汽车钢板弹簧设计计算
汽车钢板弹簧设计计算1
#DIV/0! #DIV/0! #DIV/0!! #DIV/0! #DIV/0! #DIV/0!
#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!
1
14)(1-μi-1)↑3Ki 12)*13)
15)Bi 14)+1 16)ξi=Bi-αi-2*Ci-2 n=6,ξn=ξ6
2.钢板弹簧总成刚 度C=6EIn/ln↑3/ξ
n (N/mm)
1)刚度差(C实-C 理)/C实*100 (%) 2)钢板弹簧总成挠 度fc=2*Pn/C (mm) 3)钢板弹簧的固有 频率N (Hz)=16/fc ↑0.5 (1.3~2.3Hz)
0
#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
0 -0.1889 -0.13115 #DIV/0! #DIV/0! #DIV/0! #DIV/0!
47 #DIV/0!
#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
45
#DIV/0! ###### ###### #DIV/0!
2.065591 #DIV/0! #DIV/0! #DIV/0! #DIV/0!
#DIV/0! #DIV/0! #DIV/0!
4.A(L/2,(n0-1)h↑ 3),B(S/2,nh↑3)两 点直线方程: (x-x1)/(x1x2)=(y-y1)/ (y1-y2) 即:x=ay+b x1=L/2 x2=S/2 a=(x1-x2)/(y1y2) b=x1-(x1-x2) *y1/(y1-y2) 5.求各片的弦长Li (xi)圆整为尾数为 1)最短片L1 L2 (单边) L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 n=6,Ln=L6
汽车钢板弹簧减振性能的理论分析与计算
摘要本次设计的题目是汽车钢板弹簧减震性能的理论分析与计算。
主要任务是对江铃汽车少片簧进行的理论分析与计算。
设计的主要内容是:选定钢板弹簧的结构,根据给定的尺寸、外力等数据,运用机械振动学中的离散体与连续体的知识,用连续体振动方程计算出钢板弹簧各片的应力,而后再用有限元软件Ansys软件分析各片簧的应力,然后把理论计算结果与软件分析结果进行比较,最后根据尺寸用CAD软件画出钢板弹簧的零件图和装配图。
钢板弹簧是汽车悬架的重要元件,其能保证汽车具有良好的行驶平顺性和良好的操纵稳定性,还能保证汽车在车轮跳动时,主销定位参数变化不大,车轮运动与导向机构相协调,不出现摆振现象,转向时使整车有一定的不足转向。
钢板弹簧本身还能兼起导向机构的作用,并且由于弹簧各片之间的摩擦而起到一定的减震作用。
总之,由实践得知钢板弹簧对汽车行驶平顺性、稳定性、通过性、燃油经济性等多种使用性能都有影响,因此钢板弹簧的设计对汽车的性能有很大影响,其设计也是汽车设计的一个重要方面。
关键词:钢板弹簧理论分析机械振动学 Ansys有限元软件ABSTRACTThe title of this design is the calculation and theoretical analysis of damping performance of automobile leaf spring. The main task is the calculation and theoretical analysis of less leaf spring of JiangLing cars. The main content of the design: selected the structure of leaf spring, according to the given size and forces and other data, using the knowledge of discrete body and continuous body of the mechanical vibration , then calculate the forces of each piece of steel spring according to the continuous body vibration equation. Then analysis the forces with the finite element software. Then compare the two results, finally paint out the assembly drawings.Leaf spring is an important component of automobile suspended frame , which can ensure the car has a good ride and good handling and stability , also can guarantee pin location parameters changed significantly and wheel movement aligned with steering mechanism and has no vibration and also ensure the vehicle has a certain lack of steering when the car beats the wheel. Leaf spring itself can also holds up the role of steering mechanism, and due to friction between the springs, it also can play s certain role of shock.In short, the practice proved that spring on vehicle ride comfort, stability, adoption, fuel economy, and other kinds of performance, so the design of leaf spring have a great impact on the performance of the car, its design is also an important aspect of automotive design.KEYWORDS: leaf spring theoretical analysis mechanical vibration ANSYS finite element software目录前言 (1)1.汽车工业简介 (1)2.汽车构造 (2)3.汽车悬架系统的作用、组成与分类 (2)4.设计任务 (5)2 钢板弹簧的传统理论分析 (3)2.1受力分析和载荷计算 (3)2.1.1 受力分析和静态载荷的计算 (3)2.1.2动态载荷的计算 (4)2.2钢板弹簧传统分析方法的应力计算 (6)2.2.1 力学模型的简化 (7)3 应力的计算 (8)3.1共同曲率法 (8)3.2许用应力的确定 (10)3.3少片钢板弹簧的简单估算方法 (11)3.4极限工况应力计算 (12)3.5钢板弹簧刚度和挠度的计算 (13)3.5.1 建模假设 (13)3.5.2 主副簧接触过程中的载荷计算 (14)3.5.3 载荷—挠度特性计算 (15)3.5.4钢板弹簧刚度的计算公式 (17)3.5.5 钢板弹簧自由刚度的计算 (18)3.5.6 夹紧状态下钢板弹簧刚度的计算 (19)3.6钢板弹簧振动理论分析 (19)4 钢板弹簧的有限元计算与分析 (22)4.1有限元工程分析在汽车设计中的应用 (22)4.2建立有限元模型 (23)4.2.1 有限元计算模型的简化 (23)4.2.2 定义单元属性 (24)4.2.3 接触分析 (25)4.2.4 施加载荷和约束 (27)4.2.5 设置求解选项 (28)4.2.6 有限元计算结果 (29)5 理论计算结果与有限元计算结果比较 (32)6 小结 (33)7 致谢 (34)8 参考文献 (35)前言1.汽车工业简介汽车是最重要的现代交通工具,汽车的种类最多、最普及、活动范围最广泛、运输量最大的交通工具。
