初一上学期动点问题(含答案)

合集下载

七年级上期末动点问题专题(附答案)

七年级上期末动点问题专题(附答案)

七年级上期末动点问题专题1.已知点A在数轴上对应得数为a,点B对应得数为b,且|2b﹣6|+(a+1)2=0,A、B之间得距离记作AB,定义:AB=|a﹣b|.(1)求线段AB得长.(2)设点P在数轴上对应得数x,当PA﹣PB=2时,求x得值.(3)M、N分别就是PA、PB得中点,当P移动时,指出当下列结论分别成立时,x得取值范围,并说明理由:①PM÷PN得值不变,②|PM﹣PN|得值不变.2.如图1,已知数轴上两点A、B对应得数分别为﹣1、3,点P为数轴上得一动点,其对应得数为x.(1)PA= _________ ;PB= _________ (用含x得式子表示)(2)在数轴上就是否存在点P,使PA+PB=5?若存在,请求出x得值;若不存在,请说明理由.(3)如图2,点P以1个单位/s得速度从点D向右运动,同时点A以5个单位/s得速度向左运动,点B以20个单位/s 得速度向右运动,在运动过程中,M、N分别就是AP、OB得中点,问:得值就是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB得中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN得长度;(2)若点P在直线AB上运动,试说明线段MN得长度与点P在直线AB上得位置无关;(3)如图2,若点C为线段AB得中点,点P在线段AB得延长线上,下列结论:①得值不变;②得值不变,请选择一个正确得结论并求其值.4.如图,P就是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s得速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上得位置:(2)在(1)得条件下,Q就是直线AB上一点,且AQ﹣BQ=PQ,求得值.(3)在(1)得条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N 分别就是CD、PD得中点,下列结论:①PM﹣PN得值不变;②得值不变,可以说明,只有一个结论就是正确得,请您找出正确得结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应得数就是200.(1)若BC=300,求点A对应得数;(2)如图2,在(1)得条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R得速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR得中点,点N为线段RQ得中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后得情形);(3)如图3,在(1)得条件下,若点E、D对应得数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q得速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ得中点,点Q在从就是点D运动到点A得过程中,QC ﹣AM得值就是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上得点,且AB=12,CE=6,F为AE得中点.(1)如图1,若CF=2,则BE= _________ ,若CF=m,BE与CF得数量关系就是(2)当点E沿直线l向左运动至图2得位置时,(1)中BE与CF得数量关系就是否仍然成立?请说明理由.(3)如图3,在(2)得条件下,在线段BE上,就是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M就是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s得速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD得值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= _________ AB.(3)在(2)得条件下,N就是直线AB上一点,且AN﹣BN=MN,求得值.8.已知数轴上三点M,O,N对应得数分别为﹣3,0,1,点P为数轴上任意一点,其对应得数为x.(1)如果点P到点M,点N得距离相等,那么x得值就是_________ ;(2)数轴上就是否存在点P,使点P到点M,点N得距离之与就是5?若存在,请直接写出x得值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度得速度从点O向左运动时,点M与点N分别以每分钟1个单位长度与每分钟4个单位长度得速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N得距离相等?9.如图,已知数轴上点A表示得数为6,B就是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度得速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示得数_________ ,点P表示得数_________ 用含t得代数式表示);(2)动点R从点B出发,以每秒4个单位长度得速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP得中点,N为PB得中点.点P在运动得过程中,线段MN得长度就是否发生变化?若变化,请说明理由;若不变,请您画出图形,并求出线段MN得长;10.如图,已知数轴上点A表示得数为6,B就是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度得速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示得数_________ ,点P表示得数_________ (用含t得代数式表示);②M为AP得中点,N为PB得中点.点P在运动得过程中,线段MN得长度就是否发生变化?若变化,请说明理由;若不变,请您画出图形,并求出线段MN得长;(2)动点Q从点A出发,以每秒1个单位长度得速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度得速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶得路程就是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应得数为a,点B对应得数为b,且|2b﹣6|+(a+1)2=0,A、B之间得距离记作AB,定义:AB=|a﹣b|.(1)求线段AB得长.(2)设点P在数轴上对应得数x,当PA﹣PB=2时,求x得值.(3)M、N分别就是PA、PB得中点,当P移动时,指出当下列结论分别成立时,x得取值范围,并说明理由:①PM÷PN得值不变,②|PM﹣PN|得值不变.考点: 一元一次方程得应用;数轴;两点间得距离.分析:(1)根据非负数得与为0,各项都为0;(2)应考虑到A、B、P三点之间得位置关系得多种可能解题;(3)利用中点性质转化线段之间得倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB得长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况得点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN得值不变时,PM÷PN=PA÷PB.②|PM﹣PN|得值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程得应用,渗透了分类讨论得思想,体现了思维得严密性,在今后解决类似得问题时,要防止漏解.利用中点性质转化线段之间得倍分关系就是解题得关键,在不同得情况下灵活选用它得不同表示方法,有利于解题得简洁性.同时,灵活运用线段得与、差、倍、分转化线段之间得数量关系也就是十分关键得一点.2.如图1,已知数轴上两点A、B对应得数分别为﹣1、3,点P为数轴上得一动点,其对应得数为x.(1)PA= |x+1| ;PB= |x﹣3| (用含x得式子表示)(2)在数轴上就是否存在点P,使PA+PB=5?若存在,请求出x得值;若不存在,请说明理由.(3)如图2,点P以1个单位/s得速度从点D向右运动,同时点A以5个单位/s得速度向左运动,点B以20个单位/s 得速度向右运动,在运动过程中,M、N分别就是AP、OB得中点,问:得值就是否发生变化?请说明理由.考点: 一元一次方程得应用;数轴;两点间得距离.分析:(1)根据数轴上两点之间得距离求法得出PA,PB得长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN得长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应得数分别为﹣1、3,点P为数轴上得一动点,其对应得数为x, ∴PA=|x+1|;PB=|x﹣3|(用含x得式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3、5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1、5;(3)得值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别就是AP、OB得中点,得值不发生变化.点评:此题主要考查了一元一次方程得应用,根据题意利用分类讨论得出就是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB得中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN得长度;(2)若点P在直线AB上运动,试说明线段MN得长度与点P在直线AB上得位置无关;(3)如图2,若点C为线段AB得中点,点P在线段AB得延长线上,下列结论:①得值不变;②得值不变,请选择一个正确得结论并求其值.考点: 两点间得距离.分析:(1)求出MP,NP得长度,即可得出MN得长度;(2)分三种情况:①点P在AB之间;②点P在AB得延长线上;③点P在BA得延长线上,分别表示出MN得长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②得值,继而可作出判断.解答:解:(1)∵AP=8,点M就是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N就是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB得延长线上;③点P在BA得延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间得距离,解答本题注意分类讨论思想得运用,理解线段中点得定义,难度一般.4.如图,P就是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s得速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上得位置:(2)在(1)得条件下,Q就是直线AB上一点,且AQ﹣BQ=PQ,求得值.(3)在(1)得条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N 分别就是CD、PD得中点,下列结论:①PM﹣PN得值不变;②得值不变,可以说明,只有一个结论就是正确得,请您找出正确得结论并求值.考点: 比较线段得长短.专题: 数形结合.分析:(1)根据C、D得运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上得处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB得关系;(3)当点C停止运动时,有,从而求得CM与AB得数量关系;然后求得以AB表示得PM与PN得值,所以.解答:解:(1)根据C、D得运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上得处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB得延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN得值不变,所以,.点评:本题考查了比较线段得长短.利用中点性质转化线段之间得倍分关系就是解题得关键,在不同得情况下灵活选用它得不同表示方法,有利于解题得简洁性.同时,灵活运用线段得与、差、倍、分转化线段之间得数量关系也就是十分关键得一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应得数就是200.(1)若BC=300,求点A对应得数;(2)如图2,在(1)得条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R得速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR得中点,点N为线段RQ得中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后得情形);(3)如图3,在(1)得条件下,若点E、D对应得数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q得速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ得中点,点Q在从就是点D运动到点A得过程中,QC ﹣AM得值就是否发生变化?若不变,求其值;若不变,请说明理由.考点: 一元一次方程得应用;比较线段得长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应得数就是200,即可得出点A对应得数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过得时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应得数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过得时间为y,则PE=10y,QD=5y,于就是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则就是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程得应用,根据已知得出各线段之间得关系等量关系就是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上得点,且AB=12,CE=6,F为AE得中点.(1)如图1,若CF=2,则BE= 4 ,若CF=m,BE与CF得数量关系就是(2)当点E沿直线l向左运动至图2得位置时,(1)中BE与CF得数量关系就是否仍然成立?请说明理由.(3)如图3,在(2)得条件下,在线段BE上,就是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点: 两点间得距离;一元一次方程得应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点得定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF得长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x得值,再求出DF、CF,计算即可得解. 解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE得中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE得中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间得距离,中点得定义,准确识图,找出图中各线段之间得关系并准确判断出BE得表示就是解题得关键.7.已知:如图1,M就是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s得速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD得值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= AB.(3)在(2)得条件下,N就是直线AB上一点,且AN﹣BN=MN,求得值.考点: 比较线段得长短.专题: 分类讨论.分析:(1)计算出CM及BD得长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB得延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB得延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段得长短得知识,有一定难度,关键就是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应得数分别为﹣3,0,1,点P为数轴上任意一点,其对应得数为x.(1)如果点P到点M,点N得距离相等,那么x得值就是﹣1 ;(2)数轴上就是否存在点P,使点P到点M,点N得距离之与就是5?若存在,请直接写出x得值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度得速度从点O向左运动时,点M与点N分别以每分钟1个单位长度与每分钟4个单位长度得速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N得距离相等?考点: 一元一次方程得应用;数轴;两点间得距离.分析:(1)根据三点M,O,N对应得数,得出NM得中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M与点N在点P同侧时,②当点M与点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应得数分别为﹣3,0,1,点P到点M,点N得距离相等,∴x得值就是﹣1.(2)存在符合题意得点P,此时x=﹣3、5或1、5.(3)设运动t分钟时,点P对应得数就是﹣3t,点M对应得数就是﹣3﹣t,点N对应得数就是1﹣4t.①当点M与点N在点P同侧时,因为PM=PN,所以点M与点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M与点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应得数就是﹣5,点N对应得数就是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应得数就是﹣5,点N对应得数就是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N得距离相等.故答案为:﹣1.点评:此题主要考查了数轴得应用以及一元一次方程得应用,根据M,N位置得不同进行分类讨论得出就是解题关键.9.如图,已知数轴上点A表示得数为6,B就是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度得速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示得数﹣4 ,点P表示得数6﹣6t 用含t得代数式表示);(2)动点R从点B出发,以每秒4个单位长度得速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP得中点,N为PB得中点.点P在运动得过程中,线段MN得长度就是否发生变化?若变化,请说明理由;若不变,请您画出图形,并求出线段MN得长;考点: 数轴;一元一次方程得应用;两点间得距离.专题: 方程思想.分析:(1)B点表示得数为6﹣10=﹣4;点P表示得数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B得左侧时,利用中点得定义与线段得与差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN得长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B得左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN得长度不发生变化,其值为5.点评:本题考查了数轴:数轴得三要素(正方向、原点与单位长度).也考查了一元一次方程得应用以及数轴上两点之间得距离.10.如图,已知数轴上点A表示得数为6,B就是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度得速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示得数﹣4 ,点P表示得数6﹣6t (用含t得代数式表示);②M为AP得中点,N为PB得中点.点P在运动得过程中,线段MN得长度就是否发生变化?若变化,请说明理由;若不变,请您画出图形,并求出线段MN得长;(2)动点Q从点A出发,以每秒1个单位长度得速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度得速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶得路程就是多少个单位长度?考点: 一元一次方程得应用;数轴;两点间得距离.专题: 动点型.分析:(1)①设B点表示得数为x,根据数轴上两点间得距离公式建立方程求出其解,再根据数轴上点得运动就可以求出P点得坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B得左侧时,利用中点得定义与线段得与差易求出MN;(2)先求出P、R从A、B出发相遇时得时间,再求出P、R相遇时P、Q之间剩余得路程得相遇时间,就可以求出P一共走得时间,由P得速度就可以求出P点行驶得路程.解答:解:(1)设B点表示得数为x,由题意,得6﹣x=10,x=﹣4∴B点表示得数为:﹣4,点P表示得数为:6﹣6t;②线段MN得长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B得左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN得长度不发生变化,其值为5.(2)由题意得:P、R得相遇时间为:10÷(6+)=s,P、Q剩余得路程为:10﹣(1+)×=,P、Q相遇得时间为:÷(6+1)=s,∴P点走得路程为:6×()=点评:本题考查了数轴及数轴得三要素(正方向、原点与单位长度).一元一次方程得应用以及数轴上两点之间得距离公式得运用,行程问题中得路程=速度×时间得运用.。

