《超精密加工技术》PPT课件
合集下载
超精密加工技术PPT培训课件

详细描述
在模具加工中,超精密加工技术能够加工出高精度、高光洁 度的模具表面,提高模具的使用寿命和制件的精度,广泛应 用于塑料模具、压铸模具等领域。
航空航天零件加工
总结词
超精密加工技术在航空航天领域的应 用,涉及发动机叶片、涡轮盘等复杂 零件的加工。
详细描述
由于航空航天领域对零件的精度和性 能要求极高,超精密加工技术能够实 现复杂零件的高精度、高效率加工, 提高航空航天器的性能和安全性。
特种加工原理
特种加工是指利用物理、化学或电学等 非传统机械能来去除材料的一种加工方 法。与传统的切削和磨削加工相比,特 种加工具有更高的加工精度和更广泛的
加工适应性。
常见的特种加工方法包括激光束加工、 电子束加工、离子束加工、等离子体加 工等。这些方法利用高能束流或等离子 体与工件表面相互作用,实现材料的快
误差补偿技术
热误差补偿
通过对机床热误差的测量和建模, 实现对热误差的有效补偿,提高
加工精度。
运动误差补偿
通过对机床运动误差的测量和建 模,实现运动误差的补偿,提高
加工精度。
综合误差补偿
综合运用热误差和运动误差补偿 技术,实现对超精密加工过程中
各种误差的有效补偿。
04 超精密加工技术的应用案 例
光学元件加工
加工精度提升
超精密加工技术面临的技术瓶颈之一是如何进一步提高加工精度 和表面质量。
材料限制
某些特殊材料在超精密加工过程中容易出现裂纹、变形等问题,如 何克服这些材料限制是亟待解决的问题。
加工效率与成本控制
提高加工效率并降低成本是超精密加工技术发展的关键,需要不断 优化工艺参数和设备性能。
新材料加工的挑战
医疗器械
超精密加工技术在医疗器械领域的 应用广泛,如人工关节、心脏瓣膜 等高精度医疗设备的制造。
在模具加工中,超精密加工技术能够加工出高精度、高光洁 度的模具表面,提高模具的使用寿命和制件的精度,广泛应 用于塑料模具、压铸模具等领域。
航空航天零件加工
总结词
超精密加工技术在航空航天领域的应 用,涉及发动机叶片、涡轮盘等复杂 零件的加工。
详细描述
由于航空航天领域对零件的精度和性 能要求极高,超精密加工技术能够实 现复杂零件的高精度、高效率加工, 提高航空航天器的性能和安全性。
特种加工原理
特种加工是指利用物理、化学或电学等 非传统机械能来去除材料的一种加工方 法。与传统的切削和磨削加工相比,特 种加工具有更高的加工精度和更广泛的
加工适应性。
常见的特种加工方法包括激光束加工、 电子束加工、离子束加工、等离子体加 工等。这些方法利用高能束流或等离子 体与工件表面相互作用,实现材料的快
误差补偿技术
热误差补偿
通过对机床热误差的测量和建模, 实现对热误差的有效补偿,提高
加工精度。
运动误差补偿
通过对机床运动误差的测量和建 模,实现运动误差的补偿,提高
加工精度。
综合误差补偿
综合运用热误差和运动误差补偿 技术,实现对超精密加工过程中
各种误差的有效补偿。
04 超精密加工技术的应用案 例
光学元件加工
加工精度提升
超精密加工技术面临的技术瓶颈之一是如何进一步提高加工精度 和表面质量。
材料限制
某些特殊材料在超精密加工过程中容易出现裂纹、变形等问题,如 何克服这些材料限制是亟待解决的问题。
加工效率与成本控制
提高加工效率并降低成本是超精密加工技术发展的关键,需要不断 优化工艺参数和设备性能。
新材料加工的挑战
医疗器械
超精密加工技术在医疗器械领域的 应用广泛,如人工关节、心脏瓣膜 等高精度医疗设备的制造。