钢板弹簧设计说明书
目录一、确定断面尺寸及片数 ------------------------------------------------------------------------ 2二、确定各片钢板弹簧的长度 ------------------------------------------------------------------ 4三、钢板弹簧的刚度验算 ------------------------------------------------------------------------ 5四、钢板弹簧总成在自由状态下的弧高及曲率半径计算。
------------------------------- 7H ------------------------------------------------------------------------------------ 71.钢板弹簧总成在自由状态下的弧高02.钢板弹簧各片自由状态下曲率半径的确定 -------------------------------------------------------------------------------- 8五、钢板弹簧总成弧高的核算 ---------------------------------------------------------------- 10六、钢板弹簧的强度验算 ---------------------------------------------------------------------- 11二、(修改)确定各片弹簧长度--------------------------------------------------------------- 12三、(修改)钢板弹簧的刚度验算 ------------------------------------------------------------ 14四、(修改)钢板弹簧总成在自由状态下的弧高及曲率半径计算 --------------------- 15五、(修改)钢板弹簧总成弧高的核算 ------------------------------------------------------ 17六(修改)钢板弹簧的强度验算 ------------------------------------------------------------- 18七、钢板弹簧各片应力计算 ------------------------------------------------------------------- 18八,设计结果 ------------------------------------------------------------------------------------- 20九、参考文献 ------------------------------------------------------------------------------------- 21十、附总成图 ----------------------------------------------------------------- 错误!未定义书签。
板簧计算
汽车平衡悬架钢板弹簧设计东风德纳车桥有限公司2005年9月15日一、钢板弹簧作用和特点a.结构简单,制造、维修方便;b.弹性元件作用;c.导向作用;d.传递侧向、纵向力和力矩的作用;e.多片弹簧片间摩擦还起系统阻尼作用;f.在车架或车身上两点支承,受力合理;g.可实现变刚度特性;h.相比螺旋弹簧和扭杆弹簧而言,单位质量的储能量较小,在同样的使用条件下,钢板弹簧要重一些。
二、钢板弹簧的种类、材料热处理及弹簧表面强化1.目前,汽车上使用的钢板弹簧常见的有以下几种:1)普通多片钢板弹簧;2)少片变截面钢板弹簧;3)两级变刚度复式钢板弹簧;4)渐变刚度钢板弹簧2.钢板弹簧材料的一般要求钢板弹簧与其它弹性元件一样,弹簧使用寿命与材料及制造工艺有很大关系,因此选用弹簧材料时应考虑以下几个方面因素1)弹性极限弹簧在弹性极限范围内变形时,希望弹簧储存的弹性变形能要大,而弹簧在单位中单位体积内储存的弹性变形能是与材料的弹性极限平方成正比,而与弹性模量与反比,因此从提高材料贮存的弹性变形能角度看,希望提高材料的弹性极限。
一般说材料抗拉强度高,弹性极限也高。
弹性极限与材料的化学成分和金相组织有较大关系,在弹簧钢中如果提高碳、硅、锰元素含量,可以提高材料弹性极限。
弹簧采用中温回火处理,能够得到具有较高弹性极限的回火屈氏体组织。
2)弹性模量 弹性模量有两种,即拉伸弹性模量E 和剪切弹性模量G 。
材料弹性模量愈小,材料变形和贮存的弹性变形能愈大。
从这个角度看,国外采用了弹性模量较低的增强树脂材料弹簧(FRP 弹簧)。
3)疲劳强度 由于弹簧多在交变载荷下工作,所以要求材料应有较高的疲劳极限,疲劳强度与材料抗拉强度b 和屈服强度s σ成正比,因此为了提高弹簧的疲劳强度,应设法提高材料的抗拉强度b σ和屈服强度与抗拉强度之比(b s σσ)。
4)淬透性 对于断面较厚的或变截面钢板弹簧,希望用淬透性较好的材料。
材料如不能淬透,淬火组织中将含有较多的非马氏体组织,使淬火后硬度降低。
钢板弹簧行驶不能断裂(前板簧强度校核计算)
项目 输入参数 车轮静止力半径 前桥一级落差 后轮中心到弹簧座距离 前簧总片高
单位
cm cm cm cm
后簧总片高
cm
整车质心高度
M
前桥非簧载质量
n
后桥非簧载质量
n
前桥超载质量
n
后桥超载质量
n
前桥满载质量
n
后桥满载质量
n
后桥空载负荷
n
前轴空载负荷
n
轴距m
M
地面附着系数
弹性模量
N/mm2
前桥超载簧下载荷
结果
35.7 6 6.7 6.8
8
落差6.7斜垫板厚2.0 簧高11、斜垫板2.09
0.98 200 300
2355 4140 1597 2033 1005
1275
2.6 0.7
20580000.00
21119.00 37632.00 13970.00 38400.00 10535.00 6909.00
N
后桥超载簧下载荷
N
前桥满载簧下载荷
N
后桥满载簧下载荷
N
前桥空载簧下载荷
N
后桥空载簧下载荷
N
二、前板簧计算
1、前板簧计算输入参数
板簧规格表示
主片数
n1
副片数
n2
符号 Rc m1 m2 ∑h1 ∑h2 hg Gu1 Gu2 G1 G2 G1 G2
m2 m1 L ф
E
单面槽截面1300x75x9-6(2)g
T1+(P1d×La+T1×ha)×sinβ/((hb -ha)×sinβ+(La+Lb)cosβ)
吊耳满载时夹角(°)
β
汽车变截面钢板弹簧的设计计算
汽车变截面钢板弹簧的设计计算东风汽车工程研究院 陈耀明 2006年5月前 言少片变截面钢板弹簧在我国已有多年的制造和使用经验,特别是大、中型客车,采用者相当广泛。
然而,涉及变截面簧的设计计算方法,虽然二十几年前悬架专委会曾做过一些介绍,但资料零散、重复、不完整,尤其是比较常用的加强型变截面簧,资料反而欠缺。
撰写本文的目的,就是为悬架设计者提供变截面簧的比较完整的设计计算资料,主要是刚度计算公式和应力分布计算方法。
变截面簧轮廓线包括梯形和抛物线形两大类,每类又含有根部、端部加厚,或只有根部加厚,或都不加厚等几种变型。
这样,可以说几乎所有的变截面簧轮廓线都可在本文找到计算公式。
此外,本文还介绍了各种轮廓线的选型原则以及若干设计经验等,可供设计人员参考。
附录中列出已有资料中的一些计算公式,并证明了它们和本文公式的一致性。
本文的式(1)~(3)引自日本资料“自动车用重型钢板弹簧”,其它公式(6)~(15)是笔者近期重新推导出来的。