初一动点考试试题及答案

初一动点考试试题及答案

初一动点考试试题及答案一、选择题(每题2分,共10分)1. 动点P在直线y=2x+3上运动,当x=1时,y的值为()。

A. 5B. 4C. 3D. 22. 若动点M在直线y=-x+1上运动,且M的坐标为(a,b),则a+b的值为()。

A. 1B. 0C. -1D. 23. 动点N在直线y=x-2上运动,当y=0时,x的值为()。

A. 2B. -2C. 0D. 14. 动点Q在直线y=3x+4上运动,当x=-1时,y的值为()。

A. -1B. 1C. -5D. 55. 若动点R在直线y=-2x+5上运动,且R的坐标为(m,n),则2m+n的值为()。

A. 5B. 3C. 1D. 0二、填空题(每题3分,共15分)6. 动点S在直线y=4x-1上运动,当x=2时,y的值为______。

7. 动点T在直线y=-3x+6上运动,当y=0时,x的值为______。

8. 动点U在直线y=5x+2上运动,当x=-1时,y的值为______。

9. 动点V在直线y=-4x+7上运动,当x=1时,y的值为______。

10. 动点W在直线y=2x-3上运动,当y=-1时,x的值为______。

三、解答题(每题10分,共40分)11. 动点X在直线y=6x-7上运动,求当x=3时,y的值。

12. 动点Y在直线y=-5x+8上运动,求当y=-2时,x的值。

13. 动点Z在直线y=3x+1上运动,求当x=-2时,y的值。

14. 动点A在直线y=-x+4上运动,求当x=-1时,y的值。

四、综合题(每题15分,共30分)15. 动点B在直线y=2x+1上运动,动点C在直线y=-x+3上运动。

若B和C的横坐标相同,求此时B和C的纵坐标之和。

16. 动点D在直线y=4x-2上运动,动点E在直线y=-2x+6上运动。

若D和E的纵坐标相同,求此时D和E的横坐标之差。

答案:一、选择题1. A2. A3. B4. C5. D二、填空题6. 77. 28. -39. 310. 1三、解答题11. 将x=3代入y=6x-7,得到y=6×3-7=18-7=11。

完整版)七年级上期末动点问题专题(附答案)

完整版)七年级上期末动点问题专题(附答案)

完整版)七年级上期末动点问题专题(附答案)1.已知数轴上点A对应的数为a,点B对应的数为b,且满足|2b-6|+(a+1)^2=0,定义AB的长度为|a-b|。

1) 求线段AB的长度。

解:由定义可得,AB的长度为|a-b|。

2) 设点P在数轴上的坐标为x,且满足PA-PB=2,求x的值。

解:由题意得,PA-PB=|a-x|-|b-x|=2,分成两种情况讨论:当a>b时,有a-x-b+x=2,即a-b=2,解得x=a-1.当a<b时,有b-x-a+x=2,即b-a=2,解得x=b-1.综上所述,x的取值为a-1或b-1.3) 设M、N分别为PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM-PN|的值不变。

解:由题意得,M、N的坐标分别为[(a+x)/2,0]和[(b+x)/2,0],则① PM÷PN的值不变时,有|a-x|/|b-x|=|a-x0|/|b-x0|,其中x0是PM÷PN的值不变时的一个定值,化简得(a-x0)(b-x)=(b-x0)(a-x),即ax0-bx0=ax-bx0,解得x=(ax0-bx0+bx0)/2=a/2+b/2-x0/2.② |PM-PN|的值不变时,有[(a-x)/2-(b-x)/2]^2=K,其中K 是|PM-PN|的值不变时的一个定值,化简得(x-a+b)^2=4K,解得x=(a+b±2√K)/2.综上所述,当①成立时,x的取值为a/2+b/2-x0/2;当②成立时,x的取值为(a+b±2√K)/2.2.如图1,已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上的动点,其对应的数为x。

1) PA=|x-(-1)|=|x+1|,PB=|x-3|。

2) 若PA+PB=5,则有|x+1|+|x-3|=5,分成四种情况讨论:当x≤-1时,有-(x+1)-(x-3)=5,解得x=-2.当-1<x<3时,有-(x+1)+(x-3)=5,无解。

初一动点考试试题及答案

初一动点考试试题及答案

初一动点考试试题及答案一、选择题(每题2分,共10分)1. 若点A在直线l上运动,点B在直线m上运动,且直线l与直线m平行,则点A与点B之间的距离()。

A. 保持不变B. 逐渐增大C. 逐渐减小D. 先增大后减小答案:A2. 在平面直角坐标系中,若点P(x,y)在直线y=2x+3上运动,则x和y之间的关系是()。

A. y=2x+3B. y=-2x+3C. y=2x-3D. y=-2x-3答案:A3. 已知点A(2,3)和点B(5,7),则线段AB的长度为()。

A. 3B. 4C. 5D. 6答案:B4. 若点M(a,b)在x轴上,则点M的坐标为()。

A. (a, 0)B. (0, b)C. (a, b)D. (0, a)答案:A5. 在平面直角坐标系中,若点P(x,y)在直线y=-x+1上运动,则x和y之间的关系是()。

A. y=-x+1B. y=x+1C. y=-x-1D. y=x-1答案:A二、填空题(每题2分,共10分)1. 若点A(m,n)在直线y=-2x+1上运动,则m和n之间的关系是______。

答案:n=-2m+12. 在平面直角坐标系中,若点P(x,y)在直线y=3x-4上运动,则x和y之间的关系是______。

答案:y=3x-43. 已知点A(1,2)和点B(3,6),则线段AB的中点坐标为______。

答案:(2, 4)4. 若点M(a,b)在y轴上,则点M的坐标为______。

答案:(0, b)5. 在平面直角坐标系中,若点P(x,y)在直线y=-x+5上运动,则x和y之间的关系是______。

答案:y=-x+5三、解答题(每题10分,共40分)1. 已知点A(2,3)和点B(5,7),求线段AB的长度。

解:根据两点间距离公式,线段AB的长度为:\[ AB = \sqrt{(5-2)^2 + (7-3)^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \]答案:线段AB的长度为5。