精密与超精密加工技术课件

珩磨效果影响因素
珩磨效果受到多种因素的影响 ,如磨石的粒度、粘结剂的类 型、珩磨头的转速和压力等。
电解加工工艺
电解加工工艺概述
电解加工是一种利用电化学反应去除 工件材料的加工方法,具有加工精度 高、表面质量好等特点。
电解加工工艺流程
电解加工工艺通常包括工件表面处理 、电解液的选择和调整、电解加工设 备的设置以及加工参数的控制等步骤 。
、汽车和航空领域。
陶瓷材料
陶瓷材料具有高硬度、高耐磨性和 耐高温等特点,常用于制造刀具、 磨具和高温部件。
复合材料
复合材料由两种或多种材料组成, 具有优异的综合性能,如碳纤维复 合材料具有高强度和轻质的特点。
复合材料
玻璃纤维复合材料
玻璃纤维复合材料具有高 强度、高刚性和耐腐蚀等 特点,广泛应用于建筑、 船舶和汽车领域。
抛光效果受到抛光轮的材料、转速、抛光膏或抛光液的成分以及抛光 压力等因素的影响。
珩磨工艺
珩磨工艺概述
珩磨是一种利用珩磨头上的磨 石与工件表面进行摩擦,以去 除表面微小凸起和划痕的加工
方法。
珩磨材料
珩磨头上的磨石由硬质颗粒和 粘结剂组成,具有较高的硬度 和耐磨性。
珩磨工艺流程
珩磨工艺通常包括工件表面处 理、涂敷润滑剂、珩磨头的旋 转运动以及工件的往复运动等 步骤。
碳纤维复合材料
碳纤维复合材料具有高强 度、轻质和耐高温等特点 ,常用于制造航空器和体 育用品。
金属基复合材料
金属基复合材料以金属为 基体,加入增强纤维或颗 粒,以提高材料的强度、 刚度和耐磨性。
04
精密与超精密加工工艺
研磨工艺
研磨工艺概述
研磨材料
研磨是一种通过研磨剂去除工件表面微小 凸起和划痕的加工方法,以达到平滑表面 的效果。
珩磨效果受到多种因素的影响 ,如磨石的粒度、粘结剂的类 型、珩磨头的转速和压力等。
电解加工工艺
电解加工工艺概述
电解加工是一种利用电化学反应去除 工件材料的加工方法,具有加工精度 高、表面质量好等特点。
电解加工工艺流程
电解加工工艺通常包括工件表面处理 、电解液的选择和调整、电解加工设 备的设置以及加工参数的控制等步骤 。
、汽车和航空领域。
陶瓷材料
陶瓷材料具有高硬度、高耐磨性和 耐高温等特点,常用于制造刀具、 磨具和高温部件。
复合材料
复合材料由两种或多种材料组成, 具有优异的综合性能,如碳纤维复 合材料具有高强度和轻质的特点。
复合材料
玻璃纤维复合材料
玻璃纤维复合材料具有高 强度、高刚性和耐腐蚀等 特点,广泛应用于建筑、 船舶和汽车领域。
抛光效果受到抛光轮的材料、转速、抛光膏或抛光液的成分以及抛光 压力等因素的影响。
珩磨工艺
珩磨工艺概述
珩磨是一种利用珩磨头上的磨 石与工件表面进行摩擦,以去 除表面微小凸起和划痕的加工
方法。
珩磨材料
珩磨头上的磨石由硬质颗粒和 粘结剂组成,具有较高的硬度 和耐磨性。
珩磨工艺流程
珩磨工艺通常包括工件表面处 理、涂敷润滑剂、珩磨头的旋 转运动以及工件的往复运动等 步骤。
碳纤维复合材料
碳纤维复合材料具有高强 度、轻质和耐高温等特点 ,常用于制造航空器和体 育用品。
金属基复合材料
金属基复合材料以金属为 基体,加入增强纤维或颗 粒,以提高材料的强度、 刚度和耐磨性。
04
精密与超精密加工工艺
研磨工艺
研磨工艺概述
研磨材料
研磨是一种通过研磨剂去除工件表面微小 凸起和划痕的加工方法,以达到平滑表面 的效果。
《超精密加工技术》PPT课件

X轴滑台
主轴
刀架 z轴滑台
光路护罩
基座