当然,有一些和过去推导出来的公式完全一致。
一、 纵截面为梯形的变截面弹簧这种弹簧的轧锥部分(3l ~4l 段)为梯形,而根部和端部都将厚度增大,称为加强型变截面簧,见图1。
图1为四分之一椭圆钢板弹簧,其刚度计算公式为:654321αααααα+++++=EK ----------------(1)若对称地扩展成为半椭圆钢板弹簧,其总刚度为:6543212αααααα+++++=EK ----------------(2)若弹簧由若干等长、相同轮廓线的叠片所组成,则其合成的总成刚度为:6543212αααααα+++++=nEK ----------------(3)式中 )/(10058.225mm N E ×=为弹性模数n 弹簧片数,单片弹簧1=n313114bt l =α⎥⎦⎤⎢⎣⎡++−+−+−−=1221112121221122212211132ln 223)(22212t t t Al t t l A t Al t t l A t Al t bA α )(43233323l l bt −=α ⎥⎦⎤⎢⎣⎡++−+−+−−=2322322223233223232223234ln 223)(22212t t t Bl t t l B t Bl t t l B t Bl t bB α ⎥⎦⎤⎢⎣⎡++−+−+−−=3423432324244324242234335ln 223)(22212t t t Cl t t l C t Cl t t l C t Cl t bC α )(43536346l l bt −=α而 1212l l t t A −−=3423l l t t B −−=4534l l t t C −−=其中 b 弹簧宽度实际应用中,有些弹簧的轮廓线有所简化,见图2,其刚度计算式也有所变化: 1、增厚转折点急剧变化,2型。
2汽车钢板弹簧的性能、计算和试验
2汽车钢板弹簧的性能、计算和试验汽车钢板弹簧的性能、计算和试验东风汽车公司技术中心陈耀明1983年3月初稿2005年1月再稿目录前言(2)一.钢板弹簧的基本功能和特性(3)1.汽车振动系统的组成(3)2.悬架系统的组成和各元件的功能(6)3.钢板弹簧的弹性特性(7)4.钢板弹簧的阻尼特性(12)5.钢板弹簧的导向特性(14)二.钢板弹簧的设计计算方法(17)1.单片和少片变断面弹簧的计算方法(17)2.多片钢板弹簧的刚度和工作应力计算(24)3.多片弹簧各单片长度的确定(32)4.多片弹簧的弧高计算(36)5.钢板弹簧计算中的几个具体问题(43)三.钢板弹簧的试验(46)1.钢板弹簧的静刚度测定(46)2.钢板弹簧的动刚度测定(50)3.钢板弹簧的应力测定(52)4.钢板弹簧单片疲劳试验(53)5.钢板弹簧总成疲劳试验(54)前言本文是为汽车工程学会悬架专业学组所办的“减振器短训班”撰写的讲义,目的是让汽车减振器的专业人员对钢板弹簧拥有一些基本知识,以利于本身的工作。
内容分为三部分:钢板弹簧的基本功能和特性,设计计算方法,以及试验等。
因为这部分内容非本次短训班的重点,所以要求尽量简单扼要,也许有许多不全面的地方,只供学习者参考。
有关钢板弹簧较详细的论述,可参考本学组所编的“汽车悬架资料”。
一.钢板弹簧的基本功能和特性1.汽车振动系统的组成汽车在道路上行驶,由于路面存在不平度以及其它各种原因,必然引起车体产生振动。
从动态系统的观点来看,汽车是一个多自由度的振动系统。
其振源主要来自路面不平度的随机性质的激振,此外还有发动机、传动系统以及空气流动所引起的振动等等。
为改善汽车的平顺性,也就是为减小汽车的振动,关键的问题是研究如何对路面不平度的振源采取隔振措施,这就是设计悬架系统的根本目的。
换言之,就是在一定的道路不平度输入情况下,通过悬架系统的传递特性,使车体的振动输出达到最小。
当研究对象仅限于悬架系统时,人们往往把车体当为一个刚体来看待。
汽车钢板弹簧的设计
汽车钢板弹簧的设计一、汽车钢板弹簧的基本特性钢板弹簧的主要功能是作为汽车悬架系统的弹性元件,此外多片弹簧的片间摩擦又起作系统的阻尼作用,多数钢板弹簧通过卷耳和支座兼有导向作用。
但就其基本的受力情况及结构特点,钢板弹簧具有以下两个基本特征:1、无论钢板弹簧以什么形式装在汽车上,它都是以梁的方式在工作,也就是说它的主要受力方向垂直于钢板弹簧长度。
同时,由于受变形相对其长度很小,因此可以利用材料力学中有关小挠度梁的理论,即线性原理来进行分析计算。
2、钢板弹簧装在汽车上所承受的弯矩,基本上是单向载荷,因而其弯曲应力也是单向应力。
二、等应力梁的概念椭圆形半椭圆形四分之一椭圆形除早期的汽车采用过椭圆形钢板弹簧,近代汽车绝大多数采用半椭圆形钢板弹簧,只有极少数采用四分之一椭圆形钢板弹簧。
无论何种形式的钢板弹簧,就其总成而言,都是根部支承,端部承爱集中载荷,它都是以梁的方式在工作。
众所周知,理想的梁应该是一根等应力梁,这样才能获得材料的最佳利用。
对于钢板弹簧而言,无论单片或多片,设计者应该努力将它设计成等应力梁或近似于等应力梁。
就单片梁而言,当只有单片承爱集中载荷时,有两种轮廓可以满足等应力梁的要求。
对于等厚度者,宽度应成三角形,对于等宽度者,厚度为抛物线形状。
当然,从理论上讲,只要截面系数沿片长方向与弯矩成比例变化,都可以成为等应力梁。
然而汽车上几乎没有采用同时变厚又变宽的弹簧。
上述轮廓线只是对弯曲应力而言,实际上钢板弹簧端部受剪切强度的要求以及卷耳的存在,第一种轮廓只能是在三角形端部加上等宽的矩形或整个宽度成为梯形,而第二种轮廓只能是抛物线端部接上一段等厚度的矩形或厚度按梯形变化的梁。
为了简化轧制工艺,对于等宽度者,可用梯形代替抛物线。
此外,根部也设计成为平直的,便于与支承座贴合,也就是说,或者由梯形和根部、端部为矩形的三段直线构成。
所以,在实际应用上,只能把弹簧设计成为近似的等应力梁。
由于结构上的原因,没有人在汽车上采用等厚度变宽度的单片钢板弹簧,但等宽度变厚度的单片钢板弹簧早就得到实际的应用。
汽车钢板弹簧的性能计算和试验
汽车钢板弹簧的性能计算和试验首先,汽车钢板弹簧的性能主要包括以下几个方面。
1.抗压性能:汽车钢板弹簧需要承受车身的重力和不同路况下的载荷,因此需要具备良好的抗压性能。
这主要取决于材料的强度和设计的结构形式。
2.弹性模量:汽车钢板弹簧必须具备足够的弹性,以便在受到压力后能够恢复原状,保持悬挂系统的正常工作状态。
3.疲劳寿命:汽车钢板弹簧在长期使用的过程中,需要承受反复加载和卸载的作用,容易发生疲劳断裂。
因此,提高弹簧的疲劳寿命是非常重要的,需要选择耐疲劳性能好的材料和合理的结构设计。
其次,汽车钢板弹簧的计算主要包括以下几个方面。
1.材料选择:根据汽车钢板弹簧所需的强度和弹性模量,选择合适的材料。
常用的材料有碳素钢和合金钢等。
2.结构设计:根据汽车的荷载情况和悬挂系统的要求,设计合适的弹簧结构。
包括弹簧片的长度、宽度、厚度以及弹簧片的叠放方式等。
3.刚度计算:根据汽车的质量、弹簧的刚度系数以及悬挂系统的要求,计算出合适的弹簧刚度。
刚度计算可通过弹簧公式和有限元分析等方法进行。
最后,汽车钢板弹簧的试验主要包括以下几个方面。
1.负荷试验:对汽车钢板弹簧进行加荷试验,测试其承受负荷的能力。
这通常包括静态负荷试验和动态负荷试验两种。
2.疲劳试验:通过反复加载和卸载的试验,测试汽车钢板弹簧的疲劳寿命。
疲劳试验通常包括弯曲疲劳试验和循环疲劳试验。
3.刚度试验:通过施加不同荷载,测量弹簧的变形量和对应的载荷,计算出弹簧的刚度系数。
在试验过程中,需要遵循相关的试验标准和方法,确保试验结果的准确性和可靠性。
综上所述,汽车钢板弹簧是汽车悬挂系统中不可或缺的元件,其性能、计算和试验的合理设计和有效实施,对于保证汽车悬挂系统的稳定性、舒适性和安全性具有重要的意义。
汽车钢板弹簧减振性能的理论分析与计算
摘要本次设计的题目是汽车钢板弹簧减震性能的理论分析与计算。
主要任务是对江铃汽车少片簧进行的理论分析与计算。