初一上学期动点问题(含答案)

初一上学期动点问题(含答案)

初一上学期动点问题练习1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3="14"解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36-t;(2)当16≤t≤24时PQ=t-3(t-16)=-2t+48,当24<t≤28时PQ=3(t-16)-t=2t-48,当28<t≤30时PQ=72-3(t-16)-t=120-4t,当30<t≤36时PQ=t-[72-3(t-16)]=4t-120.3.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为______,点B表示的数为______,点C表示的数为______;(2)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______;(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.解:(1)点A表示的数为-26,点B表示的数为-10,点C表示的数为10;(2)PA=1×t=t,PC=AC-PA=36-t;(3)①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据题意得3x=1(x+16),解得x=8.答:在点Q向点C运动过程中,能追上点P,点Q运动8秒追上;②分两种情况:Ⅰ)点Q从A点向点C运动时,如果点Q在点P的后面,那么1(x+16)-3x=2,解得x=7,此时点P表示的数是-3;如果点Q在点P的前面,那么3x-1(x+16)=2,解得x=9,此时点P表示的数是-1;Ⅱ)点Q从C点返回到点A时,如果点Q在点P的后面,那么3x+1(x+16)+2=2×36,解得x=13.5,此时点P表示的数是3.5;如果点Q在点P的前面,那么3x+1(x+16)-2=2×36,解得x=14.5,此时点P表示的数是4.5.答:在点Q开始运动后,P、Q两点之间的距离能为2个单位,此时点P表示的数分别是-3,-1,3.5,4.5.4.已知数轴上有A、B、C三点表示-24、-10、10,两只电子蚂蚁甲、已分别从A、C两点同时相向而行,甲的速度为4单位/秒。

完整版)初一动点问题答案

完整版)初一动点问题答案

完整版)初一动点问题答案线段与角的动点问题题目描述:如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发。

问题一:当P运动到线段AB上且PA=2PB时,点Q运动到的位置恰好是线段OC的三等分点,求点Q的运动速度。

解答:当P在线段AB上时,由PA=2PB及AB=60可求得PA =40,OP=60,故点P运动时间为60秒。

若CQ=OC时,CQ=30,点Q的运动速度为30÷60=0.5(cm/s);若OQ=OC,CQ=60,点Q的运动速度为60÷60=1(cm/s)。

问题二:若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?解答:设运动时间为t秒,则t+3t=90±70,解得t=5或40.由于点Q运动到O点时停止运动,所以点Q最多运动30秒。

当点Q运动30秒到点O时,PQ=OP=30cm。

之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒。

综上所述,经过5秒或70秒两点相距70cm。

如图,直线l上依次有三个点O,A,B,OA=40cm,OB=160cm。

问题一:若点P从点O出发,沿OA方向以4cm/s的速度匀速运动,点Q从点B出发,沿BO方向匀速运动,两点同时出发。

①若点Q运动速度为1cm/s,则经过t秒后P,Q两点之间的距离为|160-5t|cm(用含t的式子表示)。

②若点Q运动到恰好是线段AB的中点位置时,点P恰好满足PA=2PB,求点Q的运动速度。

解答:①依题意得,PQ=|160-5t|。

②如图所示:4t-40=2(160-4t),解得t=30,则点Q的运动速度为2(cm/s);如图所示:4t-40=2(4t-160),解得t=7,则点Q的运动速度为5(cm/s)。

