三视图习题(含答案)
工程制图三视图习题集及答案
营口地区成人高等教育 QQ群 54356621
*5-17 补全主视图和俯视图上所缺的线。
营口地区成人高等教育 QQ群 54356621
*5-18 补全主视图和俯视图上所缺的线。
营口地区成人高等教育 QQ群 54356621
*5-19 补全主视图和左视图上所缺的线并标 出P、Q面的投影。
营口地区成人高等教育 QQ群 54356621
营口地区成人高等教育 QQ群 54356621
*5-48 求作俯视图。
营口地区成人高等教育 QQ群 54356621
营口地区成人高等教育 QQ群 54356621
*5-13 求作俯视图。
营口地区成人高等教育 QQ群 54356621
*5-14 求作左视图。
营口地区成人高等教育 QQ群 54356621
*5-15 求作左视图。
营口地区成人高等教育 QQ群 54356621
*5-16 补全俯视图和左视图上所缺的线。
营口地区成人高等教育 QQ群 54356621
5-9 补全四棱台被截切后的俯视图并求主视图。
营口地区成人高等教育 QQ群 54356621
5-10 求作俯视图。
营口地区成人高等教育 QQ群 54356621
5-11 求作左视图。
营口地区成人高等教育 QQ群 54356621
*5-12 求作俯视图。
营口地区成人高等教育 QQ群 54356621
*5-44 求作俯视图。
圆柱孔 圆球 圆柱
营口地区成人高等教育 QQ群 54356621
*5-45 求作左视图。
营口地区成人高等教育 QQ群 54356621
*5-46 求作左视图。
营口地区成人高等教育 QQ群 54356621
高三专项训练:三视图练习题(一)
高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A. B. CD .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. B. C D. [7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A . B.C. D.1362942π+3618π+9122π+9182π+正视图俯视图9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .43π B . 163π C .1912π D . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+侧视图主视俯视第8题图俯视图侧视图 正视图12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )(A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .B .C .D .18.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π- π12π34π3π312正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .a 2C a 2D 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3π B .24+3π C .20+4π D .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312.23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )12正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为()A.942π+B.3618π+C.9122π+D.9182π+、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm)可得该几何体的体积是()A.313cm B.323cmC.343cm D.383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形 B. 圆柱 C. 立方体 D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为()正视图侧视图俯视图332正视图俯视图图1AB .12C .32 D1+28.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+ C 、643,32+D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是( ) A .21cm 3 B .32cm 3 C .65cm 3 D .87cm 3正视图俯视图图(1)侧(左)视图 1111130.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ).A. B.C.D. 32.