设计的主要内容是:选定钢板弹簧的结构,根据给定的尺寸、外力等数据,运用机械振动学中的离散体与连续体的知识,用连续体振动方程计算出钢板弹簧各片的应力,而后再用有限元软件Ansys软件分析各片簧的应力,然后把理论计算结果与软件分析结果进行比较,最后根据尺寸用CAD软件画出钢板弹簧的零件图和装配图。
钢板弹簧是汽车悬架的重要元件,其能保证汽车具有良好的行驶平顺性和良好的操纵稳定性,还能保证汽车在车轮跳动时,主销定位参数变化不大,车轮运动与导向机构相协调,不出现摆振现象,转向时使整车有一定的不足转向。
钢板弹簧本身还能兼起导向机构的作用,并且由于弹簧各片之间的摩擦而起到一定的减震作用。
总之,由实践得知钢板弹簧对汽车行驶平顺性、稳定性、通过性、燃油经济性等多种使用性能都有影响,因此钢板弹簧的设计对汽车的性能有很大影响,其设计也是汽车设计的一个重要方面。
关键词:钢板弹簧理论分析机械振动学 Ansys有限元软件ABSTRACTThe title of this design is the calculation and theoretical analysis of damping performance of automobile leaf spring. The main task is the calculation and theoretical analysis of less leaf spring of JiangLing cars. The main content of the design: selected the structure of leaf spring, according to the given size and forces and other data, using the knowledge of discrete body and continuous body of the mechanical vibration , then calculate the forces of each piece of steel spring according to the continuous body vibration equation. Then analysis the forces with the finite element software. Then compare the two results, finally paint out the assembly drawings.Leaf spring is an important component of automobile suspended frame , which can ensure the car has a good ride and good handling and stability , also can guarantee pin location parameters changed significantly and wheel movement aligned with steering mechanism and has no vibration and also ensure the vehicle has a certain lack of steering when the car beats the wheel. Leaf spring itself can also holds up the role of steering mechanism, and due to friction between the springs, it also can play s certain role of shock.In short, the practice proved that spring on vehicle ride comfort, stability, adoption, fuel economy, and other kinds of performance, so the design of leaf spring have a great impact on the performance of the car, its design is also an important aspect of automotive design.KEYWORDS: leaf spring theoretical analysis mechanical vibration ANSYS finite element software目录前言 (1)1.汽车工业简介 (1)2.汽车构造 (2)3.汽车悬架系统的作用、组成与分类 (2)4.设计任务 (5)2 钢板弹簧的传统理论分析 (3)2.1受力分析和载荷计算 (3)2.1.1 受力分析和静态载荷的计算 (3)2.1.2动态载荷的计算 (4)2.2钢板弹簧传统分析方法的应力计算 (6)2.2.1 力学模型的简化 (7)3 应力的计算 (8)3.1共同曲率法 (8)3.2许用应力的确定 (10)3.3少片钢板弹簧的简单估算方法 (11)3.4极限工况应力计算 (12)3.5钢板弹簧刚度和挠度的计算 (13)3.5.1 建模假设 (13)3.5.2 主副簧接触过程中的载荷计算 (14)3.5.3 载荷—挠度特性计算 (15)3.5.4钢板弹簧刚度的计算公式 (17)3.5.5 钢板弹簧自由刚度的计算 (18)3.5.6 夹紧状态下钢板弹簧刚度的计算 (19)3.6钢板弹簧振动理论分析 (19)4 钢板弹簧的有限元计算与分析 (22)4.1有限元工程分析在汽车设计中的应用 (22)4.2建立有限元模型 (23)4.2.1 有限元计算模型的简化 (23)4.2.2 定义单元属性 (24)4.2.3 接触分析 (25)4.2.4 施加载荷和约束 (27)4.2.5 设置求解选项 (28)4.2.6 有限元计算结果 (29)5 理论计算结果与有限元计算结果比较 (32)6 小结 (33)7 致谢 (34)8 参考文献 (35)前言1.汽车工业简介汽车是最重要的现代交通工具,汽车的种类最多、最普及、活动范围最广泛、运输量最大的交通工具。
110 微型汽车设计后钢板弹簧悬架钢板弹簧设计
为110 微型汽车设计后钢板弹簧悬架。
已知参数:总重:Ga=13100N( 驾驶室内两人)自重:Go=6950N( 驾驶室内两人)空车:前轴载荷=4250N后轴载荷=2700N满载:前轴载荷=5750N后轴载荷=7350N非簧载质量=690N (指后悬架)钢板弹簧长度L=(1000~1100)mm骑马螺栓中心距S= 70mm满载时偏频n= ( 1.5~1.7 )H叶片端部形状:压延要求:∙确定钢板弹簧叶片断面尺寸,片数;∙确定钢板弹簧各片长度(按1:5 的比例作图);∙计算钢板弹簧总成刚度;∙计算钢板弹簧各片应力;注意:①叶片断面尺寸按型材规格选取(参看“汽车标准资料手册”中册P39,表5—36),本题拟在以下几种规格内选取:= 6 65,7 65,8 656 63,7 63,8 636 70,7 70,8 70②挠度系数可按下式计算:式中:n’—主动片数n—总片数设计要求:1 )要求在CAD 环境下进行钢板弹簧各片长度的确定。
2 )要求对计算结果进行分析说明。