(完整版)初一动点问题答案

(完整版)初一动点问题答案

.线段与角的动点问题1. 如图,射线OM 上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动,点Q 从点 C 出发在线段CO 上向点O 匀速运动(点Q 运动到点O 时停止运动),两点同时出发.(1)当P 运动到线段AB 上且PA=2PB 时,点Q 运动到的位置恰好是线段OC 的三等分点,求点Q 的运动速度;(2)若点Q 运动速度为3cm/秒,经过多长时间P、Q 两点相距70cm?【解答】解:(1)P 在线段AB 上,由PA=2PB 及AB=60,可求得PA=40,OP=60,故点P 运动时间为60 秒.若CQ=OC 时,CQ=30,点Q 的运动速度为30÷60=(cm/s);若OQ=OC,CQ =60,点Q 的运动速度为60÷60=1(cm/s).(2)设运动时间为t 秒,则t+3t=90±70,解得t=5 或40,∵点Q 运动到O 点时停止运动,∴点Q 最多运动30 秒,当点Q 运动30 秒到点O 时PQ=OP=30cm,之后点P 继续运动40 秒,则PQ=OP=70cm,此时t=70 秒,故经过 5 秒或70 秒两点相距70cm.2. 如图,直线l 上依次有三个点O,A,B,OA=40cm,OB=160cm.(1)若点P 从点O 出发,沿OA 方向以4cm/s 的速度匀速运动,点Q 从点 B 出发,沿BO 方向匀速运动,两点同时出发①若点Q 运动速度为1cm/ s,则经过t 秒后P,Q 两点之间的距离为|160﹣5t| cm(用含t 的式子表示)②若点Q 运动到恰好是线段AB 的中点位置时,点P 恰好满足PA=2PB,求点Q 的运动速度.(2)若两点P,Q 分别在线段OA,AB 上,分别取OQ 和BP 的中点M ,N,求的值.【解答】解:(1)① 依题意得,PQ=|160﹣5t|;故答案是:|160﹣5t|;②如图1 所示:4t﹣40=2(160﹣4t),解得t=30,则点Q 的运动速度为:=2(cm/s);如图 2 所示:4t﹣40=2(4t﹣160),解得t=7,则点Q 的运动速度为:=(cm/ s);综上所述,点Q 的运动速度为2cm/s 或cm/ s;(2)如图3,两点P,Q 分别在线段OA,AB 上,分别取OQ 和BP 的中点M ,N,求的值.OP=xBQ=y,则MN =(160﹣x)﹣(160﹣y)+x=(x+y),所以,==2.3.如图,射线OM 上有三点A、B、C,满足OA=60cm,AB=60cm,BC=10cm(如图所示),点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动.(1)当点P 运动到AB 的中点时,所用的时间为90 秒.(2)若另有一动点Q 同时从点 C 出发在线段CO 上向点O 匀速运动,速度为3cm/秒,求经过多长时间P、Q 两点相距30cm?【解答】解:(1)当点P 运动到AB 的中点时,点P 运动的路径为60cm+30cm=90cm,所以点P 运动的时间==90(秒);故答案为90;(2)当点P 和点Q 在相遇前,t+30+3 t=60+60+10 ,解得t=25(秒),当点P 和点Q 在相遇后,t+3t﹣30=60+60+10 ,解得t=40(秒),答:经过25 秒或40 秒时,P、Q 两点相距30cm.4. 如图,在数轴上点 A 表示的数是﹣3,点B 在点A 的右侧,且到点 A 的距离是18;点 C在点 A 与点 B 之间,且到点 B 的距离是到点 A 距离的 2 倍.(1)点 B 表示的数是15 ;点 C 表示的数是 3 ;(2)若点P 从点 A 出发,沿数轴以每秒 4 个单位长度的速度向右匀速运动;同时,点Q 从点B 出发,沿数轴以每秒 2 个单位长度的速度向左匀速运动.设运动时间为t 秒,在运动过程中,当t 为何值时,点P 与点Q 之间的距离为6?(3)在(2)的条件下,若点P 与点 C 之间的距离表示为PC,点Q 与点 B 之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P 表示的数;若不存在,请说明理由.【解答】解:(1)点 B 表示的数是﹣3+18=15;点 C 表示的数是﹣3+18×=3.故答案为:15,3;(2)点P 与点Q 相遇前,4t+2t=18﹣6,解得t=2;点P 与点Q 相遇后,4t+2t=18+6,解得t=4;(3)假设存在,当点P 在点C 左侧时,PC=6﹣4t,QB=2t,∵PC +QB=4,∴ 6﹣4t+2t=4,解得t=1.此时点P 表示的数是1;当点P 在点C 右侧时,PC=4t﹣6,QB=2t,∵PC +QB=4,∴4t﹣6+2t=4,解得t=.此时点P 表示的数是.综上所述,在运动过程中存在PC +QB=4,此时点P 表示的数为 1 或.5. 将一副三角板放在同一平面内,使直角顶点重合于点O.(1)如图① ,若∠ AOB=155°,求∠ AOD、∠ BOC、∠ DOC 的度数.(2)如图①,你发现∠AOD 与∠BOC 的大小有何关系?∠AOB 与∠DOC 有何关系?直接写出你发现的结论.(3)如图② ,当△ AOC 与△ BOD 没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【解答】解:(1)∠AOD =∠BOC =155°﹣90°=65°,∠DOC =∠BOD ﹣∠BOC=90°﹣65°=25°;(2)∠AOD =∠BOC,∠AOB +∠DOC =180°;(3)∠AOB+∠COD +∠AOC+∠BOD=360°,∵∠AOC=∠BOD =90°,∴∠AOB+∠DOC =180°.6. 以直线AB 上点O 为端点作射线OC,使∠BOC =60°,将直角△DOE 的直角顶点放在点O 处.(1)如图1,若直角△DOE 的边OD 放在射线OB 上,则∠COE =30°;(2)如图2,将直角△DOE 绕点O 按逆时针方向转动,使得OE 平分∠AOC,说明OD 所在射线是∠BOC 的平分线;(3)如图3,将直角△DOE 绕点O 按逆时针方向转动,使得∠COD =∠AOE.求∠BOD 的度数.【解答】解:(1)∵∠ BOE=∠COE +∠COB =90°,又∵∠ COB=60°,∴∠COE =30°,故答案为:30°;(2)∵ OE 平分∠ AOC,∴∠C OE =∠AOE=COA ,∵∠EOD=90°,∴∠AOE+∠DOB =90°,∠ COE+∠COD =90°,∴∠COD =∠DOB ,∴OD 所在射线是∠BOC 的平分线;(3)设∠ COD =x°,则∠ AOE=5x°,∵∠DOE =90°,∠ BOC=60°,∴6x=30 或5x+90﹣x=120∴x=5或7.5,即∠ COD =5°或7.5°∴∠ BOD=65°或52.5°.7. 如图1,点O 为直线AB 上一点,过点O 作射线OC,使∠BOC =130°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图 1 中的三角板绕点O 逆时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠BOC,问:此时直线ON 是否平分∠AOC?请直接写出结论:直线ON 平分(平分或不平分)∠AOC.(2)将图1 中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角∠AOC,则t 的值为13 或49 .(直接写出结果)(3)将图 1 中的三角板绕点O 顺时针旋转,请探究:当ON 始终在∠ AOC 的内部时(如图3),∠AOM 与∠ NOC 的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【解答】解:(1)平分,理由:延长NO 到 D ,∵∠MON =90°∴∠ MOD =90°∴∠MOB +∠NOB=90°,∠MOC +∠COD =90°,∵∠MOB =∠MOC ,∴∠NOB =∠COD ,∵∠NOB =∠AOD ,∴∠COD =∠AOD ,∴直线NO 平分∠ AOC;(2)分两种情况:① 如图2,∵∠ BOC =130°∴∠AOC=50°,当直线ON 恰好平分锐角∠AOC 时,∠AOD=∠COD =25°,∴∠BON=25°,∠BOM=65°,即逆时针旋转的角度为65°,由题意得,5t=65°解得t=13(s);② 如图3,当NO 平分∠ AOC 时,∠ NOA =25°,∴∠AOM=65°,即逆时针旋转的角度为:180°+65 °=245°,由题意得,5t=245°,解得t=49(s),综上所述,t=13s 或49s 时,直线ON 恰好平分锐角∠AOC ;(3)∠AOM ﹣∠NOC =40°,理由:∵∠ AOM=90°﹣∠AON∠NOC =50°﹣∠AON ,∴∠AOM﹣∠NOC=(90°﹣∠ AON )﹣(50°﹣∠ AON)=40°.9. 已知∠ AOC =40°,∠ BOD =30°,∠ AOC 和∠ BOD 均可绕点O 进行旋转,点M,O,N 在同一条直线上,OP 是∠ COD 的平分线.(1)如图1,当点 A 与点M 重合,点 B 与点N 重合,且射线OC 和射线OD 在直线MN 的同侧时,求∠ BOP 的余角的度数;(2)在(1)的基础上,若∠ BOD 从ON 处开始绕点O 逆时针方向旋转,转速为5°/s,同时∠ AOC 从OM 处开始绕点O 逆时针方向旋转,转速为3°/s,如图 2 所示,当旋转6s 时,求∠ DOP 的度数.【解答】解:(1)∵∠ AOC=40°,∠ BOD =30°,∴∠COD =180°﹣40°﹣30°=110°,∵OP 是∠ COD 的平分线,∴∠DOP =∠COD =55°,∴∠BOP=85°,∴∠ BOP 的余角的度数为5°;(2)∠DOP 的度数为49°,旋转6s 时,∠MOA =3×6°=18°,∠NOB =5×6°=30°,∴∠COM =22°,∠ DON =60°,∴∠COD =180°﹣∠COM ﹣∠DON =98°,∵OP 是∠ COD 的平分线,∴∠DOP =∠COD =49°.10. 如图1,点O 为直线AB 上一点,过点O 作射线OC,将一直角三角形的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图 1 中的三角板绕点O 逆时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠BOC,问:直线ON 是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图 1 中的三角板绕点O 按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角∠AOC,则t 的值为10 或40 (直接写出结果);(3)在(2)的条件下,将图 1 中的三角板绕点O 顺时针旋转至图3,使ON 在∠AOC 的内部,请探究:∠AOM 与∠NOC 之间的数量关系,并说明理由.【解答】解:(1)直线ON 平分∠ AOC .理由如下:设ON 的反向延长线为OD ,∵OM 平分∠ BOC,∴∠ MOC =∠MOB ,又∵ OM⊥ON,∴∠MOD =∠ MON=90°,∴∠ COD =∠ BON,又∵∠ AOD=∠BON,∴∠COD =∠AOD ,∴OD 平分∠ AOC,即直线ON 平分∠ AOC.(2)∵∠BOC =120°∴∠AOC=60°,∴∠BON=∠COD =30°,即旋转60°时ON 平分∠ AOC,由题意得,6t=60°或240°,∴t=10 或40;(3)∵∠MON =90°,∠ AOC=60°,∴∠ AOM =90°﹣∠ AON、∠NOC =60°﹣∠AON,∴∠ AOM ﹣∠NOC =(90°﹣∠ AON )﹣(60°﹣∠AON )=30°.即∠ AOM =∠NOC+30°.11. 如图1,点O 为直线AB 上一点,过点O 作射线OC,使∠AOC:∠BOC=2:1,将一直角三角板的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 在直线AB 的下方.(1)将图1 中的三角板绕点O 按顺时针方向旋转至图 2 的位置,使得OM 落在射线OA 上,此时ON 旋转的角度为90 °;(2)继续将图 2 中的三角板绕点O 按顺时针方向旋转至图 3 的位置,使得OM 在∠BOC 的内部,则∠BON﹣∠COM =30 °;(3)在上述直角三角板从图 1 旋转到图 3 的位置的过程中,若三角板绕点O 按每秒钟15°的速度旋转,当OM 恰为∠BOC 的平分线时,此时,三角板绕点O 的运动时间为(24n+16)秒,简要说明理由.【解答】解:(1)如图2,依题意知,旋转角是∠MON ,且∠MON =90°.故填:90;(2)如图3,∠ AOC:∠ BOC=2:1,∴∠AOC=120°,∠BOC =60°,∵∠BON=90°﹣∠ BOM,∠COM =60°﹣∠ BOM,∴∠ BON﹣∠COM =90°﹣∠BOM ﹣60°+∠BOM =30°,故填:30;(3)16 秒.理由如下:如图4.∵点O 为直线AB 上一点,∠ AOC:∠ BOC=2:1,∴∠AOC=120°,∠BOC =60°.∵OM 恰为∠ BOC 的平分线,∴∠COM ′=30°.∴∠AOM+∠AOC+∠COM ′=240°.∵三角板绕点O 按每秒钟15°的速度旋转,∴三角板绕点O 的运动最短时间为=16(秒).∴三角板绕点O 的运动时间为(24n+16 )(n 是整数)秒.故填:(24n+16 ).第9页。

(完整版)初一上学期动点问题(含答案)

(完整版)初一上学期动点问题(含答案)

初一上学期动点问题练习1。

如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。

已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。

精品资料:七年级上期末动点问题专题(附答案)

精品资料:七年级上期末动点问题专题(附答案)

七年级上期末动点问题专题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN 的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=_________;PB=_________(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=_________,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=_________AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN 的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=|x+1|;PB=|x﹣3|(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN 的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=4,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4,点P表示的数6﹣6t用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4,点P表示的数6﹣6t(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.。

七年级上册数学数轴上的动点问题(含解析)

七年级上册数学数轴上的动点问题(含解析)

