《一元二次方程》的知识结构框架图

合集下载

初中数学九年级上册《一元二次方程》教学计划书

初中数学九年级上册《一元二次方程》教学计划书

初中数学九年级上册《一元二次方程》教学计划书一、教材分析:1.本章的主要内容:(1)一元二次方程的有关概念;(2)一元二次方程的解法,根的判别式及根与系数的关系;(3)实际问题与一元二次方程。

2.本章知识结构图:3.教学目标:(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。

4.本章的重点与难点本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。

难点:(1)分析方程的特点并根据方程的特点选择合适的解法;(2)实际背景问题的等量分析,设元列一元二次方程解应用题。

即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。

同时,还要根据实际问题的意义检验求得的结果是否合理。

二、教学中应注意的问题:1.重视一元二次方程与实际的联系,再次体现数学建模思想。

方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。

教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。

当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。

在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。

2.本章为学生提供了许多活动,教学中应让学生进行充分的探索和交流。

如在一元二次方程解法的教学中,教师不要采用先示范,然后让学生模仿的方法,而应通过恰当的引导,鼓励学生先独立探索解法,并相互交流。

《一元二次方程的根与系数的关系》一元二次方程教材课件PPT

《一元二次方程的根与系数的关系》一元二次方程教材课件PPT
第二十一章 一元二次方程
一元二次方程的根与系数的关系
知识回顾
1.写出一元二次方程的一般式: ax2+bx+c=0(a≠0)
2.一元二次方程的求根公式:
x1,2 b
b2 4ac 2a
3.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?
对一元二次方程: ax2 + bx +c = 0(a≠0). b2 - 4ac > 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac < 0 时,方程无实数根.
1. 1 1 x1 x2 ; x1 x2 x1x2
2. x12 x22 (x1 x2 )2 2x1x2;
3. x1 x2 x12 x22 (x1 x2 )2 2x1x2 ;
x2 x1
x1x2
x1x2
4.( x1 1)( x2 1) x1x2 (x1 x2 ) 1;
使用条件
1.方程是一元二次方程,即二次项系数不为 0; 2.方程有实数根,即 Δ≥0.
重要结论
1.若一元二次方程 x2+px+q=0 的两根为 x1,x2,则 x1+x2=-p,x1x2=q. 2.以实数 x1,x2 为两根的二次项系数为1的一元二次方程是
x2-(x1+x2)x+x1x2=0.
对接中考
新知探究
方程的两个根x1,x2和系数a,b,c有如下关系:
x1
x2
b a
,
x1x2
c a
.
这表明任何一个一元二次方程的根与系数的关系为:
两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积
等于常数项与二次项系数的比.

