人教版中考数学总复习资料完整版

合集下载

(完整版)人教版初中数学总复习资料.doc

(完整版)人教版初中数学总复习资料.doc

中考数学总复习资料数与代数1・数与式⑴有理数:有限或不限循环性数(无理数:无限不循环小数) ⑵数轴:“三要素”⑶相反数⑷绝对值:I a I = a (a ≥0)∣ a ∣ =-a (^<O)⑸倒数⑹指数①零指数:a0=1 ( a≠ 0)②负整指数: (a≠ 0,n是正整数)⑺完全平方公式:(a b) 2 a2 2ab b 2(8)平方差公式:(a+b) (a⅛ ) =a2b2(9)幕的运算性质:φ a m∙ a n = a m n② a m÷ a n = a m n (3)(a 111 ) n = a m n @ feb)n =a n b n⑤G)"人(10)科学记数法:a IO n( l≤a<10,n是整数)b b(11)算术平方根、平方根、立方根、a m a(12)_ & — (b d ------------------ n 0) 等比性质:e ffl- 七b d n b d Hb2・方程与不等式⑴一元二次方程①定义及一般形式:ax 2 bx c Ofe 0)②解法:1 •直接开平方法.2.配方法3•公式法:Xi,2 —b⅛2丄------- (b 2 4ac 0)2a4.因式分解法・③根的判别式:b2 4ac > 0,有两个解。

b2 4ac V O,无解。

b2 4ac = 0,有1 个解。

④维达定理: Xl X2 ,Xl X2 aa⑤常用等式: Xl2X22(XI X2 ) 22xi X2(xi X2 )2(XI X2 ) 2 4 Xl X2⑥应用题1.行程问题■■相遇问题、追及问题、水中航行:V顺船速水速;V逆船速水速2.增长率问题:起始数(1+X)二终止数3•工程问题:工作量二工作效率X工作时间(常把工作量看着单位“ 1”)。

4.几何问题⑵分式方程(注意检验)由增根求参数的值:①将原方程化为整式方程②将增根带入化间后的整式方程,求出参数的值。

人教版中考数学第一轮复习资料超全

人教版中考数学第一轮复习资料超全

中考数学第一轮复习资料(全套37页) 第一章 实数课时1.实数的有关概念【课前热身】1。

(08重庆)2的倒数是 .2。

(08白银)若向南走2m 记作2m -,则向北走3m 记作 m . 3。

(08的相反数是 . 4。

(08南京)3-的绝对值是( )A .3-B .3C .13- D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A 。

7×10-6B 。

0。

7×10-6C 。

7×10-7D 。

70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 。

数轴上的点与 构成一一对应.⑵ 实数a 的相反数为________。

若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______。

若a ,b 互为倒数,则ab = 。

⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数。

⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。

这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________。

其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______。

⑵ 任何一个实数a 都有立方根,记为 。

⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数。

4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3。

14×105是3个有效数字;精确到千位。

3。

14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a |、错误!(a ≥0)之和为零作为条件,解决有关问题.【典例精析】例1 在“()05,3。

第一单元 第二讲 整式、因式分解++++课件+2025年九年级中考数学总复习人教版(山东)

第一单元 第二讲 整式、因式分解++++课件+2025年九年级中考数学总复习人教版(山东)

C.(a-3)(a+3)
D.a2(a-9)
( A)
2.(2024·广西中考)如果a+b=3,ab=1,那么a3b+2a2b2+ab3的值为 ( D )
A.0
B.1
C.4
D.9
3.(2024·广元中考)分解因式:(a+1)2-4a=__________.
(a-1)2
21
考点4
整式的运算及乘法公式(一题多设问)
81
(7)化简:2b2+(a+b)(a-b)-(a-b)2=_________.
2ab
(8)一个长方形的面积是5xy+4y,宽为y,则长为__________.
5x+4
12
4.因式分解
几个整式的积
因式分解的概念 把一个多项式化成__________________的变形
提取公因
式法
如果一个多项式的各项含有____________,那么就可以把
±12
26
本课结束
C.-1
D.1
(2)若x-5y=7,则代数式3-2x+10y的值为_________.
-11
( C )
5
知识要点
2.整式及有关概念
6
对点练习
2.下列说法中,正确的是
2
A.
不是整式
4
3
B.的系数是-3,次数是3
2
C.3是单项式
D.多项式2x2y-xy是五次二项式
(C )
7
知识要点
3.整式的运算
D.(x3)2=x6
(3)化简-x(x-2)+4x的结果是 ( A )
A.-x2+6x