七年级上册数字数轴上的动点问题(含解析)一、综合题(共13题;共169分)1.(2020七上·金华期中)如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后两点相距15个单位长度,已知动点A、B的速度比是1:4(速度单位:1单位长度/秒).(1)求两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点分别从(1)中标出的位置同时向数轴负方向运动,问经过几秒,原点恰好处在两个动点的正中间?2.(2020七上·巴南月考)如图,数轴上点A表示的数为6,点B位于A点的左侧,AB=10,动点P从点A 出发,以每秒3个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右运动.(1)点B表示的数是________;(2)若点P,Q同时出发,求:①当点P与Q相遇时,它们运动了多少秒?相遇点对应的数是多少?②当PQ=5个单位长度时,它们运动了多少秒?3.(2020七上·五常期末)如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度,已知动点A、B的速度比为1:3(速度单位:1个单位长度秒).(1)求两个动点运动的速度;(2)在数轴上标出A、B两点从原点出发运动2秒时的位置;(3)若表示数0的点记为O,A、B两点分别从(2)中标出的位置同时向数轴负方向运动,再经过多长时间,满足OB=2OA?4.(2020七上·青羊月考)如图,已知在数轴上有三个点、、,是原点,满足,,,动点从点出发向右以每秒的速度匀速运动;同时,动点从点出发,在数轴上向左运动.(1)若点的速度为每秒,求,相遇时,运动的时间.(2)若的运动速度为每秒时,经过多长时间,两点相距?(3)当时,点运动的位置恰好是线段的三等分点,求的速度.5.(2020七上·五常期末)如图,动点从原点出发向数轴负方向运动,同时动点也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度,已知动点、的速度比为(速度单位:1个单位长度/秒)(1)求两个动点运动的速度.(2)在数轴上标出、两点从原点出发运动2秒时的位置.(3)若表示数的点记为,,两点分别从(2)中标出的位置同时向数轴负方向运动,再经过多长时间,?6.(2020七上·广东月考)已知数轴上,M表示-10,点N在点M的右边,且距M点40个单位长度,点P,点Q是数轴上的动点.(1)直接写出点N所对应的数;(2)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向左运动,设点P、Q在数轴上的D点相遇,求点D的表示的数;(3)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向右运动,问经过多少秒时,P,Q两点重合?7.(2020七上·武汉月考)已知在数轴上有A,B两点,点B表示的数为最大的负整数,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1时,写出数轴上点B,P所表示的数;(2)若点P,Q分别从A,B两点同时出发,问当t为何值点P与点Q相距3个单位长度?(3)若点O到点M,N其中一个点的距离是到另一个点距离的2倍,则称点O是[M,N]的“好点”,设点C是点A,B的中点,点P,Q分别从A,B两点同时出发,点P向左运动到C点时返回到A点时停止,动点Q一直向右运动到A点后停止运动,求当t为何值时,点C为[P,Q]的“好点”?8.(2020七上·北京期中)如图,数轴上A,B两点对应的有理数分别为x A=﹣5和x B=6,动点P从点A出发,以每秒1个单位的速度沿数轴在A,B之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在B,A之间往返运动.设运动时间为t秒.(1)当t=2时,点P对应的有理数x P=________,PQ=________;(2)当0<t≤11时,若原点O恰好是线段PQ的中点,求t的值;(3)我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,直接写出此整点对应的数.9.(2020七上·花都期末)如图,射线OM上有三点A、B、C,OC=45cm, BC=15cm, AB=30cm,已知动点P、Q同时运动,其中动点P从点O出发沿OM方向以速度2cm/s匀速运动,动点Q从点C出发沿CA方向匀速运动,当点Q运动到点A时,点Q停止运动(点P继续运动).设运动时间为t秒.(1)求点P运动到点B所用的时间;(2)若点Q运动速度为每秒1cm,经过多少秒时,点P和点Q的距离为30cm;(3)当PA=2PB时,点Q恰好在线段AB的三等分点的位置,求点Q的速度.10.(2020七上·蚌埠月考)已知数轴上两点、对应的数分别为、3,点为数轴上一动点,其对应的数为.(1)若点到点,点的距离相等,则点对应的数是________;(2)数轴上是否存在点.使点到点、点的距离之和为10?若存在,请求出的值;若不存在,说明理由;(3)现在点,点分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点以3个单位长度/秒的速度同时从原点向左运动,当点与点之间的距离为2个单位长度时,求点所对应的数是多少?(12分)11.(2019七上·江阴期末)在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.12.(2020七上·柯桥月考)已知数轴上两点A 、B 对应的数分别为-3 、1 ,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,点B 的距离相等,求点P 对应的数.(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为?若存在,请求出的值;若不存在,说明理由.(3)点A 、点B 分别以2 个单位长度/分、1 个单位长度/分的速度向右运动,同时点P 以6 个单位长度/分的速度从点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间,求当点A 与点B 重合时,点P 所经过的总路程是多少?13.(2020七上·嘉陵月考)已知数轴上两点、对应的数分别为、3,点为数轴上一动点,其对应的数为x.(1)若点到点点的距离相等,求点对应的数.(2)数轴上是否存在点,使点P到点、点的距离之和为6?若存在,请求出的值,若不存在,说明理由.答案解析部分一、综合题1.【答案】(1)解:设动点A的速度是x单位长度/ 秒,由题意得3(x+4x)=15解得x=1,4x=4 ,答:动点A的速度是1单位长度/秒,动点B的速度是4单位长度/秒;标出A,B点如图:(2)解:设y秒时,原点恰好在两个动点的正中间,由题意得3+y=12-4y ,解得:答:秒时原点恰好在两个动点的正中间.【解析】【分析】(1)设动点A的速度是x单位长度/ 秒,可得动点B的速度是4x单位长度/ 秒,然后根据两点间的距离等于15,列出方程求解即可;(2)设y秒时,原点恰好在两个动点的正中间,根据点A到原点的距离与点B到原点的距离相等列出方程求解即可.2.【答案】(1)-4(2)解:设运动时间为t秒,则此时点P表示的数为6-3t,点Q表示的数为2t-4.① 当点P与Q相遇时,t=(秒),所以2t-4=0答:当点P与Q相遇时,它们运动了2秒,相遇点对应的数是0.②当PQ未相遇,且PQ=5个单位长度,t=(秒);当PQ相遇后,且PQ=5个单位长度,t=(秒);答:PQ=5个单位长度时,它们运动了1或3秒.【解析】【解答】解:(1)6-10=-4,故答案为:-4;【分析】(1)用6-10=-4,即可求解;(2)设运动时间为t秒,则此时点P表示的数为6-3t,点Q表示的数为2t-4.① 当点P与Q相遇时,求出运动时间,即可求出点Q表示的数;②分PQ未相遇和相遇后两种情况讨论即可求解.3.【答案】(1)设动点A的速度是x单位长度/秒,根据题意得2(x+3x)=16∴8x=16,解得:x=2,则3x=6.答:动点A的速度是2单位长度/秒,动点B的速度是6单位长度/秒;(2)标出A,B点如图,;(3)设x秒时,OB=2OA,当B在A的右边,根据题意得:12﹣6x=2(4+2x),∴x=0.4,当A在B的右边,根据题意得:6x﹣12=2(4+2x),∴x=10∴0.4,10秒时OB=2OA.【解析】【分析】(1)设动点A的速度是x单位长度/秒,那么动点B的速度是3x单位长度/秒,然后根据2秒后,两点相距16个单位长度即可列出方程解决问题;(2)根据(1)的结果和已知条件即可得出.(3)此问分两种情况讨论:B在A的右边,A在B的右边,设经过时间为x后,列出等式解出x即可;4.【答案】(1)解:设、相遇时,运动的时间为,由题知:,∴当、相遇时,,即.∴解得:,故、相遇时的运动时间为.(2)解:∵,∴分两种情况,① 在的右侧时,经过时间为,② 在的左侧时,设经过时间,、两点相距,此时,,∴,解得:,综合①②得知,经过5秒和40秒时、两点相距.(3)解:,分两种情况,①当点在、两点之间时,∵,∴,此时运动的时间为∵点运动的位置恰好是线段的三等分,∴或,点的运动速度为或;②当点在线段的延长线上时,∵,∴,此时运动的时间为,∵点运动的位置恰好是线段的三等分,∴或,点的运动速度为或;综合①②得知,当点在、两点之间时,点的运动速度为或;当点在线段的延长线上时,点的运动速度为或.【解析】【分析】(1)设、相遇时,运动的时间为,可得OP=t,CQ=0.8t,根据OP+CQ=OC列出方程,求出t值即可;(2)由于①在的右侧时,②在的左侧时,据此分别求出结论即可;(3),分两种情况,①当点在、两点之间时,②当点在线段的延长线上时,据此分别解答即可.5.【答案】(1)设动点的速度是单位长度/秒,根据题意得:解得∴答:动点的速度是2个单位长度/秒,动点的速度是6个单位长度/秒.(2)-2×2=-4,6×2=12;、两点从原点出发运动2秒时的位置如图:(3)设秒时,当在的右边时,根据题意得:当在的左边时,根据题意得:解得:∴当再经过秒或10秒时,.【解析】【分析】(1)设动点的速度是单位长度/秒,列方程,求解即可;(2)分别计算P,Q表示的数,在数轴上表示即可;(3)设秒时,,分当在的右边和当在的左边两种情况分类讨论,列方程求解即可.6.【答案】(1)-10+40=30,∴点N表示的数为30;(2)40÷(3+5)=5秒,-10+5×5=15,∴点D表示的数为15;(3)40÷(5-3)=20,∴经过20秒后,P,Q两点重合.【解析】【分析】(1)根据数轴上两点之间的距离得出结果;(2)利用时间=路程÷速度和算出相遇时间,再计算出点D表示的数;(3)利用时间=路程÷速度差算出相遇时间即可.7.【答案】(1)解:∵点B表示的数为最大的负整数,点A在点B的右边,AB=24.∴点B表示的数为-1,点A表示的数为-1+24=23.∵点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t秒,∴当t=1时,点P表示的数为23-4×1=19.(2)解:当运动时间为t秒时,点P表示的数为23-4t,点Q表示的数为3t-1,依题意,得:|23-4t-(3t-1)|=3,即24-7t=3或7t-24=3,解得:t=3或t= ,答:当t为3或时,点P与点Q相距3个单位长度.(3)解:∵点B表示的数为-1,点A表示的数为23,点C为线段AB的中点,∴点C表示的数为11.∵24÷2÷4=3(秒),3×2=6(秒),24÷3=8秒,∴当0≤t≤3时,点P表示的数为23-4t;当3<t≤6时,点P表示的数为11+4(t-3)=4t-1;当6<t≤8时,点P表示的数为23;当0≤t≤8时,点Q表示的数为3t-1.∵点C为[P,Q]的“好点”,∴当0≤t≤3时,11-(3t-1)=2(23-4t-11)或2[11-(3t-1)]=23-4t-11,解得:t= 或t=6(不合题意,舍去);当3<t≤6时,|11-(3t-1)|=2(4t-1-11)或2|11-(3t-1)|=4t-1-11,即12-3t=8t-24或3t-12=8t-24或24-6t=4t-12或6t-24=4t-12,解得:t= 或t= (不合题意,舍去)或t= 或t=6;当6<t≤8时,23-11=2(3t-1-11),解得:t=6(不合题意,舍去).答:当t为或或或6时,点C为[P,Q]的“好点”.【解析】【分析】(1)由点B表示的数为最大的负整数及线段AB的长可得出点B,A表示的数,再结合点P的出发点、运动速度及运动方向,可找出当t=1时点P表示的数;(2)当运动时间为t秒时,点P表示的数为23-4t,点Q表示的数为3t-1,根据PQ=3,即可得出关于x的一元一次方程,解之即可得出结论;(3)由点A,B表示的数结合点C为线段AB的中点,可找出点C表示的数,分0≤t≤3,3<t≤6和6<t≤8三种情况,根据点C为[P,Q]的“好点”,即可得出关于x的一元一次方程,解之即可得出结论.8.【答案】(1)﹣3;5(2)解:∵x A=﹣5,x B=6,∴OA=5,OB=6.由题意可知,当0<t≤11时,点P运动的最远路径为数轴上从点A到点B,点Q运动的最远路径为数轴上从点B到点A并且折返回到点B.对于点P,因为它的运动速度v P=1,点P从点A运动到点O需要5秒,运动到点B需要11秒.对于点Q,因为它的运动速度v Q=2,点Q从点B运动到点O需要3秒,运动到点A需要5.5秒,返回到点B需要11秒.要使原点O恰好是线段PQ的中点,需要P,Q两点分别在原点O的两侧,且OP=OQ,此时t≠5.5.①当0<t<5.5时,点Q运动还未到点A,有AP=t,BQ=2t.此时OP=|5﹣t|,OQ=|6﹣2t|.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴|5﹣t|=|6﹣2t|,解得t=1或t=.检验:当t=时,P,Q两点重合,且都在原点O左侧,不合题意舍去;t=1符合题意.∴t=1;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,要使原点O恰好是线段PQ的中点,点Q必须位于原点O左侧,此时P,Q两点的大致位置如下图所示.此时,OP=AP﹣OA=t﹣5,OQ=OA﹣AQ=5﹣2(t﹣5.5)=16﹣2t.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴t﹣5=16﹣2t,解得t=7.检验:当t=7时符合题意.∴t=7.综上可知,t=1或7;(3)解:①当0<t<5.5时,点Q运动还未到点A,当P,Q两点重合时,P与Q相遇,此时需要的时间为:秒,相遇点对应的数为﹣5+ =﹣,不是整点,不合题意舍去;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,当P,Q两点重合时,点Q追上点P,AQ=AP,2(t﹣5.5)=t,解得t=11,追击点对应的数为﹣5+11=6.故当P,Q两点第一次在整点处重合时,此整点对应的数为6.【解析】【解答】解:(1)当t=2时,点P对应的有理数x P=﹣5+1×2=﹣3,点Q对应的有理数x Q=6﹣2×2=2,∴PQ=2﹣(﹣3)=5.故答案为﹣3,5;【分析】(1)根据数轴上点平移的规律以及路程=时间×速度,求出点P对应的有理数,继而根据两点之间的距离公式计算即可;(2)根据题意可知,当0<t≤11时,点P的最远路径为点A到点B,点Q的最远路径为点B到点A继而折返到点B,计算得到答案即可;(3)当点P和点Q重合时,点Q的运动方向有两个,分类讨论得到答案即可。

