平行四边形基础练习题

合集下载

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案1. 判断题:平行四边形的对角线是否一定相等?- 答案:错误。

只有矩形和正方形的对角线相等。

2. 选择题:下列哪个选项不是平行四边形的性质?- A. 对边相等- B. 对角相等- C. 对角线互相平分- D. 邻角互补- 答案:B。

平行四边形的对角不一定相等,这是矩形和正方形的特殊性质。

3. 计算题:如果一个平行四边形的一边长为10厘米,且相邻的两边夹角为60度,求对边的长度。

- 答案:由于平行四边形的邻角互补,所以另一个角也是60度。

这意味着平行四边形是一个菱形。

在菱形中,所有边长相等,所以对边的长度也是10厘米。

4. 证明题:证明平行四边形的对角线互相平分。

- 答案:设平行四边形为ABCD,对角线AC和BD相交于点E。

由于AB平行于CD,根据平行线的性质,∠BAC=∠DCA,同理∠ABC=∠BCD。

因此,△ABC和△CDA是相似三角形。

根据相似三角形的性质,我们可以得出AE/EC = BE/ED。

同理,我们可以证明AE/EC = BD/DC。

因此,AE = EC且BE = ED,证明了对角线互相平分。

5. 应用题:一个平行四边形的面积是64平方厘米,已知一边长为8厘米,求另一边的长度。

- 答案:平行四边形的面积公式是底乘以高。

设另一边的长度为x厘米,高为h厘米。

根据面积公式,8h = 64,解得h = 8厘米。

由于平行四边形的对边相等,另一边的长度也是8厘米。

练习题答案解析通过这些练习题,学生可以检验自己对平行四边形性质的理解,并通过计算和证明题来加深对平行四边形几何特性的认识。

这些题目覆盖了平行四边形的基本性质、面积计算以及证明题,有助于培养学生的逻辑推理能力和空间想象能力。

希望这些练习题和答案能够帮助学生更好地掌握平行四边形的相关知识。

在解决实际问题时,学生应该灵活运用所学知识,结合图形的特点进行分析和计算。

平行四边形练习题(含答案)

平行四边形练习题(含答案)

第十八章平行四边形18.1 平行四边形1.在ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则ABCD的面积为A.6 B.9 C.12 D.182.若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是A.90°B.60°C.120°D.45°3.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是A.6 B.8 C.10 D.164.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°5.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.6.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=22 m,则AB=__________m.7.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=23BC=3DE=12,DG=12AB,求四边形DEFG的周长.8.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P 从点A出发沿射线AD方向以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位长度的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.9.已知ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤810.平行四边形ABCD与等边三角形AEF按如图所示的方式摆放,如果∠B=45°,则∠BAE的大小是A.75°B.80°C.100°D.120°11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,点A,B为定点,定直线l∥AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是A.①②③B.①②⑤C.②③④D.②④⑤13.如图,在△ABC中,∠ACB=90°,AC=3,BC=4,点D是边AB的中点,将△ABC沿着AB平移到△DEF 处,那么四边形ACFB的面积等于__________.14.如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,:DMN CEM S S △△等于_________.15.如图,在ABCD 中,对角线AC ,BD 相交于点O ,OA =5cm ,E ,F 为直线BD 上的两个动点(点E ,F 始终在ABCD 的外面),且DE =12OD ,BF =12OB ,连接AE ,CE ,CF ,AF . (1)求证:四边形AFCE 为平行四边形. (2)若DE =13OD ,BF =13OB ,上述结论还成立吗?由此你能得出什么结论? (3)若CA 平分∠BCD ,∠AEC =60°,求四边形AECF 的周长.16.(2018·贵州黔东南、黔南、黔西南)如图在ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm17.(2018·甘肃兰州)如图,将ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若48ABD ∠=︒,40CFD ∠=︒,则E ∠为A .102︒B .112︒C .122︒D .92︒18.(2018·黑龙江绥化)下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC =D .AB DC =,AD BC =19.(2018·内蒙古呼和浩特)顺次连接平面上A 、B 、C 、D 四点得到一个四边形,从①AB ∥CD ②BC =AD③∠A =∠C ④∠B =∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有 A .5种B .4种C .3种D .1种20.(2018·广西玉林)在四边形ABCD 中:①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有 A .3种B .4种C .5种D .6种21.(2018·四川德阳)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使3FO OC =,连接AB 、AC 、BC ,则在ABC ∆中::ABO AOC BOC S S S △△△A .621∶∶B .321∶∶C .632∶∶D .432∶∶ 22.(2018·安徽)ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是 A .BE =DF B .AE =CF C .AF ∥CED .∠BAE =∠DCF23.(2018·广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =6 cm ,则DE 的长度是__________cm .24.(2018·湖北十堰)如图,已知ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,AB =5,则△OCD的周长为__________.25.(2018·江苏泰州)如图,ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC 的周长为__________.26.(2018·辽宁抚顺)如图,ABCD 中,AB =7,BC =3,连接AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是__________.27.(2018·山东淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.28.(2018·福建)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.29.(2018·广西梧州)如图,在ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.30.(2018·辽宁大连)如图,ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE =DF .31.(2018·湖北孝感)如图,B ,E ,C ,F 在一条直线上,已知AB DE ∥,AC DF ∥,BE CF ,连接AD .求证:四边形ABED 是平行四边形.32.(2018·江苏无锡)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF =∠CDE .33.(2018·湖北恩施州)如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD ,AD 交BE于O .求证:AD 与BE 互相平分.34.(2018·浙江衢州)如图,在ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.35.(2018·江苏宿迁)如图,在ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.36.(2018·青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.;(1)求证:AD BF(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.37.(2018·云南曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.38.(2018·黑龙江大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.1.【答案】C【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△AOD=S△COD=S△BOC=S△AOB.∵△AOB的面积为3,∴ABCD的面积为4×3=12.故选C.2.【答案】B【解析】如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B∶∠C=1∶2,∴∠B=13×180°=60°,故选B.3.【答案】C【解析】∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的316,∴四边形ABCD周长为:6÷316=32,∴AB+BC=12×32=16,∴BC=10.故选C.5.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB【解析】根据AB∥CD可得:△ABC和△ABD的面积相等,△ACD和△BCD的面积相等,则△ACD的面积减去△OCD的面积等于△BCD的面积减去△OCD的面积,即△AOD和△BOC的面积相等.【解析】∵E、F是AC,CB的中点,∴EF是△ABC的中位线,∴EF=12AB,∵EF=22m,∴AB=44m,故答案为44.7.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.8.【解析】(1)作AM⊥BC于M,如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=12BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5–t,∵CE=CQ–QE=2t–2,∴5–t=2t–2,解得:t=73,BQ=BC–CQ=10–2×71633;(2)存在,t=4;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10–2t+2,解得:t=4,∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4.【解析】如图,在平行四边形ABCD中,AO=CO=5,BO=DO=3,∴2<AB<8.故选C.10.【答案】A【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°–∠B=180°–45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD–∠EAF=75°.故选A.11.【答案】D【解析】∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD.∴①正确;∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∴②正确;∵∠A=∠ABD,四边形ABCD是平行四边形,∴AD=BD=BC,∴∠BDC=∠BCD,∵AD∥BC,∴∠ADB=∠DBC,∵∠ADC=∠ADB+∠BDC,∴∠ADC=∠DBC+∠BCD,∴∠ADC–∠DCE=∠DBC+ ∠BCD–∠DCE=∠DBC+∠BCF,∵∠DFC=∠DBC+BCF,∴∠DFC=∠ADC–∠DCE;∴③正确;∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED= S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴④正确;综上得①②③④都正确,故选D.12.【答案】B【解析】∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=12 AB,即线段MN的长度不变,故①正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故②正确;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故③错误;∠APB的大小点P的移动而变化,故④错误.直线MN,AB之间的距离不随点P的移动而变化,故⑤正确;综上所述,随点P的移动而不变化的是①②⑤.故选B.13.【答案】9【解析】∵将△ABC沿AB方向向右平移到△DEF,∴四边形ADFC是平行四边形,四边形ACFB是是梯形.∵∠ACB =90°,AC =3,BC =4,∴22345AB =+=.∵点D 是边AB 的中点,∴AD =BD =15522⨯=,∴CF =AD =12AB 52=, 设AB 边上的高为x .∵AB =5,AC =3,BC =4,AB 边上的高为x ,∴12AC ·BC =12AB ·x ,∴125x =.∴S 梯形ACFB =1512(5)9225⨯+⨯=. 14.【答案】1∶3【解析】如图,作EF AD ∥,M 是DE 的中点,则△DMN ≌△EMF ,得MN =MF ,E 是AC 的中点,则FC =NF ,所以13MF MC =,得13FEM CEMS S =△△,得:DMN CEM S S △△=1∶3.16.【答案】D【解析】∵AC =4 cm ,若△ADC 的周长为13 cm ,∴AD +DC =13-4=9(cm ).又∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∴平行四边形的周长为2(AB +BC )=18 cm .故选D . 17.【答案】B【解析】∵AD BC ∥,∴ADB DBC ∠=∠,由折叠可得ADB BDF ∠=∠,∴DBC BDF ∠=∠,又∵40DFC ∠=︒,∴20DBC BDF ADB ∠=∠=∠=︒,又∵48ABD ∠=︒,∴ABD △中,1802048112A ︒︒-︒∠=-=︒,∴112E A ∠∠==︒,故选B .18.【答案】C【解析】A 、由AD BC ∥,AB CD ∥可以判断四边形ABCD 是平行四边形,故本选项不符合题意; B 、由AB CD ∥,AB CD =可以判断四边形ABCD 是平行四边形,故本选项不符合题意; C 、由AD BC ∥,AB DC =不能判断四边形ABCD 是平行四边形,故本选项符合题意;D 、由AB DC =,AD BC =可以判断四边形ABCD 是平行四边形,故本选项不符合题意,故选C . 19.【答案】C【解析】当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形,故选C . 20.【答案】B【解析】(1)①②,利用两组对边平行的四边形是平行四边形判定; (2)③④,利用两组对边相等的四边形是平行四边形判定;(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定,共4种组合方法,故选B . 21.【答案】B【解析】如图,连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC =3:1,BE =OB ,AF ∥OE ,∴S △OBF =S △AOB =m ,S △OBC =13m ,S △AOC =23m ,∴S △AOB ∶S △AOC ∶S △BOC =m ∶23m ∶13m =3∶2∶1,故选B . 22.【答案】B【解析】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.23.【答案】3【解析】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=162=3 cm,故答案为:3.24.【答案】14【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为:14.25.【答案】14【解析】∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.26.【答案】10【解析】∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7,∵由作图可知,MN 是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10,故答案为:10.27.【答案】10【解析】∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=2,由折叠,∠DAC=∠EAC,∵∠DAC=∠ACB,∴∠ACB=∠EAC,∴OA=OC,∵AE过BC的中点O,∴AO=12BC,∴∠BAC=90°,∴∠ACE=90°,由折叠,∠ACD=90°,∴E、C、D共线,则DE=4,∴△ADE的周长为:3+3+2+2=10,故答案为:10.28.【解析】∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴OE=OF.29.【解析】∵ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,EAO FCO AO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF.31.【解析】∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,B DEF BC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.32.【解析】在ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,AB CDA C AF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CDE(SAS),∴∠ABF=∠CDE.33.【解析】如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,ABC DEF BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.34.【解析】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,AEB CFDBAE DCF AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴得△ABE≌△CDF(AAS),∴AE=CF.35.【解析】∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C , ∴∠E =∠F , 又∵BE =DF , ∴AD +DF =CB +BE , 即AF =CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CEH ≌△AFG , ∴CH =AG .36.【解析】(1)∵E 是AB 边上的中点,∴AE BE =, ∵AD BC ∥, ∴ADE F ∠=∠,在ADE △和BFE △中,ADE F ∠=∠,DEA FEB ∠=∠,AE BE =, ∴ADE △≌BFE △, ∴AD BF =.(2)如图,过点D 作DM AB ⊥于点M ,∵AB ∥DC ,∴DM 同时也是平行四边形ABCD 的高, ∴11113282244AED S AB DM AB DM =⋅⋅=⋅=⨯=△, ∴32824EBCD S =-=四边形.37.【解析】(1)∵四边形ABCD 是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.38.【解析】(1)∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥F C.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25-AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.。

五年级数学上册 平行四边形练习题

五年级数学上册 平行四边形练习题

五年级数学上册:平行四边形练习题一、填空。

1、平行四边形有()组对边分别平行,梯形有()组对边分别平行。

2、在四边形中,一组对边平行且相等的四边形是();只有一组对边平行的四边形是()3、长方形是特殊的(),正方形是特殊的()。

4、用2个完全一样的梯形,可以拼成一个(),它的底长是原来梯形的()与()之和。

5、一个直角梯形,上底是8厘米,下底是12厘米,直角腰是10厘米,另一条腰是7厘米,这个梯形的面积是()平方厘米。

6、一个平行四边形的底长是10厘米,高是8厘米,它的面积是()平方厘米;一个梯形的上底是10厘米,下底是15厘米,高是8厘米,它的面积是()平方厘米。

7、一个平行四边形,若底增加2厘米,高增加5厘米,则面积增加()平方厘米。

8、一个长方形和一个平行四边形的底边长度相等,且它们的面积也相等。

已知长方形的面积是48平方分米,平行四边形的高是4分米,那么平行四边形的底边长是()分米。

9、两个()的梯形可以拼成一个平行四边形。

二、解答题。

1、一个直角梯形的上底是8厘米,下底是12厘米,腰长为10厘米。

求它的面积?2、一个长方形和一个平行四边形的底边长度相等,并且它们的面积也相等。

已知长方形的面积是48平方分米,平行四边形的高是4分米,求平行四边形的底边长。

3、一个梯形的上底长度不变,下底缩短后与上底长度相等时,它的面积会如何变化?五年级数学平行四边形的面积练习题在五年级的数学学习中,平行四边形的面积计算是一个重要的知识点。