(人教版)中考数学复习(全部)专题练习汇总

(人教版)中考数学复习(全部)专题练习汇总
(人教版)中考数学复习(全部)专题练习汇总
第1讲:实数概念与运算
一、夯实基础
1、绝对值是6的数是________
2、 的倒数是________________。
3、2的平方根是_________.
4、下列四个实数中,比-1小的数是( )
A.-2B.0C.1D.2
5、在下列实数中,无理数是( )
A.2 B.0 C. D.
A.①×3-②×2,消去x
B.①×2-②×3,消去y
C.①×(-3)+②×2,消去x
D.①×2-②×(-3),消去y
4.与方程3x+4y=1 6联立组成方程组的解是 的方程是( ).
A. +3y=7B.3x-5y=7
C. -7y=8D.2(x-y)= 3y
5.给方程 去分母,得().
A.1-2(2x-4)=-(x-7)
10.① ;②56;
11.8;
四、中考链接
12.(1)-3x2+18x-5,19;
(2)m9,-512;
13.(1)45;(2)57
14.(1)9;(2)1
15.
第3讲:分式检测
一、夯实基础
1.下列式子是分式的是( )
A. B. C. +yD.
2.如果把分式 中的x和y都扩大3倍,那么分式的值( )
三、课外拓展
8.若 +(y-2 012)2=0,则xy =__________.
9.当-1<x<3时,化简: + =__________.
10. 如果代数式 有意义,则x的取值范围是________.
11、比较大小:⑴3 2 ⑵ - -
12、若最简根式 与 是同类二次根式,则m=.
13、若 的整数部分是a,小数部分是b,则a- =。

人教版九年级数学下册全册中考知识点梳理(共27讲)

人教版九年级数学下册全册中考知识点梳理(共27讲)