初一线段上的动点问题专题(含答案)

初一线段上的动点问题专题(含答案)

七年级(上)动点问题专题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=_________;PB=_________(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B 以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q 在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=_________,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=_________AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P 运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=|x+1|;PB=|x﹣3|(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B 以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=4,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE 的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4,点P表示的数6﹣6t用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P 运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4,点P表示的数6﹣6t(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.。

初一上学期动点问题(含答案)

初一上学期动点问题(含答案)

初一上学期动点问题练习1•如图,已知数轴上点A表示的数为8, B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.JT O A' 6 S *(1) ___________________________ 写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为一6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)贝U AC=5, BC=3,•/ AC— BC=AB••• 5—3="14"解得:=7,.••点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:B X O P M A・■・・・・•0 SMN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:x:o A- 」€8 *MN=MP —NP= AP- BP=(AP— BP)=AB="7"•••综上所述,线段MN的长度不发生变化,其值为7;2•已知数轴上有A、B、C三点,分别表示有理数-26 , -10, 10,动点P从A出发,以每秒1个单位的速度向终点C移动, 设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA= __________ ,PC= ______ .(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1) PA=t, PC=36-t;(2)当16W t W 24 时PQ=t-3 (t-16) =-2t+48 , 当24 V t W 28 时PQ=3 (t-16) -t=2t-48 , 当28V t W 30 时PQ=72-3(t-16) -t=120-4t, 当30V t W 36 时PQ=t-[72-3 (t-16) ]=4t-120 .3•已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为__________ ,点B表示的数为________ ,点C表示的数为_______; ( 2)用含t的代数式表示P到点A和点C的距离:PA= __________ ,PC= _____ ; ( 3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P若能,请求出点Q运动几秒追上•②在点Q开始运动后,P、Q两点之间的距离能否为2个单位如果能,请求出此时点P表示的数;如果不能,请说明理由.I J ・--------- 咕 ---------------------------------- T --------------------------------- -解:(1)点A表示的数为-26,点B表示的数为-10 ,点C表示的数为10;(2)PA=1X t=t,PC=AC-PA=36-t(3)①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据题意得3x=1 (x+16),解得x=8.答:在点Q向点C运动过程中,能追上点P,点Q运动8秒追上;②分两种情况:I)点Q从A点向点C运动时,如果点Q在点P的后面,那么1 (x+16) -3x=2,解得x=7,此时点P表示的数是-3;如果点Q在点P的前面,那么3x-1 (x+16) =2,解得x=9,此时点P表示的数是-1;H)点Q从C点返回到点A时,如果点Q在点P的后面,那么3x+1 (x+16) +2=2X 36,解得x=,此时点P表示的数是;如果点Q在点P的前面,那么3x+1 (x+16) -2=2 X 36,解得x=,此时点P表示的数是.答:在点Q开始运动后,P、Q两点之间的距离能为2个单位,此时点P表示的数分别是-3, -1 ,,.4.已知数轴上有A、B、C三点表示-24、-10、10,两只电子蚂蚁甲、已分别从A、C两点同时相向而行,甲的速度为4单位/秒。

七年级上册动点问题题库

七年级上册动点问题题库

1、在数轴上,点A表示-3,点B表示5,若点P从点A出发,以每秒2个单位长度的速度向右移动,同时点Q从点B出发,以每秒1个单位长度的速度向左移动,设移动时间为t 秒,则当t为何值时,PQ = 4?()A. 1秒B. 2秒C. 3秒D. 4秒(答案)C2、一条长为8cm的线段AB,点C从A出发,以2cm/s的速度沿线段AB向B运动,点D同时从B出发,以1cm/s的速度沿线段BA向A运动,设运动时间为t秒((0≤t≤4),则当t为何值时,CD = 3cm?()A. 1秒B. 2秒C. 3秒D. 5秒(答案)A3、在直角坐标系中,点A坐标为(0, 4),点B坐标为(4, 0),若点P从原点O出发,以每秒1个单位的速度沿x轴正方向移动,同时点Q从A出发,以每秒2个单位的速度沿AB向B移动,设移动时间为t秒,则当t为何值时,PQ与OB垂直?()A. 1秒B. 1.5秒C. 2秒D. 2.5秒(答案)C4、在数轴上,点M表示-2,点N表示6,点P从M出发,以每秒3个单位的速度向右移动,点Q同时从N出发,以每秒1个单位的速度向左移动,设移动时间为t秒,则MN的中点与PQ的中点重合时,t的值为()A. 1秒B. 1.5秒C. 2秒D. 2.5秒(答案)C5、在一条直线上,点E表示-10,点F表示12,点G从E出发,以每秒3个单位的速度向右移动,点H同时从F出发,以每秒2个单位的速度向左移动,设移动时间为t秒,则EG与FH相遇时,t的值为()A. 2秒B. 4秒C. 6秒D. 8秒(答案)B6、在直角坐标系中,点K坐标为(2, 0),点L坐标为(0, 6),点M从K出发,以每秒1个单位的速度沿x轴正方向移动,点N同时从L出发,以每秒2个单位的速度沿y轴负方向移动,设移动时间为t秒,则当MN与x轴平行时,t的值为()A. 1秒B. 2秒C. 3秒D. 4秒(答案)C7、在数轴上,点R表示-4,点S表示8,点T从R出发,以每秒2个单位的速度向右移动,点U同时从S出发,以每秒3个单位的速度向左移动,设移动时间为t秒,则RT与SU相遇的点到原点的距离为()A. 2B. 4C. 6D. 8(答案)A8、在直角坐标系中,点X坐标为(3, 0),点Y坐标为(0, 9),点Z从X出发,以每秒2个单位的速度沿x轴负方向移动,点W同时从Y出发,以每秒3个单位的速度沿y轴负方向移动,设移动时间为t秒,则当ZW与x轴垂直时,ZW的长度为()A. 3B. 4C. 5D. 6(答案)D。