已知几何体其三视图(如图),若图中圆半径为1,等腰三角形腰为3,则该几何体表面积为 ( ) A .6π B .5π C.4π D.3π2π+4π+2π4π+正视侧视俯视俯视..A .2,23B .22,2D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πcm 3C .36πcm 3D .48πcm 335 (A )348cm (B )324cm (C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.二、填空题 正视图 左视图俯视图正视图侧视图 俯视图 第6题 ·38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.主视图 左视图俯视图3主视图 俯视图 侧视图42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD 是直角梯形,则此几何体的体积为 ;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是1正视图俯视图左视图45.一个几何体的三视图如右图所示(单位:),则该几何体的体积为__________46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为的正三角形,其俯视图轮廓为正方形,则其体积是_________.48. 某几何体的三视图如图所示,则它的体积是___________俯视图m 3m 249.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
小学三视图练习题
小学三视图练习题### 小学三视图练习题一、选择题1. 下列哪个选项是正确的主视图?A. 从物体的左侧观察得到的视图B. 从物体的右侧观察得到的视图C. 从物体的正面观察得到的视图D. 从物体的背面观察得到的视图2. 侧视图是从哪个方向观察物体得到的?A. 正面B. 背面C. 左侧D. 右侧3. 俯视图是从哪个方向观察物体得到的?A. 从物体的上方B. 从物体的下方C. 从物体的侧面D. 从物体的正面二、填空题4. 观察一个长方体的三视图,主视图显示的是长方体的______面和______面。
5. 当物体被放置在水平面上时,其______视图通常显示物体的底部。
三、判断题6. 三视图包括主视图、侧视图和俯视图。
()7. 所有物体的主视图都是从物体的正面观察得到的。
()四、简答题8. 请简述什么是三视图,并说明它们各自的特点。
五、绘图题9. 根据题目提供的长方体的三视图,绘制出该长方体的立体图。
六、应用题10. 假设你有一个正方体的盒子,其边长为10厘米。
请根据正方体的三视图,计算出正方体的体积。
七、实践题11. 请用纸板制作一个简单的立方体,并从三个不同的方向观察它,记录下你观察到的三视图。
八、分析题12. 观察一个圆柱体的三视图,分析并描述主视图、侧视图和俯视图所展示的圆柱体的特征。
九、综合题13. 假设你面前有一个由多个几何体组成的复杂物体,请尝试从三个不同的方向观察它,并绘制出相应的三视图。
十、创新题14. 设计一个简单的几何体,并为其绘制三视图。
在设计时,考虑如何通过三视图来最有效地传达该几何体的形状和尺寸。
请根据上述题目进行作答,注意审题并合理运用三视图的相关知识。
祝你练习愉快!。
三视图习题50道(含答案)
word 格式三视图练习题则该几何体的体积是()(D)()(D ) 280第3题(单位cm ) 16033(D) 所得几何体的正则该几何体的俯视图为()1 3第5题(A) 2(主)视图与侧(左)视图分别如右图所示(B ) 1(C ) 292第1题(B ) 3603、若某几何体的三视图 如图所示,则此几何体的体积是 1、若某空间几何体的三视图如图所示—cm 34、一个长方体去掉一个小长方体 2、一个几何体的三视图如图,该几何体的表面积是(B ) 320cm 3“,f=L23(A ) 352cm 3 33r — 1111I ___J第2题1'1-T P5、 若一个底面是正三角形的三棱柱的正视图如图所示,则其侧.面积等于(A . . 3B . 2C . 2 3D . 66、 图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h=7、 一个几何体的三视图如图所示 ,则这个几何体的体积为 _____________AA // BB // CC , CC 丄平面 ABC3且3 AA = 3 BB = CC =AB,则多面体△ ABC - ABC 的正视图(也称主视图)是()8、如图,网格纸的小正方形的边长是1 ,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为9、如图1 , △ ABC 为正三角形,)S 2a.俯视图正(主)视图侧(左)视图A. 9 nB. 10 nC. 11 n D . 12 n10、一空间几何体的三视图如图所示,则该几何体的体积为().A.2 2.3B. 4 2 . 3侧(左)视图C. 2D. 4第11题第10题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c m2)为(A) 48+12 . 2 (B) 48+24 . 2 ( C) 36+12 2 (D)36+24 213、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3第12题正视图侧视图俯视图15题14、设某几何体的三视图如上图所示。