第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲 一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例 1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子. (2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a 与b 的差不大于1”用不等式表示为a -b≤1. 2.不等式的基本性质 性质1:若a >b,则 a ±c >b ±c ;性质2:若a >b,c >0,则ac >bc ,a c >b c ;性质3:若a >b,c <0,则ac <bc ,a c <b c. 牢记不等式性质3,注意变号. 如:在不等式-2x >4中,若将不等式两边同时除以-2,可得x <2.知识点二 :一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230m mx ++>是关于x 的一元一次不等式,则m 的值为-1. 4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x ≥a x >a x ≤a x <a知识点三 :一元一次不等式组的定义及其解法5.定义 由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示. (2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a的解集是x >-1,则a 的取值范围是a <1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a <b 解集 数轴表示 口诀x a x b ≥⎧⎨≥⎩ x ≥b 大大取大 x a x b≤⎧⎨≤⎩ x ≤a 小小取小 x a x b≥⎧⎨≤⎩ a ≤x ≤b 大小,小大中间找 x a x b≤⎧⎨≥⎩ 无解 大大,小小取不了 知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等; b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲 平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系. (2)几何意义:坐标平面内任意一点M 与有序实数对(x ,y )的关系是一一对应. 点的坐标先读横坐标(x 轴),再读纵坐标(y 轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示): 点P (x,y)在第一象限⇔x >0,y >0; 点P (x,y)在第二象限⇔x <0,y >0; 点P (x,y )在第三象限⇔x <0,y <0; 点P (x,y )在第四象限⇔x >0,y <0.(2)坐标轴上点的坐标特征: ①在横轴上⇔y =0;②在纵轴上⇔x =0;③原点⇔x=0,y =0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P (a ,b )的对称点的坐标特征:①关于x 轴对称的点P 1的坐标为(a ,-b );②关于y 轴对称的点P 2的坐标为(-a ,b ); ③关于原点对称的点P 3的坐标为(-a ,-b ).(5)点M (x,y )平移的坐标特征:M (x,y ) M 1(x+a ,y ) M 2(x+a ,y+b )(1)坐标轴上的点不属于任何象限. (2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同. (3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x 轴、y 轴作垂线,从而将其割补成可以直接计算面积的图形来解决. 3.坐标点的距离问题(1)点M(a,b)到x 轴,y 轴的距离:到x 轴的距离为|b |;)到y 轴的距离为|a |.(2)平行于x 轴,y 轴直线上的两点间的距离:点M 1(x 1,0),M 2(x 2,0)之间的距离为|x 1-x 2|,点M 1(x 1,y ),M 2(x 2,y )间的距离为|x 1-x 2|;点M 1(0,y 1),M 2(0,y 2)间的距离为|y 1-y 2|,点M 1(x ,y 1),M 2(x ,y 2)间的距离为|y 1-y 2|.平行于x 轴的直线上的点纵坐标相等;平行于y 轴的直线上的点的横坐标相等.知识点二:函 数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一确定的值与其对应,那么就称x 是自变量,y 是x 的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35x x +-中自变量的取值范围是x ≥-3且x ≠5. 5.函数的图象 (1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点; ②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法: ①设时间为t (或线段长为x ),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示, 再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y 随x 的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y 值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x 轴的线段.第10讲 一次函数知识点一 :一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念 (1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b/k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.例:当k =1时,函数y =kx +k -1是正比例函数,2.一次函数k ,b K >0, K >0, K >0,b=0 k <0, k <0, k <0,(1)一次函数y=kx+b 中,k 确定xy第四象限(+,-)第三象限 (-,-)第二象限 (-,+)第一象限 (+,+)–1–2–3123–1–2–3123O的性质 符号 b >0 b <0b >0b <0 b =0了倾斜方向和倾斜程度,b 确定了与y 轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法. 例:已知函数y =-2x +b ,函数值y 随x 的增大而减小(填“增大”或“减小”).大致 图象经过象限 一、二、三 一、三、四 一、三 一、二、四 二、三、四 二、四 图象性质y 随x 的增大而增大 y 随x 的增大而减小 3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x 轴的交点,只需令y=0,解出x 即可;求与y 轴的交点,只需令x=0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是⎝⎛⎭⎫-b k ,0,与y 轴的交点是(0,b );(2)正比例函数y =kx (k ≠0)的图象恒过点(0,0).例:一次函数y =x +2与x 轴交点的坐标是(-2,0),与y 轴交点的坐标是(0,2). 知识点二 :确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为: ①设:设函数表达式为y =kx +b (k ≠0); ②代:将已知点的坐标代入函数表达式,解方程或方程组; ③解:求出k 与b 的值,得到函数表达式. (2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式; ③平移转化型:如已知函数是由y=2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可. (2)只要给出一次函数与y 轴交点坐标即可得出b 的值,b 值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2. 5.一次函数图象的平移 规律:①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同.②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h. 例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三 :一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.例:(1)已知关于x 的方程ax+b=0的解为x=1,则函数y=ax+b 与x 轴的交点坐标为(1,0). (2)一次函数y=-3x+12中,当x>4时,y 的值为负数.7.一次函数与方程组二元一次方程组 的解⇔两个一次函数y=k 1x+b 和y=k 2x+b 图象的交点坐标. 8.一次函数与不等式 (1)函数y=kx+b 的函数值y >0时,自变量x 的取值范围就是不等式kx+b >0的解集(2)函数y=kx+b 的函数值y <0时,自变量x 的取值范围就是不等式kx+b <0的解集知识点四 :一次函数的实际应用9.一般步骤 (1)设出实际问题中的变量;(2)建立一次函数关系式; (3)利用待定系数法求出一次函数关系式; (4)确定自变量的取值范围; (5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义; (6)做答.一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲 反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例y=k 2x+by=k 1x+b1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例13讲二次函数的应用第第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质5. 三角形中内、外角与角平分线的规律总结如图①,AD 平分∠BAC ,AE ⊥BC ,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°;如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等.(3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ; ②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD ⊥BC,D 为BC 的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形 (1)性质①边角关系:三边相等,三角都相等且都等于60°. 即AB =BC =AC ,∠BAC =∠B =∠C =60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴. (2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB =AC ,且∠B =60°,则△ABC 是等边三角形. (1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC 中,∠B=60°,AB=AC ,BC=3,则△ABC 的周长为9.知识点二 :角平分线和垂直平分线3.角平分线 (1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB. (2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2,则AC=6.4.垂直平分线图形 (1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上. 知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A +∠B =90°; (2) 30°角所对的直角边等于斜边的一半.即若∠B =30°则AC =12AB ;(3)斜边上的中线长等于斜边长的一半.即若CD 是中线,则CD =12AB. (4)勾股定理:两直角边a 、b 的平方和等于斜边c 的平方.即 a 2+b 2=c 2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b 为直角边,c 为斜边,h 是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定 (1) 有一个角是直角的三角形是直角三角形.即若∠C =90°,则△ABC 是Rt △; (2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD =BD =CD ,则△ABC 是Rt △(3) 勾股定理的逆定理:若a 2+b 2=c 2,则△ABC 是Rt △.第17讲 相似三角形十六、 知识清单梳理知识点一:比例线段关键点拨与对应举例21P COBAPC OBAD ABCa bc DABCa bc1. 比例线段 在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC =. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条 件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件 中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. 6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方. (3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为9:4.(2) 如图,DE ∥BC , AF ⊥BC,已知S △ADE:S △ABC=1:4,则AF:AG =1:2.F E D CBA l 5l 4l 3l 2l 1ODCBAED CBAFE DC BAFE DC B AFE DC B A7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式角(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O 出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤 (1)弄清题中名词、术语,根据题意画出图形,建立数学模型; (2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.第五单元 四边形第19讲 多边形与平行四边形知识点一:多边形关键点拨与对应举例 1.多边形的相关概念 (1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n 边形的一个顶点可以引(n -3)条对角线,并且这些对角线把多边形分成了(n -2)个三角形;n 边形对角线条数为()32n n -. 多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解. 例:(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.2.多边形的内角和、外角和 ( 1 ) 内角和:n 边形内角和公式为(n -2)·180°(2)外角和:任意多边形的外角和为360°.3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n 边形的每个内角为()2180n n -⋅,每一个外角为360°/n.( 3 ) 正n 边形有n 条对称轴.(4)对于正n 边形,当n 为奇数时,是轴对称图形;当n 为偶数时,既是轴对称图形,又是中心对称图形.知识点二 :平行四边形的性质4.平行四边形的定义 两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法: (1)平行四边形相邻两边之和等于周长的一半. (2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题. (3)过平行四边形对5.平行四边形的性质(1) 边:两组对边分别平行且相等.即AB ∥CD 且AB =CD ,BC ∥AD 且AD =BC.(2)角:对角相等,邻角互补.即∠BAD =∠BCD ,∠ABC =∠ADC , ∠ABC +∠BCD =180°,∠BAD +∠ADC =180°.(3)对角线:互相平分.即OA =OC ,OB =OD(4)对称性:中心对称但不是轴对称.ODCBA。

