广东诗莞市寮步镇泉塘村九年级数学上册第24章圆24.1.3弧弦圆心角教案新版新人教版

合集下载

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.3 弧、弦、圆心角教案【教材内容】1.圆心角的概念;2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等;3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.【教学重点】通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【教学难点】弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据.【教学过程设计】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究知识点一:圆心角 【类型一】圆心角的识别例1 如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB 解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.知识点二:圆心角的性质 【类型一】利用圆心角的性质求角例2 如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角例3 如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明例4 如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.知识点四:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 例5 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?解析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到AB =CD 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=12AB ,CF=12CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,AB =CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD方法归纳:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、教学小结师生一起总结本节学习知识要点:1.圆心角的概念;2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.【板书设计】24.1 圆的有关性质24.1.3 弧、弦、圆心角1.圆心角的识别2.圆心角的性质3.弧、弦、圆心角之间的关系4.运用弧、弦、圆心角的关系进行证明与计算【课堂检测】1.(1)在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等.2. 如图,在⊙O中,AB=AC∠ACB=60 °,求证:∠AOB=∠BOC=∠AOC3. 如图,AB,CD是⊙O的两条弦。

九年级数学上册 24.1 圆的有关性质 24.1.3 弧、弦、圆心角教案1 (新版)新人教版

九年级数学上册 24.1 圆的有关性质 24.1.3 弧、弦、圆心角教案1 (新版)新人教版

操作、讲解、自学、练习、合作交流。 教法学法
师生活动 一、复习引入 教学 过程 设计 思考下面的问题: 圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我 们学过的几何图形中既是中心对称图形,又是轴对称图形的是?
设计意图
二、探究新知
(一) 、圆心角定义 在纸上任意画一个圆,任意画出两条不在同一条直线上的半径, 构成一个角, 这样 的角就是圆心角.如图所示, ∠A OB 的顶点在圆心, 像这样,顶点在圆心的角叫做圆心角.
(二) 、圆心角、弧、弦之间的关系定理 1.按下列要求作图并回答问题: 如图所示的 ⊙O 中,分别作相等的圆心角∠AOB•和∠A• ′OB•′ 将圆心角∠AOB 绕圆心 O 旋转到∠A‵OB‵的位置,你能发现哪些等 量关系?为什么? 得到: 在同一个圆中, 相等的圆心角所对的弧相等, 所对的弦相等. (学生按照要求作图, 并观察图形, 结合圆的旋转不变性和相关知识 进行思考,尝试得出关系定理,再进行严格的几何证明.) 2.在等圆中相等的圆心角是否也有所对的弧相等, 所对的弦相等呢? 综合 1、2,我们可以得到关于圆心角、弧、弦之间的关系定理: 在同圆或等圆中,相等的圆心角 所对的弧相等,所对的弦也相等. 3.分析定理:去掉“在同圆或等圆中”这个条件,行吗? (学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.) 理, 初步感知培养 4.定理拓展: 学生的分析能力, 1 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角 ,•所 ○ 对的弦也分别相等吗? 2 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所 ○ 对的弧也分别相等吗?综上得到 在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等. 在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等. 综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量 为继续探究其推论 奠定基础. 解题能力。 通过该问题引起 学生思考, 进行探 究,发现关系定

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册《24.1.3弧、弦、圆心角》是本册教材的重要内容之一。

它主要介绍了弧、弦、圆心角的定义及其相互关系。

这部分内容对于学生来说,有助于深化对圆的理解,为后续学习圆的性质和应用打下基础。

教材通过生动的实例和丰富的练习,引导学生探索和发现弧、弦、圆心角之间的规律,培养学生的观察能力、思考能力和动手能力。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。

