.选择题答案卡:〔每一小题5分,一共40分.〕二、填空题答案卡:〔每一小题5分,一共35分.〕10.18011.)22,2()2,22(ππ --;12013π4.),0[]3,(+∞--∞ ;15.22221111PC PB PA h++= 三、解答题:〔本大题一一共6小题,总分值是75分.解容许写出文字说明、证明过程或者演算步骤.〕 16.〔此题总分值是12分〕p :[]21,2,0x x a ∀∈-≥.q :x ∃∈R ,使得2(1)10x a x +-+<.假设p 或者q 为真,p 且q 为假,求a 的取值范围.解:假设p 真,那么2x 的最小值≥a ,即1≥a ;(2分)假设q 真,那么04)1(2>--=∆a ,即,3>a 或者1-<a ;(2分) 假设p 或者q 为真,p 且q 为假,那么p 与q 为一真一假。

陕西省宝鸡市重点高中2023届高三上学期第一次月考 数学(理)试题

陕西省宝鸡市重点高中2023届高三上学期第一次月考 数学(理)试题

2022-2023学年度第一学期高三年级第一次月考数学(理科)宏志班试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一个选项是符合题目要求的)1.已知集合{2,1,0,1,2}A =--,(){|ln 1}B x y x ==+,则A B =( ) A .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}2.定义在R 上的函数()f x 满足对任意的12x x ,(12x x ≠)恒有11122122()()()()0x f x x f x x f x x f x --+>,若(0)a f =,(1)b f =,(2)c f =,则( ) A .c b a << B .a b c << C .c a b <<D .a c b <<3.下列判断错误..的是( ) A .“22am bm <”是“a b <”的充分不必要条件B .命题“x R ∀∈,3210x x --≤”的否定是“x R ∃∈,3210x x -->”C .若,p q 均为假命题,则p q ∧为假命题D .命题“若21x =,则1x =或1x =-”的逆否命题为“若1x ≠或1x ≠-,则21x ≠” 4.已知22111()x x f x x x++=+,则f (x )等于()A .x 2-x +1,x ≠0 B .2211x x x++,x ≠0C .x 2-x +1,x ≠1D .1+211x x+,x ≠1 5.sin1a =,lgsin1b =,sin110c =,则( ) A .a b c << B .b a c <<C .b c a <<D .c b a <<6.函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关总 分 值: 150分 试题范围:一轮复习第一章一第二章考试时间:120分钟7.函数e e ()x xf x x-+=的图象大致为( )A .B .C .D .8.已知(1)f x -是定义为R 上的奇函数,f (1)=0,且f (x )在[1,0)-上单调递增,在[0,)+∞上单调递减,则不等式()230xf -<的解集为( )A .(1,2)B .(,1)-∞C .(2,)+∞D .(,1)(2,)-∞⋃+∞9.解析数论的创始人狄利克雷在数学领域成就显著,对函数论、位势论和三角级数论都有重要贡献.以他名字命名的狄利克雷函数()1,,0,,x D x x ⎧=⎨⎩为有理数为无理数 以下结论错误的是( ) A .)()21D D <B .函数()y D x =不是周期函数C .()()1D D x =D .函数()y D x =在(),-∞+∞上不是单调函数10.设函数()f x 定义域为R ,(1)f x -为奇函数,(1)f x +为偶函数,当(1,1)x ∈-时,2()1f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上是减函数D .方程()lg 0f x x +=仅有6个实数解11.定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .612.定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有2()81f x ≤,则m 的取值范围是( ) A .10,3⎡⎫+∞⎪⎢⎣⎭B .11,3⎡⎫+∞⎪⎢⎣⎭C .13,3⎡⎫+∞⎪⎢⎣⎭D .143⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。

贵州省贵阳市第一中学2024-2025学年高三上学期第一次联考(9月月考) 数学试卷[含答案]

贵州省贵阳市第一中学2024-2025学年高三上学期第一次联考(9月月考) 数学试卷[含答案]