为了帮助学生更好地掌握这一知识点,下面是一组关于平行四边形面积的练习题。

1、计算下列平行四边形的面积:(1)底为6厘米,高为4厘米;(2)底为8厘米,高为3厘米;(3)底为10厘米,高为2厘米。

2.一个平行四边形的底长为12分米,高为8分米,它的面积是多少?3.一个平行四边形的底长为16厘米,高为10厘米,它的面积是多少?4.一个平行四边形的底长为20毫米,高为15毫米,它的面积是多少?5.一个平行四边形的底长为24米,高为18米,它的面积是多少?答案:1、(1)6×4=24(平方厘米)(2)8×3=24(平方厘米)(3)10×2=20(平方厘米)2、12×8=96(平方分米)3、16×10=160(平方厘米)4、20×15=300(平方毫米)5、24×18=432(平方米)通过这组练习题,学生们可以加深对平行四边形面积计算公式的理解和记忆,同时提高他们的计算能力和空间思维能力。

平行四边形的判定练习题(含(答案))

平行四边形的判定练习题(含(答案))

平行四边形的判定及中位线知能点1 平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平行四边形;B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形4.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E 为□ABCD 中DC 边的延长线上的一点,且CE=DC ,连接AE ,分别交BC ,BD 于点F ,G ,连接AC 交BD 于点O ,连接OF ,求证:AB=2OF .12.如图所示,在ABCD 中,EF ∥AB 且交BC 于点E ,交AD 于点F ,连接AE ,BF•交于点M ,连接CF ,DE 交于点N ,求证:MN ∥AD 且MN=12AD .13.如图所示,DE 是△ABC 的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD 中,对角线AC ,BD 交于点O ,OE ∥BC 交CD•于E ,•若OE=3cm ,则AD 的长为( ). A .3cm B .6cm C .9cm D .12cm15.如图所示,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,•则四边形EFGH 是平行四边形吗?为什么?16.如图所示,在△ABC 中,AC=6cm ,BC=8cm ,AB=10cm ,D ,E ,F 分别是AB ,BC ,CA 的中点,求△DEF 的面积.规律方法应用17.如图所示,A ,B 两点被池塘隔开,在A ,B 外选一点C ,连接AC 和BC ,•并分别找出AC 和BC 的中点M ,N ,如果测得MN=20m ,那么A ,B 两点间的距离是多少?18.如图所示,在□ABCD 中,AB=2AD ,∠A=60°,E ,F 分别为AB ,CD 的中点,EF=1cm ,那么对角线BD 的长度是多少?你是怎样得到的?19.如图所示,在△ABC 中,E 为AB 的中点,CD 平分∠ACB ,AD ⊥CD 于点D .• 试说明:(1)DE ∥BC .(2)DE=12(BC-AC ).开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH:S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在ABCD中,E,F分别是AB,CD的中点.求证:(1)•△AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)×(2)×(3)∨(4)∨(5)∨(6)× 5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//12AB,即AB=2OF.12.证明:∵四边形ABCD是平行四边形,∴AB ∥CD ,AD ∥BC . 又∵EF ∥AB ,∴EF ∥CD .∴四边形ABEF ,ECDF 均为平行四边形.又∵M ,N 分别为ABEF 和ECDF 对角线的交点. ∴M 为AE 的中点,N 为DE 的中点, 即MN 为△AED 的中位线. ∴MN ∥AD 且MN=12AD . 13.4 14.B15.解:EFGH 是平行四边形,连接AC ,在△ABC 中,∵EF 是中位线,∴EF //12AC . 同理,GH //12AC . ∴EF //GH ,∴四边形EFGH 为平行四边形. 16.解:∵EF ,DE ,DF 是△ABC 的中位线, ∴EF=12AB ,DE=12AC ,DF=12BC . 又∵AB=10cm ,BC=8cm ,AC=6cm ,∴EF=5cm ,DE=3cm ,DF=4cm ,而32+42=25=52,即DE 2+DF 2=EF 2. ∴△EDF 为直角三角形. ∴S △EDF =12DE ·DF=12×3×4=6(cm 2). 17.解:∵M ,N 分别是AC ,BC 的中点. ∴MN 是△ABC 的中位线,∴MN=12AB . ∴AB=2MN=2×20=40(m ).故A ,B 两点间的距离是40m . 18.解:连接DE .∵四边形ABCD 是平行四边形, ∴AB //CD . ∵DF=12CD ,AE=12AB , ∴DF //AE .∴四边形ADFE 是平行四边形.∴EF=AD=1cm .∵AB=2AD ,∴AB=2cm .∵AB=2AD ,∴AB=2AE ,∴AD=AE . ∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°, ∴∠1=∠A=∠4=60°.∴△ADE 是等边三角形,∴DE=AE . ∵AE=BE ,∴DE=BE ,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°. ∴∠ADB=∠3+∠4=90°. ∴BD=222221AB AD -=-=3(cm ).19.解:延长AD 交BC 于F .(1)∵AD ⊥CD ,∴∠ADC=∠FDC=90°.∵CD 平分∠ACB ,∴∠ACD=∠FCD . 在△ACD 与△FCD 中,∠ADC=∠FDC ,DC=DC ,∠ACD=∠FCD . ∴△ACD ≌△FCD ,∴AC=FC ,AD=DF .又∵E 为AB 的中点,∴DE ∥BF ,即DE ∥BC .(2)由(1)知AC=FC ,DE=12BF . ∴DE=12(BC-FC )=12(BC-AC ). 20.解:AE=CF .理由:过E 作EG ∥CF 交BC 于G , ∴∠3=∠C .∵∠BAC=90°,AD ⊥BC ,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°. ∴∠C=∠BAD ,∴∠3=∠BAD . 又∵∠1=∠2,BE=BE , ∴△ABE ≌△GBE (AAS ),∴AE=GE . ∵EF ∥BC ,EG ∥CF ,∴四边形EGCF 是平行四边形,∴GE=CF , ∴AE=CF .21.答案不唯一,如AB=CD 或AD ∥BC . 22.1223.解:(1)在□ABCD 中,AD=CB ,AB=CD ,∠D=∠B . ∵E ,F 分别为AB ,CD 的中点, ∴DF=12CD ,BE=12AB ,∴DF=BE , ∴△AFD ≌△CEB .(2)在□ABCD 中,AB=CD ,AB ∥CD . 由(1)得BE=DF ,∴AE=CE ,∴四边形AECF 是平行四边形.。

平行四边形认识的练习题

平行四边形认识的练习题

平行四边形认识的练习题一、选择题1. 下列图形中,哪个是平行四边形?A. 三角形B. 正方形C. 梯形D. 矩形2. 平行四边形的对边特点是:A. 长度相等B. 互相垂直C. 互相平行D. 长度相等且互相平行3. 平行四边形的对角线性质是:A. 互相垂直B. 互相平分C. 互相相等D. 互相平行二、填空题1. 平行四边形有______组对边互相平行。

2. 平行四边形的对角线把它分成______个相等的三角形。

3. 若平行四边形的两组对边分别相等,那么这个平行四边形是______。

三、判断题1. 平行四边形的邻角互补。

()2. 平行四边形的对角线相等。

()3. 平行四边形的面积等于任意一边乘以对应的高。

()四、作图题1. 画出两个对边平行且相等的四边形,并标出其对应边和高。

2. 在平行四边形ABCD中,画出对角线AC和BD,并标出它们的交点O。

五、解答题1. 已知平行四边形ABCD,AB=6cm,BC=8cm,求平行四边形ABCD的面积。

2. 在平行四边形EFGH中,已知EF=4cm,EH=6cm,求平行四边形EFGH的对角线长度。

3. 若平行四边形的一组邻角分别为120°和60°,求另一组邻角的度数。

六、应用题1. 一个平行四边形花园的底边长是20米,高是10米,求这个花园的面积。

2. 在一块平行四边形的菜地上,如果将底边延长5米,高减少2米,那么面积将增加多少平方米?3. 两个完全相同的平行四边形,它们的面积之和是150平方厘米,求每个平行四边形的面积。

七、综合题1. 在平行四边形ABCD中,AB=CD=8cm,AD=BC=10cm,求对角线AC 和BD的长度。

2. 已知平行四边形EFGH的对角线EG和FH相交于点O,且EO=4cm,FO=6cm,OG=3cm,OH=5cm,求平行四边形EFGH的面积。

3. 平行四边形ABCD的周长是40厘米,AB=CD=12厘米,求平行四边形的高。

特殊的平行四边形(基础练习)

特殊的平行四边形(基础练习)

特殊的平行四边形(基础练习)考试总分: 100 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在矩形中,两条对角线,相交于点,若,则A. B. C. D.2.如图,八边形中,,,,则这个八边形的面积等于()A. B. C. D.3.正方形具有而矩形不一定具有的性质是()A.对角线相等且互相平分B.对角线互相垂直且每条对角线平分一组对角C.每一个内角均为直角D.对边平行且相等4.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是()A.平行四边形B.矩形C.菱形D.正方形5.如图,矩形的两条对角线相交于点,,,则矩形的对角线的长是()A. B. C. D.6.如图,在四边形中,、为对角线,点、、、分别为、、、边的中点,下列说法:①当时,、、、四点共圆.②当时,、、、四点共圆.③当且时,、、、四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③7.正方形内有一点到各边的距离为,,,,则正方形的面积为()A. B. C. D.8.如图,已知在四边形中,,,连接,,与交于点,若,,,则四边形的面积为()A. B. C. D.9.下列说法:①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③有一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形⑤相邻两边都互相垂直的四边形是矩形.其中判断正确的个数是()A.个B.个C.个D.个10.矩形中,,,点在边上,若平分,则的长是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,中,在上,且.为中点,若,,则的长为________.12.如果四边形的对角线,相等,且互相平分于点,则四边形是________形,如果,则________.13.如图,矩形中,,,点从开始沿折线以的速度运动,点从开始沿边以的速度移动,如果点、分别从、同时出发,当其中一点到达时,另一点也随之停止运动,设运动时间为,当________时,四边形也为矩形.14.矩形两条对角线的夹角是,若矩形较短的边长为,则对角线长________.15.如图,菱形中,若,,则的长等于________.16.如图,在中,,是边上的中线,若,则________.17.如图,在中,,,点为的中点,连接,则的长是________.18.如图,在中,点、、分别在、、边上,且,.如果那么四边形是________形;如果是的角平分线,那么四边形是________形;如果,是的角平分线,那么四边形是________形,证明你的结论(仅需证明第)题结论)19.菱形的两条对角线分别为和,则菱形的面积为________.20.如图,菱形的边长为,,为中点,作,交于点,交的延长线于点,则线段的长为________.三、解答题(共 4 小题,每小题 10 分,共 40 分)21.如图,菱形的对角线与相交于点,点,分别为边,的中点,连接,,,求证:四边形是菱形;与的数量关系是什么?22.如图,在正方形中,以为边作等边三角形,点在正方形内部,将绕着点顺时针旋转得到线段,连结.求证:四边形是菱形.23.正方形中,是延长线上的点,于,连接,探究线段、、的数量关系.24.如图,已知中,,,平分.你能判断四边形是菱形吗?请说明理由.满足什么条件时,四边形是正方形.答案1.B2.A3.B4.B5.B6.C7.B8.C9.B10.D11..[ “矩”, " " ]13.14.15.16.17.18.解: ∵ ,,∴四边形是平行四边形,又∵ ,∴四边形是矩形; ∵ ,,∴ ,四边形是平行四边形,又∵ 是的角平分线,∴ ,∴ ,∴ ,∴ 是菱形;由知四边形是矩形,由知四边形是菱形,所以四边形是正方形.19.20.21.证明:∵四边形是菱形,∴ ,,∴ ,∵点,分别为边,的中点,∴,,∴ ,∴四边形是菱形;解:,理由是:∵,,,∴ .22.证明:如图,∵ 是等边三角形,∴ ,,∵四边形是正方形,∴ ,,∴ .∵ ,,∴ ,.∴ 是等边三角形.∴ .∴四边形是菱形;证法二:证明:如图,∵ 是等边三角形,∴ ,,∵四边形是正方形,∴ ,,∴ ,∵ ,,∴ ,.∴ ,∴四边形是平行四边形.∴ .∴平行四边形是菱形.23.解:∵ ,∴ 、、、、五点共圆,∴ ,∴ ,,,,∴.24.解:四边形是菱形,理由如下:∵ 是的角平分线,∴ ,∵ ,,∴四边形是平行四边形,,∴ ,∴ ,∴四边形是菱形;当时,四边形是正方形.。

(完整版)平行四边形的性质练习题及答案

(完整版)平行四边形的性质练习题及答案

(完整版)平⾏四边形的性质练习题及答案平⾏四边形的性质、课中强化(10分钟训练)1?如图3,在平⾏四边形 ABCD 中,下列各式不⼀定正确的是()A. / 1 + Z 2=180 °B. / 2+ / 3=180 °C. / 3+Z 4=180的周长为()3. 如图5,」ABCD 中,EF 过对⾓线的交点 O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形 BCFE 的周长为 ____________________ .4. 如图6,已知在平⾏四边形 ABCD 中,AB=4 cm , AD=7 cm , / ABC 的平分线交 AD 于点E ,5. 如图7,在平⾏四边形 ABCD 中,点E 、F 在对⾓线6. 如图 8,在 ABCD 中,AE 丄BC 于 E,AF 丄 CD 于 F,BE=2 cm,DF=3 cm, / EAF=60° ,试求 CF 的长.D. /2+ /4=180O , OE 丄AC 交AD 于丘,则⼛DCEA.4 cmB.6 cmC.8 cmD.10 cm交CD 的延长线于点 F ,贝U DF= _____________cm.BD 上,且 BE=DF ,求证:AE=CF.图32?如图4,⼆ABCD 的周长为图5图6图7图8三、课后巩固(30分钟训练)1?⼆ABCD中,/A⽐/ B⼤20。

