一氧化碳的变换.

合集下载

一氧化碳的变换

一氧化碳的变换

一氧化碳变换时半水煤气借助于催化剂的作用,在一定温度下,水蒸气反应,生成二氧化碳和氢的工艺过程。

通过变换即除去了一氧化碳,又得到了合成氨的原料气氢和氨加工的原料气二氧化碳。

近年来,变换工段由于采用了低温高活性的催化剂和高串低,高-低-低(俗称“中串低”、“中-低-低”),全低变等多种新工艺流程,加强了热量回收利用,工段面貌发生了很大变化。

1、一氧化碳变换反应的基本原理时什么?其反应的特点时怎么样的?一氧化碳变换反应是在一定条件下,半水煤气中的一氧化碳和水蒸气反应生成氢气和二氧化塔的工艺过程。

CO + H2O <==> CO2 +H2+41kj/mol这是一个可逆放热反应,从化学平衡来看,降低反应温度,增加水蒸气用量,有利于上述可逆反应向二氧化碳和氢气的方向移动,提高平衡变换率。

但是水蒸气增加到一定值后,变换率增加幅度会变小。

温度对变化反应的速度影响较大,而且对正逆反应速度的影响不一样。

温度升高,放热反应即上述变换反应速度增加的慢,逆反应(吸热反应)速度增加得快。

因此,当变换反应开始时,反应物浓度大,提高温度,可加快变换反应,在反应的后一段,二氧化碳和氢的浓度增加,逆反应速度加快,因此,需降低反应温度,使逆反应速度减慢,这样可得到较高的变换率。

提高变化压力,分子间的有效碰撞次数,可以加快变换反应速度,提高催化剂的生产能力。

2“高串低”工艺与传统的高温变换工艺主要有什么不同?有何优点?传统的高温变换工艺,变换炉入口温度一般控制在320~340℃。

在流程设置上一般是一个变换炉,炉内装填铁-铬系催化剂,分两段或三段,半水煤气从上到下一次通过各段催化此后即完成变换过程。

“高串低”工艺与创痛的高温变换工艺主要不同之处是在原高变炉之后,又串联了一个装有钴-钼系列耐硫宽温催化剂的低变炉,形成高变串低变的工艺流程。

耐硫宽温变换催化剂在“高串低”工艺中被利用做低变催化剂。

低变炉入口气体温度一般可控制在210~230℃。

一氧化碳低温变换

一氧化碳低温变换

一氧化碳的低温变换CO变换的工艺流程主要由原料气组成来决定的,同时还与催化剂、变换反应器的结构,以及气体的净化要求有关。

目前低温变换主要是串接在中温变换催化剂后作为一氧化碳深度变换的。

而入口一氧化碳含量5%-8% , 最高使用温度不超过300℃。

中变串低变流程一般采用两种方法,一是中变炉外加低变炉, 另一种为变换炉中一二层用中变触媒, 三层使用低温触媒。

两种方法都使系统出口一氧化碳含量降至1%左右, 起到稳定生产、增产节能之效果。

1.中(高)变-底变串联流程采用此流程一般与甲烷化脱除少量碳氧化物相配合。

这类流程先通过中(高)温变换将大量CO变换达到3%左右后,再用低温变换使一氧化碳含量降低到0.3%-0.5%,。

为了进一步降低出口气中CO含量,也有在低变后面串联一个低变的流程。

当CO含量较高时,变换气一般选择在炉外串低变;而一氧化碳含量较低时,可选择在炉内串低变。

中串低流程中要主要两个问题,一是要提高低变催化剂的抗毒性,防止低变催化剂过早失活;二是要注意中变催化剂的过度还原,因为与单一的中变流程相比,中串低特别是中低低流程的反应汽气比下降,中变催化剂容易过度还原,引起催化剂失活、阻力增大及使用寿命缩短。

2.全低变流程中(高)变-低变串联流程操作繁琐,设备增加,特别是特殊材料阀门的选用给管理带来了许多不便。

使用全低变变换催化剂代替原Fe-Cr系中变催化剂,在低温下完成变换即可克服以上两种工艺的缺点,又能达到理想的目的。

全低变工艺采用宽温区的钴钼系耐硫变换催化剂,主要有下列优点。

(1)催化剂的起始活性温度低,变换炉入口温度及床层热点温度低于中变炉入口及热点温度100-200℃。

这样,就降低了床层阻力,缩小了气体体积约20%,从而提高了变换炉的生产能力。

(2)变换系统处于较低的温度范围内操作,在满足出口变换气中CO含量的前提下,可以降低入炉蒸汽量,使全低变流程的蒸汽消耗降低。

使用全低变变换催化剂代替原。

一氧化碳的变换技术62.

一氧化碳的变换技术62.

一氧化碳的变换技术一、一氧化碳的变换的意义无论以固体、液体或气体原燃料所制取的煤气中均含有CO 。

CO 不是合成氨所需要的直接原料,而且对氨合成催化剂有毒害,因此必须清除。

生产中通常分两步法除去。

首先,利用CO 和水蒸气,在催化剂的作用下,发生化学反应,产生氢气和后工序易于脱除的CO 2,这一过程称为一氧化碳的变换,变换后的气体称为变换气。

因此,一氧化碳的变换,既是原料气的净化过程,又是原料气制造的继续(产生氢气)。

第二步,在后工序中采用铜氨液洗涤法、甲烷化或液氮洗涤法脱除变换气残余的微量CO 。

二、CO 变换基本原理和变换工艺条件的选择:1 CO 变换基本原理1)、变换反应可以用下式表示:催化剂CO +H2O(汽2+H 2+Q该反应是可逆、放热、等体积反应,降低反应温度,增加水蒸汽的添加量或者移走生成物中的CO 2,都会使反应向正方向移动。