高中数学新课标人教A版必修第一二册教材解读〖《一元二次函数、方程和不等式》章整体解读〗

高中数学新课标人教A版必修第一二册教材解读〖《一元二次函数、方程和不等式》章整体解读〗

第二章一元二次函数、方程和不等式整章内容解读1.本章的知识结构和研究脉络是怎样的?本章的知识结构如图1所示:学生在初中学习等式的内容时,先学习了用含有未知数的等式(方程)表示问图1题中的相等关系,接着以解方程为目的,学习了等式的一些基本性质,然后研究了两种具体的方程——一元一次方程和一元二次方程的解法和应用.概括起来就是“现实背景—相等关系与等式——等式性质——方程及其解法——应用”.本章在构建不等式内容的结构体系时,采用了与等式类似的顺序:现实背景——不等关系与不等式——关于两个实数大小关系的基本事实——不等式性质——不等式解法、证明——应用.2.依据课标,本章的定位、核心素养、思想方法、育人价值是怎样的?在课标中“一元二次函数、方程和不等式”属于必修主题一“预备知识”.它们的定位是为高中数学课程做好知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.本章是多种数学素养培养的载体,具体可以用下表表示:核心素养载体数学抽象不等关系,基本不等式的应用,一元二次不等式本章蕴含着丰富的数学思想方法,特别是数形结合、分类讨论、函数、数学模型等思想方法.在探索发现重要不等式,在用几何方法解释实数的基本事实、不等式的性质和基本不等式,在研究二次函数与一元二次方程、不等式的解的情况时,都充分应用了数与形结合的方法.在探索或证明不等式的部分性质,在研究一元二次不等式的解的情况时,都充分应用了分类讨论的思想方法.从函数观点看方程和不等式,充分体现了函数思想之下知识之间整体性和联系性,也体现了函数的重要性.基本不等式、一元二次不等式是解决实际问题的数学模型,遇到实际问题,通过识别、转化为基本模型达到解决的目的.通过学习本章内容,可以帮助学生逐渐养成借助直观理解概念,进行逻辑推理的思维习惯,以及把实际问题抽象成数学问题,并按照一定的模型或程序有序求解的分析问题、解决问题的能力.还可以引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习.3.本章知识与其他知识之间有什么联系?怎样把握教学的深度和广度?本章知识与其他知识联系非常密切.首先,学习本章的起点是初中的相关知识.通过类比初中学过的等式和方程,确定本章的整体研究思路.类比等式的性质,学习不等式的性质,理解等式与不等式的共性与差异.通过梳理初中从一元一次函数观点看一元一次方程、一元一次不等式的思想方法,类比得到探索一元二次不等式解法的路径,获得二次函数求解一元二次不等式的程序.第二,本章内容是整个高中数学的基础,在后续的学习中将会经常用到本章所学的知识.一方面,本章所学的具体知识在后续学习中经常会用到,比如,不等式的性质,重要不等式,基本不等式,一元二次不等式的解法,等等.另一方面,本章的研究方法在后续学习中若能主动应用,将有助于提高思维的灵活性,比如,函数对方程、不等式的“整合”作用,从函数观点看方程和不等式中体现出来的数学整体观和联系性,等等.因此,在本章教学中要注重梳理初中的知识,以帮助学生扫清障碍,提升学习效果.4.本章的学习目标有哪些?根据课标,本章的学习目标如下:(1)等式性质与不等式性质梳理等式的性质,理解不等式的概念,掌握不等式的性质.(2)基本不等式掌握基本不等式2a b +≤(a ,b ≥0).结合具体实例,能用基本不等式解决简单的最大值或最小值问题.(3)从函数观点看一元二次方程会结合二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.(4)从函数观点看一元二次不等式①经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.能借助二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集.②借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系.5.与2021年课标下的教科书相比,本章内容主要有哪些变化?与按照2021年颁布的课程标准编写的教科书相比,本章的变化如下:(1)位置的变化:2021年课程标准中,不等式的内容在必修数学5中,2021年版课程标准中,不等式的内容安排在必修主题一的“预备知识”中.(2)内容的变化:从知识点看,内容没有变化,但是从内容的处理方式看上有三点改变:第一,注重初高中的衔接,从复习初中内容开始,自然引申出新的内容.第二,注重类比,突出研究一个数学对象的基本路径,比如先复习等式性质的研究方法,再由方法引导,探究不等式的性质;复习一次函数观点看一元一次方程和不等式的方法,在此基础上研究二次函数观点看一元二次方程和不等式的方法.第三,注重函数观点看问题,体现数学知识的整体性和联系性.。