他们对圆的概念和性质有一定的认识,但弧、弦、圆心角的概念和关系可能还比较模糊。

因此,在教学过程中,教师需要从学生的实际出发,通过直观的教具和生动的实例,帮助学生理解和掌握弧、弦、圆心角的定义和相互关系。

三. 教学目标1.理解弧、弦、圆心角的定义,掌握它们的相互关系。

2.能够运用弧、弦、圆心角的性质解决实际问题。

3.培养学生的观察能力、思考能力和动手能力。

四. 教学重难点1.弧、弦、圆心角的定义及其相互关系。

2.运用弧、弦、圆心角的性质解决实际问题。

五. 教学方法1.直观演示法:通过实物演示和动画展示,让学生直观地理解弧、弦、圆心角的定义和相互关系。

2.引导发现法:教师引导学生观察、思考和探索,发现弧、弦、圆心角之间的规律。

3.练习法:通过丰富的练习题,巩固学生对弧、弦、圆心角的理解和应用。

六. 教学准备1.准备相关的实物教具,如圆板、量角器等。

2.制作课件,包括弧、弦、圆心角的定义和相互关系的动画演示。

3.准备练习题,涵盖各种类型的题目,以便进行巩固和拓展。

七. 教学过程1.导入(5分钟)教师通过实物演示,如拿一个圆板,让学生观察和描述圆板上的弧、弦和圆心角。

引导学生回顾圆的基本概念,为新课的学习做好铺垫。

2.呈现(15分钟)教师利用课件,生动地展示弧、弦、圆心角的定义和相互关系。

通过动画演示,让学生直观地理解弧、弦、圆心角之间的关系。

九年级数学上册第二十四章圆24.1圆的有关性质24.1.3弧弦圆心角教案新版新人教版

九年级数学上册第二十四章圆24.1圆的有关性质24.1.3弧弦圆心角教案新版新人教版

24.1.3 弧、弦、圆心角1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角.2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系进行相关的证明和计算.重点圆心角、弦、弧之间的相等关系及其理解应用.难点从圆的旋转不变性出发,发现并论证圆心角、弦、弧之间的相等关系.活动1动手操作,得出性质及概念1.在两张透明纸片上,分别作半径相等的⊙O和⊙O′.2.将⊙O绕圆心旋转任意角度后会出现什么情况?圆是中心对称图形吗?3.在⊙O中画出两条不在同一条直线上的半径,构成一个角,这个角叫什么角?学生先说,教师补充完善圆心角的概念.如图,∠AOB的顶点在圆心,像这样的角叫做圆心角.4.判断图中的角是否是圆心角,说明理由.活动2继续操作,探索定理及推论1.在⊙O′中,作与圆心角∠AOB相等的圆心角∠A′O′B′,连接AB,A′B′,将两张纸片叠在一起,使⊙O与⊙O′重合,固定圆心,将其中一个圆旋转某个角度,使得OA与O′A′重合,在操作的过程中,你能发现哪些等量关系,理由是什么?请与小组同学交流.2.学生会出现多对等量关系,教师给予鼓励,然后,老师小结:在等圆中相等的圆心角所对的弧相等,所对的弦也相等.3.在同一个圆中,相等的圆心角所对的弧相等吗?所对的弦相等吗?4.综合2,3,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.请用符号语言把定理表示出来.5.分析定理:去掉“在同圆或等圆中”这个条件,行吗?6.定理拓展:教师引导学生类比定理,独立用类似的方法进行探究:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?综上所述,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.活动3 学以致用,巩固定理1.教材第84页 例3.多媒体展示例3,引导学生分析要证明三个圆心角相等,可转化为证明所对的弧或弦相等.鼓励学生用多种方法解决本题,培养学生解决问题的意识和能力,感悟转化与化归的数学思想.活动4 达标检测,反馈新知教材第85页 练习第1,2题.活动5 课堂小结,作业布置课堂小结1.圆心角概念及圆的旋转不变性和对称性.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,以及其应用.3.数学思想方法:类比的数学方法,转化与化归的数学思想.作业布置1.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D .以上说法都不对2.如图,AB 和DE 是⊙O 的直径,弦AC∥DE ,若弦BE =3,求弦CE 的长.3.如图,在⊙O 中,C,D 是直径AB 上两点,且AC =BD,MC ⊥AB,ND ⊥AB,M,N 在⊙O 上.(1)求证:AM ︵=BN ︵;(2)若C,D 分别为OA,OB 中点,则AM ︵=MN ︵=BN ︵成立吗?答案:1.D ;2.3;3.(1)连接OM,ON,证明△MCO≌△NDO ,得出∠MOA=∠NOB ,得出AM ︵=BN ︵;(2)成立.。

九年级数学上册(人教版)24.1.3弧、弦、圆心角教学设计

九年级数学上册(人教版)24.1.3弧、弦、圆心角教学设计
2.教学过程:
(1)学生观察弓箭图片,思考并回答问题。
(2)教师总结:弓箭的形状类似于圆的一部分,这就是我们今天要学习的弧、弦、圆心角。
(二)讲授新知,500字
1.教学活动设计:
在讲授新知环节,我将通过讲解、举例、演示等方法,让学生掌握弧、弦、圆心角的概念及其相互关系。
2.教学过程:
(1)教师讲解弧、弦、圆心角的概念,并通过黑板演示相关图形。
为了巩固本节课所学内容,确保学生对弧、弦、圆心角的概念、性质及相互关系有更深入的理解,特此布置以下作业:
1.基础巩固题:
(1)请学生完成课本24.1.3节的练习题1、2、3,以巩固弧、弦、圆心角的基本概念。
(2)从生活实例中找出至少3个与弧、弦、圆心角相关的现象,并简要说明它们之间的关系。
2.能力提升题:
(2)学生跟随教师思路,理解并掌握相关概念。
(3)教师通过实例讲解弧、弦、圆心角的相互关系,如圆周角定理等。
(三)学生小组讨论,500字
1.教学活动设计:
在此环节,我将组织学生进行小组讨论,旨在培养学生的合作精神和解决问题的能力。
2.教学过程:
(1)教师提出讨论主题,如:“如何证明圆周角定理?”
(2)学生分组讨论,共同探究解决问题的方法。
(二)过程与方法
1.通过观察、操作、猜想、验证等教学活动,引导学生自主探究弧、弦、圆心角的性质,培养他们的观察力和逻辑思维能力。
2.运用生活中的实例,让学生感受数学知识在实际问题中的应用,提高他们运用数学知识解决实际问题的能力。
3.采用小组合作、讨论交流等形式,培养学生的团队协作能力和语言表达能力。
(3)各小组汇报讨论成果,教师给予点评和指导。
(四)课堂练习,500字

