【最新】隐马尔科夫模型

合集下载

隐马尔可夫模型参数估计

隐马尔可夫模型参数估计

隐马尔可夫模型参数估计
隐马尔可夫模型参数估计是指在隐马尔可夫模型中,根据观
测数据估计模型参数的过程。

隐马尔可夫模型是一种概率模型,
它用来描述一个隐藏状态序列的概率分布,它可以用来描述一个
隐藏状态序列的概率分布,以及它们之间的转移概率。

隐马尔可
夫模型参数估计是一个复杂的过程,它需要根据观测数据来估计
模型参数,以便更好地描述隐藏状态序列的概率分布。

隐马尔可夫模型参数估计的方法有很多,其中最常用的是最
大似然估计法。

最大似然估计法是一种概率模型参数估计的方法,它的基本思想是,根据观测数据,求出使得观测数据出现的概率
最大的模型参数。

另外,还有一些其他的参数估计方法,比如最
小二乘法、最小化KL散度等。

隐马尔可夫模型参数估计的结果可以用来描述隐藏状态序列
的概率分布,以及它们之间的转移概率。

此外,它还可以用来预
测未来的状态,以及推断未知的状态。

因此,隐马尔可夫模型参
数估计是一个非常重要的过程,它可以帮助我们更好地理解隐藏
状态序列的概率分布,以及它们之间的转移概率。

HMM隐马尔可夫模型在自然语言处理中的应用

HMM隐马尔可夫模型在自然语言处理中的应用

HMM隐马尔可夫模型在自然语言处理中的应用隐马尔可夫模型(Hidden Markov Model,HMM)是自然语言处理中常用的一种概率统计模型,它广泛应用于语音识别、文本分类、机器翻译等领域。

本文将从HMM的基本原理、应用场景和实现方法三个方面,探讨HMM在自然语言处理中的应用。

一、HMM的基本原理HMM是一种二元组( $λ=(A,B)$),其中$A$是状态转移矩阵,$B$是观测概率矩阵。

在HMM中,状态具有时序关系,每个时刻处于某一状态,所取得的观测值与状态相关。

具体来说,可以用以下参数描述HMM模型:- 隐藏状态集合$S={s_1,s_2,...,s_N}$:表示模型所有可能的状态。

- 观测符号集合$V={v_1,v_2,...,v_M}$:表示模型所有可能的观测符号。

- 初始状态分布$\pi={\pi (i)}$:表示最初处于各个状态的概率集合。

- 状态转移矩阵$A={a_{ij}}$:表示从$i$状态转移到$j$状态的概率矩阵。

- 观测概率矩阵$B={b_j(k)}$:表示处于$j$状态时,观测到$k$符号的概率。

HMM的主要任务是在给定观测符号序列下,求出最有可能的对应状态序列。

这个任务可以通过HMM的三种基本问题求解。

- 状态序列概率问题:已知模型参数和观测符号序列,求得该观测符号序列下各个状态序列的概率。

- 观测符号序列概率问题:已知模型参数和状态序列,求得该状态序列下观测符号序列的概率。

- 状态序列预测问题:已知模型参数和观测符号序列,求得使得观测符号序列概率最大的对应状态序列。

二、HMM的应用场景1. 语音识别语音识别是指将语音信号转化成文字的过程,它是自然语言处理的关键技术之一。

HMM在语音识别领域具有广泛应用,主要用于建立声学模型和语言模型。

其中,声学模型描述语音信号的产生模型,是从语音输入信号中提取特征的模型,而语言模型描述语言的组织方式,是指给定一个句子的前提下,下一个字或单词出现的可能性。

隐马尔科夫(HMM)模型详解及代码实现

隐马尔科夫(HMM)模型详解及代码实现

机器学习之隐马尔科夫模型(HMM)机器学习之隐马尔科夫模型(HMM)1、隐马尔科夫模型介绍2、隐马尔科夫数学原理3、Python代码实现隐马尔科夫模型4、总结隐马尔可夫模型介绍马尔科夫模型(hidden Markov model,HMM)是关于时序的概率模型,描述由一个隐藏的马尔科夫随机生成不可观测的状态随机序列,再由各个状态生成一个观测从而产生观测随机序列的过程,属于一个生成模型。

下面我们来从概率学角度定义马尔科夫模型,从一个典型例子开始:假设有4个盒子,每个盒子里面有不同数量的红、白两种颜色的球,具体如下表:盒子编号1234红球数5368白球数5742现在从这些盒子中取出T个球,取样规则为每次选择一个盒子取出一个球,记录其颜色,放回。

在这个过程中,我们只能观测到球的颜色的序列,观测不到球是从哪个盒子中取出来的,即观测不到盒子的序列,这里有两个随机序列,一个是盒子的序列(状态序列),一个是球的颜色的观测序列(观测序列),前者是隐藏的,只有后者是可观测的。