人教版九年级上册数学《一元二次方程》课件教学说课

人教版九年级上册数学《一元二次方程》课件教学说课

二 一元二次方程的根
一元二次方程的根 使一元二次方程等号两边相等的未知数的值叫作一元二
次方程的解(又叫做根).
练一练:下面哪些数是方程 x2 – x – 6 = 0 的解? -4 ,-3 , -2 ,-1 ,0 ,1,2,3 ,4
解: 3和-2.
你注意到了吗? 一元二次方程可
能不止一个根.
例4. :已知a是方程 x2+2x-2=0 的一个实数根, 求 2a2+4a+
知数的最高次数等于2,列出关于某个字母的方程,再排除使二次 项系数等于0的字母的值.
例3:将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它 们的二次项、一次项和常数项及它们的系数.
解: 去括号,得 3x2-3x=5x+10. 移项、合并同类项,得一元二次方程的一般形式
3x2-8x-10=0. 其中二次项是3x2,系数是3;一次项是-8x, 系数是-8;常数项是-10. 注意 系数和项均包含前面的符号.
A.x2
1 x2
0
不是整式方程
B. 3x2 5xy y2 0
C. (x 1)(x 2) 0
D. ax2 bx c 0
化简整理成 x2-3x+2=0
少了限制条件 a≠0
提示 判断一个方程是不是一元二次方程,首先看是不是 整式方程;如是再进一步化简整理后再作判断.
例2:a为何值时,下列方程为一元二次方程?
该方程中未知 数的个数和最 高次数各是多 少?
问题2 要组织要组织一次排球邀请赛,参赛的每两队之间都要 比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安 排4场比赛,比赛组织者应邀请多少个队参加比赛?
解析:设应邀请x个队参赛,每个

一元二次方程知识点总结和例题——复习 3

一元二次方程知识点总结和例题——复习 3

知识点总结:一元二次方程知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2.一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。

(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,•都能化成如下形式ax2+bx+c=0(a≠0)。

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

4.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如bax=+2)(的一元二次方程。

根据平方根的定义可知,ax+是b的平方根,当0≥b时,bax±=+,bax±-=,当b<0时,方程没有实数根。

(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式页脚内容页脚内容222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. (3)公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

九年级数学上册教学课件《二次函数与一元二次方程》

九年级数学上册教学课件《二次函数与一元二次方程》
解:
t2 - 4t+4=0.
t1 =t2 =2.
当小球飞行2s时,它的飞行高度为20m.
你能结合图指出为什么只在一个时间小球的高度为20m吗?
2s
20m
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
h=20t-5t2.
20.5=20t-5t2.
解:
t2 - 4t+4.1=0.
因为(-4)2 – 4×4.1<0,
有两个不同实根有两个相同实根没有根
有两个交点有一个交点没有交点
△ > 0
△ = 0
△ < 0
二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系(2)
ax2+bx+c = 0 的根
抛物线 y=ax2+bx+c与x轴
若抛物线 y=ax2+bx+c 与 x 轴有交点,则________________ 。
无公共点
先画出函数图象:
公共点的函数值为 。
0
对应一元二次方程的根是多少?
x1 =-2,
x2 =1.
x1 =x2 =3.
方程无解
有两个不等的实根
有两个相等的实根
没有实数根
由上述问题,你可以得到什么结论呢?
方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x轴公共点的横坐标。当抛物线与x轴没有公共点时,对应的方程无实数根.
综合应用
解:(1)如图所示.(2)由图象可知,铅球推出的距离为10.
拓展延伸
7.把下列各题中解析式的编号①②③④与图象的编号A、B、C、D对应起来.①y=x2+bx+2; ②y=ax(x-3); ③y=a(x+2)(x-3); ④y=-x2+bx-3.

一元二次方程单元结构图

一元二次方程单元结构图

一元二次方程单元结构图
知识:一元二次方程的概念、一元二次方程的解法、一元二次方程的实际应用。

核心知识:1.降次转化的思想。

2.配方法、公式法、因式分解法。

3.把实际问题转化为一元二次方程问题,及建立一元二次方程数学模型的能力。

4.适合学生探究问题的顺序,培养学生的探究能力。

知识结构图:
实际问题---一元二次方程的概念----一元二次方程的解法
一元二次方程的根
检验方程的根是否符合实际解决实际问题。

1.从实际问题引入,让学生归纳出一元二次方程的概念,既有利于
激发学生学习兴趣又能让学生体会一元二次方程的概念的形成过程,进一步感受数学和生活实际的密切联系,通过对问题解得急切需求,又为探究一元二次方程的解法激发了良好的学习动机。