24.1.3弧,弦,圆心角(教案)

24.1.3弧,弦,圆心角(教案)
-弧和弦的分类:区分优弧、劣弧、半圆,以及直径和弦,让学生能够准确识别和运用。
举例:讲解圆心角与所对弧的关系时,可通过实际操作或动画演示,让学生直观地观察到当圆心角变化时,所对弧的长度也随之变化,强化这一重点知识。
2.教学难点
-弧、弦、圆心角的定义理解:学生对这些几何概念的理解可能存在困难,需要通过具体实例和直观演示来加深理解。
此外,学生在解决与弧、弦、圆心角相关的问题时,往往容易忽视圆心角与所对弧的关系。这说明我在讲解这个重点时,可能没有让学生充分理解和消化。为了帮助学生更好地掌握这个关系,我计划在接下来的课程中,设计更多具有针对性的练习题,并适时给予指导和反馈。
在课堂总结环节,我发现部分学生对今天的知识点仍然存在疑问。这提示我在今后的教学中,要更加重视课堂总结,及时解答学生的疑问,确保他们能够扎实掌握所学知识。
-圆心角与所对弧关系的应用:学生在运用这一性质解决实际问题时可能会感到困惑,需要通过大量练习和案例分析来提高应用能力。
-弧和弦的分类判定:学生在判断优弧、劣弧、半圆和弦时可能会混淆,需要通过对比分析和具体练习来突破。
举例:针对教学难点,教师可以通过以下方式帮助学生突破:
-设计互动环节,让学生动手操作圆规和直尺,在纸上画出不同类型的弧和弦,通过直观感受加深对概念的理解。
3.重点难点解析:在讲授过程中,我会特别强调圆心角与所对弧的关系以及弧和弦的分类这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与弧、弦、圆心角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用圆规和直尺画出不同类型的弧和弦,演示圆心角与所对弧的关系。

《弧弦圆心角》教案

《弧弦圆心角》教案

24.1.3《弧弦圆心角》教学设计教学目标1.理解圆心角,弦心距的概念;2用圆心角和旋转的知识探索在同圆或等圆中,假如两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:掌握在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一.展示教学目标二.复习引入:圆是中心对称图形吗?它的对称中心在哪里?三、探索新知1.学生自学教材,理解两个概念圆心角,弦心距。

2.探究活动一:在⊙O中,将圆心角∠AOB绕圆心O旋转到∠AOB’的位置,你能发现哪些相等的量,为什么?小结:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

思考:上述结论中,能否将“在同圆或等圆中”去掉,为什么?3.探究活动二:⑴.在⊙O中,AB=CD,那么∠AOB=∠A′OB′ AB= A’B’成立吗?⑵. 在⊙O中,AB= A’B’,那么∠AOB=∠A′OB′AB=CD成立吗?4.课堂小结:弧弦圆心角关系定理及推论:⑴、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.⑵、在同圆或等圆中,相等的弧所对的圆心角_____,所对的弦________;⑶、在同圆或等圆中,相等的弦所对的圆心角______,所对的弧_________.5定理巩固使用:填一填如图,AB、CD是⊙O的两条弦.(1)假如AB=CD,那么___________,_________________.(2)假如AB= CD,那么____________,_____________.(3)如果∠AOB=∠COD,那么_____________,_________.(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?四.学以致用1.例题讲解如图,在⊙O中,AB=AC ,∠ACB=60°,求证:∠AOB= ∠BOC=∠AO C·CA BDEFO2.巩固练习 ⑴、如图,在⊙O 中,AB=AC ,∠C=75°,求∠A 的度数。

广东诗莞市寮步镇泉塘村九年级数学上册第24章圆24.1.3弧弦圆心角教案新版新人教版

广东诗莞市寮步镇泉塘村九年级数学上册第24章圆24.1.3弧弦圆心角教案新版新人教版

弧、弦、圆心角教学媒体多媒体教学目标1.理解圆心角的概念,掌握圆的旋转不变性(中心对称性);2.掌握圆心角、弧、弦之间的相等关系定理及推论,并初步学会运用这些关系进行有关的计算和证明3、学习中通过动手操作、观察、比较、猜想、推理、归纳等活动,发展推理能力以及概括问题的能力。