这里就构成了一个马尔科夫的例子。

定义是所有的可能的状态集合,V是所有的可能的观测的集合:其中,N是可能的状态数,M是可能的观测数,例如上例中N=4,M=2。

是长度为T的状态序列,是对应的观测序列:A是状态转移概率矩阵:其中, 是指在时刻处于状态的条件下在时刻转移到状态的概率。

B是观测概率矩阵:其中, 是指在时刻处于状态的条件下生成观测的概率。

是初始状态概率向量:其中, 是指在时刻=1处于状态的概率。

由此可得到,隐马尔可夫模型的三元符号表示,即称为隐马尔可夫模型的三要素。

由定义可知隐马尔可夫模型做了两个基本假设:(1)齐次马尔科夫性假设,即假设隐藏的马尔科夫链在任意时刻的状态只和-1状态有关;(2)观测独立性假设,观测只和当前时刻状态有关;仍以上面的盒子取球为例,假设我们定义盒子和球模型:状态集合: = {盒子1,盒子2,盒子3,盒子4}, N=4观测集合: = {红球,白球} M=2初始化概率分布:状态转移矩阵:观测矩阵:(1)转移概率的估计:假设样本中时刻t处于状态i,时刻t+1转移到状态j 的频数为那么转台转移概率的估计是:(2)观测概率的估计:设样本中状态为j并观测为k的频数是那么状态j观测为k的概率, (3)初始状态概率的估计为S个样本中初始状态为的频率。

《隐马尔可夫模型》课件

《隐马尔可夫模型》课件
它是一种双重随机过程,包括一个状态转移的随 机过程和一个观测值生成的随机过程。
隐马尔可夫模型在许多领域都有应用,如语音识 别、自然语言处理、生物信息学和金融预测等。
隐马尔可夫模型的应用领域
01
语音识别
用于将语音转换为文本,或识别说 话人的意图。
生物信息学
用于分析基因序列、蛋白质序列和 代谢物序列等。
03 隐马尔可夫模型的建立
观察概率矩阵的确定
总结词
观察概率矩阵描述了在给定状态下,观察到不同状态的概率 分布。
详细描述
观察概率矩阵是隐马尔可夫模型中的重要组成部分,它表示 了在给定状态下,观察到不同状态的概率分布。例如,在语 音识别中,观察概率矩阵可以表示在特定语音状态下发出不 同音素的概率。
状态转移概率矩阵的确定
VS
原理
通过动态规划找到最大概率的路径,该路 径对应于最可能的隐藏状态序列。
05 隐马尔可夫模型的优化与 改进
特征选择与模型参数优化
要点一
特征选择
选择与目标状态和观测结果相关的特征,提高模型预测准 确率。
要点二
模型参数优化
通过调整模型参数,如状态转移概率和观测概率,以改进 模型性能。
高阶隐马尔可夫模型
初始状态概率分布表示了隐马尔可夫模型在初始时刻处于各个状态的概率。这个概率分布是隐马尔可 夫模型的重要参数之一,它决定了模型在初始时刻所处的状态。在某些应用中,初始状态概率分布可 以根据具体问题来确定,也可以通过实验数据来估计。
04 隐马尔可夫模型的训练与 预测
前向-后向算法
前向算法
用于计算给定观察序列和模型参 数下,从初始状态到某个终止状 态的所有可能路径的概率。
《隐马尔可夫模型》 ppt课件