,则/ C的度数为()A.60 °B.80 °C.100 °D.120 2?以A、B、C三点为平⾏四边形的三个顶点,作形状不同的平⾏四边形,⼀共可以作(A.0个或3个B.2个C.3个D.4个3?如图9 所⽰,在—ABCD 中,对⾓线AC、BD交于点0,下列式⼦中⼀定成⽴的是()A.AC 丄BDB.OA=OCC.AC=BDD.AO=OD4?如图10,平⾏四边形ABCD中,对⾓线AC、BD相交于点O ,将⼛AOD平移⾄△ BEC的位置,则图中与OA相等的其他线段有()A.1条B.2条C.3条D.4条5?如图11,在平⾏四边形ABCD中,EF // AB , GH // AD , EF与GH交于点O,则该图中的平⾏四边形的个数共有()6?如图12,平⾏四边形ABCD中,AE丄BD , CF丄BD,垂⾜分别为E、F,求证:/ BAE= / DCF.7、如图13所⽰,已知平⾏四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ ABE CDF.A.7个B.8个C.9个D.11 个图12图138?如图14,已知四边形ABCD是平⾏四边形,/ BCD的平分线CF交边AB于F,/ ADC的平分线DG交边AB于G.⑴求证:AF=GB ;(2)请你在已知条件的基础上再添加⼀个条件,使得△EFG是等腰直⾓三⾓形,并说明理由?19.1.2平⾏四边形的判定⼆、课中强化(10分钟训练)1?如图3,在ABCD中,对⾓线AC、BD相交于点O,E、F是对⾓线AC上的两点,当E、F满⾜下列哪个条件时,四边形DEBF不⼀定是平⾏四边形()A.AE=CFC.Z ADE= / CBFD. / AED= / CFB,使四边形AECF是平⾏四边形.4. 如图6,AD=BC,要使四边形ABCD是平⾏四边形,还需补充的⼀个条件是:__________________5. 如图,在,ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平⾏四边形.2.如图4,AB 喪DC ,DC=EF=10 ,DE=CF=8,则图中的平⾏四边形有,理由分别是图4 图53.如图5,E、F是平⾏四边形ABCD对⾓线BD上的两点,B.DE=BF图14三、课后巩固(30分钟训练)1?以不在同⼀直线上的三个点为顶点作平⾏四边形最多能作()是平⾏四边形的是()4?已知四边形 ABCD 的对⾓线 AC 、BD 相交于点② OA=OC :③ AB=CD ;④/ BAD= / DCB :⑤ AD // BC.(1)从以上5个条件中任意选取 2个条件,能推出四边形 ABCD 是平⾏四边形的有(⽤序号表⽰): _____________________________ :(2)对由以上5个条件中任意选取 2个条件,不能推出四边形请选取⼀种情形举出反例说明平⾏四边形?6?如图,E 、F 是四边形ABCD 的对⾓线 AC 上的两点,AF=CE , DF=BE , DF // BE. 求证:⑴△AFD ◎△ CEB;(2)四边形ABCD 是平⾏四边形A.4个B.3个C.2个D.1个2?下⾯给出了四边形 ABCD 中/A 、/ B 、/ C 、/ D 的度数之⽐,其中能判定四边形 ABCDA.1 : 2 : 3 : 4B. 2 : 2 : 3 : 3C. 2 : 3 : 3 : 2D. 2 : 3 : 2 : 33?九根⽕柴棒排成如右图形状,图中 ____ 个平⾏四边形 ,你判断的根据是O ,给出下列 5个条件:①AB // CD ;5?若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对⾓线 ABCD 是平⾏四边形的,,另17?如图,已知DC // AB,且DC= — AB , E为AB的中点.2(1) 求证:△ AED ◎△ EBC ;(2) 观察图形,在不添加辅助线的情况下,除△EBC⼣⼘,请再写出两个与△ AED的⾯积相等的三⾓形(直接写出结果,不要求证明): ___________________________8?如图,已知⼆ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平⾏四边形9?如图,已知■ ABCD中,E、F分别是AB、CD的中点?求证:(1) △ AFD ◎△ CEB;(2) 四边形AECF是平⾏四边形?⼆、课中强化(10 分钟训练)1 答案:D2. 解析:因为四边形ABCD 是平⾏四边形,所以OA=OC. ⼜0E丄AC , 所以EA=EC.贝U △ DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD. 在平⾏四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3?解析:0E=0F=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm).答案:8 cm4?解析:由平⾏四边形的性质AB // DC,知/ ABE= / F,结合⾓平分线的性质/ ABE= / EBC,得/ EBC= / F,再根据等⾓对等边得到BC=CF=7 ,再由AB=CD=4 , AD=BC=7 得到DF=DE=AD-AE=3.答案:35?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD./ ABE= / CDF.AB CD,在⼛ABE和⼛CDF中,ABE CDF ,BE DF .△ ABE ◎△ CDF.AE=CF.6. 解:/ EAF=60°AE 丄BC,AF 丄CD, C=120°. B=60°「./ BAE=30° .AB=2BE=4(cm). CD=4(cm). CF=1(cm).三、课后巩固(30 分钟训练)1 答案:C2. 解析:分两种情况,A、B、C三点共线时,可作0个当点A、B、C不在同⼀直线上时,可作3 个. 答案:A3. 解析:平⾏四边形对⾓线互相平分,所以OA=OC. 答案:B4. 解析:由平⾏四边形的对⾓线互相平分知OA=OC;再由平移的性质:经过平移,对应线段平⾏且相等可得OA=BE.答案:B5?解析:本题借助于平⾏四边形的定义,按照从左到右,从⼩到⼤的顺序,可找到下列的平⾏四边形:DEOH,.HOFC,. DEFC, EAGO,OGBF,EABF,■ DAGH,■ HGBC,⼆ABCD.答案:C6?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD. /-Z ABE= / CDF ?/ AE 丄BD , CF 丄BD ,「./ AEB= / CFD=90 .△ABE ◎△ CDF. /.Z BAE= Z DCF.7、答案:证明:四边形ABCD是平⾏四边形,AB=CD, Z B= Z D.在⼛ABE和⼛CDF中,AB CD,B D, ?/△ ABE 也⼛CDF.BE DF.8?答案:(1)证明:四边形ABCD是平⾏四边形,? AB // CD. AGD= Z CDG.vZ ADG= Z CDG,/?/ ADG= Z AGD. ? AD=AG ?同理,BC=BF.⼜四边形ABCD 是平⾏四边形,? AD=BC,AG=BF. ? AG-GF=BF-GF ,即AF=GB.(2)解:添加条件EF=EG.理由如下:1 1由(1)证明易知Z AGD= Z ADG= Z ADC , Z BFC= Z BCF= Z BCD.2 2/ AD // BC,/?/ ADC+ Z BCD=180 ./Z AGD+ Z BFC=90 ./Z GEF=90 .⼜v EF=EG ,?△ EFG为等腰直⾓三⾓形.⼆、课中强化(10分钟训练)1. 解析:当E、F满⾜AE=CF时,由平⾏四边形的对⾓线相等知OB=OD,OA=OC , 故OE=OF.可知四边形DEBF是平⾏四边形.当E、F满⾜Z ADE= Z CBF 时,因为AD // BC,所以Z DAE= Z BCF.⼜AD=BC,可证出⼛ADE ◎△ CBF,所以DE=BF , Z DEA= Z BFC.故Z DEF= Z BFE.因此DE // BF,可知四边形DEBF是平⾏四边形.类似地可说明D也可以.。