人教版中考数学总复习完整版

人教版中考数学总复习完整版

数学中考总复习资料完整版一有理数1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。

在正数前加上符号“-”(负)的数叫做负数。

0既不是正数,也不是负数。

(2)有理数正整数、0、负整数统称整数。

正分数、负分数统称分数。

整数和分数统称为有理数。

2、数轴规定了原点、正方向和单位长度的直线叫做数轴。

3、相反数代数定义:只有符号不同的两个数叫做互为相反数。

几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。

一般地,a和-a互为相反数。

0的相反数是0。

a=-a所表示的意义是:一个数和它的相反数相等。

很显然,a=0。

4、绝对值定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

即:如果a >0,那么|a |=a ;如果a =0,那么|a |=0;如果a <0,那么|a |=-a 。

a =|a |所表示的意义是:一个数和它的绝对值相等。

很显然,a ≥0。

5、倒数定义:乘积是1的两个数互为倒数。

1a a=所表示的意义是:一个数和它的倒数相等。

很显然,a =±1。

6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

7、乘方定义:求n 个相同因数的积的运算,叫做乘方。

乘方的结果叫做幂。

如:an n a a a a 个•••=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。

性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。

8、科学记数法定义:把一个大于10的数表示成a ×10n的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。

小于-10的数也可以类似表示。

用科学记数法表示一个绝对值大于10的数时,n是原数的整数数位减1得到的正整数。

人教版初中数学中考复习专题复习 数与式(37张PPT)

人教版初中数学中考复习专题复习 数与式(37张PPT)

知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.

第四单元 第十九讲 等腰三角形与直角三角形++++课件+2025年九年级中考数学总复习人教版(山东)

第四单元 第十九讲 等腰三角形与直角三角形++++课件+2025年九年级中考数学总复习人教版(山东)