隐藏式马尔可夫模型及其应用

隐藏式马尔可夫模型及其应用

隐藏式马尔可夫模型及其应用随着人工智能领域的快速发展,现在越来越多的数据需要被处理。

在这些数据中,有些数据是难以被观察到的。

这些难以被观察到的数据我们称之为“隐藏数据”。

如何对这些隐藏数据进行处理和分析,对于我们对这些数据的认识和使用有着至关重要的影响。

在这种情况下,隐马尔可夫模型就显得非常重要了。

隐马尔可夫模型(Hidden Markov Model,HMM)是一种非常重要的统计模型,它是用于解决许多实际问题的强有力工具。

该模型在语音识别、自然语言处理、生物信息学、时间序列分析等领域都有广泛应用。

隐马尔可夫模型是一种基于概率的统计模型。

该模型涉及两种类型的变量:可见变量和隐藏变量。

可见变量代表我们能够观察到的序列,隐藏变量代表导致可见序列生成的隐性状态序列。

HMM 的应用场景非常广泛,如基因组序列分析、语音识别、自然语言处理、机器翻译、股票市场等。

其中,最常见和经典的应用场景之一是语音识别。

在语音识别过程中,我们需要将输入的声音转换成文本。

这里,语音信号是一个可见序列,而隐藏变量则被用来表示说话人的音高调整、语速变化等信息。

HMM 的训练过程旨在确定模型的参数,以使得模型能够最佳地描述观察到的数据。

在模型训练中,需要对模型进行无监督地训练,即:模型的训练样本没有类别信息。

这是由于在大多数应用场景中,可收集到的数据往往都是无标注的。

在语音识别的任务中,可以将所需的标签(即对应文本)与音频文件一一对应,作为主要的训练数据。

我们可以利用EM算法对模型进行训练。

EM算法是一种迭代算法,用于估计最大似然和最大后验概率模型的参数。

每次迭代的过程中使用E步骤计算期望似然,并使用M步骤更新参数。

在E步骤中,使用当前参数计算隐藏状态的后验概率。

在M步中,使用最大似然或者最大后验概率的方法计算参数更新值。

这个过程一直进行到模型参数收敛为止。

总的来说,隐马尔可夫模型是一种非常强大的工具,能够应用于许多领域。

隐马尔可夫模型的应用必须细心,仔细考虑数据预处理、模型参数的选择和训练等问题。

隐马尔可夫模型HiddenMarkovmodel

隐马尔可夫模型HiddenMarkovmodel
通俗的说,就是在已经知道过程“现在”的条 件下,其“将来”不依赖于“过去”。
2019/10/14
知识管理与数据分析实验室
7
马尔科夫链
• 时间和状态都离散的马尔科夫过程称为马尔科夫 链
• 记作{Xn = X(n), n = 0,1,2,…} – 在时间集T1 = {0,1,2,…}上对离散状态的过程相 继观察的结果
知识管理与数据分析实验室
17
向前算法及向后算法
向前算法及向后算法主要解决评估问题,即用来 计算给定一个观测值序列O以及一个模型λ时,由 模型λ产生出观测值序列O的概率 。
2019/10/14
知识管理与数据分析实验室
18
向前算法
向前变量
它的含义是,给定模型λ ,时刻t。处在状态i,并且部分
知识管理与数据分析实验室
3ቤተ መጻሕፍቲ ባይዱ
内容框架
1 隐马尔科夫模型的由来
2 隐马尔科夫模型的基本理论及实例 3 隐马尔科夫模型的三个基本算法 4 隐马尔科夫模型的应用
2019/10/14
知识管理与数据分析实验室
4
隐马尔可夫模型的基本理论
马尔可夫性
马尔可夫 过程
马尔可夫链
隐马尔可夫模型
2019/10/14
知识管理与数据分析实验室
根据以上结论可进行模型估算,反复迭代,直至参数收敛。
2019/10/14
知识管理与数据分析实验室
27
内容框架
1 隐马尔科夫模型的由来
2 隐马尔科夫模型的基本理论及实例 3 隐马尔科夫模型的三个基本算法 4 隐马尔科夫模型的应用
2019/10/14
知识管理与数据分析实验室
28
隐马尔科夫模型的应用

隐马尔可夫模型课件

隐马尔可夫模型课件

隐马尔可夫模型课 件
目录
ቤተ መጻሕፍቲ ባይዱ
• 隐马尔可夫模型简介 • 隐马尔可夫模型的基本概念 • 隐马尔可夫模型的参数估计 • 隐马尔可夫模型的扩展 • 隐马尔可夫模型的应用实例 • 隐马尔可夫模型的前景与挑战
01
隐马尔可夫模型简介
定义与特点
定义
隐马尔可夫模型(Hidden Markov Model,简称HMM)是 一种统计模型,用于描述一个隐藏的马尔可夫链产生的观测 序列。
观测概率
定义
观测概率是指在给定隐藏状态下,观测到某一特定输出的概率。在隐马尔可夫 模型中,观测概率表示隐藏状态与观测结果之间的关系。
计算方法
观测概率通常通过训练数据集进行估计,使用最大似然估计或贝叶斯方法计算 。
初始状态概率
定义
初始状态概率是指在隐马尔可夫模型中,初始隐藏状态的概率分布。
计算方法
05
隐马尔可夫模型的应用实 例
语音识别
语音识别是利用隐马尔可夫模型来识别连续语音的技术。通过建立语音信号的时间序列与状态序列之 间的映射关系,实现对语音的自动识别。
在语音识别中,隐马尔可夫模型用于描述语音信号的动态特性,将连续的语音信号离散化为状态序列, 从而进行分类和识别。
隐马尔可夫模型在语音识别中具有较高的准确率和鲁棒性,广泛应用于语音输入、语音合成、语音导航 等领域。
Baum-Welch算法
总结词
Baum-Welch算法是一种用于隐马尔可夫模型参数估计的迭代算法,它通过最大化对数似然函数来估计模型参数 。
详细描述
Baum-Welch算法是一种基于期望最大化(EM)算法的参数估计方法,它通过对数似然函数作为优化目标,迭 代更新模型参数。在每次迭代中,算法首先使用前向-后向算法计算给定观测序列和当前参数值下的状态序列概 率,然后根据这些概率值更新模型参数。通过多次迭代,算法逐渐逼近模型参数的最优解。