平行四边形练习题及答案

平行四边形练习题及答案

20.1 平行四边形的判定一、选择题1.四边形ABCD,从(1)AB∥CD;(2)AB=CD;(3)BC∥AD;(4)BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A.3种 B.4种 C.5种 D.6种2.四边形的四条边长分别是a,b,c,d,其中a,b为一组对边边长,c,d•为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A.任意四边形 B.平行四边形C.对角线相等的四边形 D.对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4.在□ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动,点F 从C•向B运动,点E的速度m与点F的速度n满足_______关系时,四边形BFDE为平行四边形.5.如图1所示,平行四边形ABCD中,E,F分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图1 图26.如图2所示,AO=OC,BD=16cm,则当OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形ABCD中,对角线BD=4,一边长AB=5,其余各边长用含有未知数x的代数式表示,且AD⊥BD于点D,BD⊥BC于点B.问:四边形ABCD•是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中,E,F是对角线AC上的两点,且AF=CE,•则线段DE•与BF的长度相等吗?参考答案一、1.B 点拨:可选择条件(1)(3)或(2)(4)或(1)(2)或(3)(4).故有4种选法.2.B 点拨:a2+b2+c2+d2=2ab+2cd即(a-b)2+(c-d)2=0,即(a-b)2=0且(c-d)2=0.所以a=b,c=d,即两组对边分别相等,所以四边形为平行四边形.3.B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定. 5.AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD•是平行四边形即可.6.8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、7.解:如图所示,四边形ABCD是平行四边形.理由如下:在Rt △BCD中,根据勾股定理,得BC2+BD2=DC2,即(x-5)2+42=(x-3)2,解得x=8.所以AD=11-8=3,BC=x-5=3,DC=x-3=8-3=5,所以AD=BC,AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC,AB=DC即可,本题也可在Rt△ABD中求x的值.四、8.解:线段DE与BF的长度相等;连结BD交AC于O点,连结DF,BE,如图所示.在ABCD中,DO=OB,AO=OC,又因为AF=EC,所以AF-AO=CE-OC,即OF=OE,所以四边形DEBF是平行四边形,所以DE=BF.D A CF O E B点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2 矩形的判定一、选择题1.矩形具有而一般平行四边形不具有的性质是( )A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2.下列叙述中能判定四边形是矩形的个数是( )①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A .1B .2C .3D .43.下列命题中,正确的是( )A .有一个角是直角的四边形是矩形B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形二、填空题4.如图1所示,矩形ABCD 中的两条对角线相交于点O ,∠AOD=120°,AB=4cm ,则矩形的对角线的长为_____.图1 图25.若四边形ABCD 的对角线AC ,BD 相等,且互相平分于点O ,则四边形ABCD•是_____形,若∠AOB=60°,那么AB :AC=______.6.如图2所示,已知矩形ABCD 周长为24cm ,对角线交于点O ,OE⊥DC 于点E , OF⊥AD 于点F ,OF-OE=2cm ,则AB=______,BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E,F,G,H两点,试说明四边形EFGH是矩形.四、思考题8.如图所示,△ABC中,CE,CF分别平分∠ACB和它的邻补角∠ACD.AE ⊥CE于E,AF⊥CF于F,直线EF分别交AB,AC于M,N两点,则四边形AECF是矩形吗?为什么?参考答案一、1.C 点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2.B 点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3.D 点拨:选项D是矩形的判定定理.二、4.8cm5.矩;1:2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,•可知△AOB是等腰三角形,又因为∠AOB=60°,所以AB=AO=12 AC.6.8cm;4cm三、7.解:在□ABCD中,因为AD∥BC,所以∠DAB+∠CBA=180°,又因为∠HAB=12∠DAB,∠HBA=12∠CBA.所以∠HAB+∠HBA=90°,所以∠H=90°.同理可求得∠HEF= ∠F= ∠FGH=90°,所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、8.解:四边形AECF是矩形.理由:因为CE平分∠ACB,•CF•平分∠ACD,•所以∠ACE=12∠ACB,∠ACF=12∠ACD.所以∠ECF=12(∠ACB+∠ACD)=90°.又因为AE⊥CE,AF⊥CF,•所以∠AEC=∠AFC=90°,所以四边形AECF是矩形.点拨:•本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3 菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().A.1种 B.2种 C.3种 D.4种3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm和43cm二、填空题4.如图1所示,已知□ABCD,AC,BD相交于点O,•添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)图1 图25.如图2所示,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且DE∥AB,DF∥CA,要使四边形AFDE 是菱形,则要增加的条件是________.(只写出符合要求的一个即可)6.菱形ABCD 的周长为48cm ,∠BAD: ∠ABC= 1:•2,•则BD=•_____,•菱形的面积是______.7.在菱形ABCD 中,AB=4,AB 边上的高DE 垂直平分边AB ,则BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD 中,AB∥CD,AB=CD=BC ,四边形ABCD 是菱形吗?•说明理由.四、思考题9.如图,矩形ABCD 的对角线相交于点O ,PD∥AC,PC∥BD,PD ,PC 相交于点P ,四边形PCOD 是菱形吗?试说明理由.参考答案一、1.A 点拨:本题用排除法作答.2.D 点拨:根据菱形的判定方法判断,注意不要漏解.3.C 点拨:如图所示,若∠ABC=60°,则△ABC 为等边三角形,•所以AC=AB=14×32=8(cm ),AO=12AC=4cm . 因为AC⊥BD,在Rt△AOB 中,由勾股定理,得OB=222284AB OA -=-=43(cm ),• 所以BD=2OB=83cm .二、4.AB=BC 点拨:还可添加AC⊥BD 或∠ABD=∠CBD 等.5.点D 在∠BAC 的平分线上(或AE=AF )6.12cm ;723cm 2点拨:如图所示,过D 作DE⊥AB 于E ,因为AD∥BC,•所以∠BAD+∠ABC=180°.又因为∠BAD:∠ABC=1:2,所以∠BAD=60°,因为AB=AD ,所以△ABD 是等边三角形,所以BD=AD=12cm .所以AE=6cm .在Rt △AED 中,由勾股定理,得AE 2+ED 2=AD 2,62+ED 2=122,所以ED 2=108, 所以ED=63cm ,所以S 菱形ABCD =12×63=723(cm 2).7.4;43 点拨:如图所示,因为DE 垂直平分AB ,又因为DA=AB ,所以DA=DB=4.所以△ABD 是等边三角形,所以∠BAD=60°,由已知可得AE=2.在Rt△AED 中,•AE 2+DE 2=AD 2,即22+DE 2=42,所以DE 2=12,所以DE=23,因为12AC ·BD=AB ·DE ,即12AC ·4=4×23,所以AC=43.三、8.解:四边形ABCD 是菱形,因为四边形ABCD 中,AB∥CD,且AB=CD ,所以四边形ABCD 是平行四边形,又因为AB=BC ,所以ABCD 是菱形.点拨:根据已知条件,不难得出四边形ABCD 为平行四边形,又AB=BC ,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、9.解:四边形PCOD是菱形.理由如下:因为PD∥OC,PC∥OD,•所以四边形PCOD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4 正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形 B.矩形 C.菱形 D.正方形二、填空题3.已知点D,E,F分别是△ABC的边AB,BC,CA的中点,连结DE,EF,•要使四边形ADEF是正方形,还需要添加条件_______.4.如图1所示,直线L过正方形ABCD的顶点B,点A,C到直线L•的距离分别是1和2,则正方形ABCD的边长是_______.图1 图2 图3D AC F E B5.如图2所示,四边形ABCD 是正方形,点E 在BC 的延长线上,BE=BD 且AB=2cm ,则∠E 的度数是______,BE 的长度为____.6.如图3所示,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F•为AB•上一点,AF=2,P 为AC 上一动点,则当PF+PE 取最小值时,PF+PE=______.三、解答题7.如图所示,在Rt△ABC 中,CF 为∠ACB 的平分线,FD⊥AC 于D ,FE⊥BC 于点E ,试说明四边形CDFE 是正方形.四、思考题 8.已知如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 边上的点,且AE=BF ,•请问:(1)AF 与DE 相等吗?为什么?(2)AF 与DE 是否垂直?说明你的理由.参考答案一、1.C 点拨:对角线互相平分的四边形是平行四边形,•对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选C .2.D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、3.△ABC 是等腰直角三角形且∠BAC=90°点拨:还可添加△ABC 是等腰三角形且四边形ADEF 是矩形或∠BAC=90°且四边形ADEF 是菱形等条件.4.5 点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为2221+=5.5.67.5°;22cm点拨:因为BD 是正方形ABCD 的对角线,所以∠DBC=45°,AD=•AB=2cm .在Rt△BAD 中,由勾股定理得AD 2+AB 2=BD 2,即22+22=BD 2,所以BD=22cm ,所以BE=BD=22(cm ),又因为BE=BD ,所以∠E=∠EDB=12(180°-45°)=67.5°. 6.17 点拨:如图所示,作F 关于AC 的对称点G .连结EG 交AC 于P ,则PF+•PE=PG+PE=GE 为最短.过E 作EH⊥AD.在Rt △GHE 中,HE=4,HG=AG-AH=AF-BE=1,所以GE=2241+=17,•即PF+PE=17.三、7.解:因为∠FDC=∠FEC=∠BCD=90°,所以四边形CDFE 是矩形,因为CF•平分∠ACB,FE⊥BC,FD⊥AC,所以FE=FD ,所以矩形CDFE 是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,•还可以先说明其为菱形,再求其一个内角为90°.四、8.解:(1)相等.理由:在△ADE 与△BAF 中,AD=AB ,∠DAE=∠ABF=90°,AE=BF , 所以△ADE≌△BAF(S .A .S .),所以DE=AF .(2)AF 与DE 垂直.理由:如图,设DE 与AF 相交于点O .因为△ADE≌△BAF,•所以∠AED=∠BFA.又因为∠BFA+∠EAF=90°,所以∠AEO+∠EAO=90°,所以∠EOA= 90°,所以DE⊥AF.20.5 等腰梯形的判定一、选择题1.下列结论中,正确的是()A.等腰梯形的两个底角相等 B.两个底角相等的梯形是等腰梯形C.一组对边平行的四边形是梯形 D.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线AC,BD相交于点O,则图中全等三角形有()A.2对 B.3对 C.4对 D.5对3.课外活动课上,•老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A.302cm B.30cm C.60cm D.602cm二、填空题4.等腰梯形上底,下底和腰分别为4,•10,•5,•则梯形的高为_____,•对角线为______. 5.一个等腰梯形的上底长为5cm,下底长为12cm,一个底角为60°,则它的腰长为____cm,周长为______cm.6.在四边形ABCD中,AD∥BC,但AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________(填一个正确的条件即可).三、解答题7.如图所示,AD是∠BAC的平分线,DE∥AB,DE=AC,AD≠EC.求证:•四边形ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有AB=DC,∠B=∠C,且AD<BC,四边形ABCD是等腰梯形吗?为什么?参考答案一、1.D 点拨:梯形的底角分为上底上的角和下底上的角,•因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(•指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A,B选项都不正确,而C选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2.B 点拨:因为△ABC≌△DCB,△BAD≌△CDA,△AOB≌△DOC,所以共有3对全等的三角形.3.C 点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,•所以梯形面积为12L2=450,解得L=30,所以所用竹条长度之和至少为2L=2×30=60(cm).二、4.4:65点拨:如图所示,连结BD,过A,D分别作AE⊥BC,DF⊥BC,垂足分别为E,F.易知△BAE≌△CDF,在四边形AEFD为矩形,所以BE=CF=3,AD=EF=4.在Rt△CDF中,FC2+DF2=CD2,即32+DF2=52,所以DF=4,在Rt△BFD中,BF2+DF2=BD2,即72+42=BD2,所以BD=65.5.7;31点拨:如图所示,过点D作DE∥AB交BC于E.因为AD∥BC,AB ∥DE,所以四边形ABED是平行四边形.所以BE=AD=5(cm),AB=DE.又因为AB=CD,所以DE=•DC,又因为∠C=60°,所以△DEC是等边三角形,所以DE=DC=EC=7(cm),所以周长为5+•12+7+7=31(cm).6.AB=CD(或∠A=∠D,或∠B=∠C,或AC=BD,或∠A+∠C=180°,或∠B+∠D=180°)三、7.证明:因为AB∥ED,所以∠BAD=∠ADE.又因为AD是∠BAC的平分线,所以∠BAD=∠CAD,所以∠CAD=∠ADE,所以OA=OD.又因为AC=DE,所以AC-OA=DE-OD即OC=OE,•所以∠OCE=∠OEC,又因为∠AOD=∠COE,所以∠CAD=∠OCE.所以AD∥CE,而AD≠CE,故四边形ADCE是梯形.又因为∠CAD=∠ADE,AD=DA,AC=DE,所以△DAC≌△ADE,所以DC=•AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的FBE D CA HF ED CBA两个角相等.四、8.解:四边形ABCD 是等腰梯形.理由:延长BA ,CD ,相交于点E ,如图所示,由∠B=∠C,可得EB=EC . 又AB=DC ,所以EB-AB=EC-DC ,即AE=DE ,所以∠EAD= ∠EDA. 因为∠E+∠EAD+∠EDA=180°,∠E+∠B+∠C=180°,所以∠EAD=∠B. 故AD∥BC.•又AD<BC ,所以四边形ABCD 是梯形. 又AB=DC ,所以四边形ABCD 是等腰梯形.点拨:由题意可知,只要推出AD∥BC,再由AD<BC 就可知四边形ABCD 为梯形,再由AB=DC ,即可求得此四边形是等腰梯形,由∠B=∠C 联想到延长BA ,CD ,即可得到等腰三角形,从而使AD∥BC.华东师大版数学八年级(下)第20章 平行四边形的判定测试(答卷时间:90分钟,全卷满分:100分)姓名 得分____________一、认认真真选,沉着应战!(每小题3分,共30分) 1. 正方形具有菱形不一定具有的性质是 ( )(A )对角线互相垂直 (B )对角线互相平分 (C )对角线相等 (D )对角线平分一组对角2. 如图(1),EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( ) (A )51 (B )41 (C )31 (D )103)1CBA(1) (2) (3) 3.在梯形ABCD 中,AD ∥BC ,那么:::A B C D ∠∠∠∠可以等于( )(A )4:5:6:3 (B )6:5:4:3 (C )6:4:5:3 (D )3:4:5:6 4.如图(2),平行四边形ABCD 中,DE ⊥AB 于E ,DF ⊥BC 于F ,若A B C D 的周长为48,DE =5,DF =10,则ABCD 的面积等于( )(A )87.5 (B )80 (C )75 (D )72.55. A 、B 、C 、D 在同一平面内,从①AB ∥CD; ②AB=CD; ③BC ∥AD; ④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )(A )3种 (B )4种 (C )5种 (D )6种6.如图(3),D 、E 、F 分别是ABC 各边的中点,AH 是高,如果5ED cm =,那么HF 的长为( )(A )5cm (B )6cm (C )4cm (D )不能确定 7. 如图(4):E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( ) (A )22 (B )21 (C )32 (D )238.如图(5),在梯形ABCD 中,AD ∥BC ,AB CD =,60C ∠=︒,BD 平分ABC ∠,如果这个梯形的周长为30,则AB 的长 ( )(A )4 (B )5 (C )6 (D )79.右图是一个利用四边形的不稳定性制作的菱形晾衣架. 已知其中每个菱形的边长为20cm ,墙上悬挂晾衣架的两 个铁钉A 、B 之间的距离为203cm ,则∠1等于( )(A )90° (B)60° (C)45° (D)30° 10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a 、b , 都有a+b ≥2ab 成立.某同学在做一个面积为3 600cm 2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备x cm . 则x 的值是( )(A) 1202 (B) 602 (C) 120 (D) 60ED CB A R QP(4) DCB A (5)A B C Dl N M D C BA 二、仔仔细细填,记录自信!(每小题2分,共20分)11.一个四边形四条边顺次是a 、b 、c 、d ,且bd ac d c b a 222222+=+++,则这个四边形是_______________.12.在四边形ABCD 中,对角线AC 、BD 交于点O ,从(1)AB CD =;(2)AB CD ∥;(3)OA OC =;(4)OB OD =;(5)AC BD ⊥;(6)AC 平分BAD ∠这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒ABCD 是菱形,再写出符合要求的两个: ⇒A B C D 是菱形; ⇒A B C D是菱形. 13. 如图,已知直线l 把ABCD 分成两部分,要使这两部分的面积相等,直线l 所在位置需满足的条件是____________________.(只需填上一个你认为合适的条件)(第13题) (第16题)14. 梯形的上底长为6cm ,过上底的一顶点引一腰的平行线,与下底相交,所构成的三角形周长为21cm ,那么梯形的周长为_________cm 。

(完整)二年级数学-平行四边形的认识练习题

(完整)二年级数学-平行四边形的认识练习题

(完整)二年级数学-平行四边形的认识练习

二年级数学-平行四边形的认识练题
1. 已知一组平行线段的长度分别为8cm和12cm,它们之间的距离为6cm,求两条平行线段的夹角大小。

2. 一张平行四边形的底边长为10cm,高为4cm,求该平行四边形的面积。

3. 已知平行四边形的底边长为6cm,高为3cm,求该平行四边形的周长。

4. 一条边长为8cm的正方形上,以边长为4cm的正方形为边从外部剪掉一个正方形,剩下的图形是什么形状?
5. 在一个平行四边形中,两对相对边分别为7cm和9cm,求这个平行四边形的面积。

6. 已知一个平行四边形的周长为24cm,其中一条边长为6cm,求这个平行四边形的高和底边长。

7. 一个平行四边形的一条边长为8cm,高为5cm,求该平行四
边形的面积。

8. 如果一张长方形是一个平行四边形,那么这个长方形的两组
对边是否相等?
9. 在一个平行四边形中,两组对边分别为6cm和8cm,求这个平行四边形的周长。

10. 如果一个四边形的对边互相平行并且长度相等,那么这个
四边形一定是什么几何图形?
以上是二年级数学的平行四边形的认识练习题,希望能够帮助
你加深对平行四边形的理解和掌握。

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案一、选择题:1. 平行四边形的特点是()A. 两组对边相等B. 两组对边互相垂直C. 对角线相等D. 没有特定的特点2. 若平行四边形的一组对边长为3cm和6cm,另一组对边长为4cm 和8cm,该平行四边形的周长为()A. 21cmB. 28cmC. 35cmD. 42cm3. 若平行四边形的一组对边长为12cm和8cm,且高为4cm,求该平行四边形的面积。

A. 24cm²B. 32cm²C. 48cm²D. 64cm²二、填空题:1. 平行四边形ABCD中,∠BAD的补角为______。

2. 如果一条直线与一组平行线相交,那么它与另一组平行线的关系是______。

3. 若平行四边形的一组对边长为10cm和6cm,且高为5cm,那么其面积为______。

三、解答题:1. 证明:平行四边形的对角线互相等长。

四、综合题:1. 已知平行四边形ABCD的周长为48cm,其中AB的长为12cm,CD的长为8cm。

求其面积。

2. 已知平行四边形ABCD中,对角线AC的长为5cm,对角线BD 的长为12cm。

求该平行四边形的周长和面积。

答案:一、选择题:1. A2. B3. B二、填空题:1. ∠CAD2. 平行3. 30cm²三、解答题:1. 证明:设平行四边形ABCD的一组对边为AB和CD,对角线AC和BD相交于点O。

∵ AB ∥ CD (已知)∴∠ABC = ∠CDA (同位角)同理可得∠BAC = ∠CDB∵∠ABC = ∠CDA,∠BAC = ∠CDB∴△ABC ≌△CDA (ASA准则)∴ AB = CD (对应边相等)同理可证 AC = BD∴平行四边形ABCD的对角线互相等长。

四、综合题:1. 设平行四边形ABCD的高为h。

∵ AB + BC + CD + DA = 48cm (周长)∴ 12 + BC + 8 + DA = 48∴ BC + DA = 48 - 20∴ BC + DA = 28∵ AB ∥ CD,AD ┴ CD∴高h = AD = BC∴ 2h + 4 + 2h = 28∴ 4h = 24∴ h = 6∴面积 = 底 ×高 = (BC + DA) × h = 28 × 6 = 168cm²所以,平行四边形ABCD的面积为168cm²。

数学人教版八下《 平行四边形性质与判定》同步基础练习卷(含答案)(2022年最新)

数学人教版八下《 平行四边形性质与判定》同步基础练习卷(含答案)(2022年最新)
7.如图,在▱ABCD中,AD=16,点E,F分别是BD,CD的中点,则EF等于( )
A.10B.8C.6D.4
8.如图,平行四边形ABCD中,P是形内任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1,S2,S3,S4,则一定成立的是( )
A.S1+S2=S3+S4B.S1+S2>S3+S4C.S1+S3=S2+S4D.S1+S2<S3+S4
17.如图,E,F是▱ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.
18.一个四边形四条边顺次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_______
三、解答题
19.如图,已知△ABC中,D为AB的中点.
(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);
∵EF=BF,BF=DC,∴EF=DC,
∴四边形EFCD是平行四边形。
23.证明:连接AE、DB、BE,BE交AD于点O,
∵AB DE,∴四边形ABDE是平行四边形,∴OB=OE,OA=OD,
∵AF=DC,∴OF=OC,∴四边形BCEF是平行四边形.
24.解:(1)DE+DF=AB.理由如下:
如图1.∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∴DE=AF.
14.如图,加一个条件与∠A+∠B=180°能使四边形ABCD成为平行四边形.
15.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______
16.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.