过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是 ( C )
①△BDF,△CEF都是等腰三角形;②DE=BD+CE;
③△ADE的周长为AB+AC;④BD=CE.
A.③④
B.①②
C.①②③
D.②③④
(2)已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为________.
股定理求解.
(4)折叠问题中求解线段长度问题,常常将某些条件汇集到一个直角三角形中,再
根据勾股定理列方程求解.
山东3年真题
38
1.(2023·菏泽中考)△ABC的三边长a,b,c满足(a-b)2+ 2 − − 3+|c-3 2|=0,
(4)在直角三角形中,若有斜边中点,可考虑直角三角形斜边上的中线等于斜边的
一半.
37
2.勾股定理常见应用与技巧:
(1)已知直角三角形的任意两个边长,可直接利用勾股定理求得第三条边长.
(2)已知三角形的三边长,可运用勾股定理的逆定理确定此三角形是否为直角三角
形.
(3)立体图形表面的最短路径问题,可将立体图形展开,构造直角三角形后利用勾
交AC于点D,如果DE垂直平分BC,那么∠A的度数为
A.31° B.62° C.87° D.93°
(C)
8
ቤተ መጻሕፍቲ ባይዱ
知识要点
3.直角三角形的性质与判定
互余
直角三角形的两个锐角__________

斜边
30°角所对的直角边等于______的一半

斜边
直角三角形斜边上的中线等于__________的一半
平方和
勾股定理:直角三角形中两直角边的____________等于斜边的平方

人教版中考数学复习知识点汇总130页PPT

人教版中考数学复习知识点汇总130页PPT

END
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如3?5a3b2c是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

(完整版)人教版初中数学总复习资料doc

(完整版)人教版初中数学总复习资料doc

(完整版)人教版初中数学总复习资料doc①已知三边作三角形②已知两边及其夹角作三角形③已知两角及其夹边作三角形④已知底边及底边上的高作等腰三角形⑹过一点、两点和不在同一条直线上的三点作圆⒏视图与投影⑴直棱柱、圆柱、圆锥、球的三视图⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆⑶中心对称图形:矩形、圆、⑷图形的平移和旋转⑸图形的相似:(三)概率与统计⒈统计⑴重要概念①总体:考察对象的全体。

②个体:总体中每一个考察对象。

③样本:从总体中抽出的一部分个体。

④样本容量:样本中个体的数目。

⑤众数:一组数据中,出现次数最多的数据。

⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。

⑵扇形统计图、条形统计图、折线统计图⑶计算方法①平均数:某1(某1某2某n)n某②加权平均数:kfk某某1f1某2f2f1f2fnkn)③样本方差:⑴s1[(某1某)2(某2某)2(某n某)2]n④样本标准差:ss2⑤极差:最大的数减去最小的数⒉概率①列表法、画树状图法93同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合1042定理1关于条直线对称的两个图形是全等形43定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)某180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a某b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形1177角相等的梯形是等腰梯形78平行等分段定理如果一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79推1梯形一腰的中点与底平行的直,必平分另一腰80推2三角形一的中点与另一平行的直,必平分第三81三角形中位定理三角形的中位平行于第三,并且等于它的一半82梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b)÷2S=L某h83 (1) 比例的基本性如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2) 合比性如果 a/ b=c/ d,那么(a ±b)/b=(c ±d)/d85(3)等比性如果a/b=c/d=?=m/n(b+d+?+n≠0),那么(a+c+?+m)/(b+d+?+n)=a/b86平行分段成比例定理三条平行截两条直,所得的段成比例87推平行于三角形一的直截其他两(或两的延),所得的段成比例88定理如果一条直截三角形的两(或两的延)所得的段成比例,那么条直平行于三角形的第三89平行于三角形的一,并且和其他两相交的直,所截得的三角形的三与原三角形三成比例90定理平行于三角形一的直和其他两(或两的延)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角相等,两三角形相似(ASA)92直角三角形被斜上的高分成的两个直角三角形和原三角形相似93判定定理2两成比例且角相等,两三角形相似(SAS)94判定定理3三成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜和一条直角与另一个直角三角形的斜和一条直角成比例,那么两个直角三角形相似96性定理1相似三角形高的比,中的比与角平分的比都等于相似比97性定理2相似三角形周的比等于相似比98性定理3相似三角形面的比等于相似比的平方99任意角的正弦等于它的余角的余弦,任意角的余弦等于它的余角的正弦100任意角的正切等于它的余角的余切,任意角的余切等于它的余角的正切101是定点的距离等于定的点的集合102的内部可以看作是心的距离小于半径的点的集合12103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。

中考数学总深刻复习资料素材人教新课标版

中考数学总深刻复习资料素材人教新课标版

中考数学总复习资料代数部分 第一章:实数基础知识点: 一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00,πφa a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

