传热学概念
传热学的名词解释
传热学的名词解释传热学是研究热量从一个物体传递到另一个物体的学科。
它是热力学和流体力学的重要分支,关注的是热量在固体、液体和气体等物质之间的传递过程。
在工程领域中,传热学起着至关重要的作用,它涉及到许多重要的名词和概念,本文将对一些传热学的重要名词进行解释和阐述。
热量传递的方式有三种基本形式:传导、对流和辐射。
1. 传导:传导是热量通过物质内部的分子热传导而进行的传热过程。
当物体的一部分被加热时,其分子会通过碰撞将热量传递给相邻的分子,从而使整个物体升温。
传导过程中,物质的导热性质起着重要作用,表示物质导热能力的物理量称为热导率。
热导率越大,热量传导速度就越快。
常见物质如金属具有较高的热导率,而绝缘材料则较低。
2. 对流:对流是热量通过流体内部的传热过程。
当一个物体加热时,沿着其表面流动的流体会受热膨胀,形成对流循环。
对流过程中,流体的热量由热源处传递到周围环境。
对流传热现象在自然界常见,如自然对流中的空气循环、大气环流等。
对流传热与流体的性质有关,如流体的黏性、密度等。
3. 辐射:辐射是热量通过热辐射而进行的传热过程。
热辐射是处于高温的物体向低温物体传递热量的一种无需媒介的方式。
辐射传热与物体的温度及其表面的发射率有关。
发射率是指物体辐射出的热量与理论上能辐射出的最大热量之比。
不同物质的发射率不同,黑体的发射率为1。
当两个物体表面温度存在差异时,高温物体会以辐射的形式向低温物体传递热量。
在实际应用中,我们经常会遇到一些与传热学相关的重要概念。
1. 热扩散:热扩散是指热量通过物体内部的传导方式进行传递的现象。
当一个物体的一部分受热时,其分子振动加剧,相邻分子通过碰撞传递热量,从而使得整个物体均匀升温。
热扩散现象在许多工程和科学领域中具有重要的影响,例如材料加工、电子器件散热等。
2. 导热方程:导热方程是描述物体内部温度分布随时间变化的偏微分方程。
它基于热扩散的传导机制,可以用来模拟和计算物体内部的温度变化。
传热学——概念汇总
概念汇总1.绪论1.传热学:研究热量传递规律的科学。
2.热量传递的基本方式:导热、对流、辐射。
3.热传导(导热):物体的各部分之间不发生相对位移,依靠微观粒子的热运动产生的热量传递现象。
4.纯粹的导热只能发生在不透明的固体之中。
5.热流密度:通过单位面积的热流量(W╱m2)。
6.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。
7.热对流只发生在流体之中,并伴随有导热现象。
8.自然对流:由于流体密度差引起的相对运动。
9.强制对流:由于机械作用或其他压差作用引起的相对运动。
10.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。
11.辐射:物体通过电磁波传播能量的方式。
12.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。
13.辐射换热:不直接接触的物体之间,由于各自辐射与吸收的综合结果所产生的热量传递现象。
14.传热过程:热流体通过固体壁面将热量传给另一侧流体的过程。
15.传热系数:表征传热过程强烈程度的尺寸,数值上等于冷热流体温差1K时所产生的热流密度[W╱(m2•K)]16.单位面积上的{传热热阻:R k=1k。
导热热阻:Rλ=δλ。
对流换热热阻:R h=1h。
17.热流量:单位时间内所传递的热量。
18.对比串联热阻大小就可以找到强化传热的主要环节。
19.单位:物理量的度量标尺。
20.基本单位:基本物理量的单位。
21.导出单位:由物理含义导出,以基本单位组成的单位。
22.单位制:基本单位与导出单位的总和。
23.导热系数,表面传热系数和传热系数之间的区别:导热系数是表征材料导热性能优劣的参数,即是一种物性参数。
不同材料的导热系数值不同,即使是同一种材料,导热系数值还与温度等因素有关。
表面传热系数是表征对流换热强弱的参数,它不仅取决于流体的物性以及换热表面的形状、大小与布置,而且还与流速有密切的关系,是取决于多种因素的复杂函数。
传热学知识点总结
传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。
一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。
热量的传递方式主要有传导、对流和辐射三种。
2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。
传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。
3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。
在物质传热过程中,传热系数的大小直接影响热量的传递速率。
4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。
传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。
5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。
热传导是传热学的基本概念之一。
6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。
7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
热辐射是传热学的另一个基本概念之一。
二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。
在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。
