电解电容的寿命计算
电容寿命计算公式
RIFA、Nichicon、Rubycon的电解电容计算公式电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。
关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubycon 电容寿命得计算公式。
1、nichicon 的电解电容寿命计算公式nichicon 的电解电容寿命计算公式分为两种:a 、大封装电解电容(large can type );b 、小封装(miniature type )的电容,以下针对两种电容分别列出其计算公式。
A、large can type电容结算公式如下:其中:Ln: 估算之寿命(在环境温度Tn 和总纹波In )Lo: 在最大允许工作温度To 和最大允许工作纹波Im 条件下的额定寿命To: 最大允许工作温度Tn: 环境温度to: 在最大允许工作温度To 和最大允许工作纹波电流Im 条件下内部温升量Im :在最大允许工作温度To 条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波)In :实际应用的纹波电流有效值Δ tn: 在环境温度Tn 和纹波电流In 条件下致使的内部温升K: 因纹波损耗引起温升的加速系数(Tn 从实际应用环境获得,In 根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。
其它参数可从规格书中得到)以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。
其内部温升Δ tn 估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。
此公式关键点是归一到标准频率的等效电流有效值In 的求解。
B、miniature type对小封装的电容有两种情况,对应不同情况有两种计算公式(a)使用规格书的L 值L: 在最大允许工作温度To 和额定DC 电压条件下的额定寿命Bn: 因实际应用纹波损耗引起温升的加速系数;α:寿命常数。
电解电容寿命计算
电解电容寿命计算
电解电容是一种常见的电子元件,在电路中扮演着储存电荷和滤
波的重要角色。
然而,电解电容的使用寿命并不长久,经过长时间使
用后容易损坏,导致电路出现故障。
为了提高电容的使用寿命,需要
进行寿命计算并采取相应措施。
电解电容的寿命主要取决于两个因素:工作温度和应用电压。
下面我们将介绍如何进行电解电容寿命计算。
第一步是确定电容的工作温度和应用电压。
通常,电容的温度和
电压会在其产品规格书中给出。
如果规格书中没有给出,可以使用温
度计和万用表等测试仪器进行测量。
如果电容的实际工作温度和应用
电压超过了其规格书中的限制,可能会导致电容的寿命缩短。
第二步是根据电容的工作温度和应用电压计算其寿命。
电容的寿
命可以用以下公式表示:
T= A * exp(Ea/ (k * T))
其中,T表示电容的寿命,A是通过实验测定的电容寿命常数,
Ea是电解电容的活化能,k是玻尔兹曼常数,T是电容的工作温度。
根据以上公式,可以得出结论:随着电容工作温度升高,其寿命
将减少;而随着应用电压升高,其寿命也会减少。
因此,在使用电容时,要严格遵守其工作温度和电压的限制,以延长其使用寿命。
总之,电解电容的寿命计算是非常重要的。
了解电容的使用寿命,可以帮助我们更好地进行电路设计和电子元件的选择,从而保证电路
的可靠性和稳定性。
希望以上介绍能对大家有所帮助。
电解电容寿命计算公式 说明(1)
代号
I0 IX
4、关于其他的寿命原因:
代号表示内容说明 最高使用温度下正常周波数的额定纹波电流(Arms)
实际使用中的纹波电流(Arms)
铝电解电容由于电解液通过封口部扩散到外部而导致磨耗故障,加速其现象的要因除上述周围温度与
纹波电流外有以下要因:
●过电压的情况
连续印加定格电压的过电压时,急速增大制品的漏电流量,这种漏电流引起发热产生气体,并导致内压
铝电解电容器的使用寿命计算公式
1、周围温度与寿命
温度对寿命的影响有静电容量的减少,损失角正接的增大,导致电解液通过封口部扩散到外部,电气
特性随时间的变化值与周围温度间成立试验公式,其关系式类似于温度增加,化学反应速度成指数倍 增加之化学反应规律式,称之为温度与铝电解电容寿命10℃法则。
LX=L0×B
W=IR2×R+VIL
代号
代号表示内容说明
W
内部的消费电力
IR
直流电流
R
内部阻抗等效串联电阻 ESR
V
印加电压
IL
漏电流
漏电流 LC最高使用温度增加到20℃的 5-10倍程度,由于 I R远大于IL,可成立如下公式:
W=IR2×R
◆ 内部发热与放热达到平衡温度的条件公式如下:
IR2×R=βA△T
代号
T0 - TX 10
代号
代号表示内容说明
L0
最高温度条件下,印加定格电压或重迭额定纹波电流时的保证寿命(hrs)
LX
实际使用中的寿命(hrs)
T0
制品的最高使用温度(℃)
Tx
实际使用时的周围温度(℃)
B:温度加速系数 温度加速系数 B,如果是最高使用温度以下时,可以用 B≈2来计算,升温 10℃,约 2倍的加速率; 设定较低的使用时的周围温度 T X,能保证长期的寿命。 2、印加电压与寿命 使用在线路板上的 RADIAL型、SNAP-IN型铝电解电容,若在最高使用温度及额定工作电压以下的情况 使用时,印加电压的影响比周围温度及直流电流的影响小,对于铝电解电容来说,实际计算可以不考虑 降压使用对寿命计算之影响。 3、纹波电流重迭时的寿命 铝电解电容比其他类的电容损失角大,会因纹波电流而内部发出热量。由于施加的纹波电压发出的热量 会导致温度上升,对寿命有很大影响,印加电流电压时的发热情况如下公式来计算:
电解电容使用寿命计算
电解电容使用寿命
影响电解电容寿命的因素有很多种,比如电解液的类型、工作状态、封装规格和使用环境等等,计算电容寿命公式:Lx=L0*KT*KR1*Kv
Lx:电容预期寿命
L0/LR:电容加速寿命,可以查阅电容规格书.