新人教版八年级下平行四边形练习基础题

新人教版八年级下平行四边形练习基础题
考点:平行四边形的性质.
7.D.
【解析】
试题分析:根据平行四边形的性质(①平行四边形的对边平行且相等,②平行四边形的对角相等,③平行四边形的对角线互相平分)判断即可.
A、∵四边形ABCD是平行四边形,
∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;
B、∵四边形ABCD是平行四边形,
∴CD=AB,正确,不符合题意;
∵ ABCD中,AD∥BC,∴∠FDE=∠BEC,∠F=∠EBC。∴△FDE≌△BEC(AAS)。∴DF=CB。
∵DF=3,DE=2,∴ ABCD的周长为:4DE+2DF=14。故选D。
10.B
【解析】
试题分析:∵AE为∠ADB的平分线,∴∠DAE=∠BAE。
∵DC∥AB,∴∠BAE=∠DFA。∴∠DAE=∠DFA。∴AD=FD。
参考答案
1.D.
【解析】
试题分析:由平行四边形的性质可知:①边:平行四边形的对边相等②角:平行四边形的对角相等③对角线:平行四边形的对角线互相平分.
所以四个选项中D不正确,
故选D.
考点:平行四边形的性质.
2.C.
【解析】
试题分析:根据菱形、正方形、矩形、平行四边形的定义或判定定理进行判定即可得出答案.
B.一组对边平行一组对边相等的四边形是平行四边形
C.两条对角线相等的平行四边形是矩形
D.对角线互相垂直且相等的四边形是正方形
3.如图,在平行四边形 中,对角线 , 相交于点O,若 , 的和为18 cm, ,△AOB的周长为13 cm,那么BC的长是()
A.6 cmB.9 cm
C.3 cmD.12 cm
4.顺次连结任意四边形各边中点所得到的四边形一定是()
A.平行四边形B.菱形C.矩形D.正方形

平行四边形练习题40道

平行四边形练习题40道

平行四边形40题一.选择题”1.下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠A=∠C B.AB=CD,∠B=∠DC.AD=BC,AD∥BC D.AB=CD,AD=BC2、下列条件中,能判定四边形ABCD为平行四边形的个数是()①AB∥CD,AD=BC;②AB=CD,AD=BC;③∠A=∠B,∠C=∠D;④AB=AD,CB=CDA.1个B.2个C.3个D.4个3、下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠A=∠C B.AB=CD,∠B=∠DC.AD=BC,AD∥BC D.AB=CD,AD=BC4.下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2;3:2:3D.2:3:3:25.如图,在四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,添加下列条件不能使四边形ABCD 成为平行四边形的是()A.AB=CD B.OB=ODC.∠BCD+∠ADC=180°D.AD=BC6.如图,E,F是四边形ABCD的对角线BD上的两点,AE∥CF,AB∥CD,BE=DF,则下列结论①AE=CF,②AD=BC,③AD∥BC,④∠BCF=∠DAE其中正确的个数为()A.1个B.2个C.3个D.4个7.如图,两条平行线l1,l2被另外一组平行线l3,l4,l5所截,交点分别为A,B,C,D,E,F.则下列结论错误的是()A.AB=DE B.AD=CF C.AB=BC D.AC=DF8.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③9.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的是()A.只有①②B.只有①②③C.只有③④D.①②③④10.如图,E、F分别是平行四边形ABCD的边AD、BC上的点,且BE∥DF,AC分别交BE、DF于点G、H.下列结论:①四边形BFDE是平行四边形;②△AGE≌△CHF;③BG=DH;④S△AGE:S△CDH=GE:DH,其中正确的个数是()A.1B.2个C.3个D.4个11.▱ABCD中,E、F分别在边AB和CD上,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.AE=CF B.AF=EC C.∠DAF=∠BCE D.∠AFD=∠CEB12.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD13.如图,两条宽度分别为1和2的方形纸条交叉放置,重叠部分为四边形ABCD,若AB+BC=6,则四边形ABCD的面枳是()A.4B.2C.8D.614.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM =∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2B.3C.3或5D.4或515.如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是()A.S△DEF=S△ABCB.△DEF≌△F AD≌△EDB≌△CFEC.四边形ADEF,四边形DBEF,四边形DECF都是平行四边形D.四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长二.填空题(共10小题)16.如图,在▱ABCD中,对角线AC、BD相交于点E,AC⊥BC.若AC=4,AB=5,则BD的长为.17.如图,两条宽度分别为2和4的纸条交叉放置,重叠部分为四边形ABCD,若AB•BC=100,则四边形ABCD的面积是.18.如图所示,在▱ABCD中E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是,①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE.19.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,则图中面积相等的平行四边形共有对.20.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=s时,以A、C、E、F为顶点四边形是平行四边形.21.如图,四边形ABCD中,AD∥BC,AD=3,BC=8,E是BC的中点,点P以每秒1个单位长度的速度从A点出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B 运动,点P停止运动时,点Q也随之停止运动.当运动时间t=秒时,以点P,Q,E,D为顶点的四边形是平行四边形.22.已知点A(1,0),B(4,0),C(0,2),在平面内找一点M使得以M、A、B、C为顶点的四边形为平行四边形,则点M的坐标为.23.已知点A(2,2),B(﹣2,0),C(3,﹣1),且以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为:.24.在平面直角坐标系xOy中,已知点A(1,1),B(﹣1,1),如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C的坐标为.25.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD =4AG;④△DBF≌△EF A.其中正确结论的序号是.三.解答题(共15小题)26.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.27、如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.28.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=10,求BC的长.29、如图,在▱ABCD中,AF平分∠BAD交BC于点F,CE平分∠BCD交AD于点E.(1)若AD=12,AB=8,求CF的长;(2)连接BE和AF相交于点G,DF和CE相交于点H,求证:EF和GH互相平分.30.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=30°,时,求D,F两点间的距离.31.如图,在平行四边形ABCD中,∠BAD和∠DCB的平分线AE,CF分别交BC,AD于点E,F,点M,N分别是AE,CF的中点,连接FM,EN(1)求证:BE=DF;(2)求证:四边形FMEN是平行四边形.32.如图,四边形ABCD的对角线AC、BD相交于点O,AO=CO,EF过点O且与AD、BC分别相交于点E、F,OE=OF(1)求证:四边形ABCD是平行四边形;(2)连接AF,若EF⊥AC,△ABF周长是15,求四边形ABCD的周长.33.如图,在▱ABCD中,O为AC的中点,EF过点O,分别交AD,CB的延长线于点E,F.(1)求证:四边形AFCE是平行四边形.(2)若AC平分∠BAE,AB=6,AE=8,求BF的长.34.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.35.如图,E、F是▱ABCD的对角线AC上的两点,且BE⊥AC,DF⊥AC,连接BE、ED、DF、FB.(1)求证:四边形BEDF为平行四边形;(2)若BE=4,EF=2,求BD的长.36、如图,在平行四边形ABCD中,点E、F别在BC,AD上,且BE=DF.(1)如图①,求证:四边形AECF是平行四边形;(2)如图②,若∠BAC=90°,且AB=3.AC=4,求平行四边形ABCD的周长.37.如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若△ABE是等边三角形,四边形BCDE的面积等于2,求CE的长.38.如图,在△ABC中,∠BAC=70°,∠ABC和∠ACB的角平分线交于D点,E、F、G、H分别是线段AB、AC、BD、CD的中点.(1)求∠BDC的度数;(2)证明:四边形EGHF为平行四边形.39.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC 于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)当t为何值时,△DEF为直角三角形?请说明理由.40、【阅读材料】在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,)【运用】(1)已知O为▱ABCD的对角线AC与BD交点,点B的坐标为(4,3),则点D的坐标为(﹣1,1),则O的坐标为(,2);(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C构成平行四边形的顶点,求点D的坐标.(提示:运用阅读材料完成)。

平行四边形的判定基础练习

平行四边形的判定基础练习

平行四边形的判断 -2一、解答题(共10 小题)(选答题,不自动判卷)1.如图,点D、 C 在 BF 上, AC∥ DE,∠ A=∠ E, BD=CF,( 1)求证: AB=EF.(2)连结 AF, BE,猜想四边形A BEF的形状,并说明原因.2.如图,在四边形ABCD中,∠ B=∠ D,∠ 1=∠ 2,求证:四边形ABCD是平行四边形.3.如图,点A、 F、 C、D 在同向来线上,点 B 和点 E 分别在直线AD 的双侧,且AB=DE,∠ A=∠ D, AF=DC.求证:四边形BCEF是平行四边形.4.如图, A、D、 F、 B 在同向来线上,AE=BC,且 AE∥BC, AD=BF.( 1)求证:△ AEF≌△ BCD;( 2)连 ED, CF,则四边形EDCF是.5、如图,平行四边形ABCD中, BE=DF,AG=CH。