只有在催化剂的作用下才有较快的反应速度。

2)变换反应是放热反应,反应热随温度的升高而有所减少,在227℃时反应热为:9522cal/mol ,在423℃时反应热为:9054cal/mol 。

3)变换反应的化学平衡在一定条件下,当变换反应的正、逆反应速度相等时,反应即达到平衡状态,其平衡常数为:Kp=(P CO2*P H2)/(P CO *P H2O )注: P CO2、P H2、P CO 、P H2O 各组分的平衡分压(或平衡组成)。

Kp 值越大,说明原料气中CO 转化越完全,达到平衡时变换气中残余的CO含量越少。

由于变换反应是放热反应,降低温度有利于平衡向右移动,因此平衡常数随温度的降低而增大。

250℃时为86.51,450℃时为:7.311。

在工业生产中,受催化剂装填量、设备投资的经济效益等因素影响,反应不可能也没必要达到平衡,只能尽可能接近平衡。

实际的流程组合中,一般利用高温段之后再进行低温变换,就是为了提高反应平衡常数,从而提高变换率,降低变换气CO含量。

一氧化碳变换操作规程

一氧化碳变换操作规程

一氧化碳变换操作规程第一节工艺原理一氧化碳是在催化剂的作用下,具有一定的温度(高于催化剂的起始活性温度)条件,CO和水蒸汽发生反应,将CO转化为氢气和二氧化碳气。

其化学反应式为:H2O+COCO2+H2+Q这是一个可逆放热反应。

从化学平衡上看降低CO2浓度,降低温度,增加水蒸汽量可以使平衡右移,提高CO转化率。

一氧化碳在某种条件下,能发生下列副反应:CO+H2C+H2O(1)CO+3H2CH4+H2O(2)CO2+4H2OCH4+2H2O(3)这几个副反应都是放热反应,甲烷化反应会使催化剂床层温度飞升,析碳反应造成催化剂失去活性,在正常操作中我们要尽量减少这些副反应的发生。

本工序针对SHELL粉煤气化生成的粗合成气的特性(CO含量高,且含硫量较高),一氧化碳变换采用耐硫宽温变换工艺,采用锅炉给水、脱盐水换热的方式回收反应热。

第二节流程叙述从SHELL来的煤气化装置的粗合成气(温度:168℃,压力:3.8MPa (g),湿基CO:55.6%,干基CO:69.07%)进入煤气原料气分离器04S001,分离出夹带的液相水后进入原料气过滤器04S002,其中装有吸附剂,可以将粗合成气中的粉尘等对催化剂有害的杂质除掉。

然后粗合成气分成三部分。

一部分占总气量28.5%的粗合成气进入煤气预热器04E001,与第三变换炉04R003出口变换气换热至210℃,后进入蒸汽混合器04S003,进入该混合器前,来自蒸汽管网的过热蒸汽(4.4MPa,282℃)与粗合成气混合。

进蒸汽混合器的蒸汽量由调节阀FV-04005调节,该蒸汽量与28.5%的粗合成气量是比例控制,保证进入一变、汽、气比不低于1.09,原料气管线设有TV-04003调节阀旁路(测温点TE-04003在一变的入口。

混合后的粗合成气进入煤气换热器04E002管侧与来自第一变换炉04R001出口的变换气换热。

合成气温度由TV-04003控制在约255℃左右,进入第一变换炉04R001进行变换反应(一变入口湿基CO:33.1%)。

一氧化碳高温变换催化剂使用说明-图片版[1]

一氧化碳高温变换催化剂使用说明-图片版[1]

一氧化碳高温变换催化剂使用说明一、变换反应原理一氧化碳变换反应是指一氧化碳与水蒸汽作用生成二氧化碳和氢气的反应,反应如下:C O+H2O H2+C O2+41.19k J/m o l上式是一个典型的气固相反应,它在合成氨,合成甲醇,制氢气、羰基合成气、城市煤气工业中得到了广泛的应用。

一氧化碳变换反应是可逆放热反应,该反应在一般条件下进行得非常缓慢,远不能满足工业生产的需要。

在变换催化剂作用下,可显著提高变换反应的速度,并可防止和减少副反应。

根据化学平衡原理,反应温度越高,变换反应的平衡转化率越低。

在绝热的变换反应器中,为了获得较高的CO变换率,就需要尽可降低催化剂床层入口温度,以使床层出口温度尽可能低,这就要求催化剂具有良好的低温活性。

为了保证变换催化剂不被过度还原,必须在超过化学计量的汽气比下操作。

催化剂使用温度越高,必需采用的汽气比也越高。

如果使用低温活性好的催化剂,整个催化剂床层可在较低的温度下操作,则可以降低变换系统的操作汽气比,节省蒸汽消耗。

二、催化剂的装填催化剂的装填非常重要,将直接影响床层的压力降和气流分布,进而影响催化剂效能的正常发挥。

催化剂的装填方案应认真讨论,可装单一型号的催化剂,也可采用混装法。

如果要使用部分筛过的、比较完好的旧催化剂,应该在一段上部装三分之二的低温活性好的新催化剂;第三段应全装新催化剂;而在一段剩下的三分之一和二段温度较高的部位可装填部分旧催化剂。

这样装填既能发挥新催化剂的低温活性又能合理利用旧催化剂的剩余活性。

推荐装填高度比,二段式1:0.8,三段式1:1:1。

如此装填的目的在于保证一段在较高温度下加快变换反应的速度,而在变换炉最末端温度较低的条件下获得较高的变换率,在装填总量相等的情况下,变换率最高,或变换率一定的情况下蒸汽消耗最低。