KT:环境温度影响系数(每升高10度,寿命降低一半)
KT等于2的(T0-Tx)/10次方
T0:电容最高工作温度(85或105)
Tx:电容实际工作温度
KR1/KR2:纹波电流影响系数.
KR1与L0对应,等于2的-T/5次方.T:纹波电流所引起的电容内部温升
Kv:工作电压影响系数
康富松电解电容(KFSON)厂家生产的电容器产品系列众多,品种齐全;产品包括:长寿命电解电容器、高频低阻电解电容、UPS 专用电解电容,LED专用电解电容器等,康富松产品被广泛用于LED驱动电源、UPS电源、工业控制设备等各大领域。
如何计算电解电容使用寿命
如何计算电解电容使用寿命
作为电子产品的重要部件电解电容,在开关电源中起着不可或缺的作用,它的使用寿命和工作状况与开关电源的寿命息息相关。
在大量的生产实践与理论探讨中,当开关电源中电容发生损坏,特别是电解电容冒顶,电解液外溢时,电源厂家怀疑电容质量有问题,而电容厂家说电源设计不当,双方争执不下。
以下就电解电容的使用寿命和使用安全作些分析,给电子工程师提供一些判断依据。
1、阿列纽斯(Arrhenius)
1.1 阿列纽斯方程
阿列纽斯方程是用来描述化学物质反应速率随温度变化关系的经验公式。
电解电容内部是由金属铝等和电解液等化学物质组成的,所以电解电容的寿命与阿列纽斯方程密切相关。
阿列纽斯方程公式:k=Ae-Ea/RT 或lnk=lnA—Ea/RT (作图法)
●K 化学反应速率
●R 为摩尔气体常量
●T 为热力学温度
●Ea 为表观活化能
●A 为频率因子
1.2 阿列纽斯结论
根据阿列纽斯方程可知,温度升高,化学反应速率(寿命消耗)增大,一般来说,环境温度每升高10℃,化学反应速率(K 值) 将增大2-10 倍,即电容工作温度每升高10℃,电容寿命减小一倍,电容工作温度每下降10℃,其寿命增加一倍,所以,环境温度是影响电解电容寿命的重要因素。
2、电解电容使用寿命分析
1)公式:
根据阿列纽斯方程结论可知,电解电容使用寿命计算公式如下:。
电解电容寿命计算方法
电解电容寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。
Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles 后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下纹波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大纹波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗 : XC=1/(2πfC) 【Ω】感抗 : XL=2πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】纹波电流: IR=√(βA△T/ESR) 【mArms】功率 : P=I2ESR 【W】谐振频率 : fo=1/(2π√LC) 【Hz】。
电解电容寿命计算
计算条件: 物料名称:4300-BN1071-A010 保证寿命:105℃5000hrs 额定纹波电流:650mArms/ 105℃,120Hz 使用温度:55 ℃ 实际纹波电流: 600mArms/ 100Hz 周围补正系数: 120Hz 100Hz…0.7
1.纹波发热的计算: 频率修正: 650mArms/120Hz X 0.7 = 455mArms/ 100Hz 发热计算: (600/455)2 x 5 = 8.695
寿命计算(2000小时)
计算条件: 物料名称:4300-BN1071-A000 保证寿命:105℃2000hrs 额定纹波电流:650mArms/ 105℃,120Hz 使用温度:55 ℃ 实际纹波电流: 600mArms/ 100Hz 周围补正系数: 120Hz 100Hz…0.7
1.纹波发热的计算: 频率修正: 650mArms/120Hz X 0.7 = 455mArms/ 100Hz 发热计算: (600/455)2 x 5 = 8.695
使用时间
每天观看时间
2.寿命计算
时间(年)
33 16.5 11 8.3 6.6
Lx Lo 2
To Tx 10
2
ΔT 5 8.695 5
4小时 8小时 12小时 16小时 20小时
5000 2 48000
105 55 10
2
24小时
5.5
注: 55 ℃为电视机使用环境为恶劣条件下的评估值,由此计算在恶劣条件下连续 使用的时间约为48000小时,即5.5年 。若电视机平均每天工作12小时,则使 年限为11年。
使用时间
每天观看时间
2.寿命计算
时间(年)
电解电容寿命计算
Ф(mm) β ×10 -3
5~8
10
2.16
2.10
6.C F: 频率补偿系数 : 参考目录资料。
13
16
1.20
1.25
13
16
2.05
2.00
注: 此寿命计算公式只适用于东莞冠坤电子有限公司的所有系列
75 20 1.90
18 1.30
18 1.96
85
105
15
5
1.70 1.00
22 1.35
25 1.40
30 35 1.50 1.65
22
25
30 35
40
1.88
1.84 1.75 1.64
1.58
β: 放热系数. A:电容器的表面积 (cm 2 ).