求证:四边形 GEHF是平行四边形。

6.如图,在△ ABC 中,∠ ACB=90°,∠ CAB=30°,△ ABD 是等边三角形,E是AB 的中点,连结CE并延伸交AD 于 F.求证:(1)△ AEF≌△ BEC;( 2)四边形BCFD是平行四边形.7.已知:如图,在四边形ABCD中, AB∥ CD,E, F 为对角线AC 上两点,且AE=CF, DF∥ BE.求证:四边形ABCD为平行四边形.8.如图, AB∥ CD, AB=CD,点 E、F 在 BC 上,且 BE=CF.( 1)求证:△ ABE≌△ DCF;( 2)试证明:以A、F、 D、 E 为极点的四边形是平行四边形.9.如图,已知BE∥ DF,∠ ADF=∠ CBE, AF=CE,求证:四边形DEBF是平行四边形.10.如图,已知: AB∥CD, BE⊥ AD,垂足为点 E, CF⊥AD,垂足为点 F,而且 AE=DF.求证:四边形 BECF是平行四边形.【考点训练】平行四边形的判断-2参照答案与试题分析一、解答题(共10 小题)(选答题,不自动判卷)1.如图,点D、 C 在 BF 上, AC∥ DE,∠ A=∠ E, BD=CF,(1)求证: AB=EF.(2)连结 AF, BE,猜想四边形 ABEF的形状,并说明原因.【剖析】(1)利用AAS证明△ ABC≌△ EFD,再依据全等三角形的性质可得AB=EF;( 2)第一依据全等三角形的性质可得∠B=∠ F,再依据内错角相等两直线平行可获得AB∥ EF,又AB=EF,可证出四边形 ABEF为平行四边形.【解答】(1)证明:∵ AC∥DE,∴∠ ACD=∠EDF,∵BD=CF,∴BD+DC=CF+DC,即BC=DF,又∵∠ A=∠E,∴△ ABC≌△ EFD(AAS),∴ AB=EF;(2)猜想:四边形 ABEF为平行四边形,原因以下:由( 1)知△ ABC≌△ EFD,∴∠ B=∠ F,∴ AB∥ EF,又∵ AB=EF,∴四边形 ABEF为平行四边形.【评论】本题主要考察了全等三角形的判断与性质,平行四边形的判断,解决问题的重点是证明△ ABC ≌△ EFD.2.如图,在四边形ABCD中,∠ B=∠D,∠ 1=∠2,求证:四边形 ABCD是平行四边形.【剖析】依据三角形内角和定理求出∠ DAC=∠ACB,依据平行线的判断推出 AD∥ BC,AB∥CD,依据平行四边形的判断推出即可.【解答】证明:∵∠ 1+∠B+∠ACB=180°,∠ 2+∠D+∠ CAD=180°,∠ B=∠D,∠1=∠ 2,∴∠ DAC=∠ACB,∴AD∥ BC,∵∠ 1=∠ 2,∴AB∥ CD,∴四边形 ABCD是平行四边形.【评论】本题考察了平行线的判断和平行四边形的判断的应用,主要考察学生的推理能力.3.如图,点 A、F、C、D 在同向来线上,点 B 和点 E 分别在直线 AD 的双侧,且 AB=DE,∠ A=∠D,AF=DC.求证:四边形 BCEF是平行四边形.【剖析】第一证明△ AFB≌△ DCE(SAS),从而得出 FB=CE,FB∥CE,从而得出答案.【解答】证明:在△ AFB和△ DCE中,,∴△ AFB≌△ DCE(SAS),∴FB=CE,∴∠ AFB=∠DCE,∴FB∥CE,∴四边形 BCEF是平行四边形.【评论】本题主要考察了平行四边形的判断以及全等三角形的判断与性质,得出△ AFB≌△ DCE 是解题重点.4.如图, A、D、F、B 在同向来线上, AE=BC,且 AE∥ BC, AD=BF.(1)求证:△ AEF≌△ BCD;(2)连 ED,CF,则四边形 EDCF是.(从平行四边形,矩形,菱形,正方形中选填).【剖析】(1)依据 AE∥BC 可得∠ A=∠ B,再由 AD=BF可得 AF=BD,再加上条件 AE=CB,可依据SAS 定理证明△ AEF≌△ BCD;(2)依据△ AEF≌△ BCD,可得 EF=CD,∠ EFA=∠ CDB,从而证明出 EF∥ DC,再依据一组对边平行且相等的四边形 EDCF是平行四边形.【解答】解:(1)证明:∵AE∥BC,∴∠ A=∠ B,∵AD=BF,∴AF=DB,∵ AE=BC,在△ AEF和△ BCD中,∴△ AEF≌△ BCD(SAS);(2)平行四边形.∵△AEF≌△BCD,∴ EF=CD,∠ EFA=∠CDB,∴ EF∥DC,∴四边形 EDCF是平行四边形.【评论】本题主要考察了全等三角形的判断与性质,以及平行四边形的判断,重点是掌握一组对边平行且相等的四边形是平行四边形.5.如图,在 ABCD中, AC 交 BD 于点 O,点 E,点 F 分别是 OA, OC的中点,请判断线段BE,DF 的地点关系和数目关系,并说明你的结论.【剖析】依据平行四边形的性质对角线相互均分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判断定理“对角线相互均分的四边形是平行四边形”判断BFDE是平行四边形,从而得出 BE=DF, BE∥DF.【解答】解: BE=DF,BE∥ DF由于 ABCD是平行四边形,因此OA=OC,OB=OD,由于 E,F 分别是 OA,OC的中点,因此OE=OF,因此 BFDE是平行四边形,因此BE=DF,BE∥DF【评论】主要考察了平行四边形的基天性质和判断定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线相互均分.判断:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线相互均分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.6.如图,在△ ABC中,∠ ACB=90°,∠ CAB=30°,△ ABD 是等边三角形, E 是 AB 的中点,连结CE并延伸交 AD 于 F.求证:(1)△ AEF≌△ BEC;(2)四边形 BCFD是平行四边形.【剖析】(1)利用等边三角形的性质得出∠DAB=60°,即可得出∠ ABC=60°,从而求出△ AEF≌△ BEC (ASA);(2)利用平行线的判断方法以及直角三角形的性质得出 CF∥BD,从而求出答案.【解答】证明(1)∵ E 是 AB 中点,∴ AE=BE,∵△ABD 是等边三角形,∴∠ DAB=60°,∵∠CAB=30°,∠ACB=90°,∴∠ ABC=60°,在△ AEF和△ BEC中,∴△ AEF≌△ BEC(ASA);(2)∵∠ DAC=∠DAB+∠ BAC,∠ DAB=60°,∠ CAB=30°,∴∠ DAC=90°,∴AD∥ BC,∵E 是 AB 的中点,∠ACB=90°,∴ EC=AE=BE,∴∠ ECA=30°,∠ FEA=60°,∴∠ EFA=∠BDA=60°,∴CF∥BD,∴四边形 BCFD是平行四边形.【评论】本题主要考察了平行四边形的判断以及全等三角形的判断方法,得出∠ ABC=60°是解题重点.7.已知:如图,在四边形ABCD中, AB∥ CD,E,F 为对角线 AC上两点,且 AE=CF,DF∥BE.求证:四边形 ABCD为平行四边形.【剖析】第一证明△ AEB≌△ CFD可得 AB=CD,再由条件 AB∥CD 可利用一组对边平行且相等的四边形是平行四边形证明四边形 ABCD为平行四边形.【解答】证明:∵ AB∥ CD,∴∠ DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△ AEB和△ CFD中,∴△ AEB≌△ CFD(ASA),∴AB=CD,∵ AB∥ CD,∴四边形 ABCD为平行四边形.【评论】本题主要考察了平行四边形的判断,重点是掌握一组对边平行且相等的四边形是平行四边形.8.如图, AB∥CD,AB=CD,点 E、F 在 BC上,且 BE=CF.(1)求证:△ ABE≌△ DCF;(2)试证明:以 A、 F、 D、 E 为极点的四边形是平行四边形.【剖析】(1)由全等三角形的判断定理SAS证得△ ABE≌△ DCF;( 2)利用( 1)中的全等三角形的对应角相等证得∠AEB=∠DFC,则∠ AEF=∠DFE,因此依据平行线的判断能够证得AE∥ DF.由全等三角形的对应边相等证得AE=DF,则易证得结论.【解答】证明:(1)如图,∵ AB∥CD,∴∠ B=∠ C.∵在△ ABE与△ DCF中,,∴△ ABE≌△ DCF(SAS);(2)如图,连结 AF、DE.由( 1)知,△ ABE≌△ DCF,∴ AE=DF,∠ AEB=∠DFC,∴∠ AEF=∠DFE,∴ AE∥DF,∴以 A、F、D、E 为极点的四边形是平行四边形.【评论】本题考察了平行四边形的判断、全等三角形的判断与性质.在证明(2)题时,利用了“一组对边平行且相等的四边形是平行四边形”的判断定理.9.如图,已知 BE∥DF,∠ ADF=∠CBE,AF=CE,求证:四边形D EBF是平行四边形.【剖析】第一依据平行线的性质可得∠ BEC=∠ DFA,再加上条件∠ ADF=∠CBE,AF=CE,可证明△ADF ≌△ CBE,再依据全等三角形的性质可得 BE=DF,依据一组对边平行且相等的四边形是平行四边形进行判断即可.【解答】证明:∵ BE∥ DF,∴∠ BEC=∠DFA,在△ ADF和△ CBE中,∴△ ADF≌△ CBE(AAS),∴BE=DF,又∵ BE∥ DF,∴四边形 DEBF是平行四边形.【评论】本题主要考察了平行四边形的判断,重点是掌握一组对边平行且相等的四边形是平行四边形.10.如图,已知: AB∥ CD, BE⊥AD,垂足为点 E, CF⊥AD,垂足为点 F,而且 AE=DF.求证:四边形 BECF是平行四边形.【剖析】经过全等三角形(△ AEB≌△ DFC)的对应边相等证得 BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得 BE∥CF.则四边形 BECF是平行四边形.【解答】证明:∵BE⊥ AD,CF⊥AD,∴∠ AEB=∠DFC=90°,∵AB∥ CD,∴∠ A=∠ D,在△ AEB与△ DFC中,,∴△ AEB≌△ DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴ BE∥CF.∴四边形 BECF是平行四边形.【评论】本题考察了平行四边形的判断、全等三角形的判断与性质.一组对边平行且相等的四边形是平行四边形.。

(完整版)小学二年级平行四边形的初步认识练习题

(完整版)小学二年级平行四边形的初步认识练习题

《平行四边形》的初步认识姓名班级一、想一想.填一填1.摆一个三角形至少要用()根小棒;摆一个四边形至少要用()根小棒;摆两个三角形至少要用()根小棒;摆二个四边形至少要用()根小棒。

2.平行四边形有()条边,有()个角,对边(),对角()。

3. 下图中有()个三角形,有()个平行四边形。

4.数一数,下面的图形中有()个四边形;5.下列图形中,是平行四边形的有(填序号)。

二、按要求分一分;1. 按要求在每个图形上画一条线,把它分成两个指定的图形。

(1)两个三角形(2)一个三角形和一个五边形(3)两个四边形2.把下面的图形分成三角形。

3.把下面的图形分成两个四边形。

4.把下面的图形分成一个三角形、一个四边形。

三、在下面的点子图上画一个平行四边形和一个正方形。

四、判断题。

1. 平行四边形的对边相等。

()2. 平行四边形的对角相等。

()3. 由四条边围成的图形是平行四边形。

()4. 长方形是特殊的平行四边形,正方形又是特殊的长方形。

( )5. 两个完全一样的梯形可以拼成一个平行四边形。

( )6. 用两根8厘米和两根6厘米的小棒,一定能摆成一个平行四边形。

( )五、数一数,下图中有()个长方形;()个正方形;()个平行四边形。

六、选择(将正确答案的序号填在括号里)1. 木头椅子摇晃了,常常在椅子下边斜着钉木条,这是运用了()。

①三角形的稳定性能②平行四边形容易变形的特性2. 下面的四边形中,()不是平行四边形。

3. 平行四边形的()相等。

①四个角②四条边③对边4. 当一个四边形的两组对边分别平行,四条边都相等,四个角都相等时,这个四边形是()①平行四边形②正方形③菱形④长方形七、数一数,分一分;四边形有()个,五边形有()个,六边形有()个。

(完整版)平行四边形练习题附答案

(完整版)平行四边形练习题附答案

平行四边形测试题一、选择题1.若平行四边形ABCD 的周长是40cm ,△ABC 的周长是27cm ,则AC 的长为( )A .13cmB .3cmC .7cmD .11.5 cm2.根据下列条件,不能判定四边形是平行四边形的是( )A .一组对边平行且相等的四边形 B .两组对边分别相等的四边形 C .对角线相等的四边形D .对角线互相平分的四边形3.已知平行四边形周长为28cm ,相邻两边的差是4cm ,则两边的长分别为( )A .4cm 、10cmB .5cm 、9cmC .6cm 、8cmD .5cm 、7cm4.下列条件中,能判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等 B .一组对边平行,一组对角相等 C .一组邻边相等,一组对角相等D .一组对边平行,一组对角互补5.若A 、B 、C 三点不在同一条直线上,则以其为顶点的平行四边形共有( )个A .1B .2C .3D .46.能够判定四边形是平行四边形的条件是( )A .一组对角相等 B .两条对角线互相垂直C .两条对角线互相平分D .一条邻角互补7.已知平行四边形的一条边长为14,下列各组数中能分别作它的两条对角线长的是( )A .10与6B .12与16C .20与22D .10与188.四边形ABCD 中,AD ∥BC ,当满足条件( )时,四边形ABCD 是平行四边形A .∠A +∠C =B .∠B +∠D = ︒180︒180C .∠A +∠B =D .∠A +∠D =︒180︒1809.已知下列三个命题⑴两组对角分别相等的四边形是平行四边形⑵一个角与相邻两角都互补的四边形是平行四边形⑶一组对角相等,一组对边平行的四边形是平行四边形其中错误的命题的个数是( )A .0个B .1个C .2个D .3个10.平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC = 10,BD = 8,则AD 的取值范围是( ) A .AD >1 B . AD <9 C .1<AD <9 D .AD >9二、填空题11.一个平行四边形的周长为40,两邻边的比为3∶5,则四边形的长为_________.12.一个平行四边形的一个内角比它的邻角大,则这个四边形的四个内角分别是________.︒2413.在平行四边形ABCD 中,EF 过对角线交点O ,交CD 、AB 于E 、F ,若AB = 4cm ,AD = 3cm ,OF = 1.3cm ,则四边形BCEF 周长为_____________.14.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长为_____.15.在平行四边形ABCD 中,对角线BD = 7cm ,∠DBC =,BC = 5cm ,则平行四边形ABCD 的面积为︒30___________.16.从平行四边形的一锐角顶点引另两条边的垂线,两垂线夹角,则此四边形的四个角分别为︒135_____________.三、解答题:17.平行四边形周长等于68cm ,被两条对角线分成两个不同的三角形的周长和等于80cm ,两对角线的长度之比是2∶3,求两条对角线的长度.18.如图,AD 、BC 垂直相交于点O ,AB ∥CD ,又BC = 8,AD = 6,求:AB +CD 的长.19.如图,某村有一口呈四边形的池塘,在它的四个角A 、B 、C 、D 处均种有一棵大核桃树,这村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问这村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由.20.已知如图,在平行四边形ABCD 中,∠A =,E 、F 分别为AB 、CD 的中点,AB = 2AD ,求证:BD ︒60=EF .3参考答案:一、选择题:C .C .B . B . C .C .C .D .A .C .二、填空题:11.7.5、12.5、7.5、12.5 12.、、、︒102︒78︒102︒7813.9.6 cm14.6815.17.5 cm 16. ,,,2︒45︒135︒45︒135ADB AB OCDEAEC三、解答题:17.设一条对角线长为2a ,则另一条对角线长为3a .∵平行四边形周长等于68cm ,∴相邻两边的长为 34cm ,∴34+2a +3a = 80,解得a = 9.2,2a = 18.4,3a = 27.6.即两条对角线的长度分别为18.4 cm 和3a = 27.6 cm .18.过点C 作CE ∥AD 交BA 延长线于E ,∵AB ∥CD ,∴四边形AECD 是平行四边形,∴AE = CD ,∠BCE =∠BOA =,CE = AD = 6,︒90BE === 10.22CE BC +2268+∵ BE = AB +AE =AB +CD ,∴AB +CD = 10.19.这村能实现他们的设想.①分别过点A 、C 作BD 的平行线、,1l 2l ②分别过点B 、D 作AC 的平行线、,交、于点3l 4l 3l 1l 2l M 、N ;交、于点P 、Q ,则四边形MNPQ 就是所求的平行4l 1l 2l 四边形.20.连结DE ,在平行四边形ABCD 中,AB CD ,DF =CD ,AE =AB ,=//2121∴DF AE ,=//∴四边形AEFD 是平行四边形,∴EF = AD .又∵AB = 2AD ,AB = 2AE ,∴AD = AE ,且∠A =,︒60ADCB AQ DPCNB M 1l 2l 3l 4l ABOCDABOCDEECA∴DE = AE = BE ,∴∠1 =∠2 =×,∴∠ADB =,2121︒30︒90BD ===AD ,22AD AB -22)2(AD AD -3∴BD =EF .3。

小学数学认识平行四边形练习题及答案

小学数学认识平行四边形练习题及答案

小学数学认识平行四边形练习题及答案平行四边形是小学数学中的一个重要概念,它在几何学中具有丰富的性质和应用。

通过练习题的方式,可以帮助小学生更好地理解和掌握平行四边形的特点和运用方法。

本文将针对小学数学认识平行四边形的练习题及答案进行详细介绍。

练习题一:1. 填写下列图形中相等的角度:(1) ∠ABC = ______ ∠CDA = ______(2) ∠BAD = ______ ∠ADC = ______2. 判断下列图形是否为平行四边形:(1)AB || CDAD || BCAB ≠ AC(2)PQ || RSPS || QRPS = QR3. 在下列图形中连接相对的顶点,判断是否形成平行四边形:(1)O——A\ /B——C(2)I——J\ \K——L练习题二:1. 在平行四边形ABCD中,若∠A = 40°,请计算:(1) ∠C = ______(2) ∠B = ______(3) ∠D = ______2. 在平行四边形WXYZ中,若∠Z = 90°,请计算:(1) ∠Y = ______(2) ∠X = ______(3) ∠W = ______3. 已知平行四边形EFGH中,EF = 6 cm,EG = 8 cm,计算其面积。

答案及解析:练习题一:1.(1) ∠ABC = ∠CDA(2) ∠BAD = ∠ADC2.(1) 是平行四边形,因为根据定义,AB || CD,AD || BC,并且AB ≠ AC。