数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则(){}{}2230,1,2,3,4A x x x B =-->=∣A B ⋂=A.B.C.D.{}1,2{}1,2,3{}3,4{}42.下列函数在其定义域内单调递增的是()A.B.1y x =-2ln y x=C. D.32y x =e xy x =3.已知等差数列满足,则(){}n a 376432,6a a a a +=-=1a =A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为A ()2:20C y px p =>A A x 4,则( )p =A.1或2 B.2或4 C.2或8 D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“()23f x -[]2,3()f x (),21x A f -B ”是“”的( )x A ∈x B ∈A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x 是奇函数,则的最小值为()()h x ()f x A. B.C.D.e2e7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为()51x ⎫+⎪⎭A. B. C. D.253513238.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径221:220C x y x y +--=x y M N 2C为,且与圆相外切,则的最大值为()1C22C M C N ⋅A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )X ,m n X 20242025Pm nA. B.服从两点分布1m n +=X C.D.()20242025E X <<()D X mn=10.已知函数,下列说法正确的是( )()()214log 21f x ax ax =-+A.的定义域为,当且仅当()f x R 01a <<B.的值域为,当且仅当()f x R 1a C.的最大值为2,当且仅当()f x 1516a =D.有极值,当且仅当()f x 1a <11.设定义在上的可导函数和的导函数分别为和,满足R ()f x ()g x ()f x '()g x ',且为奇函数,则下列说法正确的是()()()()()11,3g x f x f x g x --=''=+()1g x +A.B.的图象关于直线对称()00f =()g x 2x =C.的一个周期是4 D.()f x 20251()0k g k ==∑三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.()0,0(0x y a a =>1)a ≠13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩ 123,,x x x 123x x x <<()()()123f x f x f x ==则的最大值为__________.()()()112233x f x x f x x f x ++四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形n n n a 中实心区域的面积为.nb (1)写出数列和的通项公式;{}n a {}n b (2)设,证明.121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,111A B C ABC -111A B C ABC 为线段的中点,为线段上的点.111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC HBC (1)若点为线段的中点,求证:平面;H BC 1A B ∥1C GH (2)若平面分三棱台所成两部分几何体的体积比为,求二面角1C GH 111A B C ABC -2:5的正弦值.11C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点()2222:10,0x y M a b a b -=>>2222:12x y N m m -=M 的焦距为.()2,2,N (1)分别求和的方程;M N (2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D ,,判断l M ,A B N C ABCD=直线与圆的位置关系.l 222:O x y a +=18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分[)[)[)[)[]0,20,20,40,40,60,60,80,80,100布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠22⨯0.01α=产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;P (ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人P 注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.X ()E X ()P X k =k参考公式:(其中为样本容量)()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++参考数据:α0.1000.0500.0100.005x α2.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.3sin33sin 4sinθθθ=-3cos34cos 3cos θθθ=-根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.()323f x x ax a =-+123,,x x x 123x x x <<(i )求的取值范围;a (ii )若,证明:.1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=2.对于A 选项,的定义域为,该函数在和上单调递增,在定义1y x =-()(),00,∞∞-⋃+(),0∞-()0,∞+域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在2ln y x =()(),00,∞∞-⋃+(),0∞-上单调递增,在定义域内不单调;对于C 选项,的定义域为,该函数在定()0,∞+32y x==[)0,∞+义域上单调递增;对于D 选项,的定义域为,当时,;当e x y x =().1e xy x =+'R (),1x ∞∈--0y '<时,,在上单调递减,在上单调递增,因此该函数在定()1,x ∞∈-+0y '>xe y x ∴=(),1∞--()1,∞-+义域内不单调,故选C.3.,故选B.53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= 4.设点,则整理得,解得或,故选C.()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =5.的定义域为.当时,的定义域为,()23f x - []2,323x ()1233,x f x -∴ []1,3即.令,解得的定义域为,即.[]1,3A =1213x- ()12,21x x f ∴- []1,2[]1,2B =“”是“”的必要不充分条件,故选B.,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x x f x -=+,当且仅当,即时,等号成立,()3e2e xxf x -=+3e 2e x x -=12ln 23x =C.min ()f x ∴=7.设的二项展开式的通项公式为,51x ⎫+⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有3,4,50,2,4k =1,3,5k =理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.223326C C 2C 5+=8.由题,,即圆心为,且,为的221:(1)(1)2C x y -+-=()11,1C()()2,0,0,2M N MN 1C 直径.与相外切,由中线关系,有1C 2C 12C C ∴==,当且()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=仅当时,等号成立,所以的最大值为20,故选A.22C M C N=22C M C N⋅二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 对于D 选项,令,则服从两点分布,,2024Y X =-Y ()()1D Y n n mn=-=,正确,故选ACD.()()()2024D X D Y D Y mn∴=+==10.令,对于A 选项,的定义域为或()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R ,故A 错误;对于B 选项,的值域为在定义域内的值域为0,01Δ0a a >⎧⇔<⎨<⎩ ()f x ()g x ⇔R ,故B 正确;对于C 选项,的最大值为在定义域内的最小值()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩ ()f x ()2g x ⇔为,故C 正确;对于D 选项,有极值在定义域内有极值()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔且,故D 选项错误,故选BC.()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠11.对于A 选项,因为为奇函数,所以,又由,可得()1g x +()10g =()()11g x f x --=,故A 错误;对于B 选项,由可得()()()101,01g f f -==-()()3f x g x '=+'为常数,又由,可得,则()()3,f x g x C C=++()()11g x f x --=()()11g x f x --=,令,得,所以,所以()()131g x g x C --+-=1x =-()()221g g C --=1C =-的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,()()()13,g x g x g x -=+2x =()1g x +所以,所以,所以()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=是一个周期为4的周期函数,,()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以()f x ()1g x +,又,又是周期为4的周期函数,所以()()()()10,204g g g g ==-=-()()310g g ==()g x ,故D 正确,故选BCD.20251()(1)0k g k g ===∑三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案e14433e 6-【解析】12.设切点坐标为切线方程为.将代入得,可得(),,ln ,txt a y a a ='∴ ln xy a a x =⋅(),tt a ln t ta a t a ⋅=切点纵坐标为.1log e,ln a t a ==∴elog e t a a a==13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其22A 13C 余元素共有种排法,故共有种不同的方案.44A 214234A C A 144⋅⋅=14.设,由的函数图象知,,又,()()()123f x f x f x t===()f x 23t < 1232,ln x x x t +=-=.令()()()3112233e ,2e t tx x f x x f x x f x t t =∴++=-+在上单调递增,则()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴ (]2,3,的最大值为.()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;{}n a 11133n n n a --=⨯=数列是首项为1,公比为的等比数列,因此,.{}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭(2)证明:由(1)可得1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-因为,2114314411334n n n nn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦所以,所以.413n n c a <43n n na c a < 16.(本小题满分15分)(1)证明:如图1,连接,设,连接,1A C 11A C C G O⋂=1,HO A G三棱台,则,又,111A B C ABC -11A C ∥AC 122CG AC ==四边形为平行四边形,∴11A C CG 则.1CO OA =点是的中点,H BC .1BA ∴∥OH 又平面平面,OH ⊂11,C HG A B ⊄1C HG 平面.1A B ∴∥1C HG (2)解:因为平面分三棱台所成两部分几何体的体积比为,1C GH 111A B C ABC -2:5所以,11127C GHC AB V V B C ABC-=-即,()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅++⋅ 化简得,12GHC ABC S S =此时点与点重合.H B ,1190C CA BCC ∠∠== 且都在平面,则平面,11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC 又为等腰直角三角形,则.ABC BG AC ⊥又由(1)知,则平面,1A G ∥1CC 1A G ⊥ABC 建立如图2所示的坐标系,G xyz -则,()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --设平面的法向量,1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 则令,解得,220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 设平面的法向量,1B GH ()()1,,,1,1,2m a b c GB ==- 则令,解得.20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 设二面角的平面角为,11C GH B --θ,cos cos ,m n m n m n θ⋅=<>=== 所以,sin θ==所以二面角.11C GH B --17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为N =解得,即双曲线.21m =22:12y N x -=因为双曲线与双曲线的离心率相同,M N 不妨设双曲线的方程为,M 222y x λ-=因为双曲线经过点,所以,解得,M ()2,242λ-=2λ=则双曲线的方程为.M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为l l ,()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+联立消去并整理得22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=此时可得,()()222222Δ44220,20,2k t k t t k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <当时,由韦达定理得;2λ=212122224,22kt t x x x x k k --+==--当时,由韦达定理得,1λ=234342222,22kt t x x x x k k --+==--则,ABCD====化简可得,222t k +=由(1)可知圆,22:2O x y +=则圆心到直线的距离,Ol d ====所以直线与圆相切或相交.l O 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);[)0,200.00252020010⨯⨯=在)内有(只);[20,400.006252020025⨯⨯=在)内有(只);[40,600.008752020035⨯⨯=在)内有(只);[60,800.025********⨯⨯=在内有(只)[]80,1000.00752020030⨯⨯=由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),10253570++=所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.0H 根据列联表中数据,得.220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.0.01α=(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”A =B =,事件“小白鼠注射2次疫苗后产生抗体”.C =记事件发生的概率分别为,则,,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====.()1P C =-()()10.20.50.9P A P B =-⨯=所以一只小白鼠注射2次疫苗后产生抗体的概率.0.9P =(ii )由题意,知随机变量,()100,0.9X B ~所以.()1000.990E X np ==⨯=又,设时,最大,()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =所以00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩解得,因为是整数,所以.089.990.9k 0k 090k =19.(本小题满分17分)(1)若选①,证明如下:()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-若选②,证明如下:()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--.()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,()233f x x a =-'当时,恒成立,所以在上单调递增,至多有一个零点;0a ()0f x ' ()f x (),∞∞-+当时,令,得;令,得0a >()0f x '=x =()0f x '<x <<令,得()0f x '>x <x>所以在上单调递减,在上单调递增.()f x ((),,∞∞-+有三个零点,则即解得,()fx (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<当时,,04a <<4a +>且,()()()()32224(4)3445160f a a a a a a a a a+=+-++=++++>所以在上有唯一一个零点,()fx )4a +同理()2220,g a -<-=-=-<所以在上有唯一一个零点.()f x (-又在上有唯一一个零点,所以有三个零点,()f x (()f x 综上可知的取值范围为.a ()0,4(ii )证明:设,()()()()321233f x x ax a x x x x x x =-+=---则.()212301f a x x x ==-=又,所以.04a <<1a =此时,()()()()210,130,110,230f f f f -=-<-=>=-<=>方程的三个根均在内,3310x x -+=()2,2-方程变形为,3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭令,则由三倍角公式.ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=因为,所以.3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==所以222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。

高三上册数学第一次月考理科试题(带答案)

高三上册数学第一次月考理科试题(带答案)

高三上册数学第一次月考理科试题(带答案)2021届高三上册数学第一次月考文科试题〔带答案〕本试卷分第一卷(选择题)和第二卷(非选择题)两局部。

答题时120分钟,总分值150分。

第一卷(选择题共10小题,每题5分,共50分)一、选择题(每题给出的四个选项中,只要一个选项契合标题要求.)1.假定集合 , ,那么 ( )A. B. C. D.答案:A解析:集合A={ },A={ },所以,2.在复平面内,双数对应的点的坐标为()A. B. C. D.答案:A解析:原式= = ,所以,对应的坐标为(0,-1),选A3. 为等差数列,假定,那么的值为( )A. B. C. D.答案:D解析:由于为等差数列,假定,所以,,4. 函数有且仅有两个不同的零点,,那么()A.当时,,B.当时,,C.当时,,D.当时,,答案:B解析:函数求导,得:,得两个极值点:由于函数f(x)过定点(0,-2),有且仅有两个不同的零点,所以,可画出函数图象如以下图:因此,可知,,只要B契合。

5. 设集合是的子集,假设点满足:,称为集合的聚点.那么以下集合中以为聚点的有:① ; ② ; ③ ; ④ () A.①④B.②③C.①②D.①②④答案:A【解析】①中,集合中的元素是极限为1的数列,在的时分,存在满足0|x-1|1是集合的聚点②集合中的元素是极限为0的数列,最大值为2,即|x-1|1 关于某个a1,不存在0|x-1| ,1不是集合的聚点③关于某个a1,比如a=0.5,此时对恣意的xZ,都有|x﹣1|=0或许|x﹣1|1,也就是说不能够0|x﹣1|0.5,从而1不是整数集Z的聚点④ 0,存在0|x-1|0.5的数x,从而1是整数集Z的聚点应选A6. 在以下命题中, ① 是的充要条件;② 的展开式中的常数项为;③设随机变量 ~ ,假定 ,那么 .其中一切正确命题的序号是()A.②B.②③C.③D.①③答案:B解析:①是充沛不用要条件,故错误;② ,令12-4k=0,得,k=3,所以,常数项为2,正确;③正态散布曲线的对称轴是x=0,,所以,正确;7.偶函数 ,当时, ,当时, ( ).关于偶函数的图象G和直线 : ( )的3个命题如下:①当a=4时,存在直线与图象G恰有5个公共点;②假定关于 ,直线与图象G的公共点不超越4个,那么a③ ,使得直线与图象G交于4个点,且相邻点之间的距离相等.其中正确命题的序号是()A.①②B.①③C.②③D.①②③答案:D解析:由于函数和的图象的对称轴完全相反,所以两函数的周期相反,所以,所以,当时,,所以,因此选A。