隐马尔可夫模型

隐马尔可夫模型

= (A , B, π) ,观测序列 O
输出: 观测序列概率 P (O; λ)
= 1,
i = 1, 2, ⋯ , N =1
对最终时刻的所有状态 qi ,规定 βT (i) 递推:对 t
= T − 1, T − 2, ⋯ , 1 :
N
βt (i) = ∑ a ijbj (ot+1 )βt+1 (j),
O 和 I 同时出现的联合概率为:
P (O, I ; λ) = P (O/I ; λ)P (I ; λ) = π i a i i a i i ⋯ a i b ( o ) b ( o ) ⋯ bi (oT ) 1 1 2 2 3 T −1 i T i 1 1 i 2 2 T
对所有可能的状态序列 I 求和,得到观测序列 O 的概率:
用极大似然估计的方法估计参数 预测问题(也称为解码问题):已知模型 λ 最大的状态序列 I
= (A , B, π) 和观测序列 O = (o1 , o2 , ⋯ , oT ) , 求对给定观测序列条件概率 P (I /O) = (i1 , i2 , ⋯ , iT ) 。即给定观测序列,求最可能的对应的状态序列
齐次性假设:即假设隐藏的马尔可夫链在任意时刻 t 的状态只依赖于它在前一时刻的状态,与其他时刻的状态和观测无关,也与时刻 t 无 关,即: P (it /it−1 , ot−1 , ⋯ , i1 , o1 )
= P (it /it−1 ),
t = 1, 2, ⋯ , T t = 1, 2, ⋯ , T
的概率记作: γ t (i)
8.给定模型 λ
= P (it = qi /O; λ)
P (O; λ) = ∑ P (O/I ; λ)P (I ; λ)

神经网络-隐马尔科夫模型

神经网络-隐马尔科夫模型

神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

隐马尔可夫模型隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。

80 年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。

隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。

所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。

自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。

到了90年代,HMM还被引入计算机文字识别和移动通信核心技术“多用户的检测”。

近年来,HMM在生物信息科学、故障诊断等领域也开始得到应用。

1. 评估问题。

给定观测序列O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样有效计算某一观测序列的概率,进而可对该HMM做出相关评估。

例如,已有一些模型参数各异的HMM,给定观测序列O=O1O2O3…Ot,我们想知道哪个HMM模型最可能生成该观测序列。

通常我们利用forward算法分别计算每个HMM 产生给定观测序列O的概率,然后从中选出最优的HMM模型。

这类评估的问题的一个经典例子是语音识别。

在描述语言识别的隐马尔科夫模型中,每个单词生成一个对应的HMM,每个观测序列由一个单词的语音构成,单词的识别是通过评估进而选出最有可能产生观测序列所代表的读音的HMM而实现的。

隐马尔可夫模型及其应用课件

隐马尔可夫模型及其应用课件

观测
观测是系统状态的可见输出,它们是由隐藏 状态生成的。
发射概率
描述在给定隐藏状态下生成观测的概率。
模型的参数
初始状态概率
隐藏状态的初始概率分布。
转移概率矩阵
描述隐藏状态之间转移的概率矩阵。
发射概率矩阵
描述在给定隐藏状态下生成观测的概率矩阵。
状态序列长度
隐藏状态序列的长度,通常根据具体问题确定。
02 隐马尔可夫模型的算法
隐马尔可夫模型及其应用课件
目录
CONTENTS
• 隐马尔可夫模型简介 • 隐马尔可夫模型的算法 • 隐马尔可夫模型的应用 • 隐马尔可夫模型的优缺点 • 隐马尔可夫模型的发展趋势与展望
01 隐马尔可夫模型简介
CHAPTER
定义与特性
隐马尔可夫模型(HMM)是一种统计模型,用于描述一个不可观测的马尔可夫过 程,也就是隐藏状态序列。
CHAPTER
前向-后向算法
前向算法
用于计算给定观察序列和模型参 数下,从初始状态到结束状态的 所有可能路径的概率。
后向算法
用于计算给定观察序列和模型参 数下,从结束状态到初始状态的 所有可能路径的概率。
维特比算法
• 维特比算法:是一种高效的寻找最大概率路径的算法,通过 动态规划的方式,在每个状态转移时选择概率最大的转移。
在生物信息学中的应用
基因序列分析
在生物信息学中,隐马尔可夫模 型被用于基因序列分析,如预测 基因结构、识别基因启动子等。 通过训练模型,可以学习基因序 列的统计特性,从而进行基因相 关的分析和预测。
蛋白质序列分析
隐马尔可夫模型也被应用于蛋白 质序列分析,如蛋白质二级结构 预测、蛋白质家族分类等。通过 分析蛋白质序列的统计规律,隐 马尔可夫模型能够提供对蛋白质 结构和功能的深入理解。