1.催化剂装填之前要清除变换炉内杂物,并根据各段的催化剂装量,在炉内标出催化剂装填的高度。

2.炉篦上面要铺一层耐火球和金属网。

一氧化碳变换技术交流

一氧化碳变换技术交流


• 但实际上完全按最适宜温度曲线操作是不可能的,因 为在反应开始时,最适宜温度最高(以中温变换为例, 要达到620℃以上),大大超过催化剂的耐热温度, 而且热量的来源是个问题。随着反应的进行,要不断 地、准确地按照最适宜温度的需要移出反应热是极为 困难的,见二 段CO变换的T-x图。 图中: CD即为最适宜温度曲线,AB为平衡曲线,EF线为第 一段绝热反应线,FG线表示段间间接换热降温过程。 GH线表示第二段绝热反应线。。 • 变换过程的温度应综合各个方面因素来确定,主要原 则是: • 1)、反应开始温度应高于催化剂活性温度10~20℃ 左右。另外必须要高于气体露点温度20℃以上(防止 原料气析水,一是使催化剂粉碎结块,二是腐蚀设 备)。
CS2+4H2 2H2S+CH4+246 kJ∕mol MoO3+2H2S+H2 MoS2+3H2O+48.1 kJ∕mol CoO+H2S CoS+H2O+13.4 kJ∕mol • 升温硫化一般采用循环硫化法,升温硫化阶段所需要的热 量主要靠电加热器提供。 • 3)国内外Co-Mo系耐硫变换催化剂的发展历程 • ⑴1969年德国BASF公司开发成功的K8-11耐硫变换催化 剂(镁铝尖晶石复合材料为载体),1978年首次实现工业 化的应用,用于重油部分氧化法制合成气流程和加压煤气 化制合成氨流程的CO变换。它的主要特点是以镁铝尖晶 石为载体,硫化后活性高,耐高水蒸汽分压,可在高压下使用, 抗毒物能力强,能再生,平均寿命 3~5年。
• 由于变换反应是放热反应,降低温度有利于平衡 向右移动,因此平衡常数随温度的降低而增大。 例如:250℃时为86.51,450℃时为:7.311。 • 在工业生产中,受催化剂装填量、设备投资的经 济效益等因素影响,反应不可能也没必要达到平 衡,只能尽可能接近平衡。 • 实际生产的流程组合中,一般利用高温段之后再 进行低温变换,就是为了提高反应平衡常数,从 而提高变换率,降低变换气CO含量。

一氧化碳的变换

一氧化碳的变换
②平衡变换率是变换反应达到化学平衡时,有多少CO(干)进行了变换反 应。平衡只是一种理想状态,所以,平衡变换率可用来衡量CO变换的 最大程度。
二、一氧化碳变换反应的化学平衡
(一)变换反应的热效应 变换反应的标准反应热△ H298 ,可以用有关气体的标准生成热数据进
行计算:
上一页 下一页 返回
5.副反应的影响 一氧化碳变换中,可能发生析碳和甲烷化副反应等。其反应式如下:
上一页 下一页 返回
项目三 一氧化碳的变换
副反应不仅消耗了原料气中的有效成分—氢气和一氧化碳,增加了无用 成分甲烷的含量,且析碳反应中析出的游离碳极易附着在催化剂表面降 低活性。以上这些副反应均为体积减小的放热反应。因此,降低温度, 提高压力有利于副反应的进行。但在实际生产中,现有的生产工艺条件 下,这些副反应一般是不容易发生的。
上一页 下一页 返回
项目三 一氧化碳的变换
一氧化碳变换为一可逆反应,增加蒸汽添加量可使反应向生成氢和二氧 化碳的方向进行。因此,工业上一般均采用加入过量的水蒸气的方法, 以提高一氧化碳变换率。
因此,变换温度愈低愈有利于反应的进行,并可节省蒸汽用量。同一温 度下,蒸汽用量增大,平衡变换率随之增大,但增加的趋势是先快后慢。 因此,要达到很高变换率,蒸汽用量将大幅度增加。这不仅经济上不合 理,同时还会使催化剂层温度难以维持。
所以: 实际生产中则可测定原料气及变换气中一氧化碳的含量(干基),而由下
式计算一氧化碳的实际转化率x。
(四)影响变换反应化学平衡的因素 1.温度的影响 根据化学平衡移动原理,升高温度可促进反应平衡向左方移动,降低温
度反应便向右方移动。
上一页 下一页 返回
项目三 一氧化碳的变换
因此,反应温度愈低,愈有利于变换反应的进行。但降低反应温度必须 与反应速度和催化剂的性能一并考虑。对于一氧化碳含量较高的半水煤 气,开始反应时,为了加快反应速度,一般在较高的温度下进行,而在 反应的后一阶段,为了要使反应比较完全,就必须使反应温度降低一些。 工业上一般采用两段中低温变换就是根据这一概念确定的。对于一氧化 碳含量为2%~4%的中温变换后的气体,就只需要在230℃左右,用低温 变换催化剂进行一段变换。反应温度与催化剂的活性温度有很大的关系, 一般工业用的变换催化剂低于某一温度反应便不能正常进行,但高于某 一温度也会损坏催化剂。因此,一氧化碳变换反应必须在催化剂适用温 度范围内选择优惠的工艺条件。