2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。
在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。
3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。
传热学概念
、热量传递的三种基本方式--导热、对流、热辐射:
、导热的概念:物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递。
对流的概念:指由于流体的宏观运动,从而流体各部分之间发生相对位移、冷热流体相互掺混所引起的热量传递过程
热辐射:物体因热的原因发出辐射能的现象
传热的机理:
导热依靠微观粒子的热运动:
分子、原子的相互碰撞、晶格的振动等
对流依靠流动的宏观运动:
流体的相互位移或掺混
热辐射:
发射电磁波
传热过程的概念:
热量由壁面一侧的流体通过壁面传到另一侧流
体中去的过程。
等温线的特点:物体中的任一条等温线要么形成一
个封闭的曲线,要么终止在物体表面上,而不
会与另一条等温线相交。
傅里叶定律的意义:
揭示了连续温度场内每一点的温度梯度
与热流量间的联系
Fo的物理意义:实际测量的时间与热量传递到面积上所需的时间。
稳态:特点是温度不随时间改变;通常给出板等内外温度
非稳态:特点是温度随时间改变
一维:无限大平板、无限长圆柱
多维包括二维和三维:如给出立体结构。
半无限大物体:热量传递只在表面上进行,内部仍为初始温度。
两个物理现象相似的条件:
1、两个物理现象属同类,即描写这两个物理现象
的微分方程式形式相同、内容相同;
2)描写该两个现象的同名特征数对应相等。
气体辐射的二个特性:
1)、气体辐射对波长具有选择性:
气体只在某些波长段内具有辐射能力,且只在同样的波长段内具有吸收能力。
气体不是灰体。
2)、气体的辐射和吸收是在整个容积中进行的,与气体的形状和容积有关。
传热学知识点概念总结
传热学知识点概念总结传热学是研究热量传递的科学,主要涉及热传导、热辐射和对流传热三个方面。
下面将对传热学中的一些重要知识点进行概念总结。
1.热传导:热传导是指物质内部由于分子或原子之间的相互作用而引起的热量传递。
热传导的速率与传热介质的导热性质有关,如导热系数、传热介质的温度梯度和传热介质的厚度。
2.热辐射:热辐射是指由于物体表面温度而产生的电磁辐射,无需经过介质媒质进行传热。
热辐射的能量传递与物体的温度和表面特性有关,如表面发射率和吸收率。
3.对流传热:对流传热是指通过流体的流动使热量传递的过程。
对流传热受到流体流动速度、温度差和流体介质的热传导性质的影响。
对流传热可以分为自然对流和强制对流两种形式。
4.导热系数:导热系数是描述材料导热性质的物理量,定义为单位厚度和单位温度梯度时的热流密度。
导热系数是描述热传导能力大小的重要参数,与物质的组成、结构和温度有关。
5.温度梯度:温度梯度是指在物体内部或空间中温度随着距离的变化率。
温度梯度越大,热传导的速率越快。
6.热阻:热阻是指单位时间内单位温差时热传导的阻力。
热阻与传热介质的导热系数和厚度有关。
可通过热阻来描述传热介质对热传导的阻碍程度。
7.热容量:热容量是指单位质量物质温度升高单位温度所需的热量。
热容量与物质的物理性质有关,如比热容和密度。
8.辐射强度:辐射强度是指单位时间内单位面积上辐射通过的能量。
辐射强度与物体的表面发射率和温度有关。
9.辐射传热:辐射传热是指由于物体表面发射和吸收辐射而进行的传热。
辐射传热受到物体表面发射率、吸收率、温度差和介质的辐射传递能力的影响。
10.热傅里叶定律:热傅里叶定律是描述物体内部热传导的定律,其表达式为热流密度与传热介质的导热系数、温度梯度和传热介质的横截面积成正比。
以上是传热学中一些重要的知识点的概念总结。
传热学的研究对于理解和应用热量传递过程具有重要意义,可广泛应用于工程领域的热处理、热能转化和热工学等方面。
传热学
传热学就是研究热量传递规律的一门科学。
只要不同物体或物体不同部分之间存在温度差,它们之间就会发生热量的传递,热量传递有三种方式:导热、对流换热和辐射换热。
在制冷空调领域,热量传递普遍存在。
例如在压缩式制冷系统中,从蒸发器回来的气态制冷剂进入压缩机,被压缩为高温高压的气体,然后进入冷凝器内放热,把热量传递给周围的介质(一般为空气或水),同时制冷剂被冷却成液态,然后经节流进入蒸发器,在蒸发器内沸腾吸热,即可得到我们需要的冷却的水或空气。
因此,认识、掌握热量传递的过程和规律,在制冷空调技术实践中有着极其重要的意义。
在传热学的工程应用中,通常要达到两个基本目的:(1)能准确计算所研究系统中传递的热量;(2)能准确预测所研究物体中的温度分布。
第一章 稳态导热在三种热量传递方式中,导热是最容易利用数学工具进行分析和处理,对传热学的深入学习就从导热开始。
本章首先引出导热的基本定律和一般数学表达式,然后介绍制冷空调装置中常见壁面(如平壁和圆筒壁)中热流量和温度分布的规律和计算方法。
第一节 导热基本概念和傅里叶定律一、导热的概念导热即热传导,是指发生在物质本身各部分之间或直接接触的物质与物质之间的热量传递现象。
它是依靠物质的分子、原子或自由电子等微观粒子的热运动来传递热量的,也就是说,导热是在分子集团不发生宏观相对运动时,单纯由微观粒子的直接作用(如迁移、碰撞或振动等)而引起的热量传递现象。
导热是物质的属性,导热过程可以在固体、液体及气体中发生。
但是在重力场下,单纯的导热一般只发生在密实的固体中,这是因为,在有温差时,液体和气体的密度会改变从而形成对流,不能维持单纯的导热。
在专业学习和实践中,一般把发生在换热器管壁、肋片、管道保温层、墙壁等固态材料中的热量传递过程都看成导热问题。
二、温度场在工程应用中,常常需要预测物体的温度分布,通常将某一时刻物体中各点温度分布的状况称为温度场。