中考三视图练习题
中考三视图练习题一、选择题1. 下列哪个选项是正确的主视图?A. 左视图B. 俯视图C. 右视图D. 仰视图2. 三视图包括哪三个视图?A. 俯视图、左视图、右视图B. 主视图、俯视图、左视图C. 仰视图、俯视图、左视图D. 仰视图、右视图、左视图3. 观察一个物体时,哪个视图可以提供物体的宽度信息?A. 主视图B. 俯视图C. 左视图D. 仰视图4. 下列哪个选项是正确的俯视图?A. 显示物体的顶面形状B. 显示物体的侧面形状C. 显示物体的正面形状D. 显示物体的底面形状5. 当物体的主视图和左视图都相同,且都是矩形时,该物体可能是:A. 立方体B. 圆柱体C. 长方体D. 球体二、填空题6. 在三视图中,______视图显示物体的正面形状。
7. 当物体的主视图和俯视图都是圆形时,该物体可能是______。
8. 一个物体的三视图可以提供物体的______、______和______三个方向的信息。
9. 俯视图通常显示物体的______面形状。
10. 如果一个物体的主视图和左视图都是正方形,那么该物体可能是______。
三、判断题11. 一个物体的主视图和左视图可能完全不同。
()12. 三视图中的任何一个视图都不能单独表示物体的全部信息。
()13. 俯视图可以提供物体的高度信息。
()14. 物体的三视图是相互独立的,没有联系。
()15. 一个物体的三视图可以完全相同的情况是不存在的。
()四、简答题16. 请简述三视图在工程制图中的应用意义。
17. 描述如何通过三视图来确定一个物体的形状。
五、绘图题18. 根据以下描述,绘制一个物体的三视图:- 主视图:一个矩形,长为10cm,宽为5cm。
- 俯视图:一个矩形,长为8cm,宽为6cm。
- 左视图:一个矩形,长为10cm,宽为8cm。
19. 假设你面前有一个立方体,其边长为4cm,请绘制其三视图。
六、综合应用题20. 你是一名工程师,需要根据客户提供的三视图来制作一个零件。
三视图习题加解析
三视图典型例题加解析一、选择题1如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A .②③④B .①②③C .①③④D .①②④解析:①的三个视图都是边长为1的正方形;②的俯视图是圆,正视图、侧视图都是边长为1的正方形;③的俯视图是一个圆及其圆心,正视图、侧视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正视图、侧视图是相同的矩形.A2、平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6π B .43π C .46πD .63π解析:利用截面圆的性质先求得球的半径长. 如图,设截面圆的圆心为O ′,M 为截面圆上任一点, 则OO ′=2,O ′M =1,∴OM =(2)2+1=3,即球的半径为3, ∴V =43π(3)3=43π.3.若一个几何体的三视图如图所示,则此几何体的体积为( )A.112 B .5 C.92D .4解析:三视图还原为实物图,利用六棱柱体积公式求解.由三视图可知,此几何体为直六棱柱,且底面的面积为4,高为1,则体积V =Sh =4.D4.一个几何体的三视图如图所示,则这个几何体的表面积为( )A .6+ 5B .6+2 5C .8+ 5D .8+2 5解析:由三视图知,该几何体是一个底面为直角三角形的直棱柱,其表面积等于2×(12×1×2)+(2×12+22+1×2+2×2)=8+25,选D.5.如图,正方体ABCD -A ′B ′C ′D ′的棱长为4,动点E 、F 在棱AB 上,且EF =2,动点Q 在棱D ′C ′上,则三棱锥A ′EFQ 的体积( )A .与点E 、F 位置有关B .与点Q 位置有关C .与点E 、F 、Q 位置都有关D .与点E 、F 、Q 位置均无关,是定值解析:因为V A ′-EFQ =V Q -A ′EF =13×(12×2×4)×4=163,故三棱锥A ′-EFQ 的体积与点E 、F 、Q 的位置均无关,是定值.6.一个几何体的三视图如图所示,则该几何体的表面积为________.解析:将三视图还原为直观图后求解.根据三视图可知几何体是一个长方体挖去一个圆柱,所以S =2×(4+3+12)+2π-2π=38.7.某商店门口标识墩的直观图以及正视图和俯视图如图所示,墩的上半部分是正四棱锥P -EFGH ,下半部分是长方体ABCD -EFGH .(1)请画出该标识墩的侧视图; (2)求该标识墩的体积.解析:(1)由于墩的上半部分是正四棱锥P -EFGH ,下半部分是长方形ABCD -EFGH ,故其侧视图与正视图全等.该标识墩的侧视图如图所示.(2)由三视图易得,长方体与正四棱锥的底面均是边长为40 cm 的正方形,长方体的高为20 cm ,正四棱锥的高为60 cm.故该标识墩的体积V =V P -EFGH +V ABCD -EFGH =13×40×40×60+40×40×20=64 000(cm 3).8.已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)若M 为CB 的中点,证明:MA ∥平面CNB 1; (2)求这个几何体的体积.