一氧化碳的变换

一氧化碳的变换
②平衡变换率是变换反应达到化学平衡时,有多少CO(干)进行了变换反 应。平衡只是一种理想状态,所以,平衡变换率可用来衡量CO变换的 最大程度。
二、一氧化碳变换反应的化学平衡
(一)变换反应的热效应 变换反应的标准反应热△ H298 ,可以用有关气体的标准生成热数据进
行计算:
上一页 下一页 Байду номын сангаас回
其他副反应如下。
下一页 返回
项目三 一氧化碳的变换
(一)甲烷化反应 在一氧化碳与水蒸气共存的系统中,是含有C, H, O三个元素的系统。
从热力学角度,不但可能进行式(3一3一1)的变化反应,而且还可进行其 他反应,如:
上一页 下一页 返回
项目三 一氧化碳的变换
这一点与甲烷蒸气转化、煤气化等系统中所出现的反应式有相似之处。 但是,由于所用催化剂对反应式(3 -3-1)具有良好的选择性,从而抑制了 其他反应的发生。在计算反应系统平衡组成时,采用反应式(3-3-1)的平 衡关系,其结果基本符合实际情况。从以上反应式看,降低温度和增加 压力有利于生成甲烷的反应。但在实际生成中采用的工艺条件下,这一 副反应是不会发生的。降低床层的热点温度、增加水/气、提高空速都可 以抑制甲烷化副反应的影响。
还可进行其他反应:
由于所用的催化剂对变换反应有良好的选择性,可抑制其他反应的发生, 因此副反应发生的概率很小。
(二)变换反应的平衡常数 一氧化碳变换反应通常是在常压或压力不太高的条件下进行,故平衡常
数计算时各组分用分压表示已足够精确。因此平衡常数KD可用下式计算:
上一页 下一页 返回
项目三 一氧化碳的变换
平衡常数是温度的函数,可通过范特荷莆方程式计算:
不同温度下一氧化碳变换反应的平衡常数见表3-3 -2。

甲醇原料气中一氧化碳的变换—变换的原理

甲醇原料气中一氧化碳的变换—变换的原理

三、 甲醇原料气变换的催化剂
✓ (三)耐硫变换催化剂—— 2.硫化
钴钼系耐硫催化剂其主要活性组分氧化钴和氧化钼在使用前,需将其转化为硫化钴硫化钼才具
有变换活性,这一过程称为硫化。对催化剂进行硫化,可用含氢的二硫化碳,也可直接用硫化氢或用
未脱硫的原料气。为了缩短硫化时间,保证活化的好,工业上一般都采用在干半水煤气中加CS2为硫
=-41.19kJ/mol (1)
✓ 该反应特点为可逆、放热、反应前后体积不变,反应速率比较慢,只有在催化剂的作用下才

能实现工业生产。
✓ 此外,一氧化碳与氢之间还可发生下列反应

CO + H2 = C +H2O

CO + 3H2 = CH4 +H2O
二、甲醇原料气变换的基本原理
1.化学平衡
✓ 由于变换催化剂对反应(1)具有良好的选择性,降低了反应温度,抑制了其它副反应的发生。 因此,仅需考虑反应(1)的化学平衡。
-△H/
( kJ/mol
41.19

40.07
39.67
39.25
38.78
38.32
37.86
37.30
36.82
三、 甲醇原料气变换的催化剂
✓ (一)高(中)温变换催化剂——1.催化剂的性能 铁-铬系催化剂的一般化学组成为: Fe2O3
80%~90%, Cr2O3 7%~11%,并含有少量的K2O、 MgO、Al2O3等。四氧化三铁是铁-铬系催化剂的活性 组分,还原前以氧化铁的形态存在。氧化铬是重要的 结构性促进剂 。
晶。但单纯的铜微晶在操作温度下极易烧结,导致微晶增大,比面积减小,活性下降和寿命缩短。 为此,在催化剂中加入氧化锌、氧化铝、氧化铬等添加物。

一氧化碳变换反应工艺流程

一氧化碳变换反应工艺流程

一氧化碳变换反响工艺流程一氧化碳变换流程有很多种,包含常压、加压变换工艺,两段中温变换(亦称高变)、三段中温变换(高变)、高 -低变串连变换工艺等等。

一氧化碳变换工艺流程的设计和选择,第一应依照原料气中的一氧化碳含量高低来加以确立。

一氧化碳含量很高,宜采纳中温变换工艺,这是因为中变催化剂操作温度范围较宽,使用寿命长并且价廉易得。

当一氧化碳含量大于 15%时,应试虑将变换炉分为二段或多段,以使操作温度靠近最正确温度。

其次是依照进入变换系统的原料气温度和湿度,考虑气体的预热和增湿,合理利用余热。

最后还要将一氧化碳变换和剩余一氧化碳的脱除方法联合考虑,若后工序要求剩余一氧化碳含量低,则需采纳中变串低变的工艺。

一、高变串低变工艺当以天然气或石脑油为原料制造合成气时,水煤气中CO含量仅为 10%~13%(体积分数),只要采纳一段高变和一段低变的串连流程,就能将 CO含量降低至0.3%,图 2-1是该流程表示图。

图 2-1一氧化碳高变 -低变工艺流程图1-废热锅炉2-高变炉3-高变废热锅炉4-预热器5-低变炉6-饱和器7-贫液再沸器来自天然气蒸气转变工序含有一氧化碳约为13%~15%的原料气经废热锅炉1降温至 370℃左右进入高变炉 2,经高变炉变换后的气体中一氧化碳含量可降至3%左右,温度为 420~440℃,高变气进入高变废热锅炉3及甲烷化进气预热器 4 回收热量后进入低变炉 5。