中考总复习+与角数量关系相关的模型++讲义+2023—2024学年人教版九年级下册数学

中考总复习+与角数量关系相关的模型++讲义+2023—2024学年人教版九年级下册数学

与角数量关系相关的模型类型1绝配角绝配角(若两个角满足α+2β = 180°,则称α,β为一组绝配角)条件中出现绝配角或者导角后得到绝配角,(1)由绝配角构造镜面角(入射光线CO、反射光线OB和平面镜OA的夹角)经典模型图常用结论2α+β=180°(1) 反向延长OB :∠AOD=∠AOC=α(2) 反向延长OA:∠BOD=∠AOC=α(2)由绝配角构造等腰三角形经典模型图常用结论∠A=2α,∠B=90°-α过点B作BD⊥AC于点D,在CA上取一点E,使CD=DE∠C=90°-αAB=AC,∠CBD=αBC=BE例1、如图,在四边形ABCD中ADBC,∠BAC=90∘−12∠CAD,AC,BD相交于点E,且∠BEC= 60°,若AD=5,BD=15,求AC的长.例2、如图,在△ABC中,AD⊥BC于点D,点E在AB上,连接DE,2∠C+∠BDE=180°,AC= BD,∠AED=∠C,BE=3,求CD 的长.例3、如图,△ABC内接于⊙O,∠CAB=60°,过点C作CD⊥AB于点D ,点E在弧AC上,∠ACE,若CD=a,CE=b,求AB 的长.(用含a,b 的连接AE,BE,CE,满足∠ACB=90∘−12式子表示)练习题∠BDC;1、如图,在△ABC中,AB=AC,D在△ABC外,且∠ADB=90∘−12(1)求证:∠DBC=∠DAC;(2)若∠ACD=60°,BD=5,CD=3,求AD的长。

2、阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,AC=BC,点D在BC上,点E在AC 上,∠ADC=2∠EBC ,若CD=mCE ,求CEAD 的值。

(用含m 的代数式表示)小明通过探究发现,将△ACD 绕点C 顺时针旋转90°得到ΔBCM (图2),再证出EM=BM ,问题就得到解决,(1) 请你根据小明的思路解决这个问题; 参考小明解决问题的方法,解决下面的问题;(2)如图3,在等边△ABC 中,D 为边AB 上一点,E 为CD 上一点,∠EBC=2∠ACD ,F 为BE 上一点且∠FDE=60°,若EF=kBF ,求 DEDF 的值.(用含有k 的代数式表示)类型2 倍半角经典模型图常用结论 角平分线法:作二倍角的角平分线,从而得到相等的角; 条件:∠AOB=2∠CO′D ; 辅助线:作 OE 平分∠AOB∠AOE=∠BOE =∠CO' D加倍法:加倍半角,从而得到相等的角; 条件:∠AOB=2∠CO′D ; 辅助线:作∠CO' E=∠CO' D∠DO′E=∠AOB等腰法:由二倍角关系,作以二倍角为顶角的外角的等腰三角形条件:∠ABC=2∠C;辅助线1:作BD平分∠ABC;辅助线2:∠CAD=∠C;辅助线3:延长CB至点D,使DB=ABDB=DC,AB=AD=DC,AD=AC例1、如图,在Rt△ABC中,∠ABC=90°,点D,E分别在边AC,BC上,∠C=2∠BAE,EA 平分∠BED,BE=5,CD=12,求CE的长.例2、如图,在正方形ABCD中,E为CD的中点,点F在CE上,且∠BAF=2∠DAE,求证:EF=CF.例3、如图,在△ABC中,∠ACB=2∠B,点F在边AB上,点G 在边AC上,CD=CG,FD⊥BC于D,且FD平分∠BFG,FD=kDG,探究AB与AC之间的数量关系,并证明.(用含k 的式表示)练习题1、如图,在四边形ABCD中,∠BCD=90°,对角线AC、BD相交于点O,若AB=AC=5,BC=6,∠ADB=2∠CBD,求AD的长.2、如图,在四边形ABCD中,∠BCD=90°,连接AC,BD,AB=AC,并且∠ADB=2∠CBD,若AD=5,BC=8,求AB的长.。

中考数学总复习资料素材人教新课标版

中考数学总复习资料素材人教新课标版

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:正整数整数零有理数负整数有限小数或无限循环小数实数正分数分数负分数正无理数无理数无限不循环小数负无理数1、有理数:任何一个有理数总可以写成p的形式,其中p、q是互质的整数,这是有理数q 的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001 ,,;特定意义的数,如π、sin 45°等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a的相反数是-a;(2)a和b互为相反数a+b=02、倒数:(1)实数a(a≠0)的倒数是1;(2)a和b互为倒数ab 1;(3)注意0没有倒数a3、绝对值:(1)一个数a的绝对值有以下三种情况:a, a 0a 0, a 0a, a 0(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。