教学重点理解并掌握圆心角、弧、弦之间关系定理并利用其解决相关问题,教学难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明教学课时教学内容即问题情境设计意图个性补案【自主学习,基础过关】知识回顾,温故知新(小组讨论完成)1.中心对称图形--------------------------------(自己叙述)2.请同学们完成下题.已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.BAO【合作探究,释疑解惑】自学课本P83---P84思考下列问题:1. 圆心角定义:2. 圆的对称性:3. 教材P83探究中,通过旋转∠AOB,试写出你发现的哪些等量关系?为什么?4. 圆的旋转不变性:归纳圆心角、弧、弦之间关系定理:在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦 。

推论:注意:在圆心角的性质中定理中,为什么要说“同圆或等圆”?能不能去掉?5.自学P84例36.知识拓展:(独立完成)下面的说法正确吗?若不正确,指出错误原因. (1)如图1,小雨说:“因为弧AB 和弧A /B /所 对的圆心角都是O ∠,所以有弧AB=弧CD.” (2)如图2,小华说:“因为AB CD =,所以AB 所对的弧AB 等于CD 所对的弧CD.”【检测反馈,学以致用】1.如果两个圆心角相等,那么 ( )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对2. 下列命题中,真命题是( )A .相等的弦所对的圆心角相等 B. 相等的弦所对的弧相等 C. 相等的弧所对的弦相等 D. 相等的圆心角所对的弧相等3.如图,AB 是 ⊙O 的直径,,C D 是BE 上的三等分点,60AOE ∠=︒,则COE ∠是( )A .40°B. 60°C. 80°D. 120 °B'A'B AO(图1)ODAB C (图2) OEDC BA4.已知,如图,在⊙O中,弦AD BC=,你能用多种方法证明AB CD=吗?【总结提炼,知识升华】1. 圆心角、弧、弦关系定理:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的也相等.此结论是证明圆心角相等、弧相等、弦相等常用的依据.2.定理使用要注意“同圆或等圆”这个前提。

九年级数学上册 24.1.3 弦、弧、圆心角教案 (新版)新人教版-(新版)新人教版初中九年级上册数

九年级数学上册 24.1.3 弦、弧、圆心角教案 (新版)新人教版-(新版)新人教版初中九年级上册数

弧、弦、圆心角情感态度与价值激发学生观察、探究、发现数学问题的兴趣和欲望.观教学方法自主—合作—探究与手段主要参考资料九年级数学教学参考资料和创优教案自信课堂教学进程一、激趣导入生发自信这节课我们继续研究圆的性质,请同学们完成下题.△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.2.圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我们学过的几何图形中既是中心对称图形,又是轴对称图形的是?二、自主合作彰显自信1、探究(一):(一)、圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.2、探究(二):(二)、圆心角、弧、弦之间的关系定理1.按下列要求作图并回答问题:如图所示的⊙O中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB绕圆心O旋转到∠A ‵OB‵的位置,你能发现哪些等量关系?为什么?得到:在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.2.在等圆中相等的圆心角是否也有所对的弧相等,所对的弦相等呢?综合1、2,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.分析定理:去掉“在同圆或等圆中”这个条件,行吗?4.定理拓展:○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等吗?○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分别相等吗?综上得到在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.三、展示提升赏识自信2.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?•为什么?∠AOB与∠COD呢?四、拓展延伸完善自信补充:如图3和图4,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.巩固练习、考点早实践如图1和图2,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.。