一般来说,温度场是空间和时间的函数,其数学表达式为),,,(τz y x t = 1-1式中,x,y 和z 是空间坐标;τ是时间坐标;t 代表温度。
传热学基本知识总结
传热学基本知识总结传热学是研究热能在物质中传递的科学,是物体内部的热平衡和热不平衡的原因和规律的研究。
传热学的基本知识涵盖了传热的基本概念、传热方式、传热导率与传热过程的数学描述等内容。
以下是对传热学基本知识的总结。
一、传热的基本概念1.温度:物体内部分子运动的程度的度量。
温度高低决定了热能的传递方向。
2.热量:物体之间由于温度差异而传递的能量。
热量沿温度梯度从高温区向低温区传递。
3.热平衡:物体内部各点的温度相等,不存在热量传递的状态。
4.热不平衡:物体内部存在温度差异,热量从高温区传递到低温区。
二、传热方式1.热传导:固体内部的分子传递热量的方式,通过分子的碰撞传递热量。
2.对流传热:液体或气体中,由于温度差异而产生的流动传递热量的方式。
3.辐射传热:热能通过电磁波的传播传递热量的方式,无需介质参与。
三、热导率热导率是物体传导热量的能力,用导热系数λ来衡量。
热导率取决于物质本身的性质,与物质的材料、温度有关。
热导率越大,物体传热能力越强。
四、传热数学描述1.热量传递方程:描述物体内部传热过程的数学方程,根据物体内部各点之间的温度差和传热方式的不同可以分为热传导方程、热对流方程和热辐射方程。
2.热导率公式:用来计算物体传热量的数学公式,通常与热导率、温度差、传热面积等物理量相关。
五、传热实例1.热传导:例如铁棒的两端被加热,热量通过铁棒内部分子的传递向另一端传递。
2.对流传热:例如空气中的对流传热,空气受热后变热上升,形成了对流传热。
3.辐射传热:太阳的辐射热量通过空间传递到地球表面,为地球提供能量。
在工程中,传热学常常运用于热工系统的设计和优化。
工程师可以通过对传热方式的研究和对材料热导率的了解,提高传热效率,减少能量损耗。
例如,在电子设备的设计中,通过优化散热结构和选择高热导率的材料,可以有效降低设备的温度,提高设备的工作效率和寿命。
传热学也广泛应用于暖通空调系统、汽车引擎、核反应堆等领域。
传热学(期末复习专用)
传热学是研究有温差存在时热量传递规律的学科。 1)物体内只要存在温差,就有热量从物体的高温部分传向低温 部分; 2)物体之间存在温差时,热量就会自发的从高温物体传向低温 物体。 根据物体温度与时间的关系,热量传递过程可分为两类:稳 态传热过程和非稳态传热过程。 传热学研究的对象是热量传递规律。 热流量 :单位时间内通过某一给定面积的热量称为热流量, 记为φ,单位W。 热流密度(面积热流量) :单位时间内通过单位面积的热量 称为热流密度,记为 q ,单位 w/ ㎡。
g v tl 3
第七章 相变对流传热
凝结传热现象:蒸汽与低于饱和温度的壁面接触时,将汽化潜热释 放给固体壁面,并在壁面上形成凝结液的过程,称凝结传热现象。 凝结换热的分类:根据凝结液与壁面浸润能力不同分为膜状凝结与 珠状凝结。 膜状凝结:凝结液体能很好地湿润壁面,并能在壁面上均匀铺展成 膜的凝结形式,称膜状凝结。 特点:壁面上有一层液膜,凝结放出的相变热(潜热)须穿过液膜 才能传到冷却壁面上, 此时液膜成为主要的换热热阻。 珠状凝结:凝结液体不能很好地湿润壁面,在壁面上形成一个个小 液珠的凝结形式,称珠状凝结。 特点:凝结放出的潜热不须穿过液膜的阻力即可传到冷却壁面上。 所以,在其它条件相同时,珠状凝结的表面传热系数定大于膜状凝 结的传热系数。hd 5 10hf 珠状凝结好,但是难于实现,因此工业上多采用膜状凝结。
传热过程:热量由壁面一侧的流体通过壁面传到另一侧流体中去的过 程称传热过程。 传热过程三个环节:1.从热流体到壁面高温侧的热量传递;2.从壁面 高温侧到壁面低温侧的热量传递;3.从壁面低温侧到冷流体的热量传递。 传热过程越强烈,传热系数越大,反之则越小。 A(t f 1 t f 2 ) 1 k 1 1 Ak (t f 1 t f 2 ) Ak t 1 1 h1 h2 h1 h2
传热学——精选推荐
名词解释1、传热学是研究由温差引起的热能传递规律的科学。
2、导热:物体各部分之间不发生相对位移,依靠分子、原子等微观粒子的热运动而产生的热能传递称为热传导,简称导热。
3、热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷、热流体相互掺混所导致的热能传递过程。
4、对流传热:流体流过一个物体表面时流体与物体表面间的热量传递过程,称为对流传热。
5、热辐射:因为热的原因发出辐射能的现象称为热辐射。
6、辐射传热:辐射和吸收的综合结果造就了以辐射方式进行的物体间的热量传递过程,称为辐射传热。
7、接触热阻:两个名义上相互接触的固体表面间,存在着有充满空气的间隙,热量以导热方式穿过气隙层,由此增加了附加的传递阻力,称为接触热阻。
8、热边界层:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
9、辐射热阻:分为表面热阻与空间热阻。
由辐射表面特性引起的热阻称为辐射表面热阻,由辐射表面形状和空间位置引起的热阻称为辐射空间热阻,10、定向辐射强度:从黑体单位可见面积发射出去的落到空间任意方向的单位立体角中的能量。
11、定解条件:使微分方程获得适合某一特定问题的解的附加条件,称为定解条件。
包括初始条件和边界条件.12、特征长度:包括在相似准则数中的几何长度称为特征长度,通常取所研究问题中具有代表性的尺度作为特征长度。
定性温度:用以确定特征数中流体物性的温度,称为定性温度。
13、灰体:把光谱吸收比与波长无关的物体称为灰体。
即灰体的吸收比:黑体:吸收比的物体叫做黑体。
14、角系数:表面1发出的辐射能中落到表面2的百分数,称为表面1对表面2的角系数。