周缘 护板
图3 T形布局的金刚石车床
一、 精细与超精细加工技术
➢ 金刚石车床主要性能指标〔表3〕
表3 金刚石车床主要性能指标
最大车削直径和长度 /mm
最高转速 r/mm
最大进给速度mm /min
数控系统分辩率 /μm
重复精度(±2σ) / μ m
主轴径向圆跳动 / μ m
➢ 例:美国陀螺仪球圆度0.1μm,粗糙度Ra0.01μm, 导弹命中精度控制在50m范围内;英国飞机发电机转子叶 片加工误差从60μm降至12μm,发电机压缩效率从89% 提高到94%;齿形误差从3-4μm减小1μm,单位重量齿 轮➢ 箱精扭细矩加可工提与高超一精倍细加工技术是新技术的生长点
➢ 精细与超精细加工技术涉及多种根底学科和多种新 兴技术,其开展无疑会带动和促进这些相关科学技术的开 展
R 350
AA
6.4
R=0.5~1.2 50 B
R 110~1200 B
6.4
6.4
A-A 60
10 B-B
60
60
图6 金刚石刀具角度
一、 精细与超精细加工技术
金刚石车床
单点金刚石车床加工铜工件 单点金刚石车床的非球面光学超精细加工
图7 金刚石车床及其加工照片
加工4.5mm陶瓷 球
一、 精细与超精细加工技术
精密与超精密加工设备造价高,难成系列。常常针对某一特定产 品设计(如加工直径3m射电天文望远镜的超精密车床,加工尺寸小于 1mm微型零件的激光加工设备)。
◆ 与自动化技术联系紧密
广泛采用计算机控制、适应控制、再线检测与误差补偿技术,以
精密加工和超精密加工 ppt课件

微进给装置
计算机数控
ppt课件
先进制造技术单击此处编来自母版标题样式ppt课件
先进制造技术
单击此处编辑母版标题样式
ppt课件
先进制造技术
单击此处编辑母版标题样式
ppt课件
先进制造技术
单击此处编辑母版标题样式
砂带磨削 珩磨
超精研 研磨
ppt课件
先进制造技术
单五击、此砂处带编磨削辑:母版标题样式
工艺整合化 在线加工检测一体化
绿色化
ppt课件
先进制造技术
2.3 精密、超精密磨削加工
单击此处编辑母版标题样式
一、概念
精密砂轮磨削:利用精细修正的粒度为60#~80#的普 通砂轮进行磨削,其加工精度可达1µm,表面粗糙度可达 Ra0.025µm。
超精密砂轮磨削:利用经过仔细修正的粒度为W40~ W5的砂轮进行磨削,可以获得加工精度为0.1µm,表面粗 糙度为Ra0.025~Ra0.008µm的加工表面。
不适宜加工铁族金属材料。
立方氮化硼(CBN)
硬度莫氏硬度9.8-10
导热系数、热膨胀系数和研磨 能力也很突出;
稳定性和化学惰性大大优于金 刚石
适合加工普通磨料难以加工且 金刚石又不宜加工的硬而韧的 金属材料如工具钢、模具钢、 不锈钢、耐热合金等特别是高 钒高速钢、铝高速钢等对磨削 温度较为敏感的金属材料。
微刃的微切削作用 微刃的等高切削作用 微刃的滑挤、摩擦、抛光作用
ppt课件
先进制造技术
单击此处编辑母版标题样式
ppt课件
先进制造技术
单击超此精精处磨编削机辑理母: 版标题样式
1、超精磨削是一种极薄切削,切屑厚度极小,磨削 深度可能小于晶粒的大小,磨削就在晶粒内进行,因此 磨削力一定要超过晶体内部非常大的原子、分子结合力, 从而磨粒上所承受的切应力就极速地增大,可能接近被 磨削材料的剪切强度极限。同时,磨粒切削刃处收到高 温和高压的作用,要求磨粒材料有很高的高温强度和高 温硬度。
计算机数控
ppt课件
先进制造技术单击此处编来自母版标题样式ppt课件