高三第一次月考数学试卷

高三第一次月考数学试卷

高三第一次月考数学试卷一、选择题(每题5分,共60分)1.已知集合A={x∣x2−3x−4≤0},则A的解集为:A. (−1,4]B. [−1,4]C. (−∞,−1]∪[4,+∞)D. [−4,3]2.复数z=1+i2i的共轭复数为:A. 1−iB. 1+iC. −1+iD. −1−i3.函数f(x)=log2(x2−2x−3)的定义域为:A. (−∞,−1)∪(3,+∞)B. (−1,3)C. [−1,3]D. (−∞,−1]∪[3,+∞)4.已知向量a=(1,2),b=(3,−1),则a⋅b=:A. 1B. -1C. 5D. -55.下列函数中,在区间(0,+∞)上单调递增的是:A. y=x1B. y=x2−2xC. y=log21xD. y=2x6.已知等差数列{an}的前n项和为Sn,若a1=1,S3=−3,则a2+a4=:A. -4B. -2C. 0D. 27.下列命题中,正确的是:A. 若a>b,则ac2>bc2B. 若a>b,c>d,则a−d>b−cC. 若a>b,c>d,则ac>bdD. 若a>b,则a1<b18.已知函数f(x)=sin(2x+6π),则f(6π)的值为:A. 21B. −21C. 23D. −239.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过F的直线与抛物线交于A,B两点,交准线l于D,若BF=3FA,则∣AB∣∣DF∣=:A. 21B. 31C. 32D. 4310.已知函数f(x)=ln(x+1)−x+1ax在其定义域内单调递增,则实数a的取值范围是:A. (−∞,1]B. [−1,+∞)C. (−∞,−1]D. [1,+∞)11.已知椭圆C:a2x2+b2y2=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线与椭圆C交于A,B两点,若∣BF2∣=2∣AF2∣,4cos∠AF1F2=10,则C的离心率为:A. 22B. 23C. 35D. 3612.已知函数f(x)={(3a−1)x+4a,log ax,x<1x≥1是(−∞,+∞)上的减函数,则实数a的取值范围是:A. (0,71]B. [71,31)C. (0,31]D. [31,1)二、填空题(每题5分,共20分)1.若x,y∈R,且xy=2,则x2+y2的最小值为 _______。

高三数学第一次月考题(理)

高三数学第一次月考题(理)

高三数学第一次月考题(理)2021秋高三数学第一次月考题〔理〕一、选择题:本大题共8小题,每题5分,总分值40分,在每题给出的四个选项中,只要一项为哪一项契合标题要求的.1、集合那么A. B.C. D.2、双数满足那么A. B. C. D.3、假定变量满足约束条件的最大值和最小值区分为和,那么A.6B.-6C.0D.14、假定实数k满足那么曲线与曲线的A.离心率相等B.虚半轴长相等C. 实半轴长相等D.焦距相等5、向量那么以下向量中与成夹角的是A.(-1,1,0)B. (1,-1,1)C. (0,-1,1)D. (-1,0,1)6、某地域中小学先生人数和远视状况区分如图1和如图2所示,为了解该地域中下先生的远视构成缘由,用分层抽样的方法抽取2%的先生停止调查,那么样本容量和抽取的高中生远视人数区分为A. 100,10B. 200,10C. 100,20D. 200,207、假定空间中四条两两不同的直线满足那么下面结论一定正确的选项是A. B. C. 既不垂直也不平行 D. 的位置关系不确定8、函数是定义在上的奇函数且当时,不等式成立,假定,,那么的大小关系是A. B. C. D.二、填空题:本大题共7小题.考生作答6小题.每题5分,总分值30分.(一)必做题(9~13题)9、不等式的解集为10、曲线在点处的切线方程为11、从中任取3个不同的数,那么这3个数的平均数是6的概率为12、在中,角所对应的边区分为,,那么13、假定等比数列的各项均为正数,且,那么(二)选做题(14、15题,考生只能从中选做一题)14、(坐标系与参数方程选做题)在极坐标系中,曲线和的方程区分为和,以极点为平面直角坐标系的原点,极轴为轴正半轴,树立平面直角坐标系,那么曲线和交点所在的直线方程为_________15、(几何证明选讲选做题)如图3,在平行四边形中,点在上且,与交于点,那么三、解答题:本大题共6小题,总分值80分.解答须写出文字说明、证明进程和演算步骤.16、(本小题总分值12分)函数,且,(1)求的值;(2)求的单调区间;(3)求在区间内的最值.17、(本小题总分值12分)随机观测消费某种零件的某工厂25名工人的日加工零件数(单位:件),取得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33, 43,38,42,32,34,46,39,36依据上述数据失掉样本的频率散布表如下:分组频数频率[25,30]30.12(30,35]50.20(35,40]80.32(40,45](45,50](1)确定样本频率散布表中和的值;(2)求在这25名工人中恣意抽取2人,且恰有1人的日加工零件数落在区间(30,35]的概率;(3)求在该厂少量的工人中任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18、(本小题总分值14分)如图4,在正方体中,是与的交点(1)求直线与直线所成角的余弦值;(2)求直线与平面所成角的正弦值;(2)求二面角的正切值.19、(本小题总分值14分)设各项均为正数的数列的前项和为,且满足①(1)求的值;(2)对①停止因式分解并求数列的通项公式;(3)证明:对一切正整数,有②20、(本小题总分值14分)椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(2+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点.(1)求椭圆和双曲线的规范方程;(2)设直线PF1、PF2的斜率区分为k1、k2,证明:k1k2=1.21、(本小题总分值14分)函数,讨论函数的单调性.参考答案DBCDBDDB9. 10. 11. 12.3 13. 14. 15.1616、解:(1)依题意有,所以 (3分)(2)增区间:,即的单调增区间为 (6分)减区间:,即的单调减区间为 (9分)(3) 当,即时,取得最大值为,没有最小值.(12分) 留意:单调区间没有写成区间方式每个扣1分;没有写扣一分;求出最小值,扣1分17、解:(1) (3分)(全对给3分,局部对给1分)(2)25名工人中,日加工零件数落在区间(30,35]的人数为5人,设在这25名工人中恣意抽取2人,且恰有1人的日加工零件数落在区间(30,35]的事情为,那么 (6分)(3)由(1)知,任取一人,日加工零件数落在区间(30,35]的概率为,设该厂任取4人,没有人日加工零件数落在区间(30,35]的事情为,恰有1人人日加工零件数落在区间(30,35]的事情为,那么 (8分),,(10分)故至少有1人的日加工零件数落在区间(30,35]的概率为答:在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为 (12分)18、解:(1) (4分)(2) (8分)(3) (14分)留意:此题用传统方法和向量方法皆可,教员们酌情设置给分点.19、解:(1) (3分)(2) (9分)(3)由于故② ,即②成立(14分)20、解:(1)设椭圆的半焦距为c,由题意知:ca=22,2a+2c=4(2+1),所以a=22,c=2,又a2=b2+c2,因此b=2. 故椭圆的规范方程为x28+y24=1.(4分)由题意设等轴双曲线的规范方程为x2m2-y2m2=1(m0),由于等轴双曲线的顶点是椭圆的焦点,所以m=2,因此双曲线的规范方程为x24-y24=1.(8分)(2)证明:P(x0,y0),那么k1=y0x0+2,k2=y0x0-2.由于点P在双曲线x2-y2=4上,所以x20-y20=4.因此k1k2=y0x0+2y0x0-2=y20x20-4=1,即k1k2=1.(14分) 21、解:的定义域为, (4分)(1)当时,,在区间上是增函数;(8分)(2)当时,设,那么二次方程的判别式i)当时,,在区间上是增函数;ii)当时,二次方程有两个不相反的实数根,记为,结合函数的图像可知,在区间和上是增函数,在区间上是减函数.(14分) (也可以用韦达定理说明,故均为正数)2021秋高三数学第一次月考题〔理〕就分享到这里了,更多相关信息请继续关注高考数学试题栏目!。

2021年高三第一次月考(理数)

2021年高三第一次月考(理数)