15、膜状凝结:如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜。
这种凝结形式称为膜状凝结。
16、节点:以网格线的交点作为需要确定温度值的空间位置,称为节点。
(完整PPT)传热学
温度对导热系数的影响因材料而异,一般情况下,随着温度的升高 ,导热系数会增加。
压力
对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程
稳态导热
物体内部各点温度不随时间变化而变化的导热过程。在稳态导热过程中,热流 密度和温度分布保持恒定。
非稳态导热
物体内部各点温度随时间变化而变化的导热过程。在非稳态导热过程中,热流 密度和温度分布会发生变化,通常需要考虑时间因素对导热过程的影响。
辐射换热计算方法
辐射换热量计算
通过斯蒂芬-玻尔兹曼定律计算两 个物体之间的辐射换热量,需要 考虑物体的发射率、温度以及物 体间的角系数等因素。
角系数计算
角系数表示一个表面对另一个表 面辐射能量的相对大小,可以通 过几何方法或数值方法计算得到 。
辐射换热网络模型
对于多个物体之间的复杂辐射换 热问题,可以建立辐射换热网络 模型,通过求解线性方程组得到 各个物体之间的辐射换热量。
06 传热学实验技术 与设备
实验测量技术与方法
温度测量
使用热电偶、热电阻等 温度传感器,配合数据 采集系统,实现温度的
精确测量。
热量测量
采用量热计、热流计等 设备,测量传热过程中
的热量变化。
热阻测量
通过测量传热设备两侧 温差和传热量,计算得
到热阻。
热流密度测量
利用热流计等设备,测 量单位面积上的热量传
(完整PPT)传热学
contents
目录
• 传热学基本概念与原理 • 导热现象与规律 • 对流换热原理及应用 • 辐射换热基础与特性 • 传热过程数值计算方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
01 传热学基本概念 与原理
2-传热学基础
AT
4
对于两个相距很近的黑体表面,由于一 个表面发射出来的能量几乎完全落到另 一个表面上,那么它们之间的辐射换热 量为 :
A T1 Q
Q A (T T )
4 1 4 2
T2
实际物体辐射热流量
AT
4
其中Φ——物体自身向外辐射的热流量, 而不是辐射换热量; :物体的发射率(黑度),其大小与 物体的种类及表面状态有关。
2
—— 当流体与壁面温度相差1度时、每单位壁面 面积上、单位时间内所传递的热量
•h是表征对流换热过程强弱的物理量
影响h因素:流动原因、流动状态、流体物性、 有无相变、壁面形状大小等, 而且与流体的
流速有关
一般地,就介质而言:水的对流换热比 空气强烈;就换热方式而言:有相变的 强于无相变的;强制对流强于自然对流。 流动强制对流
1. 定义与特征 定义:流体中(气体或液体)温度不同 的各部分之间,由于发生相对的宏观运 动而把热量由一处传递到另一处的现象。 对流换热:流体与温度不同的固体壁间接触 时的热量交换过程 Convection heat transfer
对流换热的基本规律 -牛顿冷却公式
流体被加热时,q h(t w t f )
t f 1 t w1 Q A 1
t w1 t w 2
Q A1
Q A 2
t w 2 t w3
Q A2
1
2
t w3 t f 2
四式相加
t Q 1 2 1 1 1 Ak A1 A1 A 2 A 2 t f1 - t f2
表示成热阻的形式,有
Q A 1
t w1 t w 2
Q A1
Q A2
传热学 基本概念
基本概念 :•薄材 : 在加热或冷却过程中 , 若物体内温度分布均匀 , 在任意时刻都可用一个温度来代表整个物体的温度 , 则该物体称为----.•传热 : 由热力学第二定律 , 凡是有温差的地方 , 就有热量自发地从高温物体向低温物体转移 , 这种由于温差引起的热量转移过程统称为 ------.•导热 : 是指物体内不同温度的各部分之间或不同温度的物体相接触时 , 发生的热量传输的现象 .•对流 : 指物体各部分之间发生相对位移而引起的热量传输现象 .•对流换热 : 指流体流过与其温度不同的物体表面时 , 流体与固体表面之间发生的热量交换过程称为•强制对流 : 由于外力作用或其它压差作用而引起的流动 . •自然对流 : 由于流体各部分温度不同 , 致使各部分密度不同引起的流动 .•流动边界层 : 当具有粘性的流体流过壁面时 , 由于粘滞力的作用 , 壁面附近形成一流体薄层 , 在这一层中流体的速度迅速下降为零 , 而在这一流层外 , 流体的速度基本达到主流速度 . 这一流体层即为 -----.•温度边界层 : 当具有粘性的流体流过壁面时 , 会在壁面附近形成一流体薄层 , 在这一层中流体的温度迅速变化 , 而在这一流层外 , 流体的温度基本达到主流温度 . 这一流体层即为 -----. •热辐射 : 物体由于本身温度而依靠表面发射电磁波而传递热量的过程称为 ------.•辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的全部波长的辐射能的总量 .•单色辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的波长在λ -- λ +d λ范围内的辐射能量 .•立体角 : 是一个空间角度 , 它是以立体角的角端为中心 , 作一半径为 r 的半球 , 将半球表面上被立体角切割的面积与半径平方 r 2 的比值作为 ------ 的大小 .•定向辐射强度 : 单位时间内 , 在单位可见面积 , 单位立体角内发射的全部波长的辐射能量称为•传质 : 在含有两种或两种以上组分的流体内部 , 如果有浓度梯度存在 , 则每一种组分都有向低浓度方向转移 , 以减弱这种浓度不均匀的趋势 . 物质由高浓度向低浓度方转移过程称为 ----.•分子扩散传质 : 静止的流体中或在垂直于浓度梯度方向作层流流动的流体中的传质 , 有微观分子运动所引起 , 称为 ----. •对流流动传质 : 在流体中由于对流掺混引起的质量传输 . •有效辐射 : 单位时间内 , 离开所研究物体单位表面积的总辐射能 .•灰体 : 单色吸收率 , 单色黑度与波长无关的物体 .•角系数 : 有表面 1 投射到表面 2 的辐射能量 Q 1 → 2 占离开表面 1 的总能量 Q 1 的份数 , 称为表面 1 对表面 2 的角系数 .•辐射换热 : 物体之间通过相互辐射和吸收辐射能而产生的热量交换过程 .填空题 :•当辐射投射到固液表面是表面辐射,投射到气体表面是---------- 辐射。