(2) 不是平行四边形,因为虽然PQ || RS,PS || QR,但是PS ≠ QR,无法满足平行四边形的定义。

3.(1) 形成平行四边形,因为OB || AC,OA || BC。

(2) 不是平行四边形,因为IK和JL不平行。

练习题二:1.(1) ∠C = ∠A = 40°,根据平行四边形的性质,相对角相等。

(2) ∠B = ∠D = 180° - ∠A = 180° - 40° = 140°,根据角的性质,相邻补角和为180°。

(完整版)平行四边形专项练习题

(完整版)平行四边形专项练习题

平行四边形专项练习题.选择题(共12小题)1 •在下列条件中,能够判定一个四边形是平行四边形的是( )A . —组对边平行,另一组对边相等B •—组对边相等,一组对角相等C. 一组对边平行,一条对角线平分另一条对角线D. —组对边相等,一条对角线平分另一条对角线2 •设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A. a >bB . a=bC. a v bD . b=a+180°3 .如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两 张等腰直角二角形纸片的面积都为 S ,另两张直角三角形纸片的面积都为 S 2,中间一张 正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为(4 .在?ABCD 中,AB=3, BC=4,当?ABCD 的面积最大时,下列结论正确的有( )①AC=5;②/ A+Z C=180;③AC 丄BD;④AC=BD A .①②③B .①②④C.②③④D .①③④5 .如图,在?ABCD 中,AB=6, BC=8 Z C 的平分线交 AD 于E,交BA 的延长线于F ,则A . 2B . 3 C. 4 D . 66 .如图,在?ABCD 中,BF 平分Z ABC,交AD 于点F , CE 平分Z BCD ,交AD 于点E ,AB=6,EF=2,则BC 长为()C. 4S 2+S D .3S+4SA . 4S7 .如图,在?ABCD 中,AB=12, AD=8,Z ABC 的平分线交CD 于点F ,交AD 的延长线于 点E, CG± BE,垂足为G ,若EF=2贝懺段CG 的长为()A .寸B .亦 C. 2厢 D .屈8. 如图,在?ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径 画弧,分别交AB 、AD 于点E 、F ;再分别以点E 、F 为圆心,大于^EF 的长为半径画弧, 两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是 (9.如图,将?ABCD 沿对角线AC 折叠,使点B 落在B 处,若/仁/ 2=44°则/B 为( )A . 66°B . 104° C. 114° D. 12410. 如图,?ABCD 的对角线AC BD 相交于点O ,且AC+BD=16, CD=6,则厶ABO 的周长11. 四边形ABCD 中,对角线AC BD 相交于点O ,给出下列四个条件: ①AD // BC;②AD=BQ ③OA=OC ④OB=ODB . 10 C. 12 D .14B . AD=DHC. DH=BC D .CH=DHB . 14C . 20D . 22 A . 8 A . 10从中任选两个条件,能使四边形 ABCD 为平行四边形的选法有(二•填空题(共6小题)13. _______________________________ 如图,把平行四边形ABCD 折叠,使点C 与点A 重合,这时点D 落在D i ,折痕为EF, 若/ BAE=55,则/ D i AD= .14. 如图,在?ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分/ DAB 和/ CBA 若AD=5,AP=8,则厶APB 的周长是 _________ .15. 如图所示,四边形 ABCD 的对角线相交于点 0,若AB / CD ,请添加一个条件 (写一个即可),使四边形ABCD 是平行四边形.A . 3种B . 4种C . 5种D . 6种12•如图,点A , B 为定点,定直线 中点,对下列各值:I // AB , P 是I 上一动点,点 M , N 分别为PA, PB 的①线段MN 的长;②厶PAB 的周长; / APB 的大小.③厶PMN 的面积;④直线MN , AB 之间的距离;⑤C.①③④D.④⑤B •②⑤ A •②③DB16 •如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为______________ .17•如图,在△ ABC中,/ ACB=90, M、N分别是AB、AC的中点,延长BC至点D,使CD=-BD,连接DM、DN、MN .若AB=6,贝U DN= __________ .D~C--------------------- 518. 如图,在厶ABC中,点D、E、F分别是边AB BC CA上的中点,且AB=6cm, AC=8cm 则四边形ADEF的周长等于 ______________ cm.三.解答题(共8小题)19. 如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ ADE^A FCE(2)若/ BAF=90,BC=5 EF=3 求CD的长.A D5 C F20. 如图,在?ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF(2)连接DE,若AD=2AB求证:DE丄AF.21 •已知:如图,在四边形ABCD中,AB// CD, E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.22•如图,四边形ABCD中,对角线AC, BD相交于点0,点E,F分别在0A, OC上(1)给出以下条件;①0B=0D,②/仁/2,③0E=0F请你从中选取两个条件证明△BEO^A DF0(2)在(1)条件中你所选条件的前提下,添加AE=CF求证:四边形ABCD是平行四边形.23•如图,点0是厶ABC内一点,连结0B 0C,并将AB、0B、0C AC的中点D、E、F、G依次连结,得到四边形DEFG(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,0M=3,/ 0BC和/ 0CB互余,求DG的长度.5 C24 .如图,?ABCD中,BD是它的一条对角线,过A、C两点作AE丄BD, CF丄BD,垂足分别为E、F,延长AE、CF分别交CD AB于M、N.(1) 求证:四边形CMAN是平行四边形.(2) 已知DE=4, FN=3,求BN 的长.25•如图,在?ABCD中,点E, F在对角线AC上,且AE=CF求证:(1)DE=BF(2)四边形DEBF是平行四边形.26.如图,等边△ ABC的边长是2, D、E分别为AB AC的中点,延长BC至点F,使CF=-BC,连接CD和EF.(1) 求证:DE=CF(2) 求EF的长.参考答案与解析一.选择题1.【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.2 .【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论. 解:•••四边形的内角和等于a,•••a= (4-2) ?180° =360°•••五边形的外角和等于b,••• b=360°,••• a=b.故选B.3. 【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出9 (用a、c表示), 得出S, S2, Q之间的关系,由此即可解决问题.解:设等腰直角三角形的直角边为a,正方形边长为c,贝卩S2令 (a+c) (a- c) 令'a2-%2,•S2=Si - — S3,•S s=2S - 2S2,•••平行四边形面积=2S+2S2+3=2S+2S2+2S I - 2S2=4S.故选A.4. 【分析】当?ABCD的面积最大时,四边形ABCD为矩形,得出/ A=Z B=Z C=Z D=90°, AC=BD根据勾股定理求出AC,即可得出结论.解:根据题意得:当?ABCD的面积最大时,四边形ABCD为矩形,A=Z B=Z C=Z D=9C°, AC=BD•AC= ' ! 4 =5 ,①正确,②正确,④正确;③不正确;故选:B.5 •【分析】由平行四边形的性质和角平分线得出/ F=Z FCB证出BF=BC=8同理:DE=CD=6 求出AF=BF- AB=2, AE=AD- DE=g即可得出结果.解:•••四边形ABCD是平行四边形,••• AB// CD, AD=BC=8 CD=AB=6•••/ F=Z DCF,v CF平分/ BCD,•••/ FCB=z DCF,•••/ F=Z FCB••• BF=BC=8同理:DE=CD=6••• AF=BF- AB=2, AE=AD- DE=2AE+AF=4;故选:C.6.【分析】由平行四边形的性质和角平分线得出/ ABF=Z AFB得出AF=AB=6同理可证DE=DC=6再由EF的长,即可求出BC的长.解:v四边形ABCD是平行四边形,. AD/ BC DC=AB=6 AD=BC•••/ AFB=/ FBCv BF 平分/ ABC,./ ABF=/ FBC则/ ABF=/ AFB. AF=AB=6同理可证:DE=DC=6v EF=AF+DE- AD=2即6+6- AD=2解得:AD=10;故选:B.7 •【分析】先由平行四边形的性质和角平分线的定义,判断出/ CBE2 CFB" ABEK E, 从而得到CF=BC=8 AE=AB=12再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.解:•••/ ABC的平分线交CD于点F,•••/ ABEN CBE•••四边形ABCD是平行四边形,•••DC// AB,•••/ CBE=/ CFB=/ ABEK E,•CF=BC=AD=8 AE=AB=12••• AD=8,•DE=4,••• DC/ AB ,…_「,•丄一—…丨:_「,•EB=6,v CF=CB CGL BF,在Rt A BCG中,BC=8 BG=2,根据勾股定理得,CG=:1「二=2. ■,故选:C.8 .【分析】根据作图过程可得得AG平分/ DAB,再根据角平分线的性质和平行四边形的性质可证明/ DAH=Z DHA,进而得到AD=DH,解:根据作图的方法可得AG平分/ DAB,v AG 平分/ DAB,•/ DAH=Z BAH,v CD// AB ,•Z DHA=Z BAH,•Z DAH=Z DHA,••• AD=DH, ••• BC=DH 故选D.9 .【分析】由平行四边形的性质和折叠的性质得出/ ACD=Z BAC=/ B' AC由三角形的外角性质求出/ BAC=/ ACD=Z B' A C=/仁22°,再由三角形内角和定理求出/ B即可. 解:•••四边形ABCD是平行四边形,••• AB// CD,•••/ ACD=/ BAC,由折叠的性质得:/ BAC=Z B' AC•••/ BAC=/ ACD=Z B' A C=/仁22°,•••/ B=1800-/ 2-/ BAC=180 - 44° - 22°=114°° 故选:C.10. 【分析】直接利用平行四边形的性质得出AO=CQ BO=DO, DC=AB=6再利用已知求出AO+BO的长,进而得出答案.解:•••四边形ABCD是平行四边形,••• AO=CO BO=DO, DC=AB=6••• AC+BD=16 ,AO+BO=8,•••△ABO的周长是:14.故选:B.11. 【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ AD3A CBQ进而得到AD=CB可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ ADO^A CBQ进而得到AD=CB可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;•••有4种可能使四边形ABCD为平行四边形.故选:B.12. 【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN」-AB, 从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解:•••点A, B为定点,点M, N分别为PA, PB的中点,•MN是A PAB的中位线,•MN^-AB,即线段MN的长度不变,故①错误;PA PB的长度随点P的移动而变化,所以,△ PAB的周长会随点P的移动而变化,故②正确;••• MN的长度不变,点P到MN的距离等于I与AB的距离的一半,•△ PMN的面积不变,故③错误;直线MN , AB之间的距离不随点P的移动而变化,故④错误;/ APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.二.填空题13 .【分析】由平行四边形的性质和折叠的性质得出/ D i AE=Z BAD,得出/ D i AD=Z BAE=55 即可.解:•••四边形ABCD是平行四边形,•/ BAD=Z C,由折叠的性质得:/ D i AE=Z C,•Z D i AE=Z BAD,•Z D i AD=Z BAE=55;故答案为:55°.i4.【分析】根据平行四边形性质得出AD// CB, AB//CD,推出Z DA由Z CBA=i80,求出ZPAB F Z PBA=90 ,在厶APB中求出Z APB=90,由勾股定理求出BP,证出AD=DP=5BC=PC=5得出DC=10=AB即可求出答案.解:•••四边形ABCD是平行四边形,••• AD// CB, AB// CD,•••/ DAB+Z CBA=180,又••• AP和BP分别平分Z DAB和Z CBA•••Z PAB F Z PBA=- (Z DAB^Z CBA) =90°°在厶APB中,Z APB=180—(Z PAB F Z PBA) =90°;••• AP 平分Z DAB,•Z DAP=Z PAB••• AB// CD,•Z PAB=/ DPA•Z DAP=Z DPA•△ ADP是等腰三角形,•AD=DP=5同理:PC=CB=5即AB=DC=DPPC=10在Rt A APB 中,AB=10, AP=8,•BP=;Q「护=6 ,•△ APB 的周长=6+8+10=24;故答案为:24.15. 【分析】根据平行四边形的定义或判定定理即可解答.解:可以添加:AD// BC (答案不唯一).故答案是:AD // BC.16. 【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.解:第①是1个三角形,仁4X 1- 3;第②是5个三角形,5=4X 2 -3;第③是9个三角形,9=4X 3 -3;•第n个图形中共有三角形的个数是4n - 3;故答案为:4n - 3.17. 【分析】连接CM,根据三角形中位线定理得到NMh「CB, MN // BC,证明四边形DCMN 是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=-AB=3,等量代换即可. 解:连接CM,••• M、N分别是AB、AC的中点,••• NM—-CB, MN // BC,又CD丄BD,••• MN=CD,又MN // BC,•••四边形DCMN是平行四边形,••• DN=CM,vZ ACB=90, M 是AB 的中点,••• CMh「AB=3,••• DN=3,故答案为:3.18. 【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF 即可解决问题.解:v BD=AD, BE=EC••• DE=-AC=4cm DE/ AC,v CF=FA CE=BEEF=「AB=3cm, EF// AB,•••四边形ADEF是平行四边形,.四边形ADEF的周长=2 (DE+EF) =14cm.故答案为14.•解答题19. 【分析】(1)由平行四边形的性质得出AD// BC, AB// CD,证出/ DAE=Z F,Z D=Z ECF 由AAS证明△ ADE^A FCE即可;(2)由全等三角形的性质得出AE=EF=3由平行线的性质证出/ AED=Z BAF=90,由勾股定理求出DE,即可得出CD的长.(1)证明:•••四边形ABCD是平行四边形,••• AD// BC, AB// CD,•••/ DAE=Z F, / D=Z ECF••• E是?ABCD的边CD的中点,••• DE=CE在厶ADE和厶FCE中,f ZDAE=ZFZD=ZECF ,[DE=CE•••△ ADE^A FCE( AAS;(2)解::ADE^A FCE••• AE=EF=3••• AB// CD,•••/ AED=Z BAF=90 ,在?ABCD中 , AD=BC=5••• DE=l「rr= =4 ,••• CD=2DE=820. 【分析】(1)由在?ABCD中,E是BC的中点,利用ASA即可判定厶ABE^A FCE 继而证得结论;(2)由AD=2AB AB=FC=CD 可得AD=DF,又由△ ABE^A FCE 可得AE=EF 然后利用三线合一,证得结论.证明:(1)v四边形ABCD是平行四边形,••• AB// DF,•••/ ABE=/ FCE••• E为BC中点,••• BE=CE 在厶ABE与厶FCE中,r ZAEE=ZFCE乂BE=CE ,IZAEB=ZCEF•••△ABE^A FCE( ASA, ••• AB=FC(2 )T AD=2AB AB=FC=CD•AD=DF,•:△ ABE^A FCE•AE=EF• DE 丄AF.21. 【分析】利用平行线的性质得出/ BAE=/ CFE由AAS得出△ ABE^A FCE得出对应边相等AE=EF再利用平行四边形的判定得出即可.解:四边形ABFC是平行四边形;理由如下:••• AB// CD,•/ BAE=/ CFE••• E是BC的中点,•BE=CEf ZBAE=ZCFE在厶ABE和厶FCE中,. —.屮 ,[BE=CE•△ABE^A FCE( AAS;•AE=EF又••• BE=CE•四边形ABFC是平行四边形.22. 【分析】(1)选取①②,利用ASA判定△ BE3A DFO即可;(2)根据△ BEO^A DFO可得EO=FQ BO=DO,再根据等式的性质可得AO=CO根据两条对角线互相平分的四边形是平行四边形可得结论.证明:(1)选取①②,rzi=Z2•••在△ BEO和厶DFO 中EADO ,IZEOB=ZFOD•••△ BEC^A DFO (ASA ;(2)由(1)得:△ BEO^A DFO,••• EO=FO BO=DQ••• AE=CF••• AO=CQ•••四边形ABCD是平行四边形.23. [分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF// BCDG// BC且DG=-BC,从而得到DE=EF DG// EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出/ BOC=90 ,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可. 解:(1 ):D、G分别是AB、AC的中点,••• DG// BC, DG丄BC,••• E、F分别是OB OC的中点,••• EF// BC, EF丄BC,••• DG=EF DG// EF,•••四边形DEFG是平行四边形;(2)•••/ OBC和/OCB互余,•••/ OBC+Z OCB=90 ,•••/ BOC=90 ,••• M为EF的中点,OM=3 ,••• EF=2OM=6由(1)有四边形DEFG是平行四边形,••• DG=EF=624. [分析】(1)只要证明CM// AN , AM / CN即可.(2)先证明△ DEM^A BFN得BN=DM ,再在RT^DEM中,利用勾股定理即可解决问题.(1)证明:•••四边形ABCD是平行四边形,••• CD// AB,••• AM 丄BD, CN丄BD,••• AM // CN,••• CM / AN, AM // CN,•••四边形AMCN是平行四边形.(2四边形AMCN是平行四边形,•CM=AN,•••四边形ABCD是平行四边形,•CD=AB CD// AB,•DM=BN,Z MDE=Z NBF, 在厶MDE和厶NBF中,fZMDE=ZNBFZDEM二ZNFB二勺『,[DM二•△MDE^A NBF,•ME=NF=3,在Rt A DME 中,vZ DEM=9° , DE=4, ME=3,•DM= . [ :「丄,r =5 ,•BN=DM=5.£) _______ ___________ C25. 【分析】(1)根据全等三角形的判定方法,判断出△ ADE^A CBF,即可推得DE=BF (2)首先判断出DE// BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.证明:(1)v四边形ABCD是平行四边形,•AD// CB, AD=CB•Z DAE=Z BCF在厶ADE和厶CBF中,rAD=CBZ DAE=Z BCFI..AE=CF•••△ ADE^A CBF••• DE=BF(2)由(1),可得△ ADE^ACBF,•••/ ADE=Z CBF•••/ DEF=/ DAE F Z ADE, / BFEN BC+Z CBF,•••/ DEF=/ BFE••• DE// BF,又••• DE=BF•••四边形DEBF是平行四边形.26. 【分析】(1)直接利用三角形中位线定理得出DE•'丄BC,进而得出DE=FC(2)利用平行四边形的判定与性质得出DC=EF进而利用等边三角形的性质以及勾股定理得出EF的长.(1)证明::D、E分别为AB AC的中点,••• DE *△ ABC的中位线,••• DE•'丄BC,•••延长BC至点F,使CF=-BC,••• DE=FC(2)解::DE^FC,•••四边形DEFC是平行四边形,•••DC=EF••• D为AB的中点,等边△ ABC的边长是2 ,••• AD=BD=1, CD 丄AB , BC=2••• DC=EF= \。