2021年高三第一次月考(理数)高三理科数学试题一、选择题:(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合M=,集合N=,则()2.若复数是纯虚数(是虚数单位,是实数),则( )A.-2 B. C. D.23.若函数(),则是( )A.最小正周期为的奇函数 B. 最小正周期为的奇函数C.最小正周期为的偶函数 D. 最小正周期为的偶函数4.已知两条不同直线和及平面,则直线的一个充分条件是( )A.且B.且C.且D.且5.已知等差数列{}的前n项和为,若,则= ()A.68 B.72 C.54 D.906.如图,三棱柱的侧棱长为2,底面是边长为1的正三角形,,Array正视图是长为2,宽为1的矩形,则该三棱柱的侧视图(或左视图)的面积为()A.B.C.D.7.在区间[0,]上随机取一个数x,则事件“”发生的概率为()A.B.C.D.8.平面内称横坐标为整数的点为“次整点”.过函数图象上任意两个次整点作直线,则倾斜角大于45°的直线条数为()A.10 B.11 C.12D.13二、填空题:(本大题共6小题,每小题5分,满分30分.其中14~15是选做题,考生只能选做一题,两题全答的,只计算前一题得分)9. 已知向量、的夹角为120°,且,则的值为.10. 函数与轴围成的面积是__________.11. 如右图所示的算法流程图中,输出S 的值为 .12设481211011112(1)(2)x x a x a x a x a -+=++++,则 = .13. 设实数的取值范围 是 .14.(坐标系与参数方程选做题).在极坐标系中,过点作圆 的切线,则切线极坐标方程为 ..15.(几何证明选讲选做题).如图,是⊙的直径,是延长线上的一点,过作⊙的切线,切点为,,若,则⊙的直径 . .AOB PC三、解答题:(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(本小题满分12分)设函数的图象经过点.(Ⅰ)求的解析式,并求函数的最小正周期和最值. (Ⅱ)若,其中是面积为的锐角的内角,且, 求和的长。

高三上册第一次月考数学试卷(理科)

高三上册第一次月考数学试卷(理科)

高三上册第一次月考数学试卷(理科)2021-2021学年高三上册第一次月考数学试卷〔文科〕一、选择题:(本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只要一项为哪一项契合标题要求的)1.在复平面内,双数 1 2i 对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.有一段三段论推理是这样的:关于可导函数f(x),假设f(x0)=0,那么x=x0是函数f(x)的极值点,由于函数f(x)=x3在x=0处的导数值f(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()A.大前提错误B.小前提错误C.推理方式错误D.结论正确3.直线y=kx是y=lnx的切线,那么k的值是()A.eB.-eC. 1 eD.- 1 e4.曲线y=cosx(0 3 2 )与x轴以及直线x= 3 2 所围图形的面积为()A.4B.2C. 5 2D.35.设f(x)是函数f(x)的导函数,将y=f(x)和y=f(x)的图象画在同一个直角坐标系中,不能够正确的选项是()A.B.C.D.6.平面几何中,有边长为a的正三角形内任一点到三边距离之和为定值3 2 a,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为()A.4 3 a B.6 3 a C.5 4 a D.6 4 a7.(x 1 3x )10的展开式中含x的正整数指数幂的项数是()A.0B.2C.4D.68.直线x-3y-1=0的倾斜角为,曲线y=lnx在(x0,lnx0)处的切线的倾斜角为2,那么x0的值是()A. 4 3B. 3 4C. 3 5D. 5 39.将4个颜色互不相反的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,那么不同的放球方法有()A.10种B.20种C.36种D.52种10.假定函数f(x)=x3-3bx+3b在(0,1)内有极小值,那么()A.00 D.b 1 2二、填空题(本大题共5小题,每题5分,共25分.把答案填在题中横线上).11.定义运算a b c d=ad-bc,那么契合条件1 1 z zi=4+2i的双数z为.显示解析12.假定点O在三角形ABC内,那么有结论S△OBCOA +S△OACOB +S△OABOC =0 ,把命题类比推行到空间,假定点O在四面体ABCD内,那么有结论:.13.函数y= 1 3 x3+x2+ax5在(-,+)总是单调函数,那么a 的取值范围是.14.记者要为5名志愿者和他们协助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有.15.假设(1+x+x2)(x-a)5(a为实常数)的展开式中一切项的系数和为0,那么展开式中含x4项的系数为.三、解答题:本大题共6小题,共75分.解容许写出文字说明,证明进程或演算步骤.16.双数z=(m2-8m+15)+(m2-9m+18)i在复平面内表示的点为A,实数m取什么值时:(1)z为实数?(2)z为纯虚数?(3)A位于第三象限?17.:a0,求证:abab .18.函数f(x)=ax3+bx2+cx(a0)定义在R上的奇函数,且x=-1时,函数取极值1.(1)求a,b,c的值;(2)假定对恣意的x1,x2[-1,1],均有|f(x1)-f(x2)|s成立,求s的最小值.19.函数f(x)= 1 3 x3+ax2+bx(a,bR)在x=-1时取得极值.(1)试用含a的代数式表示b;(2)求f(x)的单调区间.20.数列{an}的前n项和Sn=1-nan(nN*)(1)计算a1,a2,a3,a4;(2)猜想an的表达式,并用数学归结法证明你的结论. 21.函数f(x)=x+ a x +lnx,(aR).(Ⅰ)假定f(x)有最值,务实数a的取值范围;(Ⅱ)当a2时,假定存在x1、x2(x1x2),使得曲线y=f(x)在x=x1与x=x2处的切线相互平行,求证:x1+x28.2021-2021学年高三上册第一次月考数学试卷〔文科〕就分享到这里了,更多相关信息请继续关注高考数学试题栏目!。

2021年高三数学第一学期第一次月考试卷 理(含解析)

2021年高三数学第一学期第一次月考试卷 理(含解析)