传热学知识点总结考研真题
传热学知识点总结考研真题一、传热学概念传热学是研究物体之间热量传递的学科,研究热量传递的基本规律和热传递过程的数学模型。
热传递是热量自高温物体传递到低温物体的过程,主要包括传导、对流和辐射三种方式。
二、传热学基本知识1. 热量传递的基本规律热力学第一定律和第二定律规定了热量传递的基本规律。
第一定律要求能量守恒,在热传递中热量从高温物体流向低温物体,使热能分布均匀。
第二定律限制了热量传递的方向,指出热量自热量大者传递到热量小者。
2. 传热的基本方式传导是通过物体内部分子热运动传递热量的方式,是当物体内部温度不均匀时,热量由高温区向低温区传递。
对流是液体或气体中分子受热膨胀上升,冷却后下沉的过程,是传热最常见的方式。
辐射是热能以电磁波的形式传递的方式,适用于真空或无透明物质的热传递。
3. 传热的数学模型传热的数学模型主要采用热传导方程和流体力学方程,通过数学公式和定理来描述传热过程,求解传热问题。
热传导方程描述了传导过程中热量的扩散规律,流体力学方程描述了流体传热过程中的动力学规律。
4. 传热的工程应用传热学在工程中有着广泛的应用,如热工程、制冷空调、化工工程、建筑工程等都离不开传热学的理论和方法。
热传递是很多工程中必不可少的过程,通过传热学的知识和方法可以提高工程的效率和质量。
三、传热学的研究内容1. 传热传质物理基础传热传质物理基础包括热力学、流体力学、传热学、传质学等多个学科知识,主要研究物体间热量传递的基本规律和热量传递过程的数学模型。
此外,也需要涉及热传导、对流传热、辐射传热等传热方式的研究。
2. 传热的数学模型与方法传热学研究中需要建立相应的数学模型,并通过数学方法来解决传热问题。
传热的数学模型可以分为定常传热和非定常传热,通过微分方程和积分方程来描述传热过程,并通过数值计算方法来求解传热问题。
3. 传热的实验方法与技术传热学研究中需要进行大量的实验,通过实验来验证传热理论和模型的正确性。
传热学知识点概念总结
传热学知识点概念总结传热学是物理学的一个重要分支,研究物质内部或不同物质之间的热量传递现象。
传热学在工程领域中有着广泛的应用,能够帮助我们有效地控制和利用热量。
传热学主要包括传导、对流和辐射这三种传热方式。
下面将对这三种传热方式的概念和主要知识点进行总结。
1.传导传导是物质内部热量传递的一种方式,其基本原理是分子间的碰撞和能量传递。
传导的速率受到物质的导热性质和温度梯度的影响。
-热传导定律:热传导定律是研究传导过程中温度梯度与热流密度(传导热通量)之间的关系。
常用的热传导定律有傅里叶热传导定律和傅科定律。
-导热性:导热性是物质传导能力的度量,常用的导热性指标是热导率或导热系数。
不同物质的导热性质会影响传导速率。
2.对流对流是液体或气体中热量传递的方式,其基本原理是通过流体的对流运动传递热量。
对流通常分为自然对流和强制对流两种方式。
-对流换热公式:对流换热公式是研究对流传热速率的表达式。
常用的对流换热公式有纳塔数(Nu),贝奥数(Bo)和雷诺数(Re)等。
-边界层:对流过程中,流体与物体表面之间形成了一个边界层,边界层内的速度和温度分布与边界层外的流体有明显区别。
3.辐射辐射是通过电磁波传递热量的一种方式,其基本原理是由热源发出热辐射,然后被其他物体吸收。
辐射可以在真空中传播,无需传热介质。
-辐射传热公式:辐射传热公式是研究辐射传热速率的表达式。
斯特藩-玻尔兹曼定律和维恩位移定律是辐射传热的重要基础理论。
-黑体辐射:黑体是指能够吸收所有入射辐射的物体,它具有良好的辐射能力。
黑体辐射是研究辐射传热的基准。
此外,还有一些其他的传热学知识点值得关注和研究:-热导方程:热导方程是描述传导传热过程的偏微分方程,可用于求解物体内部的温度分布。
-热传导与传热系数:热传导与传热系数是研究传导传热速率的重要指标,反映了物质对传热的阻力。
-热传递:热传递是研究热量从一个物体传递到另一个物体的过程。
热传递包括传导、对流和辐射这三种方式的综合作用。
传热学概念整理
传热学第一章、绪论1.导热:物体的各个部分之间不发生相对位移时,依靠分子,原子及自由电子等微观粒子的热运动而产生的热能传递称为热传导,简称导热。
2.热流量:单位时间内通过某一给定面积的热量称为热流量。
3.热流密度:通过单位面积的热流量称为热流密度。
4.热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移、冷热流体相互掺混所导致的热量传递过程。
5.对流传热:流体流过一个物体表面时流体与物体表面间的热量传递过程。
6.热辐射:因热的原因而发出的辐射的想象称为热辐射。
7.传热系数:传热系数树枝上等于冷热流体见温差℃1=∆t ,传热面积21m A =时的热流量值,是表征传热过程强度的标尺。
8.传热过程:我们将热量由壁面一侧流体通过壁面传递到另一侧流体的过程。
第二章、导热基本定律及稳态导热1.温度场:各个时刻物体中各点温度所组成的集合,又称为温度分布。
2.等温面:温度场中同一瞬间温度相同的各点连成的面。
3.傅里叶定律的文字表达:在导热过程中,单位时间内通过给定截面积的导热量,正比于垂直该界面方向上的温度变化率和截面面积,而热量的传递方向则与温度升高的方向相反。