π
A=
D
4
D:铝壳的直径 (cm);L: 铝壳的长度( cm)
R:内部阻抗 ( 串联等效阻抗 ).
R=
tan δ 2πfc
× (D+4L)
tan δ: 损失角正切值 f :测试频率( HZ) C:容量.I RC=I × C F × C T I: 额定纹波电流 . (参考规格表中的规定值) CF: 频率补偿系数. CT: 温度补偿系数.
Su'scon electronic enterprise co.,ltd.
電解電容器壽命推算公式
1. 在額定 DC電壓下的保正壽命 ( 適用于不必考慮紋波電流影響的場合)
Lx=Lo × 2
To-Tx 10
×2
- △T △To
2. 在允許最大紋波電流疊加條件下的保證壽命
( 適用于須考慮紋波電流影響的場合)
Lx=Lr × 2
电解电容寿命计算方法
本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。
首先,电容等效成电容、电阻( ESR )和电感( ESL )的串联。
关于此请参考其他资料,接下来演示电容寿命计算步骤:1 、纹波电流计算,纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。
铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值:控制某一纹波电压所需的电容容值为:P: 负载功率(单位 W )注意:这是应用所需要的最小电容容值。
此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。
必须知道主线及负载侧的纹波电流数据。
可以首先计算出电容的充电时间。
f main是电网电流的频率。
电容的放电时间则为:充电电流的峰值为dU 是纹波电压( U max – U min)则充电电流有效值:接下来计算放电电流峰值和有效值。
最后计算得出:整流模块后纹波电流:这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。
2 、计算功率损耗在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和:3 、计算电容中心点温度得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度:其中:Th 电容为电容中心点温度 , 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。
Rth 为电容的热阻,其值和风速等有关 ,Ta 表示电容表面温度。
P Loss 为纹波电流的中损耗。
4 、计算电容寿命得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降 10 度,其寿命增加一倍,反过来也就是电容温度升高 10 度,电容寿命减小一倍:Lop 为电容工作寿命,即设计寿命Lo 为电容在最大温度时的寿命Tmax 为电容的最大工作温度,在电容的说明书上会有电容的最大温度值Th 为电容的实际工作时候的温度,也即以上计算出来的电容中心点温度。
铝电解电容寿命计算方法
铝电解电容寿命计算方法1.液体电解电容寿命计算方法:液体电解电容的寿命通常由电解液的电导率、厚度以及电解液中氧化铝颗粒的电导率等因素决定。
根据经验公式可计算如下:寿命(小时)=1.440×10^15×(C/V)^n×Z/T其中,C为电容值(μF),V为工作电压(V),n为电压系数(可参考铝电解电容厂商提供的数据),Z为电解液电导率(S/cm),T为工作温度(℃),常温下Z一般取0.1-2 S/cm之间。
2.固体电解电容寿命计算方法:固体电解电容的寿命通常由陶瓷介质的电导率、电容值和工作电压等因素决定。
根据经验公式可计算如下:寿命(小时)=0.1×10^6×[(C×V)/(I×T)]^(1/3)其中,C为电容值(μF),V为工作电压(V),I为等效串联电阻(Ω),T为工作温度(℃),I值可通过测试或参考铝电解电容厂商提供的数据得到。
3.等效串联电阻计算方法:等效串联电阻是指电容器在工作状态下所表现出的电阻,其值与寿命成正相关。
可以通过测试或参考铝电解电容厂商提供的数据得到。
需要注意的是,上述计算方法是根据经验公式得出的估算值,在实际应用中可能存在误差。
因此,工程师在设计电路时,应综合考虑电容器的额定参数、使用环境和寿命要求等因素,选择合适的铝电解电容器,并进行合理的设计和布局,以确保电路的可靠性和稳定性。
此外,还需要注意以下几点:1.工作电压不应超过电容器的额定电压,以避免击穿和损坏电容器。
2.工作温度应在电容器能够承受的范围内,过高的温度会加速电容器老化,缩短寿命。
3.合理选择电解液类型和固体介质,不同的材料具有不同的寿命和性能特点,需根据具体需求进行选择。
综上所述,铝电解电容寿命的计算方法主要是根据电容器的工作参数和材料特性进行估算,具体的计算公式和方法可根据实际情况和厂商提供的数据进行合理选择和应用。
电解电容寿命计算800字
电解电容寿命计算800字英文回答:Electrolytic Capacitor Lifetime Calculation.Electrolytic capacitors are widely used in electronic circuits due to their high capacitance and low cost. However, like all electronic components, electrolytic capacitors have a finite lifespan. The lifetime of an electrolytic capacitor depends on several factors, including temperature, voltage, and ripple current.Temperature.The temperature at which an electrolytic capacitor is operated has a significant impact on its lifespan. The higher the