初一上学期动点问题含答案

初一上学期动点问题含答案

初一上学期动点问题含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】初一上学期动点问题练习1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,问点P运动多少秒时追上点Q(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3="14"解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36-t;(2)当16≤t≤24时PQ=t-3(t-16)=-2t+48,当24<t≤28时PQ=3(t-16)-t=2t-48,当28<t≤30时PQ=72-3(t-16)-t=120-4t,当30<t≤36时PQ=t-[72-3(t-16)]=4t-120.3.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A 表示的数为______,点B表示的数为______,点C表示的数为______;(2)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______;(3)当点P运动到B 点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位如果能,请求出此时点P表示的数;如果不能,请说明理由.解:(1)点A表示的数为-26,点B表示的数为-10,点C表示的数为10;(2)PA=1×t=t,PC=AC-PA=36-t;(3)①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据题意得3x=1(x+16),解得x=8.答:在点Q向点C运动过程中,能追上点P,点Q运动8秒追上;②分两种情况:Ⅰ)点Q从A点向点C运动时,如果点Q在点P的后面,那么1(x+16)-3x=2,解得x=7,此时点P表示的数是-3;如果点Q在点P的前面,那么3x-1(x+16)=2,解得x=9,此时点P表示的数是-1;Ⅱ)点Q从C点返回到点A时,如果点Q在点P的后面,那么3x+1(x+16)+2=2×36,解得x=,此时点P表示的数是;如果点Q在点P的前面,那么3x+1(x+16)-2=2×36,解得x=,此时点P表示的数是.答:在点Q开始运动后,P、Q两点之间的距离能为2个单位,此时点P表示的数分别是-3,-1,,.4.已知数轴上有A、B、C三点表示-24、-10、10,两只电子蚂蚁甲、已分别从A、C两点同时相向而行,甲的速度为4单位/秒。

初一数学动点问题答案与解析

初一数学动点问题答案与解析

动点问题答案与解析一、单点移动问题1.【解答】(1)-21(2)14.5秒(3)37-2t(4)BC:2t-29当A在C的左边:AC:52-2t当A在C的右边:AC:2t-522.【解答】解:(1)点P表示的有理数为﹣4+2×2=0;(2)6﹣(﹣4)=10,10÷2=5,5÷2=2.5,(10+5)÷2=7.5.故点P是AB的中点时t=2.5 或7.5;(3)在点P由点A到点B的运动过程中,点P与点A的距离为2t;(4)在点P由点B到点A的返回过程中,点P表示的有理数是6﹣2(t﹣5)=16﹣2t.3.【解答】解:(1)①点P在点B的左边时∵PB=2,4﹣2=2,∴点P表示的是2.②点P在点B的右边时,∵PB=2,4+2=6,∴点P表示的是6.综上,可得点P表示的是2或6;(2)∵4﹣(﹣2)=6,∴线段AB的长度是6.①AP=AB=2时,点P表示的是﹣2+2=0.②BP=AB=2时,点P表示的是4﹣2=2.综上,可得点P表示的是0或2;(3)①点P在点B的左边时,∵AP=6﹣2=4,4÷2=2,∴线段AM的长是2.②点P在点B的右边时,∵AP=6+2=8,8÷2=4,∴线段AM的长是4.综上,可得线段AM的长是2或4.(4)根据图示,可得当点P在A、B两点之间时,PA+PB的值最小,此时,PA+PB=AB=6,所以PA+PB 的最小值是6.二、两点移动问题4.【解答】解:(1)①∵点A表示的数为8,B在A点左边,AB=12,∴点B表示的数是8﹣12=﹣4,∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∴点P表示的数是8﹣3×1=5.②设点P运动x秒时,与Q相距3个单位长度,则AP=3x,BQ=2x,∵AP+BQ=AB﹣3,∴3x+2x=9,解得:x=1.8,∵AP+BQ=AB+3,∴3x+2x=15解得:x=3.∴点P运动1.8秒或3秒时与点Q相距3个单位长度.(2)2MN+PQ=12或2MN﹣PQ=12;理由如下:P在Q右侧时有:MN=MQ+NP﹣PQ=AQ+BP﹣PQ=(AQ+BP﹣PQ)﹣PQ= AB﹣PQ=(12﹣PQ),即2MN+PQ=12.同理P在Q左侧时有:2MN﹣PQ=12.5.【解答】解:(1)点B表示的数是﹣4;(2)﹣4+2×2=﹣4+4=0.故2秒后点B表示的数是0,(3)由题意可知:①O为BA的中点,(﹣4+2t)+(2+2t)=0,解得t=;②B为OA的中点,2+2t=2(﹣4+2t),解得t=5.故答案为:﹣4;0.6.【解答】解:(1)设A点运动速度为x单位长度/秒,则B点运动速度为4x单位长度/秒.由题意得:3x+3×4x=15解得:x=1∴A点的运动速度是1单位长度/秒,B点的速度是4单位长度/秒;(2)设y秒后,原点恰好处在A、B的正中间.由题意得:y+3=12﹣4y解得:答:经过秒后,原点恰处在A、B的正中间;(3)设B追上A需时间z秒,则:4×z﹣1×z=2×(+3)解得:,=64.答:C点行驶的路程是64长度单位.7.【解答】解:(1)∵1﹣(﹣1)=2,2的绝对值是2,1﹣3=﹣2,﹣2的绝对值是2,∴点P对应的数是1.(2)当P在AB之间,PA+PB=4(不可能有)当P在A的左侧,PA+PB=﹣1﹣x+3﹣x=6,得x=﹣2当P在B的右侧,PA+PB=x﹣(﹣1)+x﹣3=6,得x=4故点P对应的数为﹣2或4;(3)解:设经过x分钟点A与点B重合,根据题意得:2x=4+x,解得x=4.∴6x=24.答:点P所经过的总路程是24个单位长度.8.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.9.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.如图2,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.三、多点移动问题10.【解答】解:(1)A表示的数是﹣6,点A先沿着数轴向右移动8个单位长度,再向左移动5个单位长度后所对应的数字是:﹣6+8﹣5=﹣3,故答案为:﹣3;(2)∵A,B对应的数分别为﹣6,2,点C到点A,点B的距离相等,∴AB=8,x的值是﹣2.故答案为:﹣2;(3)根据题意得:|x﹣(﹣6)|+|x﹣2|=10,解得:x=﹣7或3;故答案为:﹣7或3;(4)当点A、B重合时,﹣6+4t=2﹣2t,解得t=;当点C为A、B中点且点C在点A的右侧时,﹣t﹣(﹣6+4t)=(2﹣2t)﹣(﹣t),解得t=1;当点C为A、B中点且点C在点A的左侧时,(﹣6﹣4t)﹣(﹣t)=(﹣t)﹣(2﹣2t)m解得t=1(舍去).综上所述,当t=或1,点C到点A、B 的距离相等.11.【解答】解:(1)设B点的运动速度为x,A、B两点同时出发相向而行,则他们的时间相等,有:=,解得x=1,所以B点的运动速度为1;(2)设经过时间为t.则B在A的前方,B点经过的路程﹣A点经过的路程=6,则2t﹣t=6,解得t=6.A在B的前方,A点经过的路程﹣B点经过的路程=6,则2t﹣t=12+6,解得t=18.(3)设点C的速度为y,始终有CB:CA=1:2,即:=,解得y=,当C停留在﹣10处,所用时间为:=秒,B的位置为=﹣.12.【解答】解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)QC﹣AM的值不发生变化.理由如下:设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.四、线段移动问题13.【解答】解:(1)由题意得:11﹣(b+3)=b,解得:b=4.答:线段AC=OB,此时b的值是4.(2)由题意得:①11﹣(b+3)﹣b=(11﹣b),解得:b=.②11﹣(b+3)+b=(11﹣b),解得:b=﹣5.答:若AC﹣0B=AB,满足条件的b值是或﹣5.14.【解答】解:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,∴移动后M表示的数为t,N表示的数为t+2,∴AM=t﹣(﹣1)=t+1.故答案为:t+1.(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,∵AM+BN=11,∴t+1+|9﹣t|=11,解得:t=.故答案为:.(3)假设能相等,则点A表示的数为2t﹣1,M表示的数为t,N表示的数为t+2,B表示的数为11﹣t,∴AM=|2t﹣1﹣t|=|t﹣1|,BN=|t+2﹣(11﹣t)|=|2t﹣9|,∵AM=BN,∴|t﹣1|=|2t﹣9|,解得:t1=,t2=8.故在运动的过程中AM和BN能相等,此时运动的时间为秒和8秒.15.【解答】解:(1)由数轴观察知三根木棒长是20﹣5=15,则此木棒长为:15÷3=5,故答案为:5.(2)如图,点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为﹣40,当点M移动到点B时,点N所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.五、图形动点问题16.【解答】【考点】8A:一元一次方程的应用.【专题】25 :动点型;2A :规律型.【分析】此题利用行程问题中的相遇问题,设出正方形的边长,乙的速度是甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:设正方形的边长为a,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×=,乙行的路程为2a×=,在AB边相遇;②第二次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在CB边相遇;③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在DC边相遇;④第四次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在AB边相遇;⑤第五次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在AD边相遇;…因为2008=502×4,所以它们第2008次相遇在边AB上.故答案为:AB.【点评】本题主要考查行程问题中的相遇问题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.。

七年级上期末动点问题专题(附答案)

七年级上期末动点问题专题(附答案)

七年级上册期末数学动点问题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:A B=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA= _________ ;PB= _________ (用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB 上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段R Q的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE= _________ ,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= _________ AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________ ;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________ ,点P表示的数_________ 用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________ ,点P表示的数_________ (用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:A B=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA= |x+1| ;PB= |x﹣3| (用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB 上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段R Q的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE= 4 ,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1 ;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4 ,点P表示的数6﹣6t 用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4 ,点P表示的数6﹣6t (用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.。