4.热流线:热流线是一组与等温面处处垂直的的曲线,通过平面上人一点的热流线与改点热流密度矢量相切。
5.内热源:内热源值表示在单位时间内单位体积中产生或消耗的热量。
6.第一类边界条件:规定了边界点上的温度值。
第二类边界条件:规定了边界上的热流密度值。
.第三类边界条件:规定了边界上物体与周围流体间的表面传热系数h 及周围流体的温度ft 7.热扩散率a :ca ρλ=,a 越大,表示物体内部温度扯平的能力越大;a 越大,表示材料中温度变化传播的越迅速。
8.肋片:肋片是依附于基础表面上的扩展表面。
第三章、非稳态导热1.非稳态导热:物体的温度随时间的变化而变化的导热过程称为非稳态导热。
2.非正规状况阶段:温度分布主要受出事温度分布的控制,称为非稳态导热。
传热学概念汇总
传热学概念汇总
传热学是研究热量如何在物体之间传递的科学领域。
以下是一些传热学中常见的概念:
1. 热传导:热量通过物质内部的分子或原子振动传递的过程。
2. 热对流:热量通过流体介质(如气体或液体)的流动传递的过程。
3. 热辐射:热量通过电磁辐射传递的过程,可以在真空中进行。
4. 热传导率:物质的热导性能的度量,表示在单位时间内,单位温度梯度下传导的热量。
5. 热传递:热量从高温区域传递到低温区域的过程。
6. 热平衡:当热量传递停止时,两个物体之间达到的温度差为零,达到了热平衡。
7. 热传递方程:描述热传递过程的数学方程,如热传导方程、对流传热方程等。
8. 热导率:物质的热传导性能的度量,表示在单位时间内,单位面积上通过物质传导的热量。
9. 热传递系数:描述物体表面传热能力的量,表示单位时间内,单位面积上通过辐射、对流等方式传递的热量。
10. 热容:物质单位质量在温度变化时所吸收或释放的热量。
这些概念是传热学中的基本概念,用于描述热量传递的过程和性质。
传热学导热微分方程推导
传热学导热微分方程推导摘要:一、传热学的基本概念二、导热微分方程的推导过程1.第一类边界条件2.第二类边界条件3.第三类边界条件三、圆柱坐标系下的导热微分方程推导四、总结正文:传热学是研究热量传递规律的学科,涉及到热力学、热传导、热辐射等多个方面。
在工程领域中,传热学问题常常采用导热微分方程来描述。
本文将对导热微分方程的推导过程进行简要阐述,并对圆柱坐标系下的导热微分方程推导进行详细说明。
一、传热学的基本概念在传热学中,导热过程是指热量从高温物体传递到低温物体的过程。
根据物体温度与时间的关系,热量传递过程可分为两类:稳态传热过程和非稳态传热过程。
稳态传热过程中,物体的温度随时间保持不变;非稳态传热过程中,物体的温度随时间发生变化。
二、导热微分方程的推导过程导热微分方程是用来描述物体内部热量传递过程的偏微分方程。
根据热力学的基本原理,可以得到导热微分方程的一般形式:$$frac{partial u}{partial t} = alpha frac{partial^2 u}{partial x^2}$$ 其中,$u$ 表示温度,$alpha$ 表示热扩散系数,是一个与材料性质相关的常数。
在求解导热微分方程时,需要考虑边界条件。
根据边界条件的不同,可以将导热微分方程的边界条件分为三类:1.第一类边界条件:物体表面的温度随时间保持不变,即$u(x,y,z,t) =f(t)$。
2.第二类边界条件:物体表面的热流密度随时间保持不变,即$frac{partial u}{partial x}(x,y,z,t) = g(t)$。
3.第三类边界条件:物体表面的热流密度在时间上具有线性变化,即$frac{partial u}{partial x}(x,y,z,t) = h(t) + k(t)frac{partial u}{partialx}(x,y,z,0)$。
三、圆柱坐标系下的导热微分方程推导在圆柱坐标系下,可以将导热微分方程表示为:$$frac{partial u}{partial t} = alpha frac{partial^2 u}{partial r^2} + frac{alpha}{r}frac{partial u}{partial r} + frac{alpha}{r^2}frac{partial^2 u}{partial j^2}$$其中,$r$ 和$j$ 分别表示圆柱坐标系下的径向和轴向坐标。
传热学完整课件PPT课件
凡是物体中各点温度不随时间而变的热传递 过程均称稳态传热过程。) 凡是物体中各点温度随时间的变化而变化
的热传递过程均称非稳态传热过程。 各种热力设备在持续不变的工况下运行时
的热传递过程属稳态传热过程;而在启动、停 机、工况改变时的传热过程则属 非稳态传热 过程。
.
❖ 3 )教育思想发生了本质性的变化 ❖ 传热学课程教学内容的组织和表达方
面从以往单纯的为后续专业课学习服务转 变到重点培养学生综合素质和能力方面, 这是传热学课程理论联系实际的核心。从 实际工程问题中、科学研究中提炼出综合 分析题,对培养学生解决分析综合问题的 能力起到积极的作用。
.
❖ 2 、研究对象
第一章
绪
论
.
§1-0 概 述
一、基本概念 ❖ 1 、传热学 ❖ 传热学是研究热量传递规律的学科。 ❖ 1)物体内只要存在温差,就有热量从物
体的高温部分传向低温部分; ❖ 2)物体之间存在温差时,热量就会自发
的从高温物体传向低温物体。
.
2 、热量传递过程 根据物体温度与时间的关系,热量传递过程 可分为两类:
❖ ( 3 )非导电固体:导热是通过晶格结构 的振动所产生的弹性波来实现的,即原子、 分子在其平衡位置附近的振动来实现的。
.
❖( 4 )液体的导热机理:存在两种不同的 观点:第一种观点类似于气体,只是复杂些, 因液体分子的间距较近,分子间的作用力对 碰撞的影响比气体大;第二种观点类似于非 导电固体,主要依靠弹性波(晶格的振动, 原子、分子在其平衡位置附近的振动产生的) 的作用。
.