低变炉绝热温升为 15~20℃,此时出低变炉的低变气中一氧化碳含量在 0.3%~0.5%。

为了提升传热成效,在饱和器6中喷入少许软水,使低变气达到饱和状态,提升在贫液再沸器7中的传热系数。

二、多段中变工艺以煤为原料的中小型合成氨厂制得的半水煤气中含有许多的一氧化碳气体,需采纳多段中变流程。

并且因为来自脱硫系统的半水煤气温度较低,水蒸气含量较少。

气体在进入中变炉以前设有原料气预热及增湿装置。

此外,因为中温变换的反响放热多,应充足考虑反响热的转移和余热回收利用等问题。

一氧化碳变换

一氧化碳变换

一氧化碳变换概述一氧化碳的变换是指煤气借助于催化剂的作用,在一定温度下,与水蒸气反应,一氧化碳生成二氧化碳和氢气的过程。

通过变换反应既除去了煤气中的一氧化碳,又得到了制取甲醇的有效气体氢气。

因此,变化工段既是转化工序,又是净化工序。

前工段来的煤气中,一氧化碳含量高,通过变换反应以后,要求达到工艺气体中的CO/H2约为2.05~2.1的关系,以满足甲醇合成的要求。

一氧化碳变换反应是在催化剂存在的条件下进行的,是一个典型的气固相催化反应。

60年代以前,变换催化剂普遍采用Fe-Gr催化剂,使用温度范围为350~550℃,60年代以后,开发了钴钼加氢转化催化剂和氧化锌脱硫剂,这种催化剂的操作温度为200~280℃,为了区别这两种操作温度不同的变换过程,习惯上将前者称为“中温变换”,后者称为“低温变换”。

按照回收热量的方法不同,变换又可分为激冷流程和废锅流程,冷激流程中,冷激后的粗原料气已被水蒸气饱和,在未经冷却和脱硫情况下直接进行变换,因此,两种流程按照工艺条件的不同选用不同的催化剂,激冷流程采用Co-Mo耐硫变换催化剂,废锅流程采用Fe-Cr变换催化剂。

第一节变换反应原理变换过程为含有C、H、O三种元素的CO和H2O共存的系统,在CO变换的催化反应过程中,除了主要反应CO+H2O=CO2+H2以外,在某种条件下会发生CO分解等其他副反应,分别如下:2CO=C+CO22CO+2H2=CH4+CO2CO+3H2=CH4+H2OCO2+4H2=CH4+2H2O这些副反应都消耗了原料气中的有效气体,生成有害的游离碳及无用的甲烷,避免副反应的最好方法就是使用选择性好的变换催化剂。

一、变换反应的热效应一氧化碳变换反应是一个放热反应,CO+H2O=CO2+H2+41kJ/gmol反应的热效应视H2O的状态而定,若为液态水,则是微吸热反应,若是水蒸气,则为放热反应。

变换反应的反应热随温度的升高而降低,具体反应热列表如下:表1 CO+H2O=CO2+H2的反应热温度℃25 200 250 300 350 400 450 500 550 △HkJ/gmol 41 39.8 39.5 39 38.5 38 37.6 37 36.6压力对变换反应的反应热影响较小,一般不做考虑。

一氧化碳变换工艺流程

一氧化碳变换工艺流程

一氧化碳变换工艺流程温馨提示:该文档是小主精心编写而成的,如果您对该文档有需求,可以对它进行下载,希望它能够帮助您解决您的实际问题。

文档下载后可以对它进行修改,根据您的实际需要进行调整即可。

另外,本小店还为大家提供各种类型的实用资料,比如工作总结、文案摘抄、教育随笔、日记赏析、经典美文、话题作文等等。

如果您想了解更多不同的资料格式和写法,敬请关注后续更新。

Tips: This document is carefully written by the small master,if you have the requirements for the document, you can download it, I hope it can help you solve your practical problems. After downloading the document, it can be modified and adjustedaccording to your actual needs.In addition, the store also provides you with a variety of types of practical information, such as work summary, copy excerpts, education essays, diary appreciation, classic articles, topic composition and so on. If you want to know more about the different data formats and writing methods, please pay attentionto the following updates.一氧化碳是一种具有毒性的有害气体,它对人类健康和环境造成了严重的危害。

一氧化碳变换

一氧化碳变换

中温变换工艺设计方案目录前言 (2)1、背景 (2)2、分类 (2)3、工艺方法的选择 (2)反应原理 (3)中温变换催化剂 (4)工艺流程 (6)工艺条件 (7)设计体会与收获 (8)参考文献 (9)前言氨是一种重要的化工产品,主要用于化学肥料的生产。

合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。

合成氨的生产主要分为:原料气的制取;原料气的净化与合成。

粗原料气中常含有大量的C,由于CO是合成氨催化剂的毒物,所以必须进行净化处理,通常,先经过CO变换反应,使其转化为易于清除的CO2和氨合成所需要的H2。

因此,CO变换既是原料气的净化过程,又是原料气造气的继续。

最后,少量的CO用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。

1、背景变换是合成氨生产中的重要工序,同时也是一个耗能重点工序,而外加蒸汽量的大小,是衡量变换工段能耗的主要标志。

因此,尽量减少其用量对其过程的节能降耗具有重要意义。

从70年代以来,我国在变换工艺的节能降耗方面,进行了大量的科研开发和技改工作,先后开发了中变、中变串低变、全低变等变换工艺,使蒸汽消耗量从传统的中变消耗1 t/tNH 以上,降低到200 kg/tNH,从而形成一种能耗低、稳定可靠、周期长的变换工艺。

2、分类一氧化碳变换的工艺流程包括中变-低变串联流程、多段中变流程、全低变流程、中低低流程等。

3、工艺方法的选择变换工艺流程的设计,首先应依据原料气中的一氧化碳含量高低来加以确定。

以煤为原料气的中小型氨厂制得的半水煤气中含有较高的一氧化碳,所以需采用多段中变流程。

中变催化剂操作温度范围较宽,而且价廉易得,使用寿命长。

因此,在一氧化碳转换工艺设计中,我组选用中温变换工艺。

反应原理变换反应可用下式表示:此外,一氧化碳与氢之间还可发生下列反应(1-2) O H C H CO 22+⇔+(1-3)但是,由于变换所用催化剂对反应式(1-1)具有良好的选择性,从而抑制了其他副反应的发生。