先进制造技术
单击此处编辑母版标题样式
ppt课件
先进制造技术
单击此处编辑母版标题样式
ppt课件
先进制造技术
单击此处编辑母版标题样式
砂带磨削 珩磨
超精研 研磨
ppt课件
先进制造技术
单五击、此砂处带编磨削辑:母版标题样式
工艺整合化 在线加工检测一体化
绿色化
ppt课件
先进制造技术
2.3 精密、超精密磨削加工
单击此处编辑母版标题样式
一、概念
精密砂轮磨削:利用精细修正的粒度为60#~80#的普 通砂轮进行磨削,其加工精度可达1µm,表面粗糙度可达 Ra0.025µm。
超精密砂轮磨削:利用经过仔细修正的粒度为W40~ W5的砂轮进行磨削,可以获得加工精度为0.1µm,表面粗 糙度为Ra0.025~Ra0.008µm的加工表面。
不适宜加工铁族金属材料。
立方氮化硼(CBN)
硬度莫氏硬度9.8-10
导热系数、热膨胀系数和研磨 能力也很突出;
稳定性和化学惰性大大优于金 刚石
适合加工普通磨料难以加工且 金刚石又不宜加工的硬而韧的 金属材料如工具钢、模具钢、 不锈钢、耐热合金等特别是高 钒高速钢、铝高速钢等对磨削 温度较为敏感的金属材料。
微刃的微切削作用 微刃的等高切削作用 微刃的滑挤、摩擦、抛光作用
ppt课件
先进制造技术
单击此处编辑母版标题样式
ppt课件
先进制造技术
单击超此精精处磨编削机辑理母: 版标题样式
1、超精磨削是一种极薄切削,切屑厚度极小,磨削 深度可能小于晶粒的大小,磨削就在晶粒内进行,因此 磨削力一定要超过晶体内部非常大的原子、分子结合力, 从而磨粒上所承受的切应力就极速地增大,可能接近被 磨削材料的剪切强度极限。同时,磨粒切削刃处收到高 温和高压的作用,要求磨粒材料有很高的高温强度和高 温硬度。
【机械制造】超精密加工技术ppt模版课件

• 概述 • 超精密加工范畴 • 超精密加工现状 • 超精密加工的设备与环境 • 超精密加工的发展展望
18.03.2021
Page 18
超精密加工范畴
• 在过去相当的一段时期,精密加工、特别是超精 密加工的应用范围很狭窄。近十几年来,随着科 学技术和人们生活水平的提高,精密和超精密加 工不仅进入了国民经济和人民生活的各个领域, 而且从单件小批生产方式走向大批量的产品生产 。
• 概述 • 超精密加工范畴 • 超精密加工的设备与环境 • 超精密加工技术的发展展望
18.03.2021
Page 3
概述
• 超精密加工技术是适应现代技术发展的一种机械 加工新工艺,综合应用了机械技术发展的新成果 及现代电子技术、测量技术和计算机技术中先进 的控制、测试手段等,使机械加工的精度得到进 一步提高,使加工的极限精度向纳米和亚纳米精 度发展。
18.03.2021
Page 16
概述
• 在英国国家纳米技术(NION)计划已开始实行,纳 米技术战略委员会(Nanotechno1ogy Strategy Committee)巳建立,正在实行合作的研究计划, 1990年6月英国正式出版《纳米技术》学术期刊。
18.03.2021
Page 17
超精密加工技术
18.03.2021
Page 34
超精密加工技术的机床设备
• 为实现超精密位置的确定,采用了精密数字伺服方 式,控制部分为内装式CNC装置和激光干涉测长仪 ,实现随机测量定位。为了实现刀具的微量进给, 在DC伺服机构内装有压电式微位移机构,可实现 nm级微位移。该车床采用了恒温油淋浴系统,油温 控制在20士0.0005˚,消除了加工中的热变形。该 车床还采用了压电晶体误差补偿技术,使加工精度 达到0.025μm,该机床可用于加工平面,球面及非 球面,用于加工激光核聚变工程的零件,红外线装 置用零件以及大型天体望远镜。