2021年高三数学第一学期第一次月考试卷理(含解析)一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={1,5,a},B={2,b},若A∩B={2,5},则a+b的值是() A. 10 B. 9 C. 7 D. 42.复数(i是虚数单位)在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数y=的图象关于x轴对称的图象大致是()A. B.C. D.4.函数f(x)=2x﹣的一个零点在区间(1,2)内,则实数a的取值范围是() A.(1,3) B.(1,2) C.(0,3) D.(0,2)5.定积分的值为()A.﹣1 B. 1 C. e2﹣1 D. e26.下列命题中的假命题是()A.存在x∈R,lgx=0 B.存在x∈R,tanx=1C.任意x∈R,x3>0 D.任意x∈R,2x>07.设P={x|x<4},Q={x|x2<4},则()A. P包含于Q B. Q包含于P C. P包含于C R Q D. Q包含于C R P8.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.设函数,则下列结论错误的是()A. D(x)的值域为{0,1} B. D(x)是偶函数C. D(x)不是周期函数 D. D(x)不是单调函数10.定义在R上的函数f(x),当x≠﹣2时,恒有(x+2)f′(x)<0(其中f′(x)是函数f(x)的导数),又a=f(log3),b=f[],c=f(ln3),则()A. a<b<c B. b<c<a C. c<a<b D. c<b<a11.设函数f(x)=xe x,则()A. x=1为f(x)的极大值点 B. x=1为f(x)的极小值点C. x=﹣1为f(x)的极大值点 D. x=﹣1为f(x)的极小值点12.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣ B.﹣ C. D.二、填空题.(本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13.函数f(x)=的定义域为.14.如图是一个算法的流程图,则输出S的值是.15.已知定义域为R的函数f(x)在(﹣5,+∞)上为减函数,且函数y=f(x﹣5)为偶函数,设a=f(﹣6),b=f(﹣3),则a,b的大小关系为.16.曲线y=x3﹣x+3在点(1,3)处的切线方程为.三、解答题.(本大题共5小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.)17.已知等差数列{a n}的前n项和为S n,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.18.为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4.(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;(Ⅱ)求二面角A﹣PB﹣D的余弦值.20.已知圆C1:(x+)2+y2=,圆C2:(x﹣)2+y2=,动圆P与已知两圆都外切.(1)求动圆的圆心P的轨迹E的方程;(2)直线l:y=kx+1与点P的轨迹E交于不同的两点A、B,AB的中垂线与y轴交于点N,求点N的纵坐标的取值范围.21.已知函数g(x)=,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(3)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.四、请在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.【选修4—1:平面几何选讲】(本小题满分10分)22.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF 与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为ρ2﹣4ρcosθ+3=0.(1)求直线C的普通方程和曲线P的直角坐标方程;(2)设直线C和曲线P的交点为A、B,求|AB|.【选修4-5:不等式选讲】(共1小题,满分0分)24.设函数f(x)=|2x﹣a|+5x,其中a>0.(Ⅰ)当a=3时,求不等式f(x)≥5x+1的解集;(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.xx学年河南省驻马店市确山二中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={1,5,a},B={2,b},若A∩B={2,5},则a+b的值是()A. 10 B. 9 C. 7 D. 4考点:并集及其运算.专题:集合.分析:由A与B,以及两集合的交集,确定出a与b的值,即可求出a+b的值.解答:解:∵A={1,5,a},B={2,b},且A∩B={2,5},∴a=2,b=5,则a+b=7.故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.复数(i是虚数单位)在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:复数代数形式的乘除运算;复数的基本概念.分析:先对复数化简并整理出实部和虚部,求出对应的点的坐标,即判断出点所在的象限.解答:解:∵==2+i,∴在复平面上对应的点坐标是(2,1),即在第一象限,故选A.点评:本题考查了复数的乘除运算,以及复数的几何意义,属于基础题.3.函数y=的图象关于x轴对称的图象大致是()A. B.C. D.考点:指数函数的图像变换.专题:综合题.分析:先求出原函数的单调性以及定义域,再结合关于x轴对称的函数图象自检的关系即可得到正确答案.解答:解:∵函数y═=﹣1的定义域为[0,+∞),且图象是在定义域上单调递增,最低点为(0,﹣1)∴所求图象在定义域上单调递减,最高点为(0,1).故选:B.点评:本题主要考查了幂函数的图象,以及图象过的特殊点的坐标,属于基础题.一般解决这类问题常用排除法.4.函数f(x)=2x﹣的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3) B.(1,2) C.(0,3) D.(0,2)考点:函数零点的判定定理.专题:计算题.分析:由题意可得f(1)f(2)=(0﹣a)(3﹣a)<0,解不等式求得实数a的取值范围.解答:解:由题意可得f(1)f(2)=(0﹣a)(3﹣a)<0,解得 0<a<3,故实数a的取值范围是(0,3),故选C.点评:本题考查函数零点的定义以及函数零点判定定理的应用,属于基础题.5.定积分的值为()A.﹣1 B. 1 C. e2﹣1 D. e2考点:定积分.专题:计算题.分析:由定积分的定义根据公式直接变形,求出定积分的值即可解答:解:定积分=(e x)|0ln2=2﹣1=1答案为:1.故选B.点评:本题考查定积分,解题的关键是掌握住定积分的定义及其公式,本题是基本概念题.6.下列命题中的假命题是()A.存在x∈R,lgx=0 B.存在x∈R,tanx=1C.任意x∈R,x3>0 D.任意x∈R,2x>0考点:命题的真假判断与应用.分析: A、B、C可通过取特殊值法来判断;D、由指数函数的值域来判断.解答:解:A、x=1成立;B、x=成立;D、由指数函数的值域来判断.对于C选项x=﹣1时,(﹣1)3=﹣1<0,不正确.故选C点评:本题考查逻辑语言与指数数、二次函数、对数函数、正切函数的值域,属容易题.7.设P={x|x<4},Q={x|x2<4},则()A. P包含于Q B. Q包含于P C. P包含于C R Q D. Q包含于C R P考点:集合的包含关系判断及应用.专题:集合.分析:此题只要求出x2<4的解集{x|﹣2<x<2},画数轴即可求出解答:解:P={x|x<4},Q={x|x2<4}={x|﹣2<x<2},如图所示,可知Q包含于P,故B正确.点评:此题需要学生熟练掌握子集、真子集和补集的概念,主要考查了集合的基本运算,属容易题.8.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:考虑“a>0且b>0”与“a+b>0且ab>0”的互推性.解答:解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”的充分必要条件,故选C点评:本题考查充分性和必要性,此题考得几率比较大,但往往与其他知识结合在一起考查.9.设函数,则下列结论错误的是()A. D(x)的值域为{0,1} B. D(x)是偶函数C. D(x)不是周期函数 D. D(x)不是单调函数考点:分段函数的解析式求法及其图象的作法.专题:证明题.分析:由函数值域的定义易知A结论正确;由函数单调性定义,易知D结论正确;由偶函数定义可证明B结论正确;由函数周期性定义可判断C结论错误,故选D解答:解:A显然正确;∵=D(x),∴D(x)是偶函数,B正确;∵D(x+1)==D(x),∴T=1为其一个周期,故C错误;∵D()=0,D(2)=1,D()=0,显然函数D(x)不是单调函数,故D正确;故选:C.点评:本题主要考查了函数的定义,偶函数的定义和判断方法,函数周期性的定义和判断方法,函数单调性的意义,属基础题10.定义在R上的函数f(x),当x≠﹣2时,恒有(x+2)f′(x)<0(其中f′(x)是函数f(x)的导数),又a=f(log3),b=f[],c=f(ln3),则()A. a<b<c B. b<c<a C. c<a<b D. c<b<a考点:利用导数研究函数的单调性;对数值大小的比较.专题:函数的性质及应用;导数的综合应用.分析:先由条件(x+2)f′(x)<0得到函数的单调区间,再比较自变量log3与与ln3的大小解答:解:(x+2)f′(x)<0⇔或∴f(x)在(﹣∞,﹣2)时递增,f(x)在(﹣2,+∞)时递减,=﹣1,0<<1,1<ln3∴log3<<ln3,又函数f(x)在(﹣2,+∞)时递减,∴f(log3)>f[]>f(ln3),∴a>b>c故选:D点评:本题考查函数的单调性,比较函数值的大小转化为比较自变量的大小是解题的关键.11.(5分)(xx•开福区校级模拟)设函数f(x)=xe x,则()A. x=1为f(x)的极大值点 B. x=1为f(x)的极小值点C. x=﹣1为f(x)的极大值点 D. x=﹣1为f(x)的极小值点考点:利用导数研究函数的极值.专题:导数的概念及应用.分析:由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点解答:解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选:D点评:本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,12.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣ B.﹣ C. D.考点:奇函数;函数的周期性.专题:计算题.分析:由题意得 =f(﹣)=﹣f(),代入已知条件进行运算.解答:解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故选:A.点评:本题考查函数的周期性和奇偶性的应用,以及求函数的值.二、填空题.(本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13.函数f(x)=的定义域为(0,] .考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.14.如图是一个算法的流程图,则输出S的值是63 .考点:设计程序框图解决实际问题.专题:算法和程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求满足条件S=1+2+22+…+2n≥33的最小的S值,并输出.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求满足条件S=1+2+22+…+2n≥33的最小的S值∵S=1+2+22+23+24=31<33,不满足条件.S=1+2+22+23+24+25=63≥33,满足条件故输出的S值为:63.故答案为:63点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.15.已知定义域为R的函数f(x)在(﹣5,+∞)上为减函数,且函数y=f(x﹣5)为偶函数,设a=f(﹣6),b=f(﹣3),则a,b的大小关系为a>b .考点:奇偶性与单调性的综合.专题:计算题.