b 微电子: 电子芯片冷却 c 生物医学:肿瘤高温热疗;生物芯片;组 织与器官的冷冻保存 d 军 事:飞机、坦克;激光武器;弹药贮 存 e 制 冷:跨临界二氧化碳汽车空调/热泵; 高温水源热泵 f 新能源:太阳能;燃料电池
传热学概念复习解析
1.传热学是研究由温差引起的热量传递规律的科学。
2.热传递分为稳定热传递(温度不随时间的变化热变化)和不稳定热传递(温度随时间的变化热变化)3.热传导: 它是不同温度的物体之间通过直接接触或同一物体不同温度的各部分之间,当没有宏观相对位移时,由分子原子电子等微观粒子的热运动来传递热量的过程。
热对流: 它是物体间不同温度的各部分之间由流体微团宏观相对唯一来传递热量的过程热辐射: 由于热的原因而向外发出辐射的过程。
4.对流换热过程;运动着的流体与固体壁面之间的热传递过程5.传热过程:热量从壁面一侧流体传给壁面另一侧流体的过程6.综合换热:对流换热和辐射换热同时存在的过程7.温度场:温度场是各时刻物体中各点温度分布的总称。
8.温度场按物体中个点的温度是否随时间变化分为非稳态温度场(随时间变化)和稳态温度场(不随时间变化)9.等温面:温度场中,同意瞬间温度相等的点连成的面成为等温面。
等温线等温面与任意平面的交线为等温线。
注:等温线是不可能相交的,它只能是封闭曲线或者终止于物体的边界线上。
10.导温系数α也称为热扩散系数或热扩散率,它象征着物体在被加热或冷却是其内部各点温度趋于均匀一致的能力。
Α大的物体被加热时,各处温度能较快的趋于一致。
11.肋片效率:实际的肋片换热量/整个肋片壁面的温度等于肋根温度时的换热量。
速度边界层:现定义贴近壁面的具有明显速度梯度的那一层流体为速度边界层。
12.热边界层:定义贴近壁面的具有明显温度梯度的那一层流体为热边界层。
13.定型尺寸:应该选择对换热系数影响最大的尺寸作为定型尺寸。
14.定型温度的选择:确定流体物性的温度,从而把物性当作常量处理。
15.凝结:工质由气态变为液态的过程叫凝结。
17、膜状凝结:如果能够湿润,他就在壁面上形成一层液膜,并受重力作用而向下流动,称为膜状凝结。
18、珠状凝结:这些滚入的液珠冲掉了沿途所有的液珠,于是蒸汽又在这些裸露的冷壁面重新凝结,在凝结核心处形成小液珠,这称之为珠状液珠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、试分析室内暖气片的散热过程,各个环节有哪些热量传递方式?以暖气片管内走热水为例。
答:有以下换热环节及传热方式:(1)由热水到暖气片管道内壁,热传递方式为强制对流换热;(2)由暖气片管道内壁到外壁,热传递方式为固体导热;(3)由暖气片管道外壁到室内空气,热传递方式有自然对流换热和辐射换热。
2、试分析冬季建筑室内空气与室外空气通过墙壁的换热过程,各个环节有哪些热量传递方式?答:有以下换热环节及传热方式:(1)室内空气到墙体内壁,热传递方式为自然对流换热和辐射换热;(2)墙的内壁到外壁,热传递方式为固体导热;(3)墙的外壁到室外空气,热传递方式有对流换热和辐射换热。
3、何谓非稳态导热的正规阶段?写出其主要特点。
答:物体在加热或冷却过程中,物体内各处温度随时间的变化率具有一定的规律,物体初始温度分布的影响逐渐消失,这个阶段称为非稳态导热的正规阶段。
4、分别写出Nu、Re、Pr、Bi数的表达式,并说明其物理意义。
答:(1)努塞尔(Nusselt)数,,它表示表面上无量纲温度梯度的大小。
(2)雷诺(Reynolds)数,,它表示惯性力和粘性力的相对大小。
(3)普朗特数,,它表示动量扩散厚度和能量扩散厚度的相对大小。
(4)毕渥数,,它表示导热体内部热阻与外部热阻的相对大小。
6、按照导热机理,水的气、液、固三种状态中那种状态的导热系数最大?答:根据导热机理可知,固体导热系数大于液体导热系数;液体导热系数大于气体导热系数。
所以水的气、液、固三种状态的导热系数依次增大。
7、热扩散系数是表征什么的物理量?它与导热系数的区别是什么?答:热扩散率,与导热系数一样都是物性参数,它是表征物体传递温度的能力大小,亦称为导温系数,热扩散率取决于导热系数和的综合影响;而导热系数是反映物体的导热能力大小的物性参数。
一般情况下,稳态导热的温度分布取决于物体的导热系数,但非稳态导热的温度分布不仅取决于物体的导热系数,还取决于物体的导温系数。
8、集总参数法的适用条件是什么?满足集总参数法的物体,其内部温度分布有何特点?答:集总参数法的适用条件是Bi<0.1,其特点是当物体内部导热热阻远小于外部对流换热热阻时,物体内部在同一时刻均处于同一温度,物体内部的温度仅是时间的函数,而与位置无关。
9、灰体的含义?答:灰体是指物体单色辐射力与同温度黑体单色辐射力随波长的变化曲线相似,或它的单色发射率不随波长变化的物体;或单色吸收比与波长无关的物体,即单色吸收比为常数的物体。
10、漫射表面?答:通常把服从兰贝特定律的表面称为漫射表面,即该表面的定向辐射强度与方向无关。
或物体发射的辐射强度与方向无关的性质叫漫辐射,具有这样性质的表面称为漫射表面。
11、气体的热边界层与流动边界层的相对大小?答:由于,对于气体来说,所以气体的热边界层的厚度大于流动边界层的厚度。
13、影响强制对流换热的表面换热系数的因素有哪些?答:影响强制对流换热的表面换热系数的因素有流态、流体的物性、换热表面的几何因素等,用函数表示为。
14、;利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜冰箱耗电量大?为什么?答:在其它条件相同时,冰箱的结霜相当于在冰箱的蒸发器和冰箱的冷冻室(或冷藏室)之间增加了一个附加的热阻,因此,冷冻室(或冷藏室)要达到相同的温度,必须要求蒸发器处于更低的温度。
所以,结霜的冰箱的耗电量要大。
15、分别写出Bi、Nu、Fo 、Pr数的表达式,并说明Bi物理意义。
答:(1)毕渥数,,它表示导热体内部导热热阻与外部对流换热热阻的相对大小。
(2)努塞尔数,,它表示壁面附近流体无量纲温度梯度的大小,反映对流换热过程的强度。
(3)傅立叶数,,它表示非稳态导热过程的无量纲时间。