用心爱心专心 1(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学中考总复习资料完整版一 有理数1、有理数的基本概念 (1)正数和负数定义:大于0的数叫做正数。

在正数前加上符号“-”(负)的数叫做负数。

0既不是正数,也不是负数。

(2)有理数正整数、0、负整数统称整数。

正分数、负分数统称分数。

整数和分数统称为有理数。

2、数轴规定了原点、正方向和单位长度的直线叫做数轴。

3、相反数代数定义:只有符号不同的两个数叫做互为相反数。

几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。

一般地,a 和-a 互为相反数。

0的相反数是0。

a =-a 所表示的意义是:一个数和它的相反数相等。

很显然,a =0。

4、绝对值定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

即:如果a >0,那么|a |=a ; 如果a =0,那么|a |=0; 如果a <0,那么|a |=-a 。

a =|a |所表示的意义是:一个数和它的绝对值相等。

很显然,a ≥0。

5、倒数定义:乘积是1的两个数互为倒数。

1a a=所表示的意义是:一个数和它的倒数相等。

很显然,a =±1。

6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

7、乘方定义:求n 个相同因数的积的运算,叫做乘方。

乘方的结果叫做幂。

如:an na a a a 个•••=读作a 的n 次方(幂),在a n中,a 叫做底数,n 叫做指数。

性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。

8、科学记数法定义:把一个大于10的数表示成a ×10n的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。

小于-10的数也可以类似表示。

用科学记数法表示一个绝对值大于10的数时,n 是原数的整数数位减1得到的正整数。

用科学记数法表示一个绝对值小于1的数(a ×10-n)时,n 是从小数点后开始到第一个不是0的数为止的数的个数。

9、近似数一般地,一个近似数四舍五入到哪一位,就说这个数近似到哪一位,也叫做精确到哪一位。

精确到十分位——精确到0.1;精确到百分位——精确到0.01;···。

10、有理数的加法加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

加法运算律:①交换律 a +b =b +a ; ②结合律 (a +b )+c =a +(b +c )。

11、有理数的减法减法法则:减去一个数,等于加这个数的相反数。

即:a -b = a +(-b )。

12、有理数的乘法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,都得0。

乘法运算律:①交换律ab =ba ;②结合律(ab )c =a (bc );③分配律a (b +c )=ab +ac 。

13、有理数的除法除法法则:除以一个不等于0的数,等于乘这个数的倒数。

即:1a b a b÷=⋅。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0 的数,都得0。

14、有理数的混合运算混合运算的顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。

2、借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a |的含义(这里a 表示有理数)。

3、理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。

4、会用科学记数法表示数(包括负指数幂的科学记数法)5、理解有理数的运算律,能运用运算律简化运算。

6、能运用有理数的运算解决简单的问题。

7、了解近似数,在解决实际问题中,会按问题的要求对结果取近似值。

1、有理数的实际意义。

2、求一个数的相反数、绝对值、倒数;在数轴上找出相应的数;数的比较大小。

3、用科学记数法表示一个数(含负指数幂的科学记数法)。

4、有理数基本概念(相反数、绝对值、倒数)的辨析及综合运用。

5、有理数的运算。

1、若收入100元记作+100元,那么支出60元记作 元。

2、在记录气温时,若零上5度记作+5℃,那么零下5度记作( )A 、5℃B 、-5℃C 、0℃D 、-10℃ 3、3的相反数是 ,-5的倒数是 ,-3的绝对值是 。

4、2的相反数的倒数是 。

5、计算:-(-2)= ,|-5|= 。

6、下列说法不正确的是( )A 、0的相反数、绝对值都是0B 、立方等于它本身的数有3个C 、平方等于它本身的数有2个D 、倒数等于它本身的数有1个 7、数轴上表示-3的点到原点的距离是( ) A 、3 B 、-3 C 、31 D 、31- 8、扎西在画数轴时,不小心把一滴墨水滴在已经画好的数轴上。