变换

变换

第四章 甲醇原料气中一氧化碳的变换以重油与煤为原料所制得的粗甲醇原料气均需经过一氧化碳变换工序。

一氧化碳变换工序的主要有两个作用:一是调整甲醇原料气氢碳比例。

合成甲醇所用的气体组成应保持一定的氢碳比例。

在甲醇合成反应中,应使15.210.222-=+-=CO CO CO H f 或05.20.222-=+=CO CO H M当以重油或煤、焦为原料生产甲醇时,气体组成偏离上述比例,CO 过量而H 2不足,需通过变换工序使过量的一氧化碳变换成氢气,以调整氢碳比。

二是使粗煤气中的有机硫(COS 、CS 2等)水解转化为无机硫(H 2S ),便于脱除。

甲醇合成原料气必须将气体中总含硫量脱至0.1ppm 以下。

以煤制的粗水煤气中硫的主要存在形式有两种无机硫H 2S (90%)和有机硫COS (10%)。

除非采用甲醇洗,通常的湿法脱硫难以在变换前脱除有机硫。

设置了变换工序后,有机硫化物均可在变换催化剂上转化为H 2S ,便于后工序脱除。

COS + H 2O ═ CO 2 + H 2S (4-1)工业生产中,一氧化碳变换反应均在催化剂存在的条件下进行。

根据反应温度不同,变换过程分为中温变换和低温变换。

中温变换催化剂以三氧化二铁为主,反应温度为350~550℃,反应后气体中仍含有3%左右的一氧化碳。

低温变换以铜(或硫化钴-硫化钼)为催化剂主体,操作温度为180~280℃,反应后气体中残余一氧化碳可降到0.3%左右。

近年来,随着高活性耐硫变换催化剂开发和使用,变换工艺发生了很大变化,由过去单纯的中温变换、中低温变换,发展到目前的中变串低变、全低低、中低低变换等多种新工艺。

第一节 一氧化碳变换原理一、变换反应的特点 变换反应可用下式表示:CO + H 2O(g) ═ CO 2 + H 2 +Q (4-2)变换反应的特点是可逆、放热、反应前后体积不变,并且反应速率比较慢,只有在催化剂的作用下才具有较快的反应速率。

变换反应是放热反应,反应热随温度升高而有所减少,其关系式为[]mol cal T T T Q /109703.010845.2219.010*******⨯⨯+⨯⨯-+=-- (4-3)式中 T —温度,K 。

一氧化碳变换反应方程式

一氧化碳变换反应方程式

一氧化碳变换反应方程式
一氧化碳变换反应方程式 1
(1)当氧气不足时,碳在氧气中不完全燃烧生成一氧化碳C + O2 =点燃= CO
(2)当氧气足量时,碳在氧气中完全燃烧生成二氧化碳C +
O2 =点燃= CO2(3)一氧化碳气体在氧气中燃烧生成二氧化碳CO + O2 =点燃= CO2
(4)二氧化碳和碳高温生成一氧化碳(这也就是为什么碳在氧气不足量时燃烧生成一氧化碳,其实质就是碳对氧气来说是过量的,未反应完的碳会与燃烧产生的二氧化碳反应生成一氧化碳)CO2 + C =高温= 2CO。

(5)2NO+2CO==N2+2CO2(常温即可反应,速率很
慢),(6)CO还原金属氧化物:
CO+CuO==Cu+CO2,物质间的转化途径是多样的,只是转化效率和反应速率不同了。

一氧化碳变换

一氧化碳变换

甲醇生产技术
一、变换反应的物理化学基础
2.变换反应的平衡常数 变换反应是在压力不太高时进行的,故计算化学平衡常 数Kp时,各组分用分压表示已足够准确。
甲醇生产技术
一、变换反应的物理化学基础
表4—2 一氧化碳变换反应的平衡常数
温度/℃
25
Kp
1.03×103
200 227.9
250 96.5
300 39.2
甲醇生产技术
第二节 一氧化碳变换催化剂
1 中温变换催化剂 2 低温变换催化剂 3 宽温耐硫变换催化剂
甲醇生产技术
一、中温变换催化剂
(一)铁铬系催化剂 1.组成与性能 (1)颗粒外形与尺寸。 (2)堆密度 (3)颗粒密度 (4)真密度 (5)比表面积 (6)孔隙率 (7)比孔体积:=催化剂的微孔体积/催化剂质量
ΔΗR=
-10000-0.219T+2.845×10-3 T2-0.9703×10-6 T3
[kJ/mol] (4—2)
甲醇生产技术
一、变换反应的物理化学基础
表4—1 一氧化碳变换反应热效应
温度/℃
—ΔΗR/
(kJ/mol)
25
200
250
300
350
400
41.16 40.04 39.64 39.23 38.76 38.30
第四章 变换
1 一氧化碳变换的基本原理 2 一氧化碳变换催化剂 3 一氧化碳变换工艺操作条件的选择
甲醇生产技术
第四章 变换
一氧化碳变换工序的主要作用有两个: (1)调整氢碳比例 合成甲醇的原料气组成应保持一定的氢碳比例,甲醇合 成反应中,一氧化碳与二氧化碳所需的氢的化学当量是 不同的,应使M= =2.0~2.05。当以重油或煤、焦为原料 生产甲醇时,气体组成偏离上述比例,须通过变换工序 使过量的一氧化碳变换成氢气。

粗原料气的制取—一氧化碳变换(合成氨生产)

粗原料气的制取—一氧化碳变换(合成氨生产)