24.1.3 弧、弦、圆心角教学设计

24.1.3 弧、弦、圆心角教学设计

24.1.3 弧、弦、圆心角本节课主要是研究圆心角、弧、弦之间的关系并利用其解决相关问题,是在学生了解了圆和学习了垂径定理以及旋转的有关知识的基础上进行的,它是前面所学知识的应用,也是本章中证明同圆或等圆中弧等、角等以及线段相等的重要依据,是下一节课的理论基础.教学过程中要注意强调“同圆或等圆中”这个前提条件,避免学生囫囵吞枣.【情景导入】(1)观察图片,我们会发现圆绕着圆心旋转任意一个角度,都能与自身重合,这就是圆的旋转不变性.(2)如图1,∠AOB 的顶点在圆心上,两边与圆相交,在圆中我们把顶点在圆心的角叫做圆心角.∠AOB 即为圆心角.(3)如图2,连接AB ,圆心角∠AOB 所对的弦为弦AB ,所对的弧为AB ︵.那么圆心角与它所对的弧、弦这三个量之间有什么关系呢?图1 图2【说明与建议】 说明:通过实验操作,探索圆的旋转不变性与“如果两个圆心角相等,那么它们所对的弧、弦是不是相等”,激发学生的学习兴趣.建议:尽量让学生自己动手操作,引导学生得出等量关系.【置疑导入】(1)圆是中心对称图形吗?它的对称中心在哪里?(2)如图,将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?【说明与建议】 说明:通过对中心对称图形的回顾,引出圆这个中心对称图形和圆的旋转性质,并由问题(2)得出圆心角、弧、弦之间的关系.建议:尽量让学生操作试验,并从圆心角、弧、弦方面引导学生得出等量关系.命题角度1 利用弧、弦、圆心角之间的关系进行计算 1.如图,在⊙O 中AC ︵=BD ︵,∠AOB =40°,则∠COD 的度数(B)A .20°B .40°C .50°D .60°2.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD =120°.命题角度2 利用弧、弦、圆心角之间的关系进行证明3.如图,AB 为⊙O 的直径,C ,D 是⊙O 上的两点,且BD ∥OC.求证:AC ︵=CD ︵.证明:∵OB =OD ,∴∠D =∠B. ∵BD ∥OC ,∴∠D =∠COD ,∠AOC =∠B. ∴∠AOC =∠COD.∴AC ︵=CD ︵.4.如图,在⊙O 中,点C 是AB ︵的中点,CD ⊥OA 于D ,CE ⊥OB 于E.求证:CD =CE.证明:∵点C 是AB ︵的中点,∴∠AOC =∠BOC. ∵CD ⊥OA ,CE ⊥OB ,∴CD =CE.阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.如果以他们三人的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德.他甚至被人尊称为“数学之神”.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.阿基米德折弦定理:一个圆中一条由两长度不同的弦组成的折弦所对的两段弧的中点在较长弦上的射影,就是折弦的中点.如图中所示,AB 和BC 组成圆的折弦,AB >BC ,M 是ABC ︵的中点,MF ⊥AB ,垂点为F ,则AF =BF +BC.【课堂引入】1.出示大小相等的两张矩形卡片,在卡片中心画好等圆.出示问题:你看到了几个矩形,几个圆?(将两张卡片重合,绕着中心任意旋转一个角度)2.在图①中,你看到了几个矩形?几个圆?归纳:将一个图形绕着某一点旋转任意角度,旋转前后的图形能够完全重合.3.在图②中,矩形旋转了多少度?看到了几个矩形?说明了什么问题?看到了几个圆?说明了什么问题?①②师生活动:教师进行演示,学生观察、讨论,针对问题进行回答,同时归纳圆和矩形的性质.活动一:圆心角的概念教师给出圆心角的概念,学生从图形中找出圆心角.出示问题:1.观察下图,∠AOB所对的弧是哪条?所对的弦是哪条?2.计算:(1)在⊙O 中,OA =6,∠AOB =60°,则AB =6. (2)在⊙O 中,OA =6,∠AOB =90°,则AB =62.通过这两个题的计算你有什么发现?引导学生发现圆心角和它所对的弦有一定的关系.活动二:观察分析、总结定理教师提出问题1:在同圆或等圆中,相等的两个圆心角所对的弧相等吗?所对的弦相等吗?如图,∠AOB =∠A ′OB ′,那么AB 与A ′B ′相等吗?为什么?AB ︵与A ′B ︵呢?教师演示教具,引导学生发现:把∠AOB 连同AB ︵绕圆心O 旋转使OA 与OA ′重合,则当∠AOB =∠A ′OB ′时,弦AB 与A ′B ′重合,AB ︵与A ′B ′︵重合,即AB =A ′B ′,AB ︵=A ′B ′︵.教师引导学生用语言总结结论.教师提出问题2:若问题1中,缺少“在同圆或等圆中”这一条件,结论还能够成立吗?学生交流、讨论,教师出示下图,学生分析图形得到结论.教师提出问题3:若在同圆或等圆中,当两条弦相等时,则它们所对的圆心角或弧相等吗?教师指导学生分析问题,得到圆心角、弧、弦之间的关系.圆心角、弧、弦的关系:同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,那么它们所对应的其余各组量也相等.简单地说:知一得二.即时小练:如图,AB 是⊙O 的直径,如果∠COA =∠DOB =60°,那么与线段OA 相等的线段有OC ,OD ,OB ,AC ,CD ,DB ,与AC ︵相等的弧有CD ︵和DB ︵.【典型例题】例1 如图,AB 为半圆O 的直径,点C ,D 为AE ︵的三等分点.若∠COD =50°,则∠BOE 的度数是(B)A .25°B .30°C .50°D .60°例2 (教材第84页例3)如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC.师生活动:教师引导学生观察图中∠AOB ,∠BOC ,∠AOC 三个角是什么角,思考该怎样去证明圆心角相等.学生观察、思考、讨论,尝试写出解题过程,教师进行指导并演示证明过程.学生解题后反思:要想证明圆心角相等,可以证明它们所对的弧相等或弦相等. 【变式训练】1.如图,AB ,CD ,EF 都是⊙O 的直径,且∠1=∠2=∠3,则⊙O 的弦AC ,BE ,DF 的大小关系是AC =BE =DF .2.已知线段AD ,BC 为⊙O 的弦,且BC =AD.求证:AB =CD.证明:∵BC =AD , ∴BC ︵=AD ︵, 即AB ︵+AC ︵=CD ︵+AC ︵. ∴AB ︵=CD ︵. ∴AB =CD.师生活动:教师引导学生分析怎样证明两条弦相等.学生通过分析得到从证明圆心角或弧相等可证明弦相等,观察图形,交流、讨论,书写过程.【课堂检测】1.下列叙述正确的是(D) A .平分弦的直径必垂直于弦B .同圆或等圆中,相等的弦所对的弧也相等C .相等的圆心角所对的弧相等D .相等的弧所对的弦相等2.如图,已知⊙O 的半径等于1 cm ,AB 是直径,C ,D 是⊙O 上的两点,且AD ︵=DC ︵=CB ︵,则四边形ABCD 的周长等于(B)A .4 cmB .5 cmC .6 cmD .7 cm3.如图,AB ,CD 为⊙O 的两条弦,AB =CD.求证:∠AOC =∠BOD.证明:∵AB =CD(已知),∴AB ︵=CD ︵.∴∠AOB =∠COD. ∴∠AOB -∠BOC =∠COD -∠BOC ,即∠AOC =∠BOD.师生活动:学生进行当堂训练,完成后,教师进行个别提问,并指导学生解释做题理由和做题方法,使学生在思考解答的基础上,共同交流,形成共识,确定答案.24.1.3 弧、弦、圆心角1.圆心角:顶点在圆心的角.2.在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,则它们所对应的其余各组量也都分别相等.在⊙O 中,若①AOB =A ′OB ′(圆心角相等); ②AB ︵=A ′B ′︵(弧相等); ③AB =A ′B ′(弦相等).。