temperature, the shorter the lifespan. This is because high temperatures cause the electrolyte to evaporate, which degrades the capacitor's performance.Voltage.The voltage applied to an electrolytic capacitor also affects its lifespan. Operating the capacitor at a voltage higher than its rated voltage will shorten its lifespan. This is because high voltages can cause the capacitor to break down.Ripple Current.Ripple current is a type of alternating current that flows through an electrolytic capacitor. Ripple current can cause the capacitor to heat up, which can shorten its lifespan. The higher the ripple current, the shorter the lifespan.Other Factors.In addition to temperature, voltage, and ripple current, several other factors can affect the lifespan of an electrolytic capacitor. These include:Mechanical stress: Mechanical stress can damage the capacitor's seals, leading to electrolyte leakage.Humidity: Humidity can cause the capacitor's terminals to corrode, leading to a decrease in performance.Storage conditions: Electrolytic capacitors should be stored in a cool, dry place. Exposure to extreme temperatures or humidity can shorten the capacitor's lifespan.Lifetime Calculation.The lifespan of an electrolytic capacitor can be calculated using the following formula:L = L0 (T/T0)^b (V/V0)^c (I/I0)^d.where:L is the capacitor's actual lifespan.L0 is the capacitor's rated lifespan.T is the actual operating temperature.T0 is the rated operating temperature.V is the actual operating voltage.V0 is the rated operating voltage.I is the actual ripple current.I0 is the rated ripple current.b, c, and d are constants that depend on the capacitor's design.The constants b, c, and d can be found in the capacitor's datasheet.Example.Consider an electrolytic capacitor with a rated lifespan of 10,000 hours at 85°C and 10 volts. If the capacitor is operated at 105°C and 12 volts, what is its actual lifespan?L = L0 (T/T0)^b (V/V0)^c (I/I0)^d.L = 10,000 (105/85)^b (12/10)^c (I/I0)^d.Assuming that b = 3, c = 2, and d = 1 (typical values for electrolytic capacitors), we have:L = 10,000 (1.23)^3 (1.2)^2 (I/I0)。
电解电容寿命的计算方法
Load lifeIf the capacitor`s max.operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) for Lo hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification.where L0 is called ”load life” or “useful life (lifetime) at 105℃(85℃)”.L x=L0x2(To-Tx)/10x2—△Tx/5where △T x=△T0x(I x/I0)2Ripple life:If the capacitor`s max .operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) with the ripple current for Lr hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification . where Lr is called ”ripple life” or ”useful ripple life (ripple