解析:(1)证明:取CB 1的中点P ,连接MP ,NP .因为M 为CB 的中点,所以MP ∥BB 1,且MP =12BB 1.由三视图可知,四边形ABB 1N 为直角梯形,AN ∥BB 1且AN =12BB 1,则MP ∥AN 且MP =AN ,所以四边形ANPM 为平行四边形,所以AM ∥NP .又因为AM ⊄平面 CNB 1,NP ⊂平面CNB 1,所以AM ∥平面CNB 1. (2)因为该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,所以BC ⊥BA ,BC ⊥B 1B .又BB 1与BA 相交于点B ,连接BN ,所以BC ⊥平面ABB 1N ,所以BC 为三棱锥C -ABN 的高.取BB 1的中点Q ,连接QN ,因为四边形ABB 1N 是直角梯形且AN =12BB 1=4,所以四边形ABQN 为正方形,所以NQ ⊥BB 1,又BC ⊥平面ABB 1N ,NQ ⊂平面ABB 1N ,所以BC ⊥NQ ,又BC 与BB 1相交于点B ,所以NQ ⊥平面C 1B 1BC ,所以NQ 为四棱锥N -CBB 1C 1的高.所以该几何体的体积V =V C -ABN +VN -CBB 1C 1 =13CB ·S △ABN +13NQ ·S 四边形BCC 1B 1 =13×4×12×4×4+13×4×4×8=1603.9.给出如下四个命题:①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个共同的公共点;③多面体至少有四个面;④棱台的侧棱所在直线均相交于同一点.其中正确的命题个数有( ) A .1个 B .2个 C .3个 D .4个【解】D .10.圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长.【解】分析:画出轴截面图,设正方体的棱长为x ,利用相似列关系求解. 过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面CDD 1C 1,如图所示. 设正方体棱长为x ,则CC 1=x ,C 1D1=. 作SO ⊥EF 于O ,则SO =OE =1,1~ECC EOS ∆∆, ∴11CC EC SO EO ==.11∴ x =, cm 11.如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是A. 4πB. 8πC. 12π D. 16π【解】如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D在球O 的同一个大圆上,点P在球面上,PO 与平面ABCD 垂直,是棱锥的高,PO =R ,22ABCD S R =,163P ABCD V -=,所以2116233R R ⋅⋅=,解得R =2,则球O 的表面积是16π,选D. 12求球的表面积和体积.【解】分析:作出轴截面,利用勾股定理求解.作轴截面如图所示,CC '=AC == 设球半径为R ,则222R OC CC '=+229=+= ∴3R =,∴2436S R ππ==球,34363V R ππ==球.。
三视图经典习题
222 正左三视图1.以下关于几何体的三视图的论述中,正确的是( ).A .球的三视图总是三个全等的圆B .正方体的三视图总是三个全等的正方形C .水平放置的正四面体的三视图都是正三角形D .水平放置的圆台的俯视图是一个圆2. 下列四个几何体中,几何体只有主视图和左视图相同的是( )A .①②B .①③C .①④D .②④3.将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的左视图为( ).4.如下图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12, 则该几何体的俯视图可能是( ).5. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( )6.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为________.(6题)7.已知某个几何体的三视图如下,根据图中标出的(7题)尺寸(单位:cm),那么可得这个几何体的表面积是________体积是_______.8、某四棱锥的三视图如图所示,该四棱锥的表面积是________.(8题)(9题)9、如图是某几何体的三视图,则该几何体的体积为________.10、某几何体的三视图如图所示,则它的体积是________.(10题)(11题)11、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________.12、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.(12题)(13题)13、在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()14、设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为________.(14题)(15题)15、一个几何体的三视图如图所示,这个几何体的体积是________.16、球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积。