HMM 隐马尔科夫模型

HMM 隐马尔科夫模型
9
HMM组成
Markov链 (, A)
状态序列 q1, q2, ..., qT
随机过程 (B)
观察值序列 o1, o2, ..., oT
HMM的组成示意图
10
HMM概念
采用HMM来描述语音过程的成功原因在于: • (1) 各状态驻留的时间是可变的,这样就很 好地解决了语音时变问题。 • (2) 模型参数是通过大量的训练数据进行统 计运算而得到的,因此不仅可以用于特定人识 别,而且可用于非特定人识别,这时,只要将 大量不同人的多次发音用作训练数据即可。
1 (i ) ibi (O1 ) 1 t T
t 1 ( j ) [ i (i )aij ]b j (Ot 1 ) 1 t T 1,1 j N
i 1
N
N
P(O / ) T (i )
i 1
48
前向法示意图
qN . qi . qj . . q1
t 1 ( qt*1 ), t T 1, T 2,...,1
52
Baum-Welch算法(模型训练算法)
• 目的:给定观察值序列O,通过计算确定一个模型 , 使得P(O| )最大。 • 算法步骤:
1. 初始模型(待训练模型) 0, 2. 基于0 以及观察值序列O,训练新模型 ; 3. 如果 log P(X|) - log(P(X|0) < Delta,说明训练已经达到预期效果, 算法结束。 4. 否则,令0 = ,继续第2步工作
j 1 ij

• 当Pij(m,m+n)与m无关时,称马尔科夫 链为齐次马尔科夫链,通常说的马尔科 夫链都是指齐次马尔科夫链。
6
由于模型本身是看不见的,即模型的状态不为外界所见,只能根据获得的数据推导 出来,所以称为隐马尔可夫模型。

隐马尔科夫模型在城市规划中的应用案例(Ⅰ)

隐马尔科夫模型在城市规划中的应用案例(Ⅰ)

隐马尔科夫模型在城市规划中的应用案例引言隐马尔科夫模型(Hidden Markov Model, HMM)是一种用来描述具有隐藏状态的动态系统的概率模型。

它在语音识别、自然语言处理、生物信息学等领域有着广泛的应用。

在城市规划领域,隐马尔科夫模型也被广泛应用,以解决城市发展、交通规划、环境保护等方面的问题。

本文将通过介绍几个实际案例,探讨隐马尔科夫模型在城市规划中的应用。

案例一:城市人口增长预测隐马尔科夫模型可以通过对城市历史人口数据的分析,预测未来城市的人口增长趋势。

以某大城市为例,通过收集该城市过去几十年的人口数据,可以构建隐马尔科夫模型,以预测该城市未来的人口增长情况。

通过对历史数据的分析,可以确定不同年龄段人口的迁移情况,从而为城市规划者提供决策参考。

比如,预测未来的年龄结构变化,有助于规划城市的教育、医疗等公共服务设施。

案例二:交通流量预测隐马尔科夫模型也可以用于城市交通规划中。

通过收集城市道路交通历史数据,结合气象、节假日等因素,构建隐马尔科夫模型,可以预测城市不同时间段的交通流量。

这有助于规划城市交通信号灯、道路扩建、公共交通优化等项目。

比如,在高峰时段预测道路流量的增长,可以对交通拥堵进行有效的管控,提高城市交通效率。

案例三:环境污染分析城市环境保护是当前社会关注的焦点之一。

隐马尔科夫模型可以用于分析城市环境污染情况。

通过对城市空气质量、水质等环境数据的收集,构建隐马尔科夫模型,可以预测城市环境污染的发展趋势。

这对于城市规划者来说是非常重要的信息,可以帮助他们制定环境保护政策,改善城市环境质量。

案例四:城市用地规划隐马尔科夫模型还可以用于城市用地规划。

通过对城市不同地区的历史数据进行分析,可以构建隐马尔科夫模型,预测不同地区未来的发展趋势。

这有助于城市规划者合理规划土地资源利用,避免土地浪费和不合理利用。

结论隐马尔科夫模型在城市规划中的应用案例丰富多样,涵盖了人口增长预测、交通流量预测、环境污染分析、城市用地规划等多个方面。

隐马尔可夫模型

隐马尔可夫模型

使用HMM解决的问题 解决的问题 使用
已知模型λ和输出序列 测评问题 Evaluation :已知模型 和输出序列 , 已知模型 和输出序列O, 求由λ生成 的概率 求由 生成O的概率 生成 已知模型λ和输出序列 和输出序列O, 译解问题 Decoding : 已知模型 和输出序列 ,求 最有可能生成O的状态转移序列 最有可能生成 的状态转移序列 学习问题 Learning : 已知模型λ和输出序列 ,求 已知模型 和输出序列O, 和输出序列 最有可能生成O 最有可能生成O的模型的参数
起始