60Si2Mn E=2.06*105N/mm2满载偏频n2=1.6Hz钢板弹簧长度L=1050mm许用弯曲应力【σw】=500MPa无效长度系数k=0.5一.宽度b和片厚h1.J0=[(L-ks)3cδ]/(48E)(1)c=F w/f cF w2=(G2-G u2)/2=(7350-690)/2=3330NF c2=(5/n2)2=(5/1.6)2=97.66mmc=3330/97.66=34.10N/mm(2)δ=1.5/[1.04(1+0.5*0/8)]=1.5*1.04=1.56与主片等长的片数n’=0 总片数n=8J0=[(1050-0.5*70)3*34.10*1.56]/(48*2.06*106)=5625.60N/mm22.W0=F w(L-ks)/4[σw]=3330*(1050-0.5*70)/(4*500)=1689.9753.h p=2J0/W0=6.66mm4.宽度b的值在(6~10)h p中选取,取b=9h p=59.94mm5.片厚h的值为1.1h p,h=7.33mm6.选取国产型材h*b=8*65二.钢板弹簧长度Σh i3=8*63=1728由作图法得到8片钢板弹簧的长度序号单边L/2 取整圆整双边L使用matlab,计算程序为:l=[97 160 220 280 342 405 465 525]; %各片弹簧长度a=[1:8];b=[1:8];c=[1:8];e=[1:8];yd=[1:8];yg=[1:8];%yd为端接触应力,yg为固定端应力a(1)=(3-l(1)/l(2))/(2*l(1)/l(2));b(1)=-2;c(1)=0;e(1)=-a(1)/b(1);for i=2:7a(i)=(3-l(i)/l(i+1))/(2*l(i)/l(i+1));b(i)=-(2+(1-l(i-1)/l(i))*(1-l(i-1)/l(i))*(1-l(i-1)/l(i)));c(i)=(3-l(i-1)/l(i))*(l(i-1)/l(i))*(l(i-1)/l(i))/2;e(i)=a(i)/(-b(i)-c(i)*e(i-1));endE=2.06*10*10*10*10*10; %弹性模量J=65*8*8*8/12;p=12*E*J/(2*l(8)*l(8)*l(8)+(l(8)-l(7))*(l(8)-l(7))*(l(8)-l(7))-e(7)*( 3*l(8)*l(7)*l(7)-l(7)*l(7)*l(7))); %刚度w=65*8*8/6;f(8)=(7350-690)/4;for i=1:7f(8-i)=f(9-i)*e(8-1);endfor i=2:8yd(i)=(f(i)*l(i)-f(i-1)*l(i-1))/w;yg(i)=f(i)*(l(i)-l(i-1))/w;endyd(1)=f(1)*l(1)/w;yg(1)=0;最终计算结果。
巴顿级乘用车纵置钢板弹簧设计书
巴顿级乘用车纵置钢板弹簧设计书1. 引言纵置钢板弹簧是巴顿级乘用车的重要组成部分。
它的设计对于车辆的悬挂系统和乘坐舒适性具有重要影响。
本文档旨在详细描述巴顿级乘用车纵置钢板弹簧的设计过程和关键要素。
2. 设计要求巴顿级乘用车纵置钢板弹簧的设计要求如下:1.车辆总质量:1800kg2.最大荷载:450kg3.自由高度:350mm4.最大弹簧压缩量:100mm5.弹簧刚度:根据车辆负载情况设计3. 设计过程3.1 弹簧材料选择弹簧材料的选择对于弹簧的性能至关重要。
常用的弹簧材料有高碳钢和合金钢。
根据巴顿级乘用车的设计要求,我们选择优质的合金钢作为弹簧材料,以确保弹簧具有足够的强度和寿命。
3.2 弹簧刚度计算弹簧刚度是指单位位移所需要的力。
根据巴顿级乘用车的负载要求和弹簧的自由高度,我们可以计算出弹簧的刚度。
假设弹簧刚度为K,弹簧自由高度为H,荷载为P,则可以使用以下公式计算弹簧刚度:K = P / (H - 0.8 * H)3.3 弹簧设计根据弹簧刚度的计算结果和需求的最大弹簧压缩量,我们可以开始设计弹簧的参数。
常见的弹簧参数包括弹簧片数、片厚、片高、片宽等。
这些参数需要根据实际情况进行调整和优化。
3.4 弹簧安装和调试弹簧的安装和调试是确保车辆悬挂系统正常运行的重要环节。
在安装过程中,我们需要确保弹簧能够正确地连接到车辆的悬挂系统,并且能够正常工作。
在调试过程中,我们需要根据实际情况进行调整,以确保车辆的乘坐舒适性和悬挂性能。
4. 结论巴顿级乘用车纵置钢板弹簧的设计是一个复杂而关键的过程。
通过选择合适的材料、计算弹簧刚度、设计弹簧参数以及进行安装和调试,我们可以确保弹簧能够正常工作,并且满足车辆的悬挂要求和乘坐舒适性。
设计过程中需要考虑弹簧的强度、刚度和寿命等因素,同时也要根据车辆的实际情况进行调整和优化。
弹簧的设计不仅仅是一项技术工作,也需要结合实际经验和工程实践进行综合考虑。
通过合理的设计和完善的安装调试过程,巴顿级乘用车纵置钢板弹簧能够发挥出最佳的悬挂性能,为乘车人员提供舒适的乘坐体验。
汽车变截面钢板弹簧的设计计算
汽车变截面钢板弹簧的设计计算摘要本文介绍了汽车变截面钢板弹簧的设计计算,包括弹簧参数计算、弹簧形状设计及材料组成等方面。
通过对变截面钢板弹簧的物理特性进行分析,结合设计要求,以及材料及工艺的要求,采用MARC建模及软件进行非线性有限元分析,得出变截面钢板弹簧的设计结果。
关键词:变截面钢板弹簧,参数计算,形状设计,MARC建模1. IntroductionVariable-Cross-Section Steel Plate Spring (VCSSPS) is an important part in auto manufacture. VCSSPS can provide smooth and reliable force when it works in enclosed space because ofits advantages of light weight and small size. It has been widely used in body, chassis, engine and suspension systems. VCSSPS contains a variety of parameters such as material, shape, size and load. And its performance is greatly affected by these parameters. Thus, it is very important to design the VCSSPS in a reasonable way.In general, VCSSPS design includes three steps: parameters calculation, shape designing and material selection. First, parameters calculation must be done according to the design requirement. Then, shape should be designed according to parameters carefully. Furthermore, the material and processes should be carefully selected and applied.In this paper, we introduce the VCSSPS design process and analysis. We use MARC software to analyze the VCSSPS under nonlinear finite element environment and get the parameters’ design results. The main contributions include: 1) a conciseintrod uction of VCSSPS design process; 2) analysis of parameters’ effects on VCSSPS; 3) the optimization of geometry design and material selection; 4) the design results of VCSSPS.2 Parameter CalculationThe parameters of VCSSPS mainly include load, length,section size, curvature, number of plate and material. The calculation results of these parameters have significantinfluence on the performance of VCSSPS.2.1 LoadLoad is the