lifetime) at105℃(85℃) ”.Lx= L r x2(To-Tx)/10x2(△To-△Tx)/5where △T x=△T0x(Ix/I0)2The (ripple) life expectancy at a lower temperature than the specified maximum temperature may be estimated by the following equation , but this expectancy formula does not apply for ambient below+40℃.L0 = Expected life period (hrs) at maximum operating temperature allowedLr = Expected ripple life period (hrs) at maximum operating temperature allowedLx = Expected life period (hrs) at actual operating temperatureT0 = Maximum operating temperature (℃) allowedTx = Actual operating ambient temperature(℃)Ix = Actual applied ripple current (mArms) at operating frequency fo (Hz)I0 = Rated maximum permissible ripple current IR (mArms) x frequency multiplier (C f) at f0 (Hz)△T0≦5℃= Maximum temperature rise (℃) for applying Io (mArms)△Tc = Temperature rise (℃) of capacitor case for applying Ix (mA/rms)△T x = Temperature rise (℃) of capacitor element for applying Ix (mArms)= K c△T c= K c(T c-T x)where T c is the surface temperature (℃) of capacitor caseTx is ditto.K c is transfer coefficient between element and case of capacitorFrom table below:Dia ≦8Φ10Φ12.5Φ13Φ16Φ18Φ22Φ25Φ30Φ35ΦKc 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.50 1.65鋁電解電容器的壽命估算法則:Lx=Lr*2(To-Tx)/10*2(△To-△Tx)/5△T x=kc(Tc-Tx)△T x=△T0*(Ix/I0)2當取△T x=△T0*(Ix/I0)2時.上述公式為:Lx=Lr*2(To-Tx)/10*2[1-(Ix/I c)2]式中:Lx:實際工作溫度下期望的壽命時間Lr:在允許的最大工作溫度下期望的壽命時間To:允許的最高工作溫度Tx:實際工作時的環境溫度△To:施加紋波電流Io時的最大溫升.一般≦5℃△Tx:施加紋波電流Ix時電容器內部溫升Ix:在工作頻率fo時實際施加的紋波電流Io: 在工作頻率fo時.額定允許的最大紋波電流乘頻率系數所得出的紋波電流Tc:電解電容器外殼的表面溫度Kc:電容器內部和外殼之間的熱傳導系數外殼直徑≦8Φ10Φ12.5Φ13Φ16Φ18Φ22Φ25Φ30Φ35ΦKc 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.50 1.65公式使用限制:1.溫度低於規定的最高溫度2.不適用於環境溫度低於+40℃电解电容寿命10℃法则t1-t2L2=L1*2*△tL1: 为电容器工作在t1温度时的寿命。
电容寿命计算公式
RIFA、Nichicon 、Rubycon的电解电容计算公式电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。
关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubycon 电容寿命得计算公式。
1、nichicon 的电解电容寿命计算公式nichicon 的电解电容寿命计算公式分为两种: a 、大封装电解电容(large can type );b 、小封装(miniature type )的电容,以下针对两种电容分别列出其计算公式。
A 、large can type电容结算公式如下:其中:Ln: 估算之寿命(在环境温度Tn 和总纹波In )Lo: 在最大允许工作温度To 和最大允许工作纹波Im 条件下的额定寿命To: 最大允许工作温度Tn: 环境温度to: 在最大允许工作温度To 和最大允许工作纹波电流Im 条件下内部温升量Im :在最大允许工作温度To 条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波)In :实际应用的纹波电流有效值Δtn: 在环境温度Tn 和纹波电流In 条件下致使的内部温升K: 因纹波损耗引起温升的加速系数(Tn 从实际应用环境获得,In 根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。
其它参数可从规格书中得到)以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。
其内部温升Δtn 估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。
此公式关键点是归一到标准频率的等效电流有效值In 的求解。
B 、miniature type对小封装的电容有两种情况,对应不同情况有两种计算公式(a)使用规格书的L 值L: 在最大允许工作温度To 和额定DC 电压条件下的额定寿命Bn: 因实际应用纹波损耗引起温升的加速系数;α:寿命常数。
电解电容寿命计算基本公式