0.05 0 0.015
结束
0.46 0.06
0.5
0.06
0.06 0.49
0.73 1
0.49
0.46
0.01
0.48
c
0.015 0.015
y
0.46 0.7 0.3 0.015
0.05 0.23
0.015
0.4
C
0.97
C
0.97
Y
Viterbi 算法中的矩阵
I0 A C C Y 0.12 0 0 0 I1 0 0.015 0 0 M1 0 0.046 0 0 I2 0 0 0 0 M2 0 0 0.485 0 I3 0 0 0 M3 0 0 0
Viterbi算法用了一个矩阵,矩阵的行由序列中的氨基 算法用了一个矩阵, 算法用了一个矩阵 酸残基组成,列由模型中的状态组成。 酸残基组成,列由模型中的状态组成。
HMM可由多条路径产生序列 可由多条路径产生序列ACCY 可由多条路径产生序列
0.3 0.3 0.4 0.5 0.48 0.48 0.27
1 0.8 0.2 — — — — —
2 0.6 0.4 — — — — —

数据分析中的马尔可夫链和隐马尔可夫模型

数据分析中的马尔可夫链和隐马尔可夫模型

数据分析中的马尔可夫链和隐马尔可夫模型数据分析是当今信息时代中一项重要的技术,通过对海量的数据进行统计和分析,可以从中挖掘出有用的信息和规律,对各个领域产生积极的影响。