18.03.2021
Page 18
超精密加工范畴
• 在过去相当的一段时期,精密加工、特别是超精 密加工的应用范围很狭窄。近十几年来,随着科 学技术和人们生活水平的提高,精密和超精密加 工不仅进入了国民经济和人民生活的各个领域, 而且从单件小批生产方式走向大批量的产品生产 。
• 概述 • 超精密加工范畴 • 超精密加工的设备与环境 • 超精密加工技术的发展展望
18.03.2021
Page 3
概述
• 超精密加工技术是适应现代技术发展的一种机械 加工新工艺,综合应用了机械技术发展的新成果 及现代电子技术、测量技术和计算机技术中先进 的控制、测试手段等,使机械加工的精度得到进 一步提高,使加工的极限精度向纳米和亚纳米精 度发展。
18.03.2021
Page 16
概述
• 在英国国家纳米技术(NION)计划已开始实行,纳 米技术战略委员会(Nanotechno1ogy Strategy Committee)巳建立,正在实行合作的研究计划, 1990年6月英国正式出版《纳米技术》学术期刊。
18.03.2021
Page 17
超精密加工技术
18.03.2021
Page 34
超精密加工技术的机床设备
• 为实现超精密位置的确定,采用了精密数字伺服方 式,控制部分为内装式CNC装置和激光干涉测长仪 ,实现随机测量定位。为了实现刀具的微量进给, 在DC伺服机构内装有压电式微位移机构,可实现 nm级微位移。该车床采用了恒温油淋浴系统,油温 控制在20士0.0005˚,消除了加工中的热变形。该 车床还采用了压电晶体误差补偿技术,使加工精度 达到0.025μm,该机床可用于加工平面,球面及非 球面,用于加工激光核聚变工程的零件,红外线装 置用零件以及大型天体望远镜。
精密与超精密加工技术.ppt

2.2精密与超精密加工的主要方法
1、 ELID(Electrolytic In-Process Dressing)
金刚石砂轮
(铁纤维结合剂)
电源
电刷
冷却液
+-
进给
冷却液
图2-8 ELID磨削原理
使用ELID磨削,冷却液为一种特殊电解液。通电后,砂 轮结合剂发生氧化,氧化层阻止电解进一步进行。在切削 力作用下,氧化层脱落,露出了新的锋利磨粒。由于电解 修锐连续进行,砂轮在整个磨削过程保持同一锋利状态。
Ra <0.02μm
雷达导波管 平面度垂直度误差 < 0.1μm Ra <0.02μm
卫星仪表轴承 圆柱度误差 <0.01μm
Ra <0.002μm
天体望远镜 形状误差 < 0.03μm
Ra <0.01μm
精密加工与超精密加工的发展(图2-1)
2.1 概 述
加工误差(μm)
102 101 100 10-1 10-2 10-3
1140 1020 640 720
2.2精密与超精密加工的主要方法
金刚石刀具
超精切削刀具材料:天然金刚石,人造单晶金刚石
金刚石的晶体结构:规整的单晶金刚石晶体有八面体、
十二面体和六面体,有三根4次对称轴,四根3次对称轴和
六根2次对称轴(图2-4)。
L4 (100)
L2
L3
(111)
(110)
与高新技术产品紧密结合 精密与超精密加工设备造价高,难成系列。常常针对某一 特定产品设计(如加工直径3m射电天文望远镜的超精密车 床,加工尺寸小于1mm微型零件的激光加工设备)。 与自动化技术联系紧密 广泛采用计算机控制、适应控制、再线检测与误差补偿技 术,以减小人的因素影响,保证加工质量。