三视图练习题含答案之欧阳美创编
23正视图侧视图2俯视图2第3题三视图练习题时间:2021.01.01创作:欧阳美1.某几何体的三视图如图所示,则它的体积是( ) A.283π- B.83π-C.π28-D.23π2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32 B.16+162C.48D.16322+3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为( ) A .43 B .4C .23 D .24.如图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+D.9182π+5.一个空间几何体的三视图如图所示,则该几何体的表面积为( )A. 48B.32+817C.48+817D.806.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A.35233cmB.32033cmC.22433cmD.16033cm第1题第2题7.若某空间几何体的三视图如图所示,则该几何体的体积是( )A.2B.1C.23D.138.某几何体的三视图如图所示,则该几何体的体积为( )A.π816+B.π88+C.π1616+D.π168+9. 某四棱台的三视图如图所示,则该四棱台的体积是( )A.4B.314C.316D.610. 某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为( )A .1B .3C .4D .511. 一个几何体的三视图如图所示,则这个几何体的体积为( )A .(8)36π+B .(82)36π+C .(6)36π+D .(92)36π+12.某几何体的底面为正方形,其三视图如图所示,则该几何体的体积等于( )A .1B .2C .3D .413.某几何体的三视图如图所示,则其体积为______.3 32正视图侧视图俯视图第4题第5题第7题第8题第9题312211正视图1314.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于______3cm .15.某几何体的三视图如图所示,则该几何体的体积是______.16.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是17.一个空间几何体的三视图如图所示,则这个空间几何体的体积是.18.如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥外接球的表面积为19.若某空间几何体的三视图如下图所示,则该几何体的表面积是_______________.20.一个正方体的内切球与它的外接球的体积比是( ).A .1∶33B .1∶22C .1∶383 D .1∶4221.已知球面上A 、B 、C 三点的截面和球心的距离都是球半径的一半,且AB =BC =CA =2,则球表面积是()A.π964B. π38 C.π4D. π916第17题 24 3 正视图侧视图俯视图第18题第15题第14题第13题第16题第19题22. P 、A 、B 、C 是球O 面上的四点,且PA 、PB 、PC 的两两垂直,PA=PB=PC=9,则球心O 到截面ABC 的距离为23.半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( )A.4B.3C.2.5D.2 24.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 25.答案1.A2.B3.C4.D5.C6.B7.B8.A9.B10.A 11.A 12.A 13.3π14.24 15.1616-π 16.1 17.67π 18.29π 19. 20+82 20.A 21.A 22.23323.B 24. 2 25. ︒90 26.3500π27.π6 28.π2929.72 30. 3629+3226-31.2500π 32.π1200。
三视图练习题
三视图练习题一、基本概念题1. 请简述三视图的概念及其作用。
2. 三视图包括哪三个视图?分别表示物体的哪些信息?3. 在三视图中,主视图、俯视图和左视图之间的位置关系是怎样的?二、识图题(1)正方体(2)长方体(3)圆柱体(1)球体(2)圆锥体(3)圆环体(1)三棱柱(2)四棱锥(3)六棱柱三、绘图题(1)一个长方体,长、宽、高分别为10cm、6cm、4cm。
(2)一个圆柱体,底面直径为8cm,高为10cm。
(3)一个圆锥体,底面直径为6cm,高为8cm。
(1)一把直尺(2)一个手机(3)一个茶壶四、分析题(1)主视图为矩形,俯视图为圆形,左视图为矩形。
(2)主视图为三角形,俯视图为矩形,左视图为三角形。
(1)主视图、俯视图和左视图均为正方形。
(2)主视图、俯视图和左视图均为圆形。