product of spring force and displacement, which can be obtained from the static deflection and force performance data provided by the design requirements.2.2 LengthLength of VCSSPS is determined by the static performance. Generally, the distance between the mounting holes should be the same as that of the mating parts.2.3 Section SizeThe section size of VCSSPS can be obtained from the load and displacement provided by the design requirements. Generally, thesection size should be determined according to the static performance.2.4 CurvatureCurvature of VCSSPS is determined by the section size. Generally, the curvature should be designed according to thestatic performance.2.5 Number of PlateThe number of plate is determined by the dynamic performance. Generally, the number of plate should be designed according tothe dynamic performance.2.6 MaterialThe ideal material for VCSSPS is determined by the static, dynamic and temperature requirements. Usually, good strength and modulus of elasticity are preferred.3 Shape DesignThe shape of VCSSPS should be designed according to the parameters calculated above. In general, the shape of VCSSPS should be designed as follows:3.1 Section SizeSection size of VCSSPS should be designed according to the calculated parameters. Generally, the section size should be designed as uniform as possible.3.2 Number of PlateThe number of plate should be designed according to the calculated parameters. Generally, the number of plate should be designed as many as possible.3.3 Geometry。
主副簧钢板弹簧计算
主副簧钢板弹簧计算主副簧钢板弹簧是广泛应用于机械、汽车、电子、航空等领域的一种弹性元件。
其主要功能是通过承受外部载荷而发生弹性变形,以实现一定的力量和能量传递。
在应用中,我们需要对主副簧钢板弹簧进行计算和设计,以确保其能够满足特定的工作条件和使用要求。
主副簧钢板弹簧的计算需要考虑的因素很多,如弹性材料特性、几何形状、载荷类型和工作环境等。
下面我们将重点介绍主副簧钢板弹簧的计算方法:1. 材料特性的计算弹簧材料的特性是影响主副簧钢板弹簧弹性变形和工作寿命的关键因素。
一般来说,主副簧钢板弹簧的材料选用高强度、高韧性的弹簧钢,如60Si2MnA、50CrVA等。
这些材料的弹性模量、泊松比、疲劳极限和强度等特性参数需要根据具体要求进行计算。
2. 几何形状的计算主副簧钢板弹簧的几何形状包括线径、圈数、自由长度、簧片宽度等。
这些参数需要根据主副簧钢板弹簧的负荷和工作环境进行计算。
一般来说,线径应根据负荷和自由长度来确定,圈数和自由长度则应根据工作行程来确定,簧片宽度应根据弹簧钢板的宽度和材料的特性来确定。
3. 载荷类型的计算主副簧钢板弹簧的载荷类型有静载荷和动载荷两种。
静载荷是指弹簧承受的恒定负荷,如机械结构中的支撑力、挂载力等;动载荷则是指弹簧承受的变化负荷,如机械振动、冲击等。
在计算主副簧钢板弹簧的负荷时,需要考虑载荷类型、大小和作用方向等因素。
4. 工作环境的计算主副簧钢板弹簧的工作环境也是影响其性能和寿命的关键因素。
工作环境包括温度、湿度、腐蚀等多个方面。
在计算主副簧钢板弹簧的设计参数时,需要考虑到工作环境对弹簧材料的影响,并采取相应的措施来延长其使用寿命。
综上所述,主副簧钢板弹簧的计算需要综合考虑弹簧材料特性、几何形状、载荷类型和工作环境等多个因素。
只有根据具体情况进行科学计算和合理设计,才能保证主副簧钢板弹簧的性能和寿命。
汽车钢板弹簧设计计算
1.1单个钢板弹簧的载荷已知汽车满载静止时汽车前轴荷G1=3000kg,非簧载质量Gu1=285kg,则据此可计算出单个钢板弹簧的载荷:Fw1=(G1-Gu1)/2=1357.5 kg (1)进而得到:Pw1=Fw1×9.8=13303.5 N (2)1.2钢板弹簧的静挠度钢板弹簧的静挠度即静载荷下钢板弹簧的变形。
前后弹簧的静挠度都直接影响到汽车的行驶性能[1]。
为了防止汽车在行驶过程中产生剧烈的颠簸(纵向角振动),应力求使前后弹簧的静挠度比值接近于1。
此外,适当地增大静挠度也可减低汽车的振动频率,以提高汽车的舒适性。
但静挠度不能无限地增加(一般不超过240 mm),因为挠度过大,即频率过低,也同样会使人感到不舒适,产生晕车的感觉。
此外,在前轮为非独立悬挂的情况下,挠度过大还会使汽车的操纵性变坏。
一般汽车弹簧的静挠度值通常如表1[2]所列范围内。
本方案中选取fc1=80 mm。
1.3钢板弹簧的满载弧高满载弧高指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差[3]。
当H0=0时,钢板弹簧在对称位置上工作。
考虑到使用期间钢板弹簧塑性变形的影响和为了在车架高度已限定时能得到足够的动挠度值,常取H0∈10-20mm。
本方案中H01初步定为18mm。
1.4钢板弹簧的断面形状板弹簧断面通常采用矩形断面,宜于加工,成本低。
但矩形断面也存在一些不足。
矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上。
工作时,一面受拉应力,一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。
因材料的抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断裂。
除矩形断面以外的其它断面形状的叶片,其中性轴均上移,使受拉应力的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布情况,提高了钢板弹簧的疲劳强度并节约了近10%的材料。
弹簧计算公式范文
弹簧计算公式范文弹簧计算是一种力学计算方法,用于计算弹簧的刚度、变形、载荷等参数。
弹簧计算可以应用于很多领域,例如机械工程、汽车工程、建筑结构等。
以下是弹簧计算的基本公式和相关信息。
1. 弹簧的刚度(Stiffness)计算:弹簧的刚度可以通过以下公式进行计算:k=Gd^4/(8ND^3)其中,k为弹簧的刚度(N/m),G为弹簧的剪切模量(Pa),d为弹簧线径(m),N为弹簧的圈数,D为弹簧的平均直径(m)。