分析:函数y=f(x﹣5)为偶函数,及函数的图象的平移可知y=f(x)的图象关于x=﹣5对称,由函数f(x)在(﹣5,+∞)上为减函数及a=f(﹣6)=f(﹣4)可比较a,b的大小解答:解:∵函数y=f(x﹣5)为偶函数,图象关于x=0对称又∵由y=f(x﹣5)向左平移5个单位可得函数y=f(x)的图象∴y=f(x)的图象关于x=﹣5对称∵函数f(x)在(﹣5,+∞)上为减函数∴a=f(﹣6)=f(﹣4)>b=f(﹣3)∴a>b故答案为:a>b点评:本题主要考查了偶函数的图象的对称及函数的图象的平移,函数的单调性在大小比较中的应用.16.曲线y=x3﹣x+3在点(1,3)处的切线方程为2x﹣y+1=0 .考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:先求出导函数,然后将x=1代入求出切线的斜率,利用点斜式求出直线的方程,最后化成一般式即可.解答:解:y′=3x2﹣1,令x=1,得切线斜率2,所以切线方程为y﹣3=2(x﹣1),即2x﹣y+1=0.故答案为:2x﹣y+1=0.点评:本题主要考查导数的几何意义:在切点处的导数值为切线的斜率、考查直线的点斜式,属于基础题.三、解答题.(本大题共5小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.)17.已知等差数列{a n}的前n项和为S n,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.考点:等差数列与等比数列的综合.专题:计算题.分析:(I)将已知等式用等差数列{a n}的首项、公差表示,列出方程组,求出首项、公差;利用等差数列的通项公式求出数列{a n}的通项公式.(II)利用等比数列的通项公式求出,进一步求出b n,根据数列{b n}通项的特点,选择错位相减法求出数列{b n}的前n项和T n.解答:解:(Ⅰ)依题意得解得,∴a n=a1+(n﹣1)d=3+2(n﹣1)=2n+1,即a n=2n+1.(Ⅱ),b n=a n•3n﹣1=(2n+1)•3n﹣1T n=3+5•3+7•32+…+(2n+1)•3n﹣13T n=3•3+5•32+7•33+…+(2n﹣1)•3n﹣1+(2n+1)•3n﹣2T n=3+2•3+2•32+…+2•3n﹣1﹣(2n+1)3n∴T n=n•3n.点评:解决等差、等比两个特殊数列的问题,一般将已知条件用基本量表示,列出方程组解决;求数列的前n项和,一般先求出数列的通项,根据通项的特点选择合适的求和方法.18.为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.专题:计算题.分析:(1)设报考飞行员的人数为n,前三小组的频率分别为p1,p2,p3,根据前3个小组的频率之比为1:2:3和所求频率和为1建立方程组,解之即可求出第二组频率,然后根据样本容量等于进行求解即可;(2)由(1)可得,一个报考学生体重超过60公斤的概率为,所以x服从二项分布,从而求出x的分布列,最后利用数学期望公式进行求解.解答:解:(1)设报考飞行员的人数为n,前三小组的频率分别为p1,p2,p3,则由条件可得:解得p1=0.125,p2=0.25,p3=0.375…(4分)又因为,故n=48…(6分)(2)由(1)可得,一个报考学生体重超过60公斤的概率为…(8分)所以x服从二项分布,∴随机变量x的分布列为:x 0 1 2 3p则…(12分)(或:)点评:本题主要考察了频率分布直方图,以及离散型随机变量的概率分布和数学期望,同时考查了计算能力,属于中档题.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4.(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;(Ⅱ)求二面角A﹣PB﹣D的余弦值.考点:用空间向量求平面间的夹角;平面与平面垂直的判定.专题:综合题;空间角.分析:(I)欲证平面MBD⊥平面PAD,根据面面垂直的判定定理可知在平面MBD内一直线与平面PAD垂直,而根据平面PAD与平面ABCD垂直的性质定理可知BD⊥平面PAD;(Ⅱ)建立空间直角坐标系,求出平面PAB的法向量,平面PBD的法向量为,利用向量的数量积公式,可求二面角A﹣PB﹣D的余弦值.解答:(Ⅰ)证明:在△ABD中,由于AD=4,BD=8,AB=4,所以AD2+BD2=AB2,所以AD⊥BD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面PAD,又BD⊂平面MBD,故平面MBD⊥平面PAD(Ⅱ)建立如图所示的空间直角坐标系,则D(0,0,0),A(4,0,0),P(2,0,2),B (0,8,0)∴,设平面PAB的法向量为由可得,取同理可得平面PBD的法向量为∴cos==∴二面角A﹣PB﹣D的余弦值为.点评:本题主要考查平面与平面垂直的判定,考查空间角解题的关键是掌握面面垂直的判定,正确运用向量法求解空间角.20.已知圆C1:(x+)2+y2=,圆C2:(x﹣)2+y2=,动圆P与已知两圆都外切.(1)求动圆的圆心P的轨迹E的方程;(2)直线l:y=kx+1与点P的轨迹E交于不同的两点A、B,AB的中垂线与y轴交于点N,求点N的纵坐标的取值范围.考点:轨迹方程;圆与圆的位置关系及其判定.专题:圆锥曲线的定义、性质与方程.分析:(1)求出已知两圆的圆心坐标和半径,由两圆的位置关系求得|PC1|,|PC2|,由知点P在以C1,C2为焦点的双曲线右支上,从而求得E的方程;(2)联立直线和双曲线方程,化为关于x的一元二次方程,设出A,B的坐标,由根与系数关系得到A,B的横纵坐标的和,求出AB的中点坐标,由直线方程的点斜式得到AB的中垂线方程,表示出直线在y轴上的截距后由k的范围得答案.解答:解:(1)已知两圆的圆心半径分别为,,设动圆P的半径为r,由题意知,,则.则点P在以C1,C2为焦点的双曲线右支上,其中,则,求得E的方程为2x2﹣y2=1(x>0);(2)将直线y=kx+1代入双曲线方程,并整理得(k2﹣2)x2+2kx+2=0.设A(x1,y1),B(x2,y2),AB的中点为M(x0,y0).依题意,直线l与双曲线的右支交于不同两点,故⇒.且,.则AB的中垂线方程为.令x=0,得.∵﹣2<k<﹣,∴.点评:本题考查了轨迹方程,考查了圆与圆的位置关系,考查了直线与圆锥曲线的位置关系,涉及直线与圆锥曲线位置关系问题,常把直线方程和曲线方程联立,利用一元二次方程的根与系数的关系解题,是高考试卷中的压轴题.21.已知函数g(x)=,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(3)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:压轴题;导数的综合应用.分析:(1)根据解析式求出g(x)的定义域和g′(x),再求出临界点,求出g′(x)<0和g′(x)>0对应的解集,再表示成区间的形式,即所求的单调区间;(2)先求出f(x)的定义域和f′(x),把条件转化为f′(x)≤0在(1,+∞)上恒成立,再对f′(x)进行配方,求出在x∈(1,+∞)的最大值,再令f′(x)max≤0求解;(3)先把条件等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,由(2)得f′(x)2]上的最小值,结合(2)求出的a的范围max,并把它代入进行整理,再求f′(x)在[e,e对a进行讨论:和,分别求出f′(x)在[e,e2]上的单调性,再求出最小值或值域,代入不等式再与a的范围进行比较.解答:(1)解:由得,x>0且x≠1,则函数g(x)的定义域为(0,1)∪(1,+∞),且g′(x)=,令g′(x)=0,即lnx﹣1=0,解得x=e,当0<x<e且x≠1时,g′(x)<0;当x>e时,g′(x)>0,∴函数g(x)的减区间是(0,1),(1,e),增区间是(e,+∞),(2)由题意得函数f(x)=在(1,+∞)上是减函数,∴f′(x)=﹣a≤0在(1,+∞)上恒成立,即当x∈(1,+∞)时,f′(x)max≤0即可,又∵f′(x)=﹣a==,∴当时,即x=e2时,.∴,得,故a的最小值为.(3)命题“若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立”等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,由(2)得,当x∈[e,e2]时,,则,故问题等价于:“当x∈[e,e2]时,有”,当时,由(2)得,f(x)在[e,e2]上为减函数,则,故,当时,由于f′(x)=在[e,e2]上为增函数,故f′(x)的值域为[f′(e),f′(e2)],即[﹣a,].(i)若﹣a≥0,即a≤0,f′(x)≥0在[e,e2]恒成立,故f(x)在[e,e2]上为增函数,于是,,不合题意.(ii)若﹣a<0,即0<,由f′(x)的单调性和值域知,存在唯一x0∈(e,e2),使f′(x0)=0,且满足:当x∈(e,x0)时,f′(x)<0,f(x)为减函数;当x∈(x0,e2)时,f′(x)>0,f (x)为增函数;所以,f(x)min=f(x0)=≤,x∈(e,e2),所以,a≥,与0<矛盾,不合题意.综上,得.点评:本题主要考查了函数恒成立问题,以及利用导数研究函数的单调性等知识,考查了分类讨论思想和转化思想,计算能力和分析问题的能力.四、请在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.【选修4—1:平面几何选讲】(本小题满分10分)22.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF 与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.考点:与圆有关的比例线段;圆的切线的判定定理的证明.专题:计算题;直线与圆.分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线.解答:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.点评:本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为ρ2﹣4ρcosθ+3=0.(1)求直线C的普通方程和曲线P的直角坐标方程;(2)设直线C和曲线P的交点为A、B,求|AB|.考点:点的极坐标和直角坐标的互化;点到直线的距离公式;参数方程化成普通方程.专题:计算题;直线与圆.分析:(1)参数t得到曲线C的普通方程为x﹣y﹣1=0,利用x=ρcosθ,y=ρsinθ,即可得出P的直角坐标方程;(2)利用点到直线的距离公式可求出圆心到直线的距离d和弦长l=即可得出.解答:解:(1)由曲线C的参数方程为为参数),消去参数t得到曲线C的普通方程为x﹣y﹣1=0;∵x=ρcosθ,y=ρsinθ,曲线P在极坐标系下的方程为ρ2﹣4ρcosθ+3=0,∴曲线P的直角坐标方程为x2+y2﹣4x+3=0.(2)曲线P可化为(x﹣2)2+y2=1,表示圆心在(2,0),半径r=1的圆,则圆心到直线C的距离为,故|AB|==.点评:本题考查直角坐标系与极坐标之间的互化,熟练掌握极坐标与直角坐标的互化公式、点到直线的距离公式、弦长l=是解题的关键.【选修4-5:不等式选讲】(共1小题,满分0分)24.设函数f(x)=|2x﹣a|+5x,其中a>0.(Ⅰ)当a=3时,求不等式f(x)≥5x+1的解集;(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)当a=3时,f(x)≥5x+1可化为|2x﹣3|≥1,由此求得不等式f(x)≥5x+1的解集.(Ⅱ)由f(x)≤0 得|2x﹣a|+5x≤0,此不等式化为不等式组,或.分别求得这两个不等式组的解集,再取并集,即得所求.解答:解:(Ⅰ)当a=3时,f(x)≥5x+1可化为|2x﹣3|≥1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由此可得 x≥2 或 x≤1.故不等式f(x)≥5x+1的解集为 {x|x≥2 或 x≤1{.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由f(x)≤0 得|2x﹣a|+5x≤0,此不等式化为不等式组,或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)即,或.因为a>0,所以不等式组的解集为 {x|x≤﹣},由题设可得﹣=﹣1,故 a=3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.31074 7962 祢30628 77A4 瞤H26694 6846 框 29373 72BD 犽31967 7CDF 糟U20889 5199 写28118 6DD6 淖37325 91CD 重K32414 7E9E 纞/。