2.一元二次方程方程的解法按照直接开平方法、配方法、公式法体
现由简单到复杂,由特殊到一般的探究顺序,符合学生探究问题的心理特点,有利于学生逐步建立信心。

通过对配方法的实质探究,让学生体会到降次转化的思想方法,为探究因式分解法解一元二次方程提供思路,通过因式分解法的探究学习,让学生进一
步体会降次转化的思想,体会解决问题的多种方法。

3.实际问题与一元二次方程核心是弄清问题中的数量关系,寻找相
等关系,建立一元二次方程模型。

通过解一元二次方程,检验根是否符合实际,获得实际问题的解。

这一部分的学习对于学生建立方程模型,体会方程思想,培养学生解决实际问题的兴趣和能力都有很大的帮助。

九年级上《22.2二次函数与一元二次方程》课件

九年级上《22.2二次函数与一元二次方程》课件

2.自主探究:
问题1
以 40 m/s 的速度将小球沿与地面成 30°角的 方向击出时,小球的飞行路线将是一条抛物线. 如果不考虑空气阻力,小球的飞行高度 h (单位 :m )与飞行时间t(单位:s)之间具有函数关 系 h = 20t - 5t 2. (2)小球的飞行高度能否达到 20 m? 如能,需 要多少飞行时间?
归纳 一般地,从二次函数 y = ax 2 + bx + c 的图象可知: (1)如果抛物线 y = ax 2 + bx + c 与 x 轴有公共点, 公共点的横坐标是 x0,那么当 x = x0 时,函数值是 0, 因此 x = x0 是方程 ax 2 + bx + c = 0 的一个根. (2)二次函数 y = ax 2 + bx + c 的图象与 x 轴的位置 关系有三种:没有公共点,有一个公共点,有两个公共 点. 这对应着一元二次方程 ax 2 + bx + c = 0 的根的三种 情况:没有实数根,有两个相等的实数根,有两个不等 的实数根.
y=ax2+bx+c的图 象和x轴交点
方程ax2+bx+c=0 的根
b2-4ac
函数的图象
y . o y o y o . x
有两个交点
方程有两个不相等 b2-4ac 的实数根
> 0
只有一个交点 方程有两个相等 b2-4ac = 0
的实数根
x
没有交点
方程没有实数根
b2-4ac
< 0
x
2.小组合作,类比探究
1.复习知识,回顾方法
问题1:一次函数y=kx+b与一次方程 kx+b=0之间有什么关系?