2. 弹簧的变形(Deflection)计算:弹簧的变形可以通过以下公式进行计算:δ=(F×L)/(k×d^4)其中,δ为弹簧的变形(m),F为施加在弹簧上的力(N),L为弹簧的长度(m),k为弹簧的刚度(N/m),d为弹簧线径(m)。
3. 弹簧的最大载荷(Maximum Load)计算:弹簧的最大载荷可以通过以下公式进行计算:F_max = k × d^3 × N_max / 8其中,F_max为弹簧的最大载荷(N),k为弹簧的刚度(N/m),d 为弹簧线径(m),N_max为弹簧的圈数。
4. 弹簧的固有频率(Natural Frequency)计算:弹簧的固有频率可以通过以下公式进行计算:f=1/(2π)×√(k/m)其中,f为弹簧的固有频率(Hz),k为弹簧的刚度(N/m),m为弹簧的质量(kg)。
5. 弹簧的功率消耗(Power Dissipation)计算:弹簧的功率消耗可以通过以下公式进行计算:P=(F×δ×f)/2其中,P为弹簧的功率消耗(W),F为施加在弹簧上的力(N),δ为弹簧的变形(m),f为弹簧的固有频率(Hz)。
上述公式仅为弹簧计算的基本公式,实际计算中还需要考虑一些修正因素,例如弹簧的几何形状、材料的非线性特性等。
此外,不同类型的弹簧(如压缩弹簧、拉伸弹簧、扭转弹簧等)还有各自的特定计算公式。
需要注意的是,弹簧计算需要准确的输入参数,因此在实际应用中,需要通过实验或材料手册等方式获取到弹簧的相关参数。
钢板弹簧计算
钢板弹簧的计算1. 1 钢板弹簧的布置方案的选择钢板弹簧在汽车上可以纵置也可以横置, 纵向布置时还具有导向传力的作用,并有一定的减震作用,连得因而使的悬架系统结构简化。
而横向布置时因为要传递纵向力,必须设置附加的导向传力装置,使结构复杂、质量加大,所以只在极少数汽车上应用。
如下图所示,它中部用U 型螺栓将钢板弹簧固定在车桥上。
悬架前端为固定铰链,也叫死吊耳。
它由钢板弹簧销钉将钢板弹簧前端卷耳部与钢板弹簧前支架连接在一起,前端卷耳孔中为减少摩损装有衬套。
后端卷耳通过钢板弹簧吊耳销与后端吊耳与吊耳架相连,后端可以自由摆动,形成活动吊耳。
当车架受到冲击弹簧变形时两卷耳之间的距离有变化的可能。
图4.11. 2 钢板弹簧主要参数的确定EQ1042轻型货车相关参数∶悬架静挠c f =72mm ,悬架动挠度c f =80mm ,轴距Z=3300mm, 单个钢板弹簧的载荷111509.8563522w m g F N ⨯=== 1. 2. 1 满载弧高a f满载弧高a f 是指钢板弹簧装到车轴(桥)上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差。
常取a f =10~20mm ,这里取af=10mm.。
1. 2. 2钢板弹簧长度L 的确定钢板弹簧长度L 是指弹簧伸直后两卷耳中心之间的距离,在总布置可能的条件下,应尽可能将钢板弹簧取长些。
在下列范围内选用钢板弹簧的长度: 轿车:L=(0.40~0.55)轴距;货车:前悬架:L=(0.26~0.35)轴距; 后悬架:L=(0.35~0.45)轴距。
应尽可能将钢板弹簧取长些,原因如下:1,增加钢板弹簧长度L 能显著降低弹簧应力,提高使用寿命降低弹簧刚度,改善汽车平顺性。
2,在垂直刚度c 给定的条件下,又能明显增加钢板弹簧的纵向角刚度。
3,刚板弹簧的纵向角刚度系指钢板弹簧产生单位纵向转角时,作用到钢板弹簧上的纵向力矩值。
4,增大钢板弹簧纵向角刚度的同时,能减少车轮扭转力矩所引起的弹簧变形。
弹簧设计计算公式
弹簧设计计算公式弹簧是一种经过热处理的金属线,具有弹性变形能力。
在工程设计中,弹簧广泛应用于机械、汽车、电器等领域,用于悬挂、减震、传动等功能。
弹簧设计的核心是确定其几何参数和力学性能,以满足特定的工作要求。
弹簧设计的计算公式包括弹簧刚度、变形、工作力和应力等参数。
以下是一些常用的弹簧设计公式:1.弹簧刚度:弹簧刚度是指单位变形时产生的力的大小。
弹簧刚度可以通过以下公式计算:K=Gd^4/8nD^3其中,K表示弹簧刚度,G表示弹簧材料的剪切模量,d表示弹簧线径,n表示弹簧的有效圈数,D表示弹簧的平均直径。
2.弹簧变形:弹簧的变形可以通过以下公式计算:δ=(F×L)/(K×n)其中,δ表示弹簧的变形,F表示作用在弹簧上的力,L表示弹簧自由长度,K表示弹簧刚度,n表示弹簧的有效圈数。
3.弹簧的工作力:弹簧的工作力可以通过以下公式计算:F=K×δ其中,F表示作用在弹簧上的力,K表示弹簧刚度,δ表示弹簧的变形。
4.弹簧的应力:弹簧的应力可以通过以下公式计算:σ=(8×F×L)/(π×d^3×n)其中,σ表示弹簧的应力,F表示作用在弹簧上的力,L表示弹簧自由长度,d表示弹簧线径,n表示弹簧的有效圈数。
需要注意的是,以上公式适用于简单的弹簧设计,如果涉及复杂的弹簧形状或材料,可能需要使用更复杂的计算方法或有限元分析。
弹簧设计时,需要根据实际工作条件和要求,选择合适的弹簧材料和尺寸,以保证弹簧的功能和安全性。
同时,还需要考虑弹簧的寿命、疲劳强度、预紧力等因素,以确保弹簧在长期使用中的可靠性。
除了上述的计算公式,弹簧设计还需要考虑弹簧的安装方式、表面处理、工艺要求等因素。
综合考虑这些因素,可以进行合理的弹簧设计,满足工程需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1单个钢板弹簧的载荷已知汽车满载静止时汽车前轴荷G1=3000kg,非簧载质量Gu1=285kg,则据此可计算出单个钢板弹簧的载荷:Fw1=(G1-Gu1)/2=1357.5 kg (1)进而得到:Pw1=Fw1×9.8=13303.5 N (2)1.2钢板弹簧的静挠度钢板弹簧的静挠度即静载荷下钢板弹簧的变形。
前后弹簧的静挠度都直接影响到汽车的行驶性能[1]。
为了防止汽车在行驶过程中产生剧烈的颠簸(纵向角振动),应力求使前后弹簧的静挠度比值接近于1。
此外,适当地增大静挠度也可减低汽车的振动频率,以提高汽车的舒适性。
但静挠度不能无限地增加(一般不超过240 mm),因为挠度过大,即频率过低,也同样会使人感到不舒适,产生晕车的感觉。
此外,在前轮为非独立悬挂的情况下,挠度过大还会使汽车的操纵性变坏。
一般汽车弹簧的静挠度值通常如表1[2]所列范围内。
本方案中选取fc1=80 mm。
1.3钢板弹簧的满载弧高满载弧高指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差[3]。
当H0=0时,钢板弹簧在对称位置上工作。
考虑到使用期间钢板弹簧塑性变形的影响和为了在车架高度已限定时能得到足够的动挠度值,常取H0∈10-20mm。
本方案中H01初步定为18mm。
1.4钢板弹簧的断面形状板弹簧断面通常采用矩形断面,宜于加工,成本低。
但矩形断面也存在一些不足。
矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上。
工作时,一面受拉应力,一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。
因材料的抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断裂。
除矩形断面以外的其它断面形状的叶片,其中性轴均上移,使受拉应力的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布情况,提高了钢板弹簧的疲劳强度并节约了近10%的材料。
本方案中选用矩形断面。
1.5钢板弹簧主片长度的确定钢板弹簧长度L是指弹簧伸直后两卷耳中心之间的距离。
增加钢板弹簧长度L能显著降低弹簧刚度,改善汽车行驶平顺性;在垂直刚度c给定的条件下,又能明显增加钢板弹簧的纵向角刚度。
钢板弹簧的纵向角刚度,系指钢板弹簧产生单位纵向角时,作用到钢板弹簧上的纵向力矩值。