初一上学期动点问题练习(含答案)

初一上学期动点问题练习(含答案)

初一上学期动点问题练习动点问题主要涉及到两个思想:一个是方程思想,化动为静,把线段的距离,或者点的位置用含未知数的代数式表达出来。

二个是分类讨论思想,一定要充分考虑,各种存在的可能性,解出所有可能存在的值。

而动点问题的题型主要有以下题型:(1)线段上动点与三等分点问题的综合1.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10 cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时,P、Q均停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(2)线段上动点问题中的存在性问题2.如图,已知数轴上A, B两点对应的数分别为-2,6,0为原点,点P为数轴上的一个动点,其对应的数为x.(1) PA= ,PB= .(用含x的式子表示) .(2)在数轴上是否存在点P,使PA+PB=10?若存在,请说明理由.(3)点P以1个单位长度/s的速度从点O向右运动,同时点A 以5个单位长度/s的速度向左运动,点B 以20个单位长度/s 的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:AB−OPMN的值是否发生变化?请说明理由.(3)线段和差倍分关系中的动点问题3.如图,线段AB=24,动点P从A出发,以每秒2个单位长度的速度沿射线AB运动,M为AP的中点,设P的运动时间为x秒.(1)当PB=2AM时,求x的值.(2)当P在线段AB上运动时,试说明2BM-BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变;选择一个正确的结论,并求出其值.(4)线段上动点的方程问题4.情景一:如图,从教学楼到图书馆,总有少数.同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:如图,A,B是河流1两旁的两个村庄,现要在河边修一个抽水站向两村供水.问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由.。

人教版七年级数学上册期末动点问题压轴题专题练习-带答案

人教版七年级数学上册期末动点问题压轴题专题练习-带答案

人教版七年级数学上册期末动点问题压轴题专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足︱a+3︱+︱c-5 ︱=0(1)a=,b=,c=.(2)如果点P表示的数为x,当P点到B、C两点的距离之和为8时,x=(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B 和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。

2.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.(1)则a=,b=;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.3.已知数轴上有A,B两点,分别代表-40,20,两只电子蚂蚁甲、乙分别从A,B两点同时出发,其中甲以1个单位长度/秒的速度向右运动,到达点B处时运动停止.乙以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时一共运动了秒.(2)甲、乙在数轴上运动,经过多少秒相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.4.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c−6)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为,点B与数表示的点重合,原点与数表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P 速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒▲ 个单位长度,点Q的速度是每秒▲ 个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.5.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,完成下列各题.(1)若点A表示数-2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b−3|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动:同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒)①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.7.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M在线段AP上,且AM=MP,N在线段CQ上,且CN=14CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.8.数轴上点A表示的有理数为20,点B表示的有理数为﹣10,点P从点A出发以每秒5个单位长度的速度在数轴上往左运动,到达点B后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A停止,设运动时间为t(单位:秒).(1)当t=5时,点P表示的有理数为.(2)在点P往左运动的过程中,点P表示的有理数为(用含t的代数式表示).(3)当点P与原点距离5个单位长度时,t的值为.9.如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|,我们把数轴上两点的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,OA=,AB=.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B 出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出t值;若不存在,请说明理由.11.如图.数轴上A.B两点对应的有理数分别为-10和20.点P从点O出发.以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从点A出发,以每秒2个单位长度的速发沿数轴正方向运动.设运动时间为t秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一下学期动点问题练习1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3="14"解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36-t;(2)当16≤t≤24时PQ=t-3(t-16)=-2t+48,当24<t≤28时PQ=3(t-16)-t=2t-48,当28<t≤30时PQ=72-3(t-16)-t=120-4t,当30<t≤36时PQ=t-[72-3(t-16)]=4t-120.3.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为______,点B表示的数为______,点C表示的数为______;(2)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______;(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.解:(1)点A表示的数为-26,点B表示的数为-10,点C表示的数为10;(2)PA=1×t=t,PC=AC-PA=36-t;(3)①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据题意得3x=1(x+16),解得x=8.答:在点Q向点C运动过程中,能追上点P,点Q运动8秒追上;②分两种情况:Ⅰ)点Q从A点向点C运动时,如果点Q在点P的后面,那么1(x+16)-3x=2,解得x=7,此时点P表示的数是-3;如果点Q在点P的前面,那么3x-1(x+16)=2,解得x=9,此时点P表示的数是-1;Ⅱ)点Q从C点返回到点A时,如果点Q在点P的后面,那么3x+1(x+16)+2=2×36,解得x=13.5,此时点P表示的数是3.5;如果点Q在点P的前面,那么3x+1(x+16)-2=2×36,解得x=14.5,此时点P表示的数是4.5.答:在点Q开始运动后,P、Q两点之间的距离能为2个单位,此时点P表示的数分别是-3,-1,3.5,4.5.4.已知数轴上有A、B、C三点表示-24、-10、10,两只电子蚂蚁甲、已分别从A、C两点同时相向而行,甲的速度为4单位/秒。

(1)问多少秒后甲到A、B、C的距离和为40个单位。

(2)若已的速度给6单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的那个点相遇?(3)在(1)(2)的条件下,当甲到A、B、C的距离和为40个单位时,甲掉头返回,问甲、乙还能在数轴上相遇吗?若能,请求出相遇点,若不能,请说明理由。

解:(1).设x秒,B点距A,C两点的距离为14+20=34<40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4x+(14-4x)+(14-4x+20)=40x=2s② BC之间时:4x+(4x-14)+(34-4x)=40x=5s(2).xs后甲与乙相遇4x+6x=34 x=3.4s4*3.4=13.6-24+13.6=-10.4 数轴上-10.4(3).甲到A、B、C的距离和为40个单位时,甲调头返回。

而甲到A、B、C的距离和为40个单位时,即的位置有两种情况,需分类讨论。

①甲从A向右运动2秒时返回。

设y秒后与乙相遇。

此时甲、乙表示在数轴上为同一点,所表示的数相同。

甲表示的数为:-24+4×2-4y;乙表示的数为:10-6×2-6y 依题意有,-24+4×2-4y=10-6×2-6y,解得y = 7 相遇点表示的数为:-24+4×2-4y=-44 (或:10-6×2-6y=-44)②甲从A向右运动5秒时返回。

设y秒后与乙相遇。

甲表示的数为:-24+4×5-4y;乙表示的数为:10-6×5-6y 依题意有,-24+4×5-4y=10-6×5-6y,解得y=-8(不合题意,舍去)即甲从A点向右运动2秒后调头返回,能在数轴上与乙相遇,相遇点表示的数为-44。

5.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,-10.(1)填空:AB= ,BC= ;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC-AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C 移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.解:(1)AB=18-8=10,BC=8-(-10)=18;(2)答:不变.∵经过t秒后,A、B、C三点所对应的数分别是18+t,8﹣2t,﹣10﹣5t,∴BC=(8﹣2t)﹣(﹣10﹣5t)= 3t+18,AB=(18+t)﹣(8﹣2t)=3t+10,∴BC﹣AB=(3t+18)﹣(3t+10)=8.∴BC﹣AB的值不会随着时间t的变化而改变(2)①当0<t≤10时,点Q还在点A处,P、Q两点所对应的数分别是18﹣t,18 ∴PQ═t,②当t>10时,P、Q两点所对应的数分别是18﹣t,18﹣3(t﹣10)由18﹣3(t﹣10)﹣(18﹣t)=0 解得t=15当10<t≤15时,点Q在点P的右边,∴PQ=[18﹣3(t﹣10)]﹣(18﹣t)=30-2t,当15<t≤28时,点P在点Q的右边,∴PQ=18﹣t﹣[18﹣3(t﹣10)]=2t-30.6.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA 自B点向A点以3厘米/秒运动,经过4秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发2秒后,点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?(3)如图2:AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q 两点能相遇,求点Q运动的速度.解:(1)设经过x秒点P、Q两点能相遇,由题意得:2x+3x=20,解得:x=4,故答案为:4;(2)设再经过a秒后P、Q相距5cm,由题意得:①2×2+2a+3a=20-5,解得:a= 11/5 ;②2×2+2a+3a=20+5,解得:a= 21/5 ;(3)点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为120/60 =2s或(120+180)/60 =5s,设点Q的速度为ym/s,当2秒时相遇,依题意得,2y=20-2=18,解得y=9,当5秒时相遇,依题意得,5y=20-6=14,解得y=2.8.答:点Q的速度为9m/s或2.8m/s.7.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s 的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求PQ/AB的值。

(3)在(1)的条件下,若C、D运动5秒后,恰好有CD=1/2AB,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;②MN/AB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值。

解:(1)由题意:BD=2PC∵PD=2AC∴BD+PD=2(PC+AC)即PB=2AP∴点P在线段AB上的1/3处;(2)如图:∵AQ-BQ=PQ∴AQ=PQ+BQ又AQ=AP+PQ∴AP=BQ∴PQ=1/3AB当点Q"在AB的延长线上时AQ"-AP=PQ"所以AQ"-BQ"=PQ=AB所以PQ/AB =1;(3)②MN/AB 值不变,理由:如图,当点C停止运动时,有CD=1/2AB,∴CM=1/4AB,∴PM=CM-CP=1/4AB-5,∵PD=2/3AB-10,∴PN=1/2(2/3AB-10)=1/3AB-5,∴MN=PN-PM=1/12AB,。

相关文档
最新文档