平行四边形的性质和判定基础题(含答案)

平行四边形的性质和判定基础题(含答案)

平行四边形的性质和判定1..已知平行四边形的周长是100cm , AB :BC =4 : 1,则AB 的长是_____.2.平行四边形ABCD 的周长32, 5AB =3BC ,则对角线AC 的取值范围为_______3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______.4.在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为 .5. 平行四边形ABCD 的周长为22,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大5,则AD 的边长为 .6.在平行四边形ABCD 中,∠A : ∠B =3:2,则∠C =_____ 度,∠D =___度.7.在平行四边形ABCD 中,∠B -∠A =20°,则∠D 的度数是_______8.由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的( )A .周长B . 一腰的长C .周长的一半D . 两腰的和9.以长为5cm , 4cm , 7cm 的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是( )A. 1 B . 2 C . 3 D . 410.如图,平行四边形ABCD 中,AE =CG , DH =BF ,连结E ,F ,G ,H ,E ,则四边形EFGH 是_____. H G F EDC B A11.如图,平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =CF ,连结B ,F ,D ,E ,B 则四边形BEDF 是___________.GFED C B A12.有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成__________形.练习题:1. 在平行四边形ABCD 中,∠A +∠C =270°,则∠B =___,∠C =____.2. 平行四边形的周长等于56 cm ,两邻边长的比为3∶1,那么这个平行四边形较长的边长为____.3. 平行四边形的两条对角线把它分成全等三角形的对数是( )A .2B .4C .6D .84. 如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则图中的全等三角形共有___对.5. 关于四边形ABCD :①两组对边分别平行②两组对边分别相等③有两组角相等④对角线AC 和BD 相等.以上四个条件中,可以判定四边形ABCD 是平行四边形的有______个平行四边形的性质与判定(四边形性质探索)基础练习试卷简介:全卷共3个选择题,14个填空题,分值100分,测试时间60分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形基础练习题(二)
.填空题:
1.平行四边形一边长是 6cm,周长是28cm,则这边的邻边长是
3.平行四边形两邻边分别为 24和16 ,若两长边的距离为 8,则两短边间的距离为
4.平行四边形 ABCD 的周长是60cm 对角线AC BD 相交于0, △ AOB 的周长比^ BOC 的周长大8cm,,则 ,BC=
在矩形 ABCD 中 , AEI BD E 为垂足,AB=2cm, BD=4cm,则/ ADB=
直平分且相等的四边形是
2.在平行四边形中,AC BD 相交于O,则图中有
.对全等的三角形。

AB=
5. 在平行四边形 ABCD 中,/ B=1500
, AD=6cm 对边AB CD 之间的距离为 6. 在平行四边形 ABCD 中,/ A=300
, AB=7cm, AD=6cm,则 S=
7. 在平行四边形 ABCD 中, AB=5, AD=8 / A 、/ D 的平分线分别交 BC 于E 、F 点,贝U EF= 8. 在平行四边形 ABCD 中, AC BD 相交于0,若AC=8 BD=6则边 AB 长的取值范围是 9. 平行四边形ABCD 勺周长是40cm ,则每条对角线长不能超过 cm. 10. 在平行四边形 ABCD 中 CAI AB, / BAD=120, BC=10cm 贝U AC=
,AB=
11. 在平行四边形 ABCD 中 , AEI BC 于 E, AB=10cm , BC=15cm BE=6cm 贝U S 平= 12. 在平行四边形 ABCD 中 , AC BD 相交于 O,且 AB=AC=2cm /ABC=60,则^ OAB 的周长为 cm.
13. 在平行四边形 ABCD 中 , BC=2AB,E 为 BC 中点,则/ AED= 14. 在矩形 ABCD 中 , AC BD 相交于 O, / AOB=60, AC=10cm,则 AB=
.BC= cm.
15. 16. 17. 18. 19. 20. 21. / BAE==
cm, BE= cm.
矩形的对角线长为 2 413 ,两条邻边之比为
2: 3,则矩形的周长是
矩形的对角线长为10cm,面积为25j 3cm,则两条对角线所夹的锐角等于 矩形对角线相交成钝角 1200
,短边长为3.6cm,则对角线的长为 矩形邻边之比为3: 4,对角线长10cm,则周长为
顺次连接四边形各边中点构成一个矩形,则原四边形对角线一定
顺次连接四边形各边中点构成一个菱形,则原四边形对角线一定
已知:菱形的周长为 40cm,两个相邻角度之比为1 : 2,则较长对角线的长为
.较短对角线的
长为
22.若菱形的两条对角线长分别是 6cm,8cm,则它的周长为 .cm,此菱形的面积为
23.对角线互相垂直平分的四边形是
,对角线相等且平分的四边形是
,对角线互相垂
24. 顺次连接对角线相等的四边形各边中点,所得的四边形是
顺次连接对角线互相垂直的四边形各边中点,所得的四边形是
菱形ABCD中,/ A: / B=1: 5,周长为8cm,则此菱形的高为
25.
26. 等腰梯形两底差的一半等于它的高,此梯形较小的一个底角为度.
27. 等腰梯形上底长为3cm,腰长为4cm,其中锐角为60°,下底长为
28. 梯形ABCD,AD/ BC, AD=3 AB=7, BC=6 贝U CD的范围
二.解答题:1.已知:在平行四边形ABCD中, CEI AB,CF丄AD, / 2=30°,求/ 1、/ 3 的度数.
3
21
2.已知:AB与CD相交于点O, AC// DB AO=BO E、F分别是OC OD的中点,求证: 四边形AFBE是平行四
边形.
3.已知:△ ABC中,D是AB中点,E是AC上一点,EF// AB, DF// BE. (1)猜想DF与AE的关系; 2)证明
你的猜想.
4.已知:在平行四边形ABCD中, E、F分别是AB CD的中点,AF的延长线交BC的延长线于G CE的延长
线于DA的延长线于H,求证:AH=CG.
5.已知:在等边△ ABC中,D F分别为CB BA上的点,且CD=BF以AD为边作等边三角形ADE. 求证:( 1 ) △ ACD^A CBF. (2)四边形CDEF为平行四边形.
6.已知:在平行四边形ABCD中, AB=4, BC=2 BEL CD于E,/ ABC的平分线交CD于F, B E£,求:DF;
BD B到AD的距离.
7.已知:△ ABC中,/ ABC=9(5, BDL AC于D, AE平分/ BAC EF// CD.
求证:BE=FC.
8.已知:在平行四边形ABCD中, E F分别在AD BC上,且AE=CF AF、BE相交于G, CE DF相交于H.
求证;EF与GH互相平分
9.已知:△ ABC中,AD是BC边上的高,E、F、M分别是边AB BC CA的中点,(1)求证:EF=MD. (2) 求证:/ EFM/ MDE.
10.已知:在四边形ABCD中, E、F分别是AB BC边的中点,DE DF分别交AC于M N点,若AM=MN=NC.
求证:四边形 ABCD是平行四边形.
11.在矩形ABCD中,AC BD相交于O, AEL BD于E, / DAE=3/ BAE 求:/ EAC的度数.
12.在平行四边形ABCD中, AC BD相交于O,/ OAB/ OBA求证:(1)四边形ABCD为矩形;(2)若作BE
丄AC于E,CFL BD于F,求证:BE=CF.
13.在矩形ABCD中,/ AEC=90,求证:BEL ED.
14.已知:DE是平行四边形ABCD勺/ ADQ的平分线,EF// AD交DC于F, (1)求证:四边形AEFD是菱形(2) 若/ A=600, AD=5求菱形AEFD的面积.
15.已知:E、F、G H分别是四边形ABCD各边中点.
(1)若ACL BD,则四边形EFGH是什么图形?为什么?
(2)若AC=BD则四边形EFGH是什么图形?为什么?
△ ABC 中,/ BAC=90, ADI BC 于 D, BE 平分/ ABC 交 AD 于 M , EF 丄 BC 于 F.求证:四边形 AEFM
梯形 ABCD 中, AB// CD,AD=BC 延长 AB 至U E , BE=DC.求证:AC=CE.
矩形的对角线 AG BD 相交于点O, E 、F 分别是AO DO 的中点,求证:四边形 EBCF 是等腰梯形.
19.已知:梯形 ABCD 中, AD// BC, / B=3C 0
, / BCD=60,AD=2,AC 平分/ BCD,求:BC 的长.
20.已知:等腰梯形 ABCD 中, AD// BCM N 分别是AD BC 的中点,E 、F 分别是BM CM 的中点.(1 )求
证:四边形 MENF 是菱形(2)若四边形MEN F 是正方形,请探索等腰梯形 ABCD 的高和底边BC 的数量
关系并说明你的结论 .
16. 已知:
是菱形 .
17. 已知: 18. 已知:
21. 已知:梯形ABCD中, AB// CD,AD=BC= CD., AB =2CD,求证:AC丄E C.
22. 已知:梯形ABCD中, CD// AB, AC=BC / AC B=9 0 BD=AB,AC BD相交于E,求证:△ ADE是
等腰三角形
23. 已知:梯形ABCD中, BC/ AD, BD=CD AB<CD且/ ABC为锐角,若AD=4 BC=12 E 为BC上一点,
问:当CE分别为何值时,四边形ABED是等腰梯形?直角梯形?请分别说明理由
24.已知:△ ABC中,/ ACB=90, D E分别是AC AB边的中点,点F在BC的延长线上,且/ CDF玄A. 求证:四边形DECF是平行四边形.
25.已知:梯形ABCD中, AD// BC, E 为AB 中点,CD=AD+BC求证:DE1 EC.
26.折叠矩形纸片ABCD先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG若AB=2, BC=1,
求:AG..
27.已知:AB// CD, AE 丄DC,AE=12,BD=15,AC=20,求:梯形ABCD勺面积.
28.已知:梯形ABCD中, BC // AD, / A=9C0, AB=2, BC=3, AD=4, E 为AD 中点,F 为CD 的中点,P 为BC边上的动点(不与B C点重合),设BP为X,四边形PEFC的面积为y,试求出y与x之间的函数关系
式,并画出它勺图像.。

相关文档
最新文档