1.电解电容寿命计算基本公式L X=L0 ×K TEMPL X :电解电容器实际寿命L0 :目录标示寿命寿命K TEMP :温度关系影响系数2.电解电容使用不同温度时寿命计算公式L X =L0 ×K TEMP =L0 ×B10)0 (TX TL X :电解电容器实际寿命L0 :目录标示寿命寿命T0 :目录标示之电解电容最高使用温度℃T X :电解电容实际使用温度℃(B:温度系数)22-1例1、使用KLE 5000HR时,使用温度超过目录标示温度时目录105℃ 1000HR寿命使用在115℃时00XL X =L0 ×B10)0 (TX T-=5000×210115 105-=5000×21010-=5000×2-1=2,500 HR2-2例2、使用KLE 5000HR时,使用温度低于目录标示温度时目录105℃ 5000HR寿命使用在75℃时0 0XL X =L 0 × B10)0(TX T - =5000 × 21075105-=5000 × 21030=5000 × 23=40,000 HR3.电解电容Ripplee 关系寿命计算公式L X = L 0 × K TEMP × K voltage × K ripple= L 0 × B 10)0(TX T -× 250TT ∆-∆※L X:电解电容器实际寿命□L0 :电解电容器目录标示寿命寿命□B:系数)2(≈□T0 :目录标示之电解电容最高使用温度℃□T X :电解电容实际使用温度℃□K ripple:Ripplee系数)2(≈□T0 :最大标示Ripple印加时温升□T:电容器使用之Ripple电流在电容器中心增加温度3-1例1、使用KLE 5000HR时,Ripple关系(环境温度75℃,电容中心因Ripple温升10℃时)L x = L 0 × B 10)0(TX T - × 250T T ∆-∆ =5000 × 21057105℃℃-× 25105℃℃-=5000 × 21030℃× 255-℃=5000 × 23× 2-1=5000 × 8× 1/2=20,000 HR3-2例2、使用KLE 5000HR 时,Ripple 关系(环境温度85℃,电容中心因Ripple 温升0℃时)L x = L 0 × B 10)0(TX T - × 250T T ∆-∆ =5000 × 21058105℃℃-× 2505℃℃-=5000 × 21020℃× 255℃=5000 × 22 × 21=5000 × 4 × 2=40,000 HR4.电容器中心点上升温度△T□电容器经过涟波电流后中心温度上升 □ 可算出寿命□△T = K C × (Ts – Tx)□K C:下列表中系□T S :电容器表面之温度□T X :周围温度¢径(m/m)5¢~8¢10¢12.5¢16¢18¢22¢25¢KC 1.10 1.15 1.20 1.25 1.30 1.35 1.40 ¢径(m/m)30¢35¢40¢50¢63.5¢76¢89¢100¢KC 1.50 1.65 1.75 1.90 2.20 2.50 2.80 3.10。
电解电容寿命计算公式
寿命计算公式:1.不考虑纹波时:L=L 0×2(T0-T)/10L:温度T时电容寿命;L 0:温度T 0时电容寿命。
T 0:最高工作温度;T:实际工作温度。
2.考虑纹波时L=L D ×2(T0-T)/10×K [1-(I/I0)*(I/I0)]×ΔT/10L:温度T时的考虑纹波电流的电容寿命;L D:最高工作温度T 0时额定纹波内的电容寿命;T:实际工作温度;T 0:最高工作温度;ΔT:电容中心温升;I:电路实际施加纹波电流;I 0:最高工作温度下允许施加的最大纹波电流;K:施加纹波电流寿命常数(施加纹波在额定纹波电流内K取2,超过额定纹波电流K取4)。
其中:ΔT=I 2×ESR/(A×H)ESR:电容等效串联阻抗;A:电容表面积(侧面积+底面积,不考虑胶盖所在面);A=2πrL+πr 2;H:散热系数。
φd(mm)4~5 6.3810131618H×10-3W/cm 2φd(mm)222530354050~100H×10-3W/cm 2 2.18 2.16 2.13 2.1 2.052铝电解电容器寿命计算公式1.961.88 1.84 1.75 1.66 1.58 1.49绿宝石电子有限公司以RC10/505*11(105℃2000小时产品,105℃100KHz最大允许纹波为0.124A,20℃100KHz测试ESR标准值1.3Ω)为例:假设实际工作温度为85℃,电路中实际纹波电流值为0.162A1.不考虑纹波时:(T0-T)/10=(105-85)/10=2L=2000×22=8000(h)2.考虑纹波时:H取2.18/1000=0.00218电容表面积A=2×3.14×0.25×1.1+3.14×0.25×0.25=1.727+0.19625=1.92325(c㎡)电容中心温升ΔT=(0.162×0.162×1.3)/(0.00218×1.92325)=8.14(℃)I取0.162,I0取0.124,因为I>I0,故K取4;)2]×ΔT/10=-0.57535[1-(I/I温度T时的考虑纹波电流的电容寿命:L=2000×22×4-0.57535=3604(h)绿宝石电子有限公司。
电解电容寿命计算公式
寿命计算公式:1.不考虑纹波时:L=L 0×2(T0-T)/10L:温度T时电容寿命;L 0:温度T 0时电容寿命。
T 0:最高工作温度;T:实际工作温度。
2.考虑纹波时L=L D ×2(T0-T)/10×K [1-(I/I0)*(I/I0)]×ΔT/10L:温度T时的考虑纹波电流的电容寿命;L D:最高工作温度T 0时额定纹波内的电容寿命;T:实际工作温度;T 0:最高工作温度;ΔT:电容中心温升;I:电路实际施加纹波电流;I 0:最高工作温度下允许施加的最大纹波电流;K:施加纹波电流寿命常数(施加纹波在额定纹波电流内K取2,超过额定纹波电流K取4)。
其中:ΔT=I 2×ESR/(A×H)ESR:电容等效串联阻抗;A:电容表面积(侧面积+底面积,不考虑胶盖所在面);A=2πrL+πr 2;H:散热系数。