如图所示,请根据图中标出的数,写出被墨水盖住的整数: 。

9、计算:1+3= ,-1+(-3)= ,-1+3= ,1+(-3)= 。

1-3= ,-1-(-3)= ,-1-3= ,1-(-3)= 。

1×3= ,-1×(-3)= ,-1×3= ,1×(-3)= 。

1÷3= ,-1÷(-3)= ,-1÷3= ,1÷(-3)= 。

10、地球上的陆地面积约为149000000平方公里,那么用科学记数法表示149000000应为( )A 、1.49×106B 、1.49×107C 、1.49×108D 、1.49×10911、光年是天文学中的距离单位,1光年大约是9500000000000 km ,则这个数用科学记数法表示应为 。

12、甲型H1N1流感病毒变异后的直径为0.00000013米,这个数用科学记数法表示应该是( )A 、1.3×10-6B 、1.3×10-7C 、1.3×10-8D 、1.3×10-913、近年来,我国大部分地区饱受“四面霾伏”的困扰。

霾的主要成分是PM2.5,是指直径小于或等于0.0000025m 的颗粒物。

那么数0.0000025用科学记数法可表示为( )A 、25×10-5B 、25×10-6C 、2.5×10-5D 、2.5×10-614、2.396≈ (精确到百分位) 2.396≈ (精确到十分位)15、在0,-2,1,21这四个数中,最小的数是( ) A 、0 B 、-2 C 、1 D 、21 16、若a 的相反数是最大的负整数,b 是绝对值最小的数,则a +b = 。

17、如果a 的倒数是-1,那么a 2014等于( )A 、-1B 、1C 、2014D 、-2014 18、已知a 、b 互为相反数,c 、d 互为倒数,则20122012)()(cd b a ++= 。

19、某天早晨的气温是-7℃,中午上升了11℃,那么中午的气温是 ℃。

20、日喀则某天的最高气温是10℃,最低气温是-8℃,那么这天日喀则的最高气温比最低气温高( )A 、-18℃B 、-2℃C 、2℃D 、18℃21、计算:324(2)316[(3)2(2)]-⨯+÷-⨯--。

中考总复习2 实数1、平方根定义1:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。

a a ”,a 叫做被开方数。

即ax =。

规定:0的算术平方根是0。

定义2:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。

即如果x 2=a ,那么x 叫做a 的平方根。

即a x ±=。

定义3:求一个数a 的平方根的运算,叫做开平方。

正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

2、立方根定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。

即如果x 3=a ,那么x 叫做a 3a x =。

求一个数的立方根的运算,叫做开立方。

正数的立方根是正数;负数的立方根是负数;0的立方根是0。

3、无理数无限不循环小数又叫做无理数。

4、实数有理数和无理数统称实数。

即实数包括有理数和无理数。

备注:最小的正整数是1,最大的负整数是-1,绝对值最小的数是0。

有理数关于相反数和绝对值的意义同样适合于实数。

5、实数的分类 分法一:分法二:⎪⎩⎪⎨⎧负实数正实数实数06、实数的比较大小有理数的比较大小的法则在实数范围内同样适用。

备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。

7、实数的运算在实数范围内,可以进行加、减、乘、除、乘方及开方运算,而且有理数的运算法则和运算律在实数范围内仍然成立。

实数范围内混合运算的顺序:①先乘方开方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。

2、了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根。

3、了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。

4、能用有理数估计一个无理数的大致范围。

1、求一个数的算术平方根、平方根、立方根。

2、根据已知数的算术平方根(或立方根)求对应的数的算术平方根(或立方根)。

3、实数与数轴上点的对应关系,判断一个无理数的取值范围,实数的比较大小。

4、实数的分类;求一个实数的相反数、绝对值。

5、实数的加、减、乘、除、乘方、开方及混合运算(常与锐角三角函数值结合)。

1、9的算术平方根是 。

2、16的算术平方根是( )A 、4B 、±4C 、2D 、±2 3、4的平方根是 。

4、-8的立方根是 。

5、数31,2-,2)2(,8,2π,25中,无理数有( )个。

A 、3 B 、4 C 、5 D 、6 6、已知732.13≈,那么300≈( )A 、0.1732B 、1.732C 、17.32D 、173.2 7、23-的相反数是 ,绝对值是 。

8、25的相反数是 ,绝对值是 ,倒数是 。

9、比较大小:-3.14 π- 23。

10、如图,数轴上点P 表示的数可能是( ) A B 、 C 、-3.2 D 、11( )A 、在3到4之间B 、在4到5之间C 、在5到6之间D 、在6到7之间-3-2-13210P .1222(3)0y z-+-=,则x= ,y= ,z= 。

相关文档
最新文档