2023-2024学年四川省成都市石室中学高三上学期10月月考理数试题及答案

2023-2024学年四川省成都市石室中学高三上学期10月月考理数试题及答案

成都石室中学2023-2024年度上期高2024届十月月考数学试题(理)(总分:150分,时间:120分钟 )第Ⅰ卷(共60分)一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合2{|320}M x x x =-+…,2{|log }N x y x ==,则( )A .N M⊆B .M N⊆C .M N =∅D .M N R= 2.若1z =,则复数1z z+在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知命题0:p x R ∃∈,使004tan 4tan x x +<,命题:(2)(2)q y g x y g x =+=-函数与关于直线2x =对称,下面结论正确的是( )A .命题“p q ∧”是真命题B .命题“()p q ∧⌝”是假命题C .命题“()p q ⌝∨”是真命题D .命题“()()p q ⌝∧⌝”是假命题4.已知等比数列{}n a 的前n 项和为n S ,且数列313{}1,2,k k ka -=()是等差数列,则63(S S = )A .1或43B .2或13C .2或43D .13或435.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2 B.2+ C .43D .236.已知函数||2()log ||x f x e x =+,设0.12141(log ),(7),(log 25)3a f b f c f -===,则a ,b ,c 的大小关系为( )A .b a c <<B .c a b<<C .c b a <<D .a c b<<7.函数||1()xln x f x e +=的图象大致为( )A .B .C .D .8.已知向量),(sin ,2)m n θθ== ,1m n ⋅= ,则2cos(23πθ-的值是( )A .78B .14C .14-D .78-9.2025年四川省新高考将实行312++模式,即语文数学英语必选,物理历史二选一,政治地理化学生物四选二,共有12种选课模式.假若今年高一的小明与小芳都对所选课程没有偏好,则他们所选六科中恰有四科相同的概率是( )A .136B .512C .13D .11210.已知动圆M 恒过点)0,1(,且与直线1-=x 相切,设圆心M 的轨迹方程曲线C ,直线1:0l x my --=与曲线C 交于P ,Q 两点(点P 在x 轴上方),与直线1-=x 交于点R ,若||3QF =,则(QRF PRFS S ∆∆= )A .57B .37C .67D .97第Ⅱ卷(共90分)二、填空题(本题共4道小题,每小题5分,共20分)三、解答题(本题共6道小题,共70分)17.(本小题满分12分)设n S 为数列{}n a 的前n 项和,且21n n S a =-,*n N ∈.(1)求数列{}n a 的通项公式;(2)令231n nn b a lna +=+,*n N ∈,求数列{}n b 的前n 项和n T .18.(本小题满分12分)为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,成都市在高三年级开展了一次体质健康模拟测试,并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.(1)估计这200名学生健康指数的平均数x 和样本方差2s (同一组数据用该组区间的中点值作代表);(2)由频率分布直方图知,该市学生的健康指数X 近似服从正态分布2(,)N μσ,其中μ近似为样本平均x ,2σ近似为样本方差2s .①求(50.7378.54)P Z <<;②已知该市高三学生约有10000名,记体质健康指数在区间(50.73,78.54)的人数为ξ,试求()E ξ.附:参考9.27≈,若随机变量X 服从正态分布2(,)N μσ,则()0.683P X μσμσ-<<+≈,(22)0.955P X μσμσ-<<+≈,(23)0.997P X μσμσ-<<+≈.19.(本小题满分12分)如图,在几何体ABCDEF 中,平面四边形ABCD 是菱形,平面BDFE ⊥平面ABCD ,//DF BE ,且22DF BE ==,3EF =,BD =(1)证明: BE AD ⊥(2)若二面角A EF C --是直二面角,求直线AE 与直线FC 所成角的余弦值.20.(本小题满分12分)选考题:共10分。

2024届安徽省合肥市金汤白泥乐槐六校高三下第一次月考数学试题理试题

2024届安徽省合肥市金汤白泥乐槐六校高三下第一次月考数学试题理试题

2024届安徽省合肥市金汤白泥乐槐六校高三下第一次月考数学试题理试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知数列{}n a 的通项公式是221sin 2n n a n π+⎛⎫=⎪⎝⎭,则12312a a a a +++⋅⋅⋅+=( )A .0B .55C .66D .782.若集合}{}{2,33A x y x B x x ==-=-≤≤,则A B =( )A .[]3,2-B .{}23x x ≤≤ C .()2,3D .{}32x x -≤<3.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2或233B .2或3C .3或62D .233或624.已知复数21aibi i-=-,其中a ,b R ∈,i 是虚数单位,则a bi +=( ) A .12i -+B .1C .5D .55.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( ) A .2B .2iC .4D .4i6.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅7.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A .2B .5C D 8.设m ∈R ,命题“存在0m >,使方程20x x m +-=有实根”的否定是( ) A .任意0m >,使方程20x x m +-=无实根 B .任意0m ≤,使方程20x x m +-=有实根 C .存在0m >,使方程20x x m +-=无实根 D .存在0m ≤,使方程20x x m +-=有实根9.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ---=10.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以2倍的塔高,恰好为祖冲之发现的密率355113≈π.设胡夫金字塔的高为h ,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为A .(4h πB .(2h π+C .(8h π+D .(2h π+11.已知,a b 为非零向量,“22a b b a =”为“a a b b =”的( ) A .充分不必要条件 B .充分必要条件C .必要不充分条件D .既不充分也不必要条件12.下列命题为真命题的个数是( )(其中π,e 为无理数)32>;②2ln 3π<;③3ln 3e<. A .0B .1C .2D .3二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

屯溪一中高三第一次月考试题(理数)本试卷分选择题、填空题和解答题三部分,共21个小题,时间:120分钟 满分:150分 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确答案的代号填在答卷上. 1.设U 为全集,对集合X Y 、,定义运算“⊕”,满足()U X Y C X Y ⊕=,则对于任意集合X Y Z 、、,则()X Y Z ⊕⊕= A .()()U X Y C Z B .()()U X Y C Z C .[()()]U U C X C Y ZD .()()U U C X C Y Z2.若实数a ,b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补.记(),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的:A. 必要而不充分的条件B. 充分而不必要的条件C. 充要条件D. 既不充分也不必要的条件3. 已知,则大小关系为:A .B .C .D .4.已知函数(其中)的图象如图1所示,则函数的图象是图2中的:5.已知函数为奇函数,若与图象关于对称, 若,则A .B .C .D .133,log 3,log sin3a b c πππ===,,a b c a b c >>b c a >>c a b >>c a b =>()()()f x x a x b =--a b >()x g x a b =+(1)y f x =+()y f x =()y g x =y x =120x x +=12()()g x g x +=22-11-6.如图,函数y=()f x 的图象在点P 处的切线方程是y=-x+8,则f (5)+f ’(5)= A .12B .1C .2D .07.设()f x 是定义在R 上的奇函数,且f (2)=0,当x>0时,有()()f x x的导数<0恒成立,则不等式2()0x f x >的解集是:A .(一2,0)(2,+ ∞)B .(一2,0)(0,2)C .(-∞,-2)(2,+ ∞)D .(-∞,-2)(0,2)8.设函数)(x f y =是定义在R 上以1为周期的函数,若x x f x g 2)()(-= 在区间]3,2[上的值域为]6,2[-,则函数)(x g 在[12,12]-上的值域为 :A .]6,2[- B.[20,34]- C.[22,32]- D. [24,28]- 9.已知函数()y f x =的周期为2,当[0,2]x ∈时,2()(1)f x x =-,如果()()5log |1|g x f x x =--则函数()y g x =的所有零点之和为:A .2B .4C .6D .810.若函数()()y f x x R =∈满足(2)()f x f x +=,且x ∈[-1,1]时, f (x ) =l —x 2,函数lg (0)(),1(0)x x g x x x>⎧⎪=⎨-<⎪⎩则函数h (x )=f (x )一g (x )在区间[-5,5]内的与x 轴交点的个数为:A .5B .7C .8D .10二、填空题:本大题共5小题,共26分.把答案填在答题卡对应题号后的横线上.11.若曲线t t y t x (122⎩⎨⎧+-=+=为参数)与曲线θθθ(sin 3cos 31⎩⎨⎧=+-=y x 为参数)相交于A ,B 两点,则|AB|= 。