高中数学必修第一册人教A版《二次函数与一元二次方程、不等式》教材分析

高中数学必修第一册人教A版《二次函数与一元二次方程、不等式》教材分析

高中数学必修第一册人教A版《二次函数与一元二次方程、不等式》教材分析2.3二次函数与一元二次方程、不等式一、本节知识结构框图二、重点、难点重点、难点:二次函数与一元二次方程、不等式的联系,借助二次函数求解一元二次不等式.三、教科书编写意图及教学建议本节引入了一元二次不等式,研究它的解法和应用.在探索一元二次不等式的解法时,教科书首先从二次函数的观点看一元二次方程、不等式,然后从一元二次不等式与相应函数、方程的联系中推导出求解一元二次不等式的一般性方法,进一步发展了用函数理解方程、不等式的思想方法.1.一元二次不等式的定义本节从一元二次不等式的定义讲起,为了体现一元二次不等式的现实意义,教科书设计了一个实际问题——求花圃的矩形栅栏的边长,为了解决这个问题,需要把实际问题中的数量关系用数学模型表示出来,再解数学模型.学生在初中学过了用一元一次不等式表示不等关系,在本章的第一节又练习了用不等式或不等式组表示不等关系,因此教科书在这里直接利用不等关系“围成的矩形区域的面积要大于20”建立了一个不等式“”.这就是一个一元二次不等式,教科书接下来给出了一般的一元二次不等式的定义和一般形式.要回答上述问题,就需解这个不等式,这就引出了对一元二次不等式解法的研究.2.借助二次函数与一元二次方程、不等式的联系,获得求解一元二次不等式的一般性方法求解一元二次不等式通常有两种基本方法,一种是代数方法,即先对二次三项式进行因式分解,把一元二次不等式转化为一元一次不等式组,再通过求解一元一次不等式组得到一元二次不等式的解集.但这种方法不适用于判别式的情况.另一种是函数方法,即借助二次函数图象,得到求解一元二次不等式的通性通法.教科书介绍的是后一种方法.在初中,学生学过了从一元一次函数观点看解一元一次方程、不等式,知道了解一元一次方程可以归结为在一次函数的函数值为0时,求自变量的值,解一元一次不等式或相当于在一次函数的值大于0或小于0时,求自变量的取值范围,这种解法利用的三者的关系是:一次函数的图象与轴的交点就是一元一次方程对应的点,在轴上方或下方的点的集合就组成了一元一次不等式或的图象.为了将这种思想方法迁移到“二次”,在探索求解一元二次不等式的方法之前,教科书设计了一个思考栏目,先让学生回顾初中学过的从一次函数的观点看一元一次方程、一元一次不等式的思想方法,再从二次函数的观点看一元二次不等式,进而得到一元二次不等式的求解方法.在解答这个思考栏目时,教科书借助具体的一元二次不等式,阐述了二次函数与一元二次方程、不等式的联系:二次函数的图象与轴有两个交点,,这两个点满足解析式,且,所以交点的横坐标是一元二次方程的两个根,而图象位于轴下方的点都满足解析式,且,所以这些点的横坐标的取值范围就是不等式的解集.这样,教科书不仅借助具体的一元二次不等式回答了如何从二次函数的观点看一元一次方程、不等式,而且获得了这个不等式的解集.接下来,教科书对上述方法进行了归纳、概括,获得了求解一般一元二次不等式的解法.教学中可以引导学生发现,上述解法的关键是利用二次函数的图象与轴的相关位置确定不等式的图象对应的的取值范围,而确定的取值范围需要先求出相应一元二次方程的根.于是,借助二次函数图象求解一元二次不等式的方法是:先求出一元二次方程的根,再根据二次函数图象与轴的相关位置确定一元二次不等式的解集.教科书接下来分,和三种情况,总结了二次函数与一元二次方程、不等式的解的对应关系,利用这个对应关系就可以求解任意一元二次不等式了.需要说明的是,由于一般函数的零点的概念和性质在本书的“4.5函数的应用(二)”中才会有比较深入的介绍,所以教科书在这里只介绍了什么是二次函数的零点,而且没有推广这个概念.3.归纳用二次函数求解一元二次不等式的程序接下来,教科书安排了三道例题,示范如何用二次函数解一元二次不等式.这三道例题分别对应了与所求解的不等式相应的二次函数的图象与轴有两个交点、有一个交点和没有交点的情况,例3还代表了不等式的二次项系数的情况.通过解例1~例3中的不等式,教师可以引导学生总结用二次函数解一元二次不等式或的一般步骤:(1)检查二次项系数的符号,对于的一元二次不等式,把它的二次项系数化为正数.(2)计算判别式的值,如果,求方程的根;如果,说明方程无实数根.(3)画出二次函数的图象,结合图象得出不等式的解集.教师在教学中还需要注意,不要让学生通过记忆不同情况下不等式的解集的方式来解不等式,而是让学生画出相应二次函数的草图,数形结合地解不等式.在三道例题之后,教科书设计了一个框图,目的是更清晰地描绘出用二次函数求解一元二次不等式的程序.教学时可以让学生尝试在总结上述步骤的基础上,自己画出这个框图.4.应用一元二次不等式解决实际问题在本节的最后,教科书安排了两道例题来示范如何用一元二次不等式解决实际问题.实际上,用一元二次不等式解决实际问题时,难点在于建立一元二次不等式表示实际问题中的不等关系,但学生在本章的开始阶段已经重点学习了这个内容,而本节的重点是一元二次不等式的解法.因此,教科书在例4,例5中都直接给出了描述实际问题的二次函数,为建立不等式提供了方便.例如,在例4中,某条摩托车流水线生产的摩托车数量与创造的价值之间的关系表示为二次函数__ ,那么要求这条流水线创收60 000元以上需要生产的摩托车的数量,实际上就是求一元二次不等式的解集.接下来,教科书按照前面介绍的求解一元二次不等式的步骤求出了不等式的解集,并根据实际情况解答了问题.本节的练习和习题2.3中也安排了应用一元二次不等式解实际问题的题目,除了习题2.3中“拓广探索”的题目,其他的题都比较容易列出一元二次不等式.教学中要注意把握本部分内容的重点,把重点放在解一元二次不等式上.。