(1)硫化
Co-Mo系耐硫变换催化剂出厂时成品是以氧化物状态存在的,活 性很低,需要通过硫化,使其转化为硫化物方能显示其活性。催化剂 装入变换炉后,用含硫的工艺气体进行硫化。
(2)反硫化
由于催化剂的活性组分在使用时是以硫化物形式存在的,在CO变 换过程中,气体中有大量水蒸气,催化剂中的活性组分MoS2与水蒸气 有一水解反应平衡关系,化学反应式为:
• 变换反应进行的程度用变换率(平衡转化率)表示,即已经转换的一氧化碳量与变换前
的总一氧化碳量之比:
x (nCO n'CO ) nCO
• 变换过程存在H2O,气体组成表示有两种方式;一种是包括H2O的湿基组成,一种是不 包括H2O的干基组成。
• 若分析得到变换前后CO的干基组成分别为y和y’ ,1mol干基气体变换后为(1+y·x)mol的
来源
原料气
原料气 高变催化剂 工艺蒸汽或 冷激用水
毒害作用
损害物理性能; 氨溶解在冷凝水 中,会溶解铜
中毒程度
要求
暂时性
低变温度要高 于气体露点
生成硫化亚铜 永久性 小于1cm3/m3
氯化铜
永久性
小于 0.03ml/m3
Fe-Cr系(高变):活性温度高,抗硫性差。寿命为3~5年 Cu-Zn系(低变):低温活性好,但活性温度范围窄,对硫十分敏感,寿命短。
CONTENTS
01
03
02
04
一氧化碳变换:既是原料气制造的继续,又是净化过程。粗 原料气含CO 12 % ~40%,通常分两步将CO除去:
高温变换
一氧化 碳变换
使大部分CO转化为CO2和H2
低温变换
一氧化 将CO 降到0.3%左右 碳变换

一氧化碳变换工艺及催化剂分析

一氧化碳变换工艺及催化剂分析

一氧化碳变换工艺及催化剂分析一氧化碳(CO)是一种无色、无味、无臭的气体,在环境中广泛存在,并且对人体健康和环境造成严重影响。

因此,探索有效的一氧化碳变换工艺和催化剂具有重要意义。

1.光催化:光催化是利用光能激发催化剂上的电子从而促进一氧化碳的转化。

常见的光催化剂包括二氧化钛(TiO2)、二氧化锌(ZnO)等。

这些光催化剂具有良好的光催化活性,可以通过吸收可见光或紫外光来激活,并参与一氧化碳转化反应。

光催化反应的优点是能量消耗低、选择性高、反应速率快,但其缺点是催化剂的稳定性较差,光催化效果易受环境条件影响。

2.电催化:电催化是利用电能输入到催化剂上,将一氧化碳电催化转化为二氧化碳。

常见的电催化剂包括铂(Pt)、钯(Pd)等贵金属材料。

这些电催化剂具有很好的电催化活性,可以高效地将一氧化碳氧化为无害的二氧化碳。

电催化反应的优点是能耗低、转化效率高,但其缺点是贵金属催化剂成本高、易受染料、杂质等的污染。

3.热催化:热催化是将一氧化碳和氧气在催化剂的存在下加热反应,使其发生氧化反应。

常见的热催化剂包括铂(Pt)、钼(Mo)等。

这些热催化剂具有高的氧化活性,可以在适当的温度和压力下将一氧化碳转化为二氧化碳。

热催化反应的优点是反应条件相对温和、催化剂稳定性较好,但其缺点是转化速率较慢、能耗较高。

催化剂的选择对一氧化碳变换的效果起着至关重要的作用。

常见的一氧化碳变换催化剂主要有贵金属催化剂、氧化物催化剂和过渡金属氧化物催化剂等。

贵金属催化剂具有高的催化活性和稳定性,在一氧化碳变换过程中表现出了较好的效果。

然而,由于贵金属催化剂的成本较高,因此在实际应用中存在一定的限制。

氧化物催化剂具有良好的催化活性和稳定性,并且相对贵金属催化剂来说成本较低,在一氧化碳变换中广泛应用。

过渡金属氧化物催化剂由于其良好的催化活性和稳定性,也被广泛研究和应用于一氧化碳变换中。

总之,一氧化碳变换工艺及催化剂的选择在净化空气、保护环境方面具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 氧化锌脱硫的反应速度主要是内扩散控制,所以氧化锌脱硫剂都做成高孔率的 小颗粒。
11
(二)、氧化锌法
❖氧化锌脱硫性能的好坏用硫容 量表示。所谓硫容就是每单位质 量氧化锌能脱除S的量。一些数 据如图所示。一些定性结论如下: 温度上升,硫容增加;空速增加, 硫容降低;汽气比上升,硫容下 降。
2、氧化锌脱硫剂:
100
ya,ya’ —分别为原料及变换气中一氧化碳的摩尔分率(干 基)
2
二、变换催化剂
❖ 1、中(高)变催化剂:

以三氧化二铁为活性中心
▪ 铬、铜、锌、钴、钾等氧化物,可提高催化剂的活性
▪ 镁、铝等氧化物,可提高催化剂的耐热和耐毒性能。
❖ 目前常见的中(高)变换催化剂有:
▪ 铁铬系催化剂:以FeO3加Cr2O3为助催化剂。 ▪ 钴钼系催化剂:针对重油含S量高的耐高S变换催化剂。
K
0 p
pH2O
/
pH2S
10
❖ 一些条件下平衡S含量的计算值如下:
水蒸气含量/%
0.50 10 20
平衡硫含量/10-6 200℃ 0.000025 0.00055 0.005
300℃ 0.0008 0.018 0.16
400℃ 0.009 0.20 1.80
❖ 实际上天然气等原料中水蒸气含量很低,所以即使温度在400℃也可满足S含量 <0.1× 10-6的要求。 200℃含水20%时,S<0.005× 10-6,因此氧化锌也用在变 换工序作变换催化剂的保护剂。
提高其稳定性。 ❖ (2)低变催化剂的还原: ❖ CuO+H2=Cu+H2O △H0298=-86.7kJ/mol ❖ CuO+CO=Cu+CO2 △H0298=-127.7kJ/mol
4
3、耐硫变换催化剂
➢ 组成:通常是将活性组分Co—Mo,Ni—Mo等载在载体上组成,
载体多为Al2O3,Al2O3+Re2O3(Re代表稀土元素)。
❖ 国内外几种中(高)变催化剂见图。
3
2、低变催化剂
❖ 目前常用的低变催化剂有铜锌铝系和铜锌铬系两种。均以氧化铜为主 体,国产低变催化剂的化学组成及性能见表。
❖ (1)主要组分的作用: ❖ A、Cu:是催化剂的活性组分; ❖ B、ZnO、Cr2O3、Al2O3:分散于铜微晶的周围将微晶有效的分隔开,
脱硫具有脱硫效率高、操作简便、设备简单、维修方便等优点。但干 法脱硫所用脱硫剂的硫容量(单位质量或体积的脱硫剂所能脱除硫的 最大数量)有限,且再生较困难,需定期更换脱硫剂,劳动强度较大。 干法脱硫一般适用于含S量较低、净化度要来较高的情况。 B. 湿法脱硫:化学吸收法、物理吸收法和物理化学吸收法。湿法脱硫具 有吸收速率快,生产强度大,脱硫过程连续,溶液易再生,硫磺可回 收等特点,适用于硫化氢含量较高,净化度要求不太高的场合。
7
二、干法脱硫
(一)、钴—钼加氢转化
钴钼加氢脱硫法是脱除有机硫十分有效的预处理措施。钴钼加氢催化 剂几乎可使天然气/石脑油中的有机硫全部转化成硫化氢。再用氧化锌 吸收就可把总S降到0.1×10-6以下。钴钼加氢法还可将烯烃加氢转变 成饱和烷烃,从而减少蒸汽转化工序析碳的可能。
1、氢解反应:
COS+H2
➢ 国内外耐硫变换催化剂的化学组成及其性能见表。 ➢ 特点:
❖ (1)有很好低温活性 ❖ (2)有突出的耐硫和抗毒性 ❖ (3)强度高,遇水不粉化 ❖ (4)可再硫化
5
三、工艺流程
❖ 1、工艺流程设计依据为:
❖ (1)原料中的CO含量; ❖ (2)变换催化剂的温度范围; ❖ (3)残余的CO的要求。
❖以ZnO为主体,其余为Al2O3, 还有的加入CuO、MoO3、TiO2、 MnO2、MgO等以增进脱硫效果。 ❖国内外几种氧化锌脱硫剂见表。
0 100 200 300 400 500
温度/℃
12
(三)、活性炭法
活性炭常用于脱除天然气、油田气以及经湿法脱硫后, 气体中的微量硫。根据反应机理不同可分为吸附、氧化和 催化三种方式。
❖吸附脱硫是由于活性炭具有很大的比表面积,对某些物质具有较强 的吸附能力。如吸附有机硫中的噻吩很有效,而对挥发性大的硫氧化 碳的吸附很差;对原料气中二氧化碳和氨的吸附强、而对挥发性大的 氧和氢吸附较差。 ❖氧化脱硫是指在活性炭表面上吸附的硫化氢在碱性溶液的条件下和 气体中的氧反应生成硫和水。 ❖催化脱硫是指在活性炭表面上浸渍铁、铜等的盐类,可催化有机硫 转化为硫化氢,然后被吸附脱除。活性炭可在常压和加压下使用,温 度不宜超过50℃。
CO+H2S
CS2+4H2
CH4+2H2S
RSH+H2
RH+H2S
RSR’+2H2 RH+R’H+H2S
C4H4S+4H2 C4H10+H2S
RSSR’+3H2+3H2
RH+R’H+2H2S
8
二、干法脱硫
(一)、钴—钼加氢转化 2、钴钼加氢转化催化剂
以Al2O3作为载体,把MoO、CoO载到载体上,载体为氧化铝。 新催化剂经活化后才能使用。经硫化后活性组分为MoS2,Co9S8也 是活性成份。
9
(二)、氧化锌法
氧化锌脱除有机硫的能力很强,可使出口硫含量 <0.1ppm,当原料气硫含量<50×10-6时,仅用它一步脱 硫就行了。若硫含量较高,可先用湿法,再用此法。
1、脱硫反应:
▪ ZnO+H2S=ZnS+H2O ▪ ZnO+C2H5SH=ZnS+C2H5OH ▪ ZnO+C2H5SH=ZnS+C2H4+H2O 通常以氧化锌与硫化氢的反应为例讨论。这一反应为放 热反应,温度上升,平衡常数下降。所以低温对反应有利。
第四节、一氧化碳的变换
一、基本原理 二、变换催化剂 三、工艺流程
1
一、 CO变换基本原理
❖ 1、变换过程的反应:
❖ 主反应:CO+H2O CO2+H2 △H0298=-41.19KJ/mol
❖ 副反应:CO+H2
C+H2O

CO+3H2
CH4+H2O
❖ 2、平衡含量的计算:
x%
ya ya ' ya (1ya ')
❖ 2、两种典型的变换工艺流程:
❖ (1)中(高)变—低变串联流程(图); ❖ (2)多段变换流程(图)。
6
第五节:原料气脱硫
一、脱硫的方法
原料气中的硫化物: 主要是硫化氢,其次是二硫化碳、硫氧化碳、硫醇、硫醚和 噻吩等有机硫。
脱硫的方法:
A. 干法脱硫:氧化铁法、活性炭法、钴—钼加氢和氧化锌法等。干法
相关文档
最新文档