(4)普朗特数,,它表示动量扩散和能量扩散的相对大小,是反映流动边界层厚度和热边界层厚度的相对大小。
16、圆管临界热绝缘直径与哪些因素有关?答:圆管临界热绝缘直径,根据公式加以分析(略)。
17、为什么珠状凝结表面换热系数比膜状凝结表面换热系数大?答:膜状凝结换热时沿整个壁面形成一层液膜,并且在重力的作用下流动,凝结放出的汽化潜热必须通过液膜,因此,液膜厚度直接影响了热量传递。
珠状凝结换热时,凝结液体不能很好的浸润壁面,仅在壁面上形成许多小液珠,此时壁面的部分表面与蒸汽直接接触,因此,换热速率远大于膜状凝结换热。
18、不凝结气体对表面凝结换热强弱有何影响?答:不凝结气体的存在,一方面使凝结表面附近蒸汽的分压力降低,从而蒸汽饱和温度降低,使得传热驱动力即温差减小;另一方面,凝结蒸汽穿过不凝结气体层到达壁面依靠的是扩散,从而增加了阻力。
因此,上述两方面原因导致凝结换热时的表面传热系数降低。
19、空气横掠垂直管束时,沿流动方向管排数越多,换热越强,而蒸汽在水平管束外凝结时,沿液膜流动方向管排数越多,换热强度降低,为什么?答:空气横掠垂直管束时,沿流动方向管排数越多,气流扰动越强,换热越强,而蒸汽在水平管束外凝结时,沿液膜流动方向管排数越多,凝结液膜越厚,凝结换热热阻越大,换热强度降低。
20、写出时间常数的表达式,时间常数是从什么导热问题中定义出来的?它与哪些因素有关?答:时间常数的表达式为,是从非稳态导热问题中定义出来的,它不仅取决于几何参数和物性参数,还取决于换热条件h。
21、什么是物体表面的发射率?它与哪些因素有关?答:实际物体的辐射力与同温度下黑体辐射力之比称为该物体的发射率,物体的发射率只取决于物体的表面特性(物体的种类、表面状况和温度),而与外界条件无关。
22、什么是物体表面的吸收比(率)?它与哪些因素有关?答:物体对投入辐射所吸收的百分数称为该物体的吸收比(率),物体的吸收比(率)只取决于物体的表面特性(物体的种类、表面状况和温度),对于全波长的特性还与投射能量的波长分布有关关。
23、何谓遮热板(罩)?答:插入两个辐射换热表面之间的用于削弱两个表面之间辐射换热的薄板或罩。
24、黑体辐射包括哪几个定律?答:普朗克定律、维恩位移定律、斯蒂芬-玻尔兹曼定律、兰贝特定律。
25、其它条件相同时,同一根管子横向冲刷与纵向冲刷相比,哪个的表面换热系数大?为什么?答:同一根管子横向冲刷比纵向冲刷相比的表面换热系数大。
因为纵向冲刷时相当于外掠平板的流动,热边界层较厚,热阻较大;而横向冲刷时热边界层较薄且在边界层由于分离而产生的旋涡,增加了流体扰动,因而换热增强。
26、下列三种关联式描述的是那种对流换热?,,答:描述的是无相变的强迫对流换热,且自然对流不可忽略;描述的是自然对流可忽略的无相变的强迫对流换热;描述的是自然对流换热。
27、写出辐射换热中两表面间的平均角系数的表达式,并说明其物理意义。
答:平均角系数X1,2= ,它表示A1表面发射出的辐射能中直接落到另一表面A2上的百分数。
或者它表示离开A1表面的辐射能中直接落到另一表面A2上的百分数。
28、表面辐射热阻答:当物体表面不是黑体时,该表面不能全部吸收外来投射的辐射能量,这相当于表面存在热阻,该热阻称为表面辐射热阻,常以来表示。
29、有效辐射答:单位时间内离开单位面积的总辐射能为该表面的有效辐射J,它包括辐射表面的自身的辐射E和该表面对投射辐射G的反射辐射,即。
30、换热器的污垢热阻答:换热设备运行一段时间以后,在管壁产生污垢层,由于污垢的导热系数较小,热阻不可以忽略,这种由于污垢生成的产生的热阻称为污垢热阻。
31、在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么?答:采用空心砖较好,因为空心砖内部充满着空气,而空气的导热系数相对较小,热阻较大,空心砖导热性较之实心砖差,同一条件下空心砖的房间的散热量小保温性好。
32、下列材料中导热系数最大的是(纯铜)(a) 纯铜(b)纯铁(c)黄铜(d)天然金刚石33、什么是雷诺类比律(写出表达式)?它的应用条件是什么?答:雷诺类比率:,条件:Pr=1,34、下列工质的普朗特数最小的是(液态金属)(a)水(b) 空气(c)液态金属(d)变压器油35、为什么多层平壁中的温度分布曲线不是一条连续的直线而是一条折线?36、对管壳式换热器来说,两种工质在下列哪种情况下,何种工质走管内,何种工质走管外?(1) 清洁的和不清洁的工质(2)腐蚀性大与小的工质(3)高温与低温的工质答:(1)不清洁流体应在管内,因为壳侧清洗比较困难,而管内可以拆开端盖进行清洗;(2)腐蚀性大的流体走管内,因为更换管束的代价比更换壳体要低,且如将腐蚀性大的流体走壳程,被腐蚀的不仅是壳体,还有管子外侧。
(3)温度低的流体置于壳侧,这样可以减小换热器的散热损失。
37、北方深秋季节的清晨,树叶叶面上常常结霜。
试问树叶上、下表面的哪一面上容易结霜?为什么?答:霜会容易结在树叶的上表面,因为树叶上表面朝向太空,而太空表面的温度会低于摄氏零度;下表面朝向地面,而地球表面的温度一般在零度以上。
相对于下表面来说,树叶上表面向外辐射热量较多,温度下降的快,一旦低于零度时便会结霜。
38、什么是物体的发射率和吸收率?二者在什么条件下相等?答:实际物体的辐射力与同温度下黑体的辐射力之比称为该物体的发射率;投射到物体表面的总能量中被吸收的能量所占的份额是物体的吸收率。
由基尔霍夫定律可知:当物体表面为漫灰表面时,二者相等。
(二)计算题例题1、室内一根水平放置的无限长的蒸汽管道,其保温层外径d=583 mm,外表面实测平均温度及空气温度分别为,此时空气与管道外表面间的自然对流换热的表面传热系数h=3.42 W /(m2 K), 墙壁的温度近似取为室内空气的温度,保温层外表面的发射率问:(1)此管道外壁的换热必须考虑哪些热量传递方式;(2)计算每米长度管道外壁的总散热量。
(12分)解:(1)此管道外壁的换热有辐射换热和自然对流换热两种方式。
(2)把管道每米长度上的散热量记为当仅考虑自然对流时,单位长度上的自然对流散热近似地取墙壁的温度为室内空气温度,于是每米长度管道外表面与室内物体及墙壁之间的辐射为:总的散热量为。