第二十二章一元二次方程单元知识结构图

第二十二章一元二次方程单元知识结构图

第二十二章 一元二次方程小结与复习(分3课时完成)一、知识结构二、知识点归纳1.方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______( )其中二次项系数是______,一次项系数是______,常数项是________.2.解一元二次方程的一般解法有(1)_________;(2)________;(•3)•_________;(•4)•求根公式法,•求根公式是3.一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.4.一元二次方程的根与系数的关系:(根与系数关系的前提条件是根的判别式必须大于或等于零)结论1.如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么: 结论2.如果方程x 2+px+q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q . 5.一元二次方程应用题.三、典型习题(一)一元二次方程概念1.在下列方程中,一元二次方程的个数是( ).①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-=0 A .1个 B .2个 C .3个 D .4个2.方程2x 2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为( ).A .2,3,-6B .2,-3,18C .2,-3,6D .2,3,6 3.方程x (x-1)=2的两根为( ).acx x a b x x =⋅-=+2121,5xA .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=1,x 2=2D .x 1=-1,x 2=2 4.已知x=-1是方程ax 2+bx+c=0的根(b ≠0),则( ). A .1B .-1C .0D .25.方程3x 2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________. 6.一元二次方程的一般形式是 .7.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________. 8.已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________.9.a 满足什么条件时,关于x 的方程a (x 2+x )x-(x+1)是一元二次方程?10.关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗?为什么?11.如果x=1是方程ax 2+bx+3=0的一个根,求(a-b )2+4ab 的值.(二)解一元二次方程的方法:1.将二次三项式x 2-4x+1配方后得( ).A .(x-2)2+3B .(x-2)2-3C .(x+2)2+3D .(x+2)2-3 2.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ). A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 3.方程x 2+4x-5=0的解是________.4.代数式的值为0,则x 的值为________. 5.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数. 6.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________.7.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________. 8.当x=______时,代数式x 2-8x+12的值是-4.9.已知方程x 2+px+q=0有两个相等的实数,则p 与q 的关系是________.10.已知b ≠0,不解方程,试判定关于x 的一元二次方程x 2-(2a+b )x+(a+ab-2b 2)•=0的根的情况是________. 11.如果x 2-4x+y 2+13=0,则(xy )z •=2221x x x ---12.某数学兴趣小组对关于x 的方程(m+1)+(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. (2)若使方程为一元一次方程m 是否存在?若存在,请求出.13.用直接开平方法解下列方程(1)3x 2+9=0 (2)8x 2-16=0 (3)(x-)2=2(x-3)2=7214.用配方法解下列方程 (1)x 2-8x+1=0 (2)x 2-2x-=0 (3)9y 2-18y-4=0 (4)x 215.用公式法解下列方程.(1)2x 2-x-1=0 (2)x 2+1.5=-3x (3) x 2x+=0 (4)4x 2-3x+2=016.用因式分解法解下列方程.(1)3y 2-6y=0 (2)25y 2-16=0 (3)x 2-12x-28=0 (4)x 2-12x+35=017.不解方程,判定方程根的情况(1)16x 2+8x=-3 (2)9x 2+6x+1=0 (3)2x 2-9x+8=0 (4)x 2-7x-18=0 18.不解方程,写出下列方程的两根和与两根积:22m x+13891212013)1(2=--x x 0532)2(2=-+x x 02231)3(=-x x。