五、应用题(1)主视图为长方形,长、宽、高分别为10cm、6cm、4cm。
(2)主视图为圆形,直径为8cm,高为10cm。
(1)一个长方体木箱,长、宽、高分别为60cm、40cm、20cm。
(2)一个圆柱形水桶,底面直径为40cm,高为50cm。
六、综合题(1)一个长方体上放置一个正方体。
(2)一个圆柱体和一个圆锥体组合在一起。
(1)一个长方体挖去一个圆柱体形成的组合体,长方体的长、宽、高分别为20cm、10cm、5cm,圆柱体直径为5cm,高为10cm。
(2)一个正方体和一个四棱锥组合在一起,正方体边长为8cm,四棱锥底面边长为6cm,高为4cm。
七、判断题1. 三视图中,主视图和俯视图的长度方向一定相同。
()2. 在三视图中,左视图的宽度方向与主视图的高度方向一致。
()3. 任何物体的三视图都可以通过旋转和翻转得到。
()八、选择题A. 主视图B. 俯视图C. 正视图D. 左视图A. 主视图B. 俯视图C. 左视图D. 所有视图A. 主视图反映了物体的长度和高度B. 俯视图反映了物体的长度和宽度C. 左视图反映了物体的宽度和高度D. 三视图中的每个视图都包含了物体的所有尺寸信息九、填空题1. 三视图是用于表达物体______、______和______三个方向尺寸的图样。
三视图习题(含答案)较难
三视图习题(含答案)较难⼏何体的三视图练习题1309131、若某空间⼏何体的三视图如图所⽰,则该⼏何体的体积是()(A )2(B )1(C )23(D )132、⼀个⼏何体的三视图如图,该⼏何体的表⾯积是()(A )372 (B )360 (C )292 (D )2803、若某⼏何体的三视图(单位:cm )如图所⽰,则此⼏何体的体积是(A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、⼀个长⽅体去掉⼀个⼩长⽅体,所得⼏何体的正(主)视图与侧(左)视图分别如右图所⽰,则该⼏何体的俯视图为:()5、若⼀个底⾯是正三⾓形的三棱柱的正视图如图所⽰,则其侧⾯积...等于 ( ) AB .2 C..66、图2中的三个直⾓三⾓形是⼀个体积为20cm 2的⼏何体的三视图,则h= cm7、⼀个⼏何体的三视图如图所⽰,则这个⼏何体的体积为。
8、如图,⽹格纸的⼩正⽅形的边长是1,在其上⽤粗线画出了某多⾯体的三视图,则这个多⾯体最长的⼀条棱的长为______.第2题第5题9、如图1,△ ABC 为正三⾓形,AA '//BB ' //CC ' , CC ' ⊥平⾯ABC 且3AA '=32BB '=CC '=AB,则多⾯体△ABC -A B C '''的正视图(也称主视图)是()10、⼀空间⼏何体的三视图如图所⽰,的体积为( ).A.2π+B. 4π+C.2π+ D. 4π+11、上图是⼀个⼏何体的三视图,根据图中数据,可得该⼏何体的表⾯积是()A .9πB .10πC .11πD .12π12、⼀个棱锥的三视图如图,则该棱锥的全⾯积(单位:c 2m )为()(A )(B )(C )(D ) 13、若某⼏何体的三视图(单位:cm )如图所⽰,则此⼏何体的体积是 3 cm .第7题侧(左)视图正(主)视俯视图俯视图正(主)视图侧(左)视图第14题14、设某⼏何体的三视图如上图所⽰。
三视图习题50道(含答案)
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
通用技术历年三视图补线真题及练习题含答案及立体图
3.三视图立体资源及其动态图(旋转展示各细节结构)3.1历年真题三视图及对应立体图来源原题(三视图)答案及对应的立体图展示2020 年1月第16题小幅时,i_Ld 匕,Ld2019 年4月第16题仁明14 m 11P o互S "2018 年11月第16题皇目9 if; WR2018 年4月第16题mr^卜pB]2017 年11月第16题目区密2017 年4月第16题2016 年10月第16题2016 年4月第16题2015 年10月第16题上述部分立体图动态(旋转360度)3.2其它各地区三视图模拟题及对应立体图自编三视图-J」Li d ___________目—1. !」J U J ____ _ __国守2019年12自巴2019年12月绿色联盟等2019年12月暨阳卷工哈।।[ 第]6期图2019年12月杭高仿/ 1 1/1 1 ——■J~~l2019年12月杭二疝3疝ara a®2019 年7月丽水期末考2019 年6月绍兴高二期末2019 年6月湖州高二期末2019 年 6月杭州期末V2019 年 6月台州期末2019 年5月浙东北变式2019 年 3 月宁波市 适应性卷 2019 年 5 月高二 年级 2019 年 3月绿色联 盟 2019 年 3 月浙江十 校联盟<—2019 年 3 月绍兴市 适应性卷 1/ —2019 年3 月金丽衢2019 年3 月嘉2019 年3 月暨阳卷2019 年2 月温州20192 月名校协作体2019 年 2 月Z20联盟20191 月宁波十校联考。
(完整版)高中数学3三视图课后习题(带答案)