而在数据分析中,马尔可夫链和隐马尔可夫模型是两个常用的工具,具有很高的应用价值。

一、马尔可夫链马尔可夫链(Markov chain)是一种随机过程,具有"无记忆性"的特点。

它的特殊之处在于,当前状态只与前一个状态相关,与更早的各个状态无关。

这种特性使马尔可夫链可以被广泛应用于许多领域,如自然语言处理、金融市场预测、天气预测等。

在数据分析中,马尔可夫链可以用来建模和预测一系列随机事件的发展趋势。

通过观察历史数据,我们可以计算不同状态之间的转移概率,然后利用这些转移概率进行状态预测。

以天气预测为例,我们可以根据历史数据得到不同天气状态之间的转移概率,从而预测未来几天的天气情况。

二、隐马尔可夫模型隐马尔可夫模型(Hidden Markov Model,HMM)是马尔可夫链的扩展形式。

在隐马尔可夫模型中,系统的状态是隐含的,我们只能通过观察到的一系列输出来推测系统的状态。

隐马尔可夫模型在很多领域中都有广泛的应用,尤其是语音识别、自然语言处理、生物信息学等方面。

以语音识别为例,输入的语音信号是可观察的输出,而对应的语音识别结果是隐藏的状态。

通过对大量的语音数据进行训练,我们可以得到不同状态之间的转移概率和观测概率,从而在实时的语音输入中进行识别和预测。

三、马尔可夫链和隐马尔可夫模型的应用案例1. 金融市场预测马尔可夫链和隐马尔可夫模型可以应用于金融市场的预测。

通过建立模型,我们可以根据历史数据预测未来的市场状态。

例如,在股票交易中,我们可以根据过去的价格走势来预测未来的股价涨跌情况,以辅助决策。

2. 自然语言处理在自然语言处理领域,马尔可夫链和隐马尔可夫模型经常被用来进行文本生成、机器翻译等任务。

通过对大量文本数据的学习,我们可以构建一个语言模型,用于生成符合语法和语义规则的句子。

隐马尔可夫模型三个基本问题及算法

隐马尔可夫模型三个基本问题及算法

隐马尔可夫模型三个基本问题及算法隐马尔可夫模型(Hien Markov Model, HMM)是一种用于建模具有隐藏状态和可观测状态序列的概率模型。

它在语音识别、自然语言处理、生物信息学等领域广泛应用,并且在机器学习和模式识别领域有着重要的地位。

隐马尔可夫模型有三个基本问题,分别是状态序列概率计算问题、参数学习问题和预测问题。

一、状态序列概率计算问题在隐马尔可夫模型中,给定模型参数和观测序列,计算观测序列出现的概率是一个关键问题。

这个问题通常由前向算法和后向算法来解决。

具体来说,前向算法用于计算给定观测序列下特定状态出现的概率,而后向算法则用于计算给定观测序列下前面状态的概率。

这两个算法相互协作,可以高效地解决状态序列概率计算问题。

二、参数学习问题参数学习问题是指在给定观测序列和状态序列的情况下,估计隐马尔可夫模型的参数。

通常采用的算法是Baum-Welch算法,它是一种迭代算法,通过不断更新模型参数来使观测序列出现的概率最大化。

这个问题的解决对于模型的训练和优化非常重要。

三、预测问题预测问题是指在给定观测序列和模型参数的情况下,求解最可能的状态序列。

这个问题通常由维特比算法来解决,它通过动态规划的方式来找到最可能的状态序列,并且在很多实际应用中都有着重要的作用。

以上就是隐马尔可夫模型的三个基本问题及相应的算法解决方法。

在实际应用中,隐马尔可夫模型可以用于许多领域,比如语音识别中的语音建模、自然语言处理中的词性标注和信息抽取、生物信息学中的基因预测等。

隐马尔可夫模型的强大表达能力和灵活性使得它成为了一个非常有价值的模型工具。

在撰写这篇文章的过程中,我对隐马尔可夫模型的三个基本问题有了更深入的理解。

通过对状态序列概率计算问题、参数学习问题和预测问题的深入探讨,我认识到隐马尔可夫模型在实际应用中的重要性和广泛适用性。

隐马尔可夫模型的算法解决了许多实际问题,并且在相关领域有着重要的意义。

隐马尔可夫模型是一种强大的概率模型,它的三个基本问题和相应的算法为实际应用提供了重要支持。

隐马尔科夫模型

隐马尔科夫模型

i P[s1 i],(1 i N )

i
1
( 6) F:系统终了状态的集合。 Markov模型没有终了状态的概念,只 是在语音识别里用的Markov模型要设定终 了状态。
这样,可以记一个HMM为 M={S,O,A,B, ,F},为了便于表示,常用下 面的形式表示一个HMM,即简写为 M={A,B, }。HMM可以分为两部分,一个 是Markov链,由 ,A描述,产生的输出为 状态序列。另一个随机过程,由B描述,产 生的输出为观察符号序列。
1 1 1 2 2
T 1sT
bsT (oT )
(11)
T
根据上式,要计算 p(O| ) ,需要 2T N 规 模的计算量。如果对于 N=5(状态数), T=100(观察量), 需要 2*100*5100 1072 次计 算。
前向-后向算法
定义前向概率为: t (i) = P(o1o2 ot , st i | )
t
s 2 ,……, s t , S1t s1t 表示 S1 s1 ,
S 2 s 2 ,……, S t st 。特别的当如下
式成立时,则称其为1阶Markov过程, 又叫单纯马尔可夫过程。
t P(S t 1 st 1 | S1t s1 ) P(S t 1 st 1 | S t st )
最合适的模型,使得 P(O | ) 最大。
第一个问题的求解
给定观察序列 O={ o1 , o 2 …… oT } 和 模型 {A, B, } ,求解 P(O | ) ,最直接的 方法就是通过穷举所有的长度为 T 状态序 列。共有 N T 个状态序列,考虑其中一个: S (s1s2 ...sT ) ,s1 是初始状态。给定 S,观察 序列 O 出现的概率为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b11 = b12=…=b16=1/6 b21=0, b22=b23=1/8, b24=b25=3/16, b26=3/8
1.0 骰子A
1: 1/6
2: 1/6 3: 1/6 4: 1/6 5: 1/6 6: 1/6
0.1
0.8
骰子B
1: 0 2: 1/8
0
3: 1/8
4: 3/16
5: 3/16
6: 3/8
2021/2/2
34
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
2021/2/2
35
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
2021/2/2
42
前向算法过程演示
i=N
2021/2/2
40
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
2021/2/2
41
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
灌铅骰子
2021/2/2
12
公平骰子A与灌铅骰子B的区别:
1点 2点 3点 4点 5点 6点
2021/2/2
骰子A 1/6 1/6 1/6 1/6 1/6 1/6
骰子B 0 1/8 1/8
3/16 3/16 3/8
13
一次连续掷骰子的过程模拟
时间 1 2 3 4 5 6 7 骰子 A A A B A A A 掷出 点数 3 3 4 5 1 6 2
2021/2/2
9
观察序列产生步骤
给定HMM模型 λ = (A, B, π) ,则观察序列 O=O1,O2,…OT 可由以下步骤产生:
1.根据初始状态概率分布π= πi,选择一初始状态 q1=Si;
2.设t=1; 3.根据状态 Si的输出概率分布bjk,输出Ot=vk; 4.根据状态转移概率分布aij,转移到新状态qt+1=Sj; 5.设t=t+1,如果t<T,重复步骤3、4,否则结束。
2021/2/2
38
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
2021/2/2
39
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
2021/2/2
19
观察序列O
o1
o2
o3
o4
...
oT
HMM λ
状态序列Q
q1
q2
q3
q4
...
qT
赌场的例子中:
隐状态 AAAABAAAAABAAAAAAAAAAAAAAAAAAAAAAABAA BAAAAAAAAA… 明观察 3 3 4 5 4 1 4 1 5 5 3 6 6 3 4 4 1 1 3 4 6 2 5 4 4 5 3 3 4 2 2 3 3 3 2 1 2 4 2 2 5 6 3 1 3 4 1…
2. α(1,i)=π(i)b(i,o1)
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
2021/2/2
27
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
2021/2/2
36
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
2021/2/2
37
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
问题
点数序列中的哪些点数是用骰子B掷出的?
求maxQ{P(Q|O,λ)}
2021/2/2
16
问题 3 – 学习问题
给定
一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
问题
作弊骰子掷出各点数的概率是怎样的?公平骰子 掷出各点数的概率又是怎样的 ? 赌场是何时
如果系统在t时间的状态只与其在时间 t -1的状态相关, 则该系统构成一个离散的一阶马尔可夫链(马尔可夫过程):
2021/2/2
3
马尔可夫模型
如果只考虑独立于时间t的随机过程:
ai, j
其中状态转移概率 aij 必须满足 aij>=0 , 且 ,则该随机过程称为马尔可夫模型。
2021/2/2
4