第五章精密超精密及特种加工技术幻灯片课件

2022/4/12
6
第五章 精密超精密及特种加工技术
关键技术2
② 微/纳加工表面/亚表面完整性的评价与控制 纳 米级加工过程的理论及表层形成机理,微/纳表面 及表层完整性评价理论、指标体系及其控制方法;表 面完整性的控制的工程新方法;不同光学材料与加工 参数对亚表面特征的影响与控制的方法;原子级表面 平坦化加工新原理及方法;超光滑表面加工新技术和 实验方法。
2022/4/12
3
第五章 精密超精密及特种加工技术
超精密加工关键技术
3.在线检测与误差补偿
4.超精密加工的工作环境
超精密加工必须在超稳定的环境下进行。超稳定 环境主要是指恒温、超净和防振三个方面。
2022/4/12
5
Байду номын сангаас 第五章 精密超精密及特种加工技术
关键技术1
① 光学自由曲面制造技术的理论和方法 光学自 由曲面零件高精度机械测量与光学测量新原理, 新方法;大镜面测量方法,工件的高精度定位、 自由曲面的轮廓误差评定、海量数据处理新的数 学工具和新的算法;自由曲面光学表面成形、修 形和抛光新原理和新方法;光学自由曲面超精密 机床关键技术与方法。
2022/4/12
1
第五章 精密超精密及特种加工技术
超精密加工特点
超精密加工时,对刀具的刃磨、砂轮修整和机床调整 均有很高要求。
超精密加工是一门综合性高技术,凡是影响加工精度 和表面质量的因素都要考虑。
超精密加工一般采用计算机控制、在线控制、自适应 控制、误差检测和补偿等自动化技术来保证加工精度 和表面质量。
超精密加工不仅有传统的切削和磨削加工,只有综合 应用各种加工方法,才能得到很高的加工精度和表面 质量。
2022/4/12
精密和超精密加工技术课件

➢自发吸收 - 电子透过吸收光子从低能阶跃迁到高能阶 ➢自发辐射 - 电子自发地透过释放光子从高能阶跃迁到较 低能阶 ➢受激辐射 - 光子射入物质诱发电子从高能阶跃迁到低能 阶,并释放光子。
激光器
➢ 固体激光器
➢YAG (钇、铝和石榴石构成) 激光器,红宝石激光器 ➢特点:器件小、坚固、使用方便、输出功率大
墨最常用。
➢工作液——主要功能压缩放电通道区域,提高 放电能量密度,加速蚀物排出;常用工作液有 煤油、机油、去离子水、乳化液等。 ➢放电间隙——合理的间隙是保证火花放电的必 要条件。为保持适当的放电间隙,在加工过程 中,需采用自动调节器控制机床进给系统,并 带动工具电极缓慢向工件进给。
电火花加工工作要素
➢高速而能量密集的电子束冲击到工件上,被冲 击点处形成瞬时高温(几分之一微秒时间内升 高至几千摄氏度),工件表面局部熔化、气化 直至被蒸发去除。
电
子
电子束
束
加工的
喷丝头
加
异形孔
工
电子束加工曲面、穿孔
电子束加工特点及应用
➢ 电子束束径小(最小直径可达 0.01-0.05mm ),而其 长度可达束径几十倍,可加工微细深孔、窄缝。
➢可加工各种复杂形状的型孔、型腔、形面。 ➢工具与工件不需作复杂的相对运动,机床结构简单。 ➢被加工表面无残余应力,无破坏层,加工精度较高,尺
寸精度可达0.01~0.05mm 。
➢加工过程受力小,热影响小,可加工薄壁、薄片等易变
形零件。
➢ 生产效率较低。采用超声复合加工(如超声车削,超声 磨削,超声电解加工,超声线切割等)可提高加工效率。