3 32正视图侧视图俯视图图1三视图课后习题1.(陕西理5)某几何体的三视图如图所示,则它的体积是A .283B .83C .82D .232.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为3.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .9122 B .9182C .942D .36184.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.63B.93C.123D.1835.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A.8 B.62C.10 D.826.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A)48(B)32+8(C)48+8(D)802,它的三视图中的俯视图如右图所7.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为3示,左视图是一个矩形,则这个矩形的面积是.8.(天津理10)一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________3 m9.(2010湖南文数)13.图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm 10.(2010浙江理数)(12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是___________3cm.11.(2010辽宁文数)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 .12.(2010辽宁理数)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13.(2010天津文数)(12)一个几何体的三视图如图所示,则这个几何体的体积为。
14.(2010天津理数)(12)一个几何体的三视图如图所示,则这个几何体的体积为15.(2010湖南理数)13.图3中的三个直角三角形是一个体积为203cm的几何体的三视图,则h cm.16.(2010福建理数)若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于.17.(2010广东理数) 6.如图1,△ ABC为三角形,AA//BB//CC, CC⊥平面ABC 且3AA=32BB=CC =AB,则多面体△ABC -A B C的正视图(也称主视图)是18.【2012高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()()A6()B9()C()D19.【2012高考真题新课标理11】已知三棱锥S ABC的所有顶点都在球O的求面上,ABC是边长为1的正三角形,SC为球O的直径,且2SC;则此棱锥的体积为()()A26()B36()C23()D2220.【2012高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是21.【2012高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A.8π3B.3πC.10π3D.6π22.【2012高考真题广东理6】某几何体的三视图如图所示,它的体积为A .12π B.45π C.57π D.81π【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得57533-53312222圆柱圆锥V V V.故选C .23.【2012高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱24.【2012高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是()A. 28+65 B. 30+65 C. 56+ 125 D. 60+12525.【2012高考真题浙江理11】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________cm 3.26.【2012高考真题辽宁理13】一个几何体的三视图如图所示,则该几何体的表面积为______________。
机械制图习题集项目3 绘制简单形体的三视图——答案
项目3 绘制简单形体的三视图1.说明三视图之间的投影关系和方位关系,并在各视图中注明其方位。
班级:姓名:学号:2.分析下列三视图,找出其对应的轴测图,并在轴测图中填上对应三视图的编号。
班级:姓名:学号:3.分析下列三视图,找出其对应的轴测图,并在轴测图中填上对应三视图的编号。
班级:姓名:学号:1.根据立体图中各点的位置,画出它们的三面投影,并量出各点到投影面的距离及坐标值。
(单位:mm;度量值取整数)班级:姓名:学号:2.根据各点的三面投影图,作出它们的立体图,并写出各点的坐标值。
(单位:mm;度量值取整数)A(15、15、20)、B(20、0、25)、C(0、20、0)3.已知点A在V面前方30mm,点B在H面上方20mm,点C在V面上,点D在H 面上,点E在X轴上,补全各点的两面投影。