φd(mm)4~5 6.3810131618H×10-3W/cm 2φd(mm)222530354050~100H×10-3W/cm 2 2.18 2.16 2.13 2.1 2.052铝电解电容器寿命计算公式1.961.88 1.84 1.75 1.66 1.58 1.49绿宝石电子有限公司以RC10/505*11(105℃2000小时产品,105℃100KHz最大允许纹波为0.124A,20℃100KHz测试ESR标准值1.3Ω)为例:假设实际工作温度为85℃,电路中实际纹波电流值为0.162A1.不考虑纹波时:(T0-T)/10=(105-85)/10=2L=2000×22=8000(h)2.考虑纹波时:H取2.18/1000=0.00218电容表面积A=2×3.14×0.25×1.1+3.14×0.25×0.25=1.727+0.19625=1.92325(c㎡)电容中心温升ΔT=(0.162×0.162×1.3)/(0.00218×1.92325)=8.14(℃)I取0.162,I0取0.124,因为I>I0,故K取4;)2]×ΔT/10=-0.57535[1-(I/I温度T时的考虑纹波电流的电容寿命:L=2000×22×4-0.57535=3604(h)绿宝石电子有限公司。
电解电容寿命计算
GND
IIp 0
II = IIp
(假定為三角形波形)
1 1 × 3 2
IO = IOp
(假定為三角形波形)
TO1 3 ⋅ TO
等效紋波電流
II IO Converted value (120 Hz) I = + FI FO
2
2
II , IO : 紋波電流 FI , FO : 頻率係數
L L0 : 實際使用時的推算壽命 : 最高使用溫度時的壽命 f (T) : 溫度係數
f(T) = 2
f (I) : 紋波電流係數
T m a x− T a 10
f(I) = 2
∆Tj C − 10 - 0.25 × ∆ Tj
注:溫度係數及紋波電流係數為敝公司通過實驗取得的結果 Rubycon 保密
B)高頻率 例:100kHz
I ( r .m . s .) =
IL η L
IH + η H
2
2
A)基本頻率 A)基本頻率的紋波電流有效值 AL TL1 TL
I: 紋波電流合成有效值 IL: 基本頻率紋波電流有效值 IH: 高頻率紋波電流有效值 ηL: 基本頻率紋波電流的頻率係數 ηH: 高頻率紋波電流的頻率係數
2
壽 命 計 算 公 式
壽命計算公式的由來
鋁電解電容的工作狀態及工作環境,是影響其壽命的主要因素。 在衆多因素中,又以環境溫度的高低和紋波電流的大小對電容壽命的影響最大。 利用溫度係數和紋波電流係數,通過對基本壽命的增減分析,可以推算出特定條件下的壽命。
L =L 0 ⋅ f (T ) ⋅ f ( I )
最高使用溫度 (Tmax)=105℃ 額定紋波電流 =2480mAr.m.s. @100kHz, 105℃ 該產品的溫度係數
电容寿命计算公式
电容寿命计算公式RIFA、Nichicon、Rubycon的电解电容计算公式电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。
关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubyco n电容寿命得计算公式。
1、nichico n 的电解电容寿命计算公式nichicon 的电解电容寿命计算公式分为两种:a 、大圭寸装电解电容(large can type ); b 、小圭寸装(miniature type ) 的电容,以下针对两种电容分别列出其计算公式。
A、large can type电容结算公式如下其中:Ln:估算之寿命(在环境温度Tn和总纹波In )Lo:在最大允许工作温度To和最大允许工作纹波Im条件下的额定寿命To:最大允许工作温度Tn:环境温度to:在最大允许工作温度To和最大允许工作纹波电流Im条件下内部温升Im :在最大允许工作温度To条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波)In : 实际应用的纹波电流有效值△ tn:在环境温度Tn和纹波电流In条件下致使的内部温升K:因纹波损耗引起温升的加速系数(Tn从实际应用环境获得,In根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。
其它参数可从规格书中得到)以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。
其内部温升△ tn估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。
此公式关键点是归一到标准频率的等效电流有效值In的求解。
B、min iature type对小封装的电容有两种情况,对应不同情况有两种计算公式(a)使用规格书的L值L:在最大允许工作温度To和额定DC电压条件下的额定寿命Bn:因实际应用纹波损耗引起温升的加速系数;a :寿命常数其它参数与“ Large Can type ”相同。
电解电容寿命计算
电解电容寿命计算电解电容是一种常见的电子元件,在电源滤波、放大电路、信号耦合等方面有着广泛的应用。
然而,由于电解电容内部结构的特殊性,其使用寿命相对较短,需要合理估计和计算其寿命,以确保电路的可靠性和稳定性。
电解电容的寿命与其内部电解液的质量、工作温度、工作电压、工作电流以及使用环境等因素有关。
根据电解电容的生产厂家提供的信息,一般可根据以下几种方法估计电解电容的使用寿命:1.标称寿命法:电解电容的生产厂家一般会在元件上标注电容的标称寿命,即电容在允许的工作条件下正常工作的预期寿命。
标称寿命一般以小时(h)、年(y)或者温度(℃)为单位进行标注。
2.电压寿命法:电容的工作电压是影响其寿命的重要因素之一、通常,电解电容的寿命与工作电压的关系可以通过公式进行估算。
例如,电容的标称寿命为2000小时,在20℃下工作时,其寿命可以根据公式T'=T*(V/Vr)^n进行计算,其中V为实际工作电压,Vr为额定电压,T为标称寿命,n为系数。
通过测量电容的实际工作电压,可以根据公式计算出电容的寿命。
3.温度寿命法:温度是影响电容寿命的重要因素之一、一般来说,电容的使用温度越高,其寿命越短。
因此,温度寿命法是常用的一种估计电容寿命的方法之一、根据电容的工作温度和厂家提供的温度寿命曲线,可以通过计算电容在不同工作温度下的寿命,从而得到电容的使用寿命。