➢优点:无焊渣,不需去除工件氧化膜,可实现不同材料 之间的焊接,特别适宜微型机械和精密焊接。
激光器
➢ 固体激光器
➢YAG (钇、铝和石榴石构成) 激光器,红宝石激光器 ➢特点:器件小、坚固、使用方便、输出功率大
墨最常用。
➢工作液——主要功能压缩放电通道区域,提高 放电能量密度,加速蚀物排出;常用工作液有 煤油、机油、去离子水、乳化液等。 ➢放电间隙——合理的间隙是保证火花放电的必 要条件。为保持适当的放电间隙,在加工过程 中,需采用自动调节器控制机床进给系统,并 带动工具电极缓慢向工件进给。
电火花加工工作要素
➢高速而能量密集的电子束冲击到工件上,被冲 击点处形成瞬时高温(几分之一微秒时间内升 高至几千摄氏度),工件表面局部熔化、气化 直至被蒸发去除。
电
子
电子束
束
加工的
喷丝头
加
异形孔
工
电子束加工曲面、穿孔
电子束加工特点及应用
➢ 电子束束径小(最小直径可达 0.01-0.05mm ),而其 长度可达束径几十倍,可加工微细深孔、窄缝。
➢可加工各种复杂形状的型孔、型腔、形面。 ➢工具与工件不需作复杂的相对运动,机床结构简单。 ➢被加工表面无残余应力,无破坏层,加工精度较高,尺
寸精度可达0.01~0.05mm 。
➢加工过程受力小,热影响小,可加工薄壁、薄片等易变
形零件。
➢ 生产效率较低。采用超声复合加工(如超声车削,超声 磨削,超声电解加工,超声线切割等)可提高加工效率。
➢优点:无焊渣,不需去除工件氧化膜,可实现不同材料 之间的焊接,特别适宜微型机械和精密焊接。
精密和超精密加工技术PPT课件

Precision and ultraprecision machining
精密和超精密加工技术
1
教材:《精密和超精密加工技术》(第2版) 袁哲俊、王先逵主编 机械工业出版社
➢ 学时:28 ➢ 周二下午5-6节(H514) ➢ 周四上午1-2节(H514)
参考材料: 1、张建华主编《精密与特种加工技术》 2、王先逵编《精密加工技术实用手册》,
8
1.1 发展精密和超精密加工技术的重要性
精密和超精密加工是先进制造技术的基础和关键
作为制造技术的主战场,作为真实产品的实 际制造,必然要靠精密加工和超精密加工技术, 例如,计算机工业的发展不仅要在软件上,还要 在硬件上,即在集成电路芯片上有很强的能力, 应该说,当前,我国集成电路的制造水平约束了 计算机工业的发展。美国制造工程研究者提出的 汽车制造业的“两毫米工程”使汽车质量赶上欧、 日水平,其中的举措都是实实在在的制造技术。
热流动加工(高频电流、热射流、电子束、激光) 液体、气体流动加工(压铸、挤压、喷射、浇铸) 微粒子流动加工
5
精密和超精密加工方法分类(2)
分类 切削加工 磨料加工
特种加工
复合加工
加工方法
等离子体切削 微细切削 微细钻削
微细磨削 研磨 抛光 弹性发射加工 喷射加工
电火花成形加工 电火花切割加工 电解加工 超声波加工 微波加工 电子束加工 粒子束去除加工 激光去除加工 光刻加工
段,通常,按加工精度划分,可将机械加工分为一般 加工、精密加工、超精密加工三个阶段。
➢精密加工:加工精度在0.1~1µm,加工表面粗糙
度在Ra0.02~0.1µm之间的加工方法称为精密加工;
➢超精密加工:加工精度高于0.1µm,加工表面粗糙
精密和超精密加工技术
1
教材:《精密和超精密加工技术》(第2版) 袁哲俊、王先逵主编 机械工业出版社
➢ 学时:28 ➢ 周二下午5-6节(H514) ➢ 周四上午1-2节(H514)