增大钢板弹簧纵向角刚度的同时,能减少车轮扭转力矩所引起的弹簧变形;选用长些的钢板弹簧,会在汽车布置时产生困难。
原则上,在总布置可能的条件下,应尽可能将钢板弹簧取长些。
根据统计资料,弹簧伸直长度取值规律如表2[4]所示。
本设计方案中,前板簧,L1=32%轴距=1210mm,圆整为L1=1210mm。
有效长度Lc1=L-S=1112mm。
1.6钢板弹簧片厚的计算矩形断面等厚度的钢板弹簧的总惯性矩J0用下式计算:结合(3)、(4)式可知:总惯性矩J0的变化又会影响到钢板弹簧垂直刚度的变化,也就是影响汽车的平顺性。
其中,片厚h的变化对钢板弹簧总惯性矩J0的影响最大。
增大片厚h,可减少片数n。
钢板弹簧各片厚度可能有相同和不同两种情况,一般都采用前者。
本设计方案中选片厚相等。
片厚的计算公式为:h=Lc2×σp×δ/(6Efc) (5)式中σp——许用弯曲应力,由表3查取。
本方案中,选取σp1=460 MPa。
δ为挠度增大系数,为实际板弹簧(近似的等应力梁)的挠度比理论等截面梁挠度的增大系数,由表4查取。
本方案中选取δ1=1.42将所确定的数据带入(5)式,可求得:h1=8.6 mm,圆整为9 mm,即前钢板弹簧的厚度为9 mm。
1.7钢板弹簧片宽的计算有了h以后,再选取钢板弹簧的片宽b 。
增大片宽b,能增大卷耳强度,但当车身受侧向力作用倾斜时,弹簧的扭曲应力增大。
前悬架用宽的弹簧片,会影响转向轮的最大转角;片宽选取过窄,又得增加片数,从而增加片间的摩擦和弹簧的总厚。
推荐片宽与片厚的比值b∕h在6-10范围内选取。
本方案选取系数7.7,得b1=7.7×9=69.3mm,圆整为70 mm。
1.8 钢板弹簧片数的计算片数n少些有利于制造和装配,并可以降低片间的干摩擦,改善汽车行驶平顺性。
但片数少了将使钢板弹簧与等强度梁的差别增大,材料利用率变坏。
多数钢板弹簧一般片数在6-14片之间选取,总质量超过14t的货车可达20片。
用变截面少片簧时,片数在1-4片之间选取。
1.9钢板弹簧各片长度的计算片厚不变宽度连续变化的单片钢板弹簧是等强度梁,形状为菱形。
将由两个三角形钢板弹簧分割成宽度相同的若干片,然后按照长度大小不同依次排列、叠放到一起,就形成接近实用价值的钢板弹簧。
实际上的钢板弹簧不可能是三角形,因为为了将钢板弹簧中部固定到车桥上和使两卷耳处能可靠地传递力,必须使他们有一定的宽度。
因此,应该用中部为矩形的双梯形钢板弹簧(见图1)替代三角形钢板弹簧才有真正的实用意义。
这种钢板弹簧各片具有相同的宽度,但长度不同。
钢板弹簧各片长度就是基于实际钢板各片展开图接近梯形梁的形状这一原则来做图的,如图2所示。
则据图2可计算出:Δ7=55.6/7=7.9;Δ6=2×Δ7=15.8;Δ5=3×Δ7=23.7;Δ4=4×Δ7=31.6;Δ3=5×Δ7=39.5;Δ2=6×Δ7=47.4。
进一步可求得:17=12.3;16=20.2;15=28.114=36;13=43.9;12=51.8最终圆整为:11=60 cm;12=60 cm;13=52 cm;14=48 cm;15=40 cm;16=33 cm;17=25 cm。
1.10钢板弹簧刚度的计算在刚度的验算过程中,应当注意,当弹簧装上汽车后,使得弹簧的有效长度减小,这时候弹簧的刚度就会发生变化,因此,在计算板弹簧的刚度时,应分为两部分进行:按全长计算出供生产检验用的刚度;按有效长度(即减去骑马螺栓中心距后的板弹簧长度)计算板弹簧是检验刚度。
刚度的计算公式为:此处a取1.89,求和200.6+338.7+9401543+2401=5423.32钢板弹簧总成自由状态下的弧高及曲率半径的计算2.1钢板弹簧总成在自由状态下的弧高的计算钢板弹簧各片装配后,在预压缩和U型螺栓夹紧前,其主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差,称为钢板弹簧总成在自由状态下的弧高H,用下式计算:H=fc+H0+Δ (10)式中fc——静挠度;H0——满载弧高;Δ——钢板弹簧总成用U型螺栓夹紧后引起的弧高变化。
前面已确定fc1=80 mm,货车H0在10-20之间选取,此处取H01=18 mm。
Δ=0.006f0 ,而f0=L2/(Ah)取A=800,已知L1=1200 mm,h1=9 mm,带入则可得f0=200 mm,进而得Δ=12 mm。
将各数据带入总式,可得前板弹簧总成在自由状态下的弧高:H1=110 mm。
2.2钢板弹簧总成在自由状态下的曲率半径的计算根据自由状态下的曲率半径公式R0=L2/(8H) (11)可得:R01=12002/(8×110)=1430 mm。
3装配后钢板弹簧总成弧高及曲率半径的计算计算装配后板弹簧总成弧高及曲率半径,首先应确定各叶片的预应力,其次计算出叶片在自由状态下的曲率半径及弧高,最后计算装配后板弹簧总成弧高及曲率半径。
3.1钢板弹簧各叶片预应力的确定钢板弹簧的所有叶片通常冲压成不同的曲率半径。
组装时,用中心螺栓或簧箍将叶片夹紧在一起,致使所有叶片的曲率半径均发生变化。
由于组装夹紧时各叶片曲率半径的变化,使各叶片在未受外载荷作用之前就产生了预应力。
选取各片弹簧预应力时,要求做到:装配前各片弹簧片间的间隙相差不大,且装配后各片能很好地贴和,为保证主片及与其相邻的长片有足够的使用寿命,应适当降低主片及与其相邻的长片的应力。
为此,选取各片预应力时,可分为下列两种情况:对于片厚相同的钢板弹簧,各片与应力值不宜选取过大;对于片厚不相同的钢板弹簧,片厚可选取大些。
推荐主片在根部的工作应力与预应力叠加后的合成应力在300-350MPa内选取。
1-4片长片叠加负的与应力,短片叠加正的预应力。
预应力从长片到短片由负值逐渐递增至正值。
在确定矩形叶片各片预应力时,理论上如下公式:σ01h12+σ02h22+σ03h32 +…+σ0khk2=0(12)3.2叶片在自由状态下的曲率半径及弧高的计算因钢板弹簧各片在自由状态下和装配后的曲率半径不同,装配后各片产生预应力,其值确定了自由状态下的曲率半径R,各片自由状态下做成不同曲率半径的目的是使各片厚度相同的钢板弹簧装配后能很好地紧贴,减少主片工作应力,使各片工作寿命接近。
矩形断面钢板弹簧自由状态下曲率半径由下式确定:具体计算过程如下:1/R0=1/1430=6.1×10-3cm-1Ehk=2.1×105×9=1.89×105叶片在自由状态下的曲率半径及弧高的计算如表7所示。
3.3装配后钢板弹簧总成弧高及曲率半径的计算叶片在自由状态的曲率半径是根据预应力确定的,由于选择预应力的关系,装配后钢板弹簧总成弧高不一定和3.1的计算结果一致,因此,还需要再计算一次装配后的总成弧高。
如两者接近便认为合适,否则要调整各片预应力,重新进行计算,如表8。
表中Hk——第k片叶片在自由状态下的弧高,cm;Hk′——第k片叶片在上一叶片的弧高增大的数值,cm;Z1-k——当第k片叶片贴合后弹簧的弧高(装配后板簧贴合到上一叶片后的弧高),cm;Zk——当第k片叶片在贴合到上一叶片后,使上一叶片的弧高增大的数值,cm;R1-k——第k片叶片贴合于上一叶片后的曲率半径,包括叶片本身的厚度,cm。
由表8可知,装配后板簧的总成弧高为10.51cm,与2.1的计算结果11cm接近相等,说明所选预应力大小是合适的。
4钢板弹簧各片应力的计算及校核叶片实际应力σk=σ0k+σkc (16)而σkc=Tkc/Wk (17)同时Tkc=TcIk/∑Ik (18)Tc=q1c (19)且Wk=2Ik/h=0.94×103 mm3。
其中q——弹簧每端满载载荷;Wk——断面模数。
则Tkc=q1cIk/∑Ik=TC /7=395030/7=39503 N·cm所以,σkc=Tkc /Wk=621 N·mm-2具体计算如表9所示。
σb60%=940.8. N/mm2,各片实际应力均小于940.8 N/mm2,符合要求。
5结束语经过上述详细的计算,确定了轻型卡车前钢板弹簧的片数、片宽、片厚、片长、弧高、曲率半径、检验刚度、装配刚度等其它技术参数,并进行校核,验证所选取的参数基本上满足了汽车在空、满载条件下对平顺性、舒适性以及安全方面的要求。