12.在极坐标系中,定点A (2,π),动点B 在直线上运动。

则线段AB 的最短长度为: 2sin()42πρθ+=13.若命题2:[1,3],250p x x ax ∀∈-+>是假命题,则实数a 的取值范围是 14.设函数()f x 的定义域为D ,若存在非零实数l 使得对于任意()x M M D ∈⊆,有x l D +∈,且()()f x l f x +≥,则称()f x 为M 上的“l 高调函数”.现给出下列命题:①函数xx f 2)(=为R 上的“1高调函数”; ②函数()sin 2f x x =为R 上的“π高调函数”;③如果定义域为[1,)-+∞的函数2()f x x =为[1,)-+∞上“m 高调函数”,那么实数m 的取值范围 是[2,)+∞;其中正确的命题是 .(写出所有正确命题的序号) 15. 已知函数12()f x log x =与函数()g x 的图象关于y x =对称,(1)若()()2,0,0,g a g b a b =<<且则41a b+的最大值为 (2)设()h x 是定义在上的偶函数,对任意的,都有(2)(2)h x h x -=+,且当时,()()1h x g x =-,若关于的方程()log (2)0a h x x -+=()0,1a a >≠且在区间内恰有三个不同实根,则实数的取值范围是三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分12分)已知集合A=)]13()[2({+--a x x x }0<,集合B=⎭⎬⎫⎩⎨⎧<+--0)1(22a x ax x 。

(1) 当a =2时,求B A ;(2) 当a 31>时,若元素x A ∈是x B ∈的必要条件,求实数a 的取值范围。

17.(本题满分12分)X|k |b| 1 . c|o |m1)c P y x -=∞设命题:函数在(0,+上为减函数,2:ln(221)Q y cx x =++命题的值域为R,R x ∈R [2,0]x ∈-x (2,6]-a2ln(221)T y cx x =++命题:函数定义域为R,(1)若命题T 为真命题,求c 的取值范围。

(2)若P 或Q 为真命题,P 且Q 为假命题,求c 的取值范围.18、(本题满分12分)设函数是定义在上的减函数,并且满足,(1)求,,的值,(2)如果,求x 的取值范围。

19.(本题满分12分)设函数b x ax x f ++=1)((a ,b 为常数),且方程x x f 23)(=有两个实根为2,121=-=x x .(1)求)(x f y =的解析式;(2)证明:曲线)(x f y =的图像是一个中心对称图形,并求其对称中心. 20.(本大题13分)设A 、B 为函数3([1,1])2y x x =∈- 图象上不同的两个点,且 AB ∥x 轴,又有定点3(1,)()2M m m > ,已知M 是线段BC 的中点. ⑴ 设点B 的横坐标为t ,写出ABC ∆的面积S 关于t 的函数()S f t =的表达式;w w w .x k b 1.c o m⑵ 求函数()S f t =的最大值,并求此时点C 的坐标。

21.(本题满分13分)已知是定义在上的奇函数,当时,(1)求的解析式;(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由。

(3)对如果函数的图像在函数的图像的下方,则称函数在D 上被函数覆盖。

求证:若时,函数在区间上被函数覆盖。

1-10: DCAAA CDBDC)(x f (,0)(0,)-∞+∞(0,)x ∈+∞()2ln ,()f x ax x a R =+∈)(x f a )(,)0,[x f e x 时-∈a ,x D ∈()F x ()G x ()F x ()G x 1a =)(x f ()x ∈+∞1,3()g x x =11. 4 12. 13., 14. ①②③ 15. -9()34,2.16. 解:(1)当a=2时,A =72{<<x x } B =54{<<x x } ∴ B A =54{<<x x }(2)∵ a 2+1-2a=(a-1)2≥0 ∴ B =12{2+<<a x a x }当a>31时,3a+1>2 ∴A=132{+<<a x x } ∵ B ⊆ A ∴ 2a ≥2 且 a 2+1 ≤ 3a+1∴ 1≤a ≤317.解:(1)若命题T 为真命题,则014802c c c >⎧⇒>⎨∆=-<⎩。

(5分) (2)若P 为真 ,则c<1;若Q 为真,则c=0, 或者0480c c >⎧⇒⎨∆=-≥⎩ 102c ≤≤;由题意有,命题P 、Q 中必有一个是真命题,另一个为假命题。

(7分)若P 为真,Q 为假时,则1,10,2c c <⎧⎪⎨<⎪⎩或c>,即1012c c <<<或;。

(9分) 若P 为假,Q 为真时,则1102c c c ≥⎧⎪⇒∈∅⎨≤≤⎪⎩。

(11分)w w w .x k b 1.c o m 所以C 的取值范围为1(,0)(,1)2-∞⋃。

(12分)18、解:(1)令,则,∴……1分令, 则, ∴………2分∴ …………4分∴ …………… 6分(2)∵,32又由是定义在R +上的减函数,得:……… 8分解之得:………… 12分19.解:(Ⅰ)由⎪⎩⎪⎨⎧=++-=+-+-3212,2311b a b a 解得11a b =⎧⎨=-⎩,, 故1()1f x x x =+-.(II )证明:已知函数1y x =,21y x=都是奇函数.所以函数1()g x x x =+也是奇函数,其图像是以原点为中心的中心对称图形.而1()111f x x x =-++-.可知,函数()g x 的图像沿x 轴方向向右平移1个单位,再沿y 轴方向向上平移1个单位,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形.20.解:⑴ 如图,设3(,)2B t t ,由M 是线段 BC 的中点,且3(1,)()2M m m >,可推得点C 的坐标为3(2,2)2C t m t --.∴ 1332[(2)](23)222S t m t t t m t =⋅⋅--=-即:(]23()32(0,1,)2S f t t m t t m ==-+∈>…(6分)⑵ 由上知:(]2223()323()(0,1,)332m m f t t m t t t m =-+=--+∈>① 当 1332mm ⎧≤⎪⎪⎨⎪>⎪⎩ 即 332m <≤ 时,令3m t =,()f t 有最大值 23m ,此时,点C 的坐标为3(2,)32m C m ±; ② 当 1332mm ⎧>⎪⎪⎨⎪>⎪⎩ 即 3m > 时,令1t =,()f t 有最大值 23m -,此时,点C的坐标为 3(1,2)2C m - 或 3(3,2)2C m -…….(12分)纵上,当332m <≤时,()f t 有最大值23m ,此时,点C 的坐标为3(2,)32m C m ±;当3m >时,()f t 有最大值23m -,此时,点C 的坐标为3(1,2)2C m - 或3(3,2)2C m -…(13分)()()()[)()[)()()()()()()()''min min 20,2ln ,0222,,0,0,2222,-e,,024,222,-e,062-e 4,a f x ax x x e a x a f x a x e f x x x x ae af x a e a a f x f a ea e a f x a ef x f a e e<=--∈-⎛⎫- ⎪⎝⎭∴=-=∈-==⎛⎫⎛⎫>-<- ⎪ ⎪⎝⎭⎝⎭⎛⎫∴===- ⎪⎝⎭≤-≥-∴===-<-假设存在满足题意,,令当即时,在减,在增解得当即0>时,在上增解得矛盾!综上所诉2.a e =-,存在满足题意()()()()()()()()()()()()()332'22'332ln 1,2ln 113322311,10,332001,11002ln 1,.x x x x h x x x x x x x x h x x x xx x x x h x x x h x h h x x x x x >+∈+∞=-->-++∴=--=>∴->++>∴>∈+∞∴>>=∴>⇔>+∈+∞证明:由题意知,只需证对恒成立令对恒成立时,对恒成立即原命题得证。

相关文档
最新文档