参考材料: 1、张建华主编《精密与特种加工技术》 2、王先逵编《精密加工技术实用手册》,
8
1.1 发展精密和超精密加工技术的重要性
精密和超精密加工是先进制造技术的基础和关键
作为制造技术的主战场,作为真实产品的实 际制造,必然要靠精密加工和超精密加工技术, 例如,计算机工业的发展不仅要在软件上,还要 在硬件上,即在集成电路芯片上有很强的能力, 应该说,当前,我国集成电路的制造水平约束了 计算机工业的发展。美国制造工程研究者提出的 汽车制造业的“两毫米工程”使汽车质量赶上欧、 日水平,其中的举措都是实实在在的制造技术。
热流动加工(高频电流、热射流、电子束、激光) 液体、气体流动加工(压铸、挤压、喷射、浇铸) 微粒子流动加工
5
精密和超精密加工方法分类(2)
分类 切削加工 磨料加工
特种加工
复合加工
加工方法
等离子体切削 微细切削 微细钻削
微细磨削 研磨 抛光 弹性发射加工 喷射加工
电火花成形加工 电火花切割加工 电解加工 超声波加工 微波加工 电子束加工 粒子束去除加工 激光去除加工 光刻加工
段,通常,按加工精度划分,可将机械加工分为一般 加工、精密加工、超精密加工三个阶段。
➢精密加工:加工精度在0.1~1µm,加工表面粗糙
度在Ra0.02~0.1µm之间的加工方法称为精密加工;
➢超精密加工:加工精度高于0.1µm,加工表面粗糙
超精密加工技术教学课件.ppt

3 精密和超精密加工的需求
国防工业上的需求
超精密加工技术在尖端产品和现代化武器制造中占有非常重要 的地位。
例如:导弹的命中精度是由惯性仪表的精度决定的,而惯性仪 表的关键部件是陀螺仪,如果1 kg重的陀螺转子,其质量中心 偏离对称轴0.5 nm,则会引起100 m的射程误差和50 m的轨 道误差。美国民兵Ⅲ型洲际导弹系统陀螺仪的精度为0.03°~ 0.05°,其命中精度的概率误差为500 m;而MX战略导弹(可 装载10个核弹头)制导系统陀螺仪精度比民兵Ⅲ型导弹高出一 个数量级,从而保证命小精度的概率误差只有50~150 m。
2021/2/2
4 超精密加工技术的发展趋势
精密和超精密加工的关键技术
被加工材料
精密和超精密加工的零件,其材料的化学成分、物理力学性能、 加工工艺性能均有严格要求: 1)被加工材料质地均匀,性能稳定,无外部及内部微观缺陷; 2)化学成分的误差应在10-2~10-3数量级,不能含有杂质; 3)物理力学性能,如拉伸强度、硬度、延伸率、弹性模量、热 导率和膨胀系数等应达到10-5~10-6数量级; 4)材料在冶炼、铸造、辗轧、热处理等工艺过程中,应严格控 制熔渣过滤、辗轧方向、温度等,使材质纯净、晶粒大小匀称、 无方向性,能满足物理、化学、力学等性能要求。
2021/2/2
服役的哈勃望远镜
狮子座螺旋星系
2021/2/2宇宙深处的星体
银河系环形星群
3 精密和超精密加工的需求
信息产品中的需求
➢ 计算机磁盘的存储量在很大程度上取决于磁头与磁盘之间的距离(即所 谓“飞行高度”),早期磁头在盘面上的飞行高度约0.1μm~0.5μm,现在 的水平已经达到 0.005μm~0.01μm,这只是人类头发直径的千分之一 。 为了实现如此微小的“飞行高度”,要求加工出极其平坦、光滑的磁盘基 片及涂层。 ➢计算机上的芯片、磁板基片、光盘基片等都需要超精密加工技术来制造。 ➢录像机的磁鼓、复印机的感光鼓、各种磁头、激光打印机的多面体、喷 墨打印机的喷墨头等都必须进行超精密加工,才能达到质量要求。