隐序列 明序列
查封赌场后, 调查人员发现了一些连续掷骰子的记录, 其中有一个骰子掷出的点数记录如下:
… 124552646214614613613666166466163661636616361651561511514612356234
2021/2/2
14
问题 1 – 评估问题
给定
一个骰子掷出的点数记录
在MM中,每一个状态代表一个可观察的 事件
在HMM中观察到的事件是状态的随机函数, 因此该模型是一双重随机过程,其中状态 转移过程是不可观察(隐蔽)的(马尔可夫 链),而可观察的事件的随机过程是隐蔽的 状态转换过程的随机函数(一般随机过程)。
2021/2/2
7
HMM的三个假设
对于一个随机事件,有一观察值序列: O=O1,O2,…OT
采用动态规划算法,复杂度O(N2T)
学习问题:向前向后算法
EM算法的一个特例,带隐变量的最大似然估计
2021/2/2
22
解决问题一—前向算法
定义前向变量为:
“在时间步t, 得到t之前的所有明符号序列, 且时间 步t的状态是Si”这一事件的概率,
记为 (t, i) = P(o1,…,ot, qt = Si|λ)
3.学习问题:对于给定的一个观察值序列O,调整
参数λ,使得观察值出现的概率P(O|λ)最大。
2021/2/2
11
例: 赌场的欺诈
某赌场在掷骰子根据点数决定胜负时 , 暗中 采取了如下作弊手段: 在连续多次掷骰子的过程中, 通常使用公平骰 子 A, 偶而混入一个灌铅骰子B.
0.8
0.9
A
B
0.2
0.1 公平骰子
2021/2/2
10
HMM的三个基本问题
令 λ = {π,A,B} 为给定HMM的参数,
令 O = O1,...,OT 为观察值序列,则有关于
隐马尔可夫模型(HMM)的三个基本问题: 1.评估问题:对于给定模型,求某个观察值序列的
概率P(O|λ) ;
2.解码问题:对于给定模型和观察值序列,求可能 性最大的状态序列maxQ{P(Q|O,λ)};
124552646214614613613666166466163661636616361651561511514612356234
问题
会出现这个点数记录的概率有多大?
求P(O|λ)
2021/2/2
15
问题 2 – 解码问题
给定
一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
该事件隐含着一个状态序列: Q = q1,q2,…qT。
假设1:马尔可夫性假设(状态构成一阶马尔可夫链) P(qi|qi-1…q1) = P(qi|qi-1)
假设2:不动性假设(状态与具体时间无关) P(qi+1|qi) = P(qj+1|qj),对任意i,j成立
假设3:输出独立性假设(输出仅与当前状态有关) p(O1,...,OT | q1,...,qT) = Πp(Ot | qt)
2021/2/2
8
HMM定义
一个隐马尔可夫模型 (HMM) 是由一个五元组描述的:
λ =( N,M ,A,B, π )
其中: N = {q1,...qN}:状态的有限集合 M = {v1,...,vM}:观察值的有限集合 A = {aij},aij = P(qt = Sj |qt-1 = Si):状态转移概率矩阵 B = {bjk}, bjk = P(Ot = vk | qt = Sj):观察值概率分布矩阵 π = {πi},πi = P(q1 = Si):初始状态概率分布

2021/2/2
23
算法过程
2021/2/2
24
HMM的网格结构
2021/2/2
25
前向算法过程演示
相关文档
最新文档