九年级数学上册24.1.3弧弦圆心角教案新版新人教版.doc

九年级数学上册24.1.3弧弦圆心角教案新版新人教版.doc

24. 1. 3弧、弦、圆心角一、教学目标1.理解圆心角的概念,掌握圆的中心对称性和旋转不变性.2.探索圆心角、弧、眩之间关系定理并利用其解决相关问题.3.理解圆心角、弧、弦Z间关系定理屮的“在同圆或等圆”条件的意义.二、课时安排1课时三、教学重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.四、教学难点理解圆心角、弧、弦Z间关系定理中的“在同圆或等圆”条件的意义. 五、教学过程(一)导入新课问题1圆是中心对称图形吗?它的对称中心在哪里?问题2圆绕圆心旋转任意一个角度后,能与原来的图形重合吗?(二)讲授新课活动内容1:活动1:小组合作探究1;圆心角的定义1.圆心角:顶点在圆心的角,叫圆心角,如ZAOB .2.圆心角ZAOB所对的弧为弧AB.3.圆心角ZAOB所对的弦为AB.任意给圆心角,对应出现三个量:圆心角、弧、弦判一判:判别下列各图中的角是不是圆心角,并说明理由.探究2:圆心角、弧、弦Z间的关系在00中,如果ZA0B= ZC0D,那么,AB与CD,弦AB与弦CD有怎样的数量关系?明确:由圆的旋转不变性,我们发现:在00中,如果ZA0B= ZC0D,那么,=弦AB二弦CD探究3:如图,在等圆中,如果ZA0B=ZC0 z D,你发现的等量关系是否依然成立?为什么?明确:通过平移和旋转将两个等圆变成同一个圆,我们发现:如果ZA0B=ZC0D,那么, 弧AB二弧CD,弦AB二弦CD.活动2:探究归纳归纳:弧、弦与圆心角的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.探究4:想一想:定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等中,可否把条件“在同圆或等圆中”去掉?为什么?答案:不可以,如图弧、弦与圆心角关系定理的推论:在同圆或等圆中,相等的眩所对的圆心角相等,所对的弧也相等.(三)重难点精讲证明;・・•弧AB二弧CD,・・・ AB二AC. 是等腰三角形又ZACB=60° ,・・・△ ABC是等边三角形,AB二BC二CA.・•・ ZAOB=ZBOC=ZAOC注意:本题告诉我们,弧、圆心角、弦灵活转化是解题的关键. (四)归纳小结:1.圆心角的概念,圆的中心对称性和旋转不变性.2.圆心角、弧、弦之间关系定理并利用其解决相关问题.3.圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的意义. (五)随堂检测1.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对2.弦t等于半径的弦所对的圆心角等于__________ .3.在同圆屮,圆心角ZAOB二2ZC0D,贝ij AB 与CD 的关系是()A. Q B A 2CDB. a 07)C. 2B Y E DD.不能确定4.如图,已知AB、CD为的两条弦,= 求证:AB=CD.O •I)5.如图,在G>0中,2ZA0B=ZC0D,那么CD二2AB成立吗?CD二2AB也成立吗?请说明理由;如不是,那它们之间的关系又是什么?【参考答案】1.D2.60 °3.A4.证明:连接AO, BO, CO, DO.・・•2D = fee,・・・ ZAOD = ZBOC.・・・ ZAOD+ZBOD二ZBOC+ZBOD.即乙403 二ZCOD・•・ AB二CD.5.答:CD二2AB成立,CD二2AB不成立.不是,取的屮点E,连接0E.那么ZAOB二ZCOE二ZDOE,所以= &£=妙E. ©£> =2 入B ,弦AB二CE二DE,在ACDE 中,CE+DE>CD,即CD<2AB.六.板书设计24.1.3弧、弦、圆心角归纳:弧、弦与圆心角的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的眩也相等.弧、弦与圆心角关系定理的推论:在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等. 例题:七、作业布置课本P6练习练习册相关练习八、教学反思。