4.环境寿命法:电容的使用环境也会对其寿命产生一定的影响。
例如,高湿度、高温度、强烈的震动等环境条件都会缩短电容的使用寿命。
因此,在计算电容的使用寿命时,需要考虑到实际的使用环境。
需要注意的是,以上方法只是估计电容使用寿命的一种方法,实际寿命受多个因素影响,由于电容寿命通常通过试验进行估算,因此需要根据实际情况进行合理的估计。
总而言之,电解电容的寿命计算是一个复杂的问题,需要综合考虑电容的工作电压、工作温度、使用环境等因素,结合厂家提供的相关信息进行合理估算。
通过科学的方法计算电解电容的寿命,可以提高电路的可靠性和稳定性,保证电子设备的正常运行。
电解电容的寿命计算
CAPXON 计算公式-3
K ripple = 2
符号 ix Imax Fn
ix ∆T − ∆T × F ×I n max
2
说明 实际等效纹波电流 电解电容标称的允许最大纹波电流 频率系数 105&125 ℃ : ΔT =0.5; 85 ℃ : ΔT=10
单位 mA mA -
ΔT
DVT Dept. 黎维经
OST 计算公式-1
L2 = L1 × 2
符号
L2 L1 T0 Tx Iuse Istd K
DVT Dept. 黎维经
T0 −Tx 10
×2
I use 5−5 I std K
2
说明
实际使用电解电容的预估寿命值 电解电容标称的寿命值 电解电容标称的额定最高温度 实际使用的环境温度 实际使用时的纹波电流 额定纹波电流值 加速因子
符号 L2 L1 KT Kripple
DVT Dept. 黎维经
说明 实际使用电解电容的预估寿命值 厂商标称的寿命值 温度加速因子 (见下表) 纹波电流加速因子(见下表)
单位 小时 小时
RUBYCON 计算公式-2
KT = 2
符号 Tmax Tc ix Imax Fn a
加速因子(k) K=10 K=9.95~9.00 K=8.95~8.00 K=7.95~7.00 K=6.95~6.00 K=5
结尾
从上面提的几个案例中,可以看到对于电解电容, 环境温度(壳温)、纹波电流、工作电压等对其有 重大的影响,所以在计算电解电容过程中,必须查 找到该器件的这些参数。 对于电解电容而言,目前我们关注更多的是耐压值 和温度,很少考虑到纹波电流方面,以华为3COM 的要求,或许我们很多电解电容根本无法满足其要 求:10年寿命。 期望该培训让大家对电解电容的寿命测试有个概 念,在使用过程中得以应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lo目录标准寿命 Lo'实力寿命值 To操作的最高使用溫度 to目录使用之最大纹波电流(若使用的频率上不同,需再乘上系列目录上所提供的频率系数) △To设定最大容许纹波电流时所规定的纹波发热(℃)设定值5℃ Ta使用的周围溫度 Tx电容器表面溫度 tx实际使用之纹波电流 △Tx印加实际Ripple Current所造成之溫升预估值 Lx推算寿命(小時) Ly推算寿命(年)
艾华集团
LUMINOUS TOWN ELECTRICAihua Group CO.,
copyright:aishi
中国·湖南·益阳市金秀路
JinXiu Road of Yiyong City ,Hunan PR China
TEL:0737-6184466 FAX:0737-6180493 P.C:413000
Date: AISHI Part NO:
Rated Ripple(mA) 390 Designing Life(Hrs) 4000 Rated Temp(℃) 105
2011-9-14
α
2011-9-14 21:15 1.2
Input
Operating Conditions(试验条件 试验条件): 试验条件
Ambient Temperature(℃)T× Actual Ripple Current(mA)t× 754 77.1
Input
Life Calculate Formula(寿命推算公式 寿命推算公式) 寿命推算公式 △Tx = △To*(tx/to)^2 CaseΦ ≦8 10,12.5 16,18 Lx = Lo' * 2^[(( To-Ta )/10 )] * 2 ^[((△To-△Tx )/5 )] α 1.0 1.1 1.2 Ly = Lx /365/24 Ta=Tx-(△Tx/α) NOTE LO: Guaranteed lifetime in catalog 〔Hrs〕 LO': Actual lifetime performance available for using in the formula 〔Hrs〕 To: Maximum rated operating temperature〔℃〕 to: Maximum rated ripple curraet 〔Arms〕[According to using frequency and then multiply conversion quotiety] △To: Designed temperature rise at maximum rated ripple current flow 〔℃〕 Ta: Actual ambient tempeature in the application operating〔℃〕 Tx: Surface temperature of capacitor case〔℃〕. tx: Actual ripple current flow in the application operating〔Arms〕 △Tx: Estimated temperature rise at capacitor core due to tx〔℃〕 Lx: Estimated lifetime〔Hrs〕 Ly: Estimated lifetime when 24 hours operating a day〔Yrs〕 4.
result
YES
1. 2. 3.
Capacitor Life time Calculation formula : SER格) 须计算规格
Rated Voltage(V) 400 Rated Cap(uF) 68 Dia(Φ) 16 Length(L) 30