班级:姓名:学号:4.已知各点的两面投影,求作第三面投影,并说明两点的相对位置。
点A在点B的(上、下)下方,(左、右)左方,(前、后)后方;点C在点A的(上、下)上方,(左、右)右方,(前、后)前方。
5.已知各点的两面投影,求作第三面投影,并说明两点的相对位置。
点C、B的重影点是 c″(b″),点B在点C的正右方。
点A、B的重影点是 a(b),点B在点A的正下方。
点D在 Y 轴上。
班级:姓名:学号:6.根据所给点的三面投影,对比它们的相对位置。
(单位:mm;度量值取整数)7.已知立体上各点的两面投影,求作第三面投影。
并说明各点的相对位置。
点A与点B的相对位置:点A与点B没有上、下和前、后之分,只有左、右差别;点B在点A的正右方;它们的 Z 和 Y 坐标值相等, X 坐标值不相等。
点C与点D的相对位置:点C与点D没有上、下和左、右之分,只有前、后差别;点D在点C的正后方;它们的 Z 和X 坐标值相等, Y 坐标值不相等。
点E与点F的相对位置:点E与点F没有左、右和前、后之分,只有上、下差别;点F在点E的正下方;它们的 X 和 Y 坐标值相等, Z 坐标值不相等。
三视图习题及答案
三视图习题及答案在进行机械设计时,三视图是一个非常重要的工具,它可以帮助设计师更清晰地理解和表达设计方案。
通过三视图习题的实践,可以有效提升我们在机械设计中的应用能力和设计思维。
本文将以三视图习题及答案为主题,介绍相关的知识点,并提供一些习题和答案供读者练习。
一、三视图简介三视图是指物体的正视图、俯视图和左视图。
在机械设计中,通常使用第一、第三和第七投影角度的多视图投影法。
每个视图都能提供不同的信息,通过综合这些视图,我们可以完整地了解物体的形状、尺寸和结构。
二、三视图示例下面是一个简单的示例,展示了一个物体的正视图、俯视图和左视图。
请根据图纸回答题目。
(插入示例图纸)1. 请标注出物体的三个主要尺寸。
答案:根据图纸,物体的主要尺寸分别为长、宽和高,分别为50mm、30mm和20mm。
2. 请描述物体的形状特征。
答案:物体呈长方体状,正视图和俯视图都显示出物体的长方形形状,左视图显示出物体的高度。
3. 请绘制物体的左视图,尺寸按比例。
答案:(插入左视图示意图)通过完成上述习题,我们可以对三视图有一个初步的了解,并能够熟悉标注、绘制和尺寸的方法。
三、三视图习题及答案下面是一些三视图习题和答案,供读者练习。
1. 请根据给定的正视图和左视图,绘制出物体的俯视图。
(插入题目图纸)答案:(插入答案图纸)2. 请根据给定的俯视图和左视图,绘制出物体的正视图。
(插入题目图纸)答案:(插入答案图纸)3. 请根据给定的正视图和俯视图,绘制出物体的左视图。
(插入题目图纸)答案:(插入答案图纸)通过反复练习三视图习题,我们可以逐渐提升自己的绘图技巧和空间想象能力。
同时,我们也能更好地理解机械设计中的尺寸和形状,为后续的设计工作打下坚实的基础。
结语三视图习题是机械设计过程中重要的一环,通过实际练习和答案分析,可以帮助我们提升机械设计的能力和技巧。
希望本文提供的习题及答案对读者的学习和实践有所帮助。
通过不断练习和思考,相信大家定能在机械设计领域取得更好的成就。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何体的三视图练习题
2、一个几何体的三视图如图,该几何体的表面积是 ( )
(A )372 (B )360 (C )292 (D )280
4、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为: ( )
5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...
等于 ( ) A .4 B .2 C .5 D .6
6、图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm
7、一个几何体的三视图如图所示,则这个几何体的体积为 。
第2题 第5题
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.
11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π
B .10π
C .11π
D .12π
14、设某几何体的三视图如上图所示。
则该几何体的体积为 3
m
15、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A.34000cm
B.38000cm
C.32000cm D.34000cm
20、如图所示,一个空间几何体的正视图和侧视图都是底为1
,高为2
的矩形,俯视图是一个圆,第7题 俯视图 正(主)视图 侧(左)视图 第14题 正视图 侧视图
俯视图
那么这个几何体的表面积为( )
A .2π
B .
52π C .4π D .5π
18、下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是
A.9π
B.10π
C.11π D .12π
21、一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为_ ______cm 2.
俯视图。