人教版数学九年级上册第24章圆24.1.3弧、弦、圆心角优秀教学案例

人教版数学九年级上册第24章圆24.1.3弧、弦、圆心角优秀教学案例
在教学过程中,我将以实际生活中的实例引入,激发学生的学习兴趣,接着通过引导学生观察和操作几何模型,让学生直观地理解和掌握弧、弦、圆心角的概念。同时,我将利用多媒体课件和教具,以动态的方式展示弧、弦、圆心角的变化关系,帮助学生建立起直观的几何形象。
在课堂练习环节,我将设计一系列具有层次性的题目,让学生在解答问题的过程中巩固所学知识,并通过小组合作交流,培养学生的团队协作能力和解决问题的能力。最后,我将进行课堂总结,强调本节课的重点和难点,为学生后续的学习打下坚实的基础。
3.学生通过自主学习、合作学习和探究学习,培养自学能力、合作能力和创新意识。
4.学生通过运用弧、弦、圆心角的知识解决实际问题,提高应用能力和实践能力。
(三)情感态度与价值观
1.学生能够积极参与课堂学习,对数学产生兴趣,树立自信心。
2.学生能够体验到数学学习的乐趣,养成积极思考、善于动手的良好学习习惯。
2.问题情境:设计一些与圆的弧、弦、圆心角相关的问题,如“自行车轮的周长是多少?”、“如何测量圆的直径?”等,激发学生的思考和探究欲望。
3.操作情境:利用多媒体课件和教具,展示圆的弧、弦、圆心角的动态变化,让学生直观地感受和理解它们之间的关系。
4.实践情境:让学生亲自动手进行实验和操作,如测量和绘制圆的弧、弦、圆心角,增强学生的实践能力和体验。
(五)作业小结
3.举例说明弧、弦、圆心角在实际问题中的应用:通过实际问题的引入,讲解如何运用弧、弦、圆心角的知识解决问题,引导学生运用和巩固。
(三)学生小组讨论
1.设计小组讨论任务,让学生分组讨论和探究弧、弦、圆心角的关系和应用。
2.引导学生通过观察、操作和思考,发现弧、弦、圆心角之间的联系,培养学生的合作意识和解决问题的能力。

九年级数学上册第二十四章圆24.1圆的有关性质24.1.3弧、弦、圆心角教案1(新版)新人教版

九年级数学上册第二十四章圆24.1圆的有关性质24.1.3弧、弦、圆心角教案1(新版)新人教版

24.1.3 弧、弦、圆心角※教学目标※【知识与技能】1.理解圆心角和圆的旋转不变性.2.掌握弧、弦、圆心角之间相等关系定理.【过程与方法】1.通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力.2.利用圆的旋转不变性,研究弧、弦、圆心角之间相等关系定理..【情感态度】培养学生积极探索数学问题的态度及方法.【教学重点】弧、弦、圆心角之间的相等关系.【教学难点】弧、弦、圆心角之间关系定理中的“在同圆或等圆”条件的理解及定理的证明. ※教学过程※一、复习导入教师引导学生回顾学过的圆的相关概念以及定理.二、探索新知1.圆的中心对称性提问1 若将圆以圆心为旋转中心,旋转180°,你能发现什么?圆绕其圆心旋转180°后能与原来图形重合.所以圆是中心对称图形.提问2 若旋转角度不是180°,而是旋转任意角度,则旋转过后的图形能与原图形重合吗?圆绕圆心旋转任意角度α,都能够与原来的图形重合.所以圆具有旋转不变性.2.弧、弦、圆心角之间的关系相关概念 顶点在圆上的角叫做圆心角.探究 如图将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你发现哪些等量关系?(''AB A B = ''AB A B =)归纳总结 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.思考 (1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等吗?所对的弦相等吗?(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等吗?所对的弧相等吗?推论 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.3.圆心角、弧、弦定理及推论的应用例1 如图,在⊙O 中,AB AC =,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .证明:∵AB AC =,∴AB AC =,△ABC 是等腰三角形.又∠ACB =60°,∴△ABC 是等边三角形,AB BC CA ==.∴∠AOB =∠BOC =∠AOC .例2 如图,C ,D 是以线段AB 为直径的⊙O 上的两点,且四边形OBCD 是菱形.求证: AD DC =.证明:连接OC .∵四边形OBCD 是菱形,∴OB =BC ,∠3=∠2,OD ∥BC .∴∠1=∠B.又OC =OB =BC ,∴OC =BC .∴∠3=∠B.∴∠1=∠2. ∴AD DC =.三、巩固练习1.在同圆或等圆中,下列说法错误的是( )A.相等弦所对的弧相等B.相等弦所对的圆心角相等C.相等圆心角所对的弧相等D.相等圆心角所对的弦相等2.如图,AB 是⊙O 的直径, BC CD DE ==,∠COD =35°,求∠AOE 的度数.答案:1.D2.∵BC CD DE ==,∴∠BOC =∠COD =∠DOE =35°.∴∠AOE =180°-3×35°=75°.五、归纳小结通过本节课的学习,你掌握了哪些基本概念和方法?※布置作业※从教材习题24.1中选取.※教学反思※本节课学生通过观察、比较、操作、推理、归纳等活动,得出了圆的中心对称性、圆心角定理及推论,可以发展学生勇于探索的良好习惯,培养学生的动手解决问题的能力.教师应让学生掌握解题方法,即要证弦相等或弧相等或圆心角相等,可以先证其中一组量对应相等,掌握这个阶梯方法有助于提升学生的抽象思维能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弧、弦、圆心角教学媒体多媒体
教学目标1.理解圆心角的概念,掌握圆的旋转不变性(中心对称性);
2.掌握圆心角、弧、弦之间的相等关系定理及推论,并初步学会运用这些关系进行有关的计算和证明
3、学习中通过动手操作、观察、比较、猜想、推理、归纳等活动,发展推理能力以及概括问
题的能力。

教学重点理解并掌握圆心角、弧、弦之间关系定理并利用其解决相关问题,
教学难点
圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明教学课时
教学内容即问题情境
设计意图个性补案【自主学习,基础过关】
知识回顾,温故知新(小组讨论完成)
1.中心对称图形--------------------------------(自己叙述)
2.请同学们完成下题.
已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.
B
A
O
【合作探究,释疑解惑】
自学课本P83---P84思考下列问题:
1. 圆心角定义:
2. 圆的对称性:
3. 教材P83探究中,通过旋转∠AOB,试写出你发现的哪些等量关系?为
什么?
4. 圆的旋转不变性:
归纳圆心角、弧、弦之间关系定理:
在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦 。


论:
注意:在圆心角的性质中定理中,为什么要说“同圆或等圆”?能不能去掉?
5.自学P84例3
6.知识拓展:(独立完成)
下面的说法正确吗?若不正确,指出错误原因. (1)如图1,小雨说:“因为弧AB 和弧A /B /
所 对的圆心角都是O ∠,所以有弧AB=弧CD.” (2)如图2,小华说:“因为AB CD =,所以AB 所对的弧AB 等于CD 所对的弧CD.”
【检测反馈,学以致用】
1.如果两个圆心角相等,那么 ( )
A .这两个圆心角所对的弦相等;
B .这两个圆心角所对的弧相等
C .这两个圆心角所对的弦的弦心距相等;
D .以上说法都不对
2. 下列命题中,真命题是( )
A .相等的弦所对的圆心角相等 B. 相等的弦所对的弧相等 C. 相等的弧所对的弦相等 D. 相等的圆心角所对的弧相等
3.如图,AB 是 ⊙O 的直径,,C D 是BE 上的三等分点,60AOE ∠=︒,则COE ∠是( )
A .40°B. 60°C. 80°D. 120 °
B'
A'
B A
O
(图1)
O
D
A
B C (图2) O
E
D
C B
A
4.已知,如图,在⊙O中,弦AD BC
=,你能
用多种方法证明AB CD
=吗?
【总结提炼,知识升华】
1. 圆心角、弧、弦关系定理:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的也相等.此结论是证明圆心角相等、弧相等、弦相等常用的依据.
2.定理使用要注意“同圆或等圆”这个前提。

【巩固作业】
导学案P84---85
【板书设计】
【教学反思】
E
O
B
A
C
D。

相关文档
最新文档