2019届浙教版中考数学一轮复习《一元二次方程》知识梳理

2019届浙教版中考数学一轮复习《一元二次方程》知识梳理

第8讲 一元二次方程考纲要求命题趋势1.理解一元二次方程的概念. 2.掌握一元二次方程的解法. 3.了解一元二次方程根的判别式,会判断一元二次方程根的情况;了解一元二次方程根与系数的关系并能简单应用.4.会列一元二次方程解决实际问题.结合近年中考试题分析,一元二次方程的内容考查主要有一元二次方程的有关概念,一元二次方程的解法及列一元二次方程解决实际问题,题型以选择题、填空题为主,与其他知识综合命题时常为解答题.一、一元二次方程的概念1.只含有两个个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程. 2.一元二次方程的一般形式是ax 2+bx +c =0(a ≠0). 二、一元二次方程的解法1.解一元二次方程的基本思想是降次,主要方法有:直接开平方法、配方法、公式法、因式分解. 2.配方法:通过配方把一元二次方程ax 2+bx +c =0(a ≠0,b 2-4ac ≥0)变形为2)2(ab x =__________的形式,再利用直接开平方法求解.3.公式法:一元二次方程ax 2+bx +c =0(a ≠0)当b 2-4ac ≥0时,x =____________. 4.用因式分解法解方程的原理是:若a ·b =0,则a =0或b =0. 三、一元二次方程根的判别式1.一元二次方程根的判别式是b 2-4ac .2.(1)b 2-4ac >0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等实数根; (2)b 2-4ac =0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个相等实数根; (3)b 2-4ac <0⇔一元二次方程ax 2+bx +c =0(a ≠0)没有实数根. 四、一元二次方程根与系数的关系1.在使用一元二次方程的根与系数的关系时,要先将一元二次方程化为一般形式.2.若一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根是x 1,x 2,则x 1+x 2=__________,x 1x 2=__________.五、实际问题与一元二次方程列一元二次方程解应用题的一般步骤:(1)审题;(2)设未知数;(3)找等量关系;(4)列方程;(5)解方程;(6)检验;(7)写出答案.1.一元二次方程x 2-2x -1=0的根的情况为( )A .有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.如果2是一元二次方程x2=c的一个根,那么常数c是( )A.2 B.-2 C.4 D.-43.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( ) A.200(1+a%)2=148 B.200(1-a%)2=148C.200(1-2a%)=148 D.200(1-a2%)=1484.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=05.若(x2+y2)2﹣3(x2+y2)﹣10=0,则x2+y2= .6.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是.7.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或118.若a•b≠1,且有2a2+5a+1=0,b2+5b+2=0,则2+的值为()A.B.C.D.9.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程.答案1. B2. C3. B4. A5.5解:设x2+y2=m,∵(x2+y2)2﹣3(x2+y2)﹣10=0,∴m2﹣3m﹣10=0,解得:m1=﹣2,m2=5,∵x2+y2≥0,∴x2+y2=5;故答案为:5.6.a≥﹣1解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.7. D解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为x2﹣7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选:D.8. A解:∵2a2+5a+1=0,∴+5×+2=0;又∵b2+5b+2=0,∴、b可以看成是关于x的一元二次方程x2+5x+2=0的两根;∴由韦达定理,得x1•x2=2,即•b=2,∴a=;∴2+=2+=.9.(30﹣2x)(20﹣x)=6×782019-2020学年数学中考模拟试卷一、选择题1.如图,在平行四边形ABCD 中,AB 4=,BAD ∠的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG AE ⊥,垂足为G ,若DG 1=,则AE 的边长为( )A .23B .43C .4D .82.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( )A .B .C .D .3.如图,四边形ABCD 是矩形,点E 、F 是矩形ABCD 外两点,AE ⊥CF 于H ,AD=3,DC=4,DE=,∠EDF=90°,则DF 的长是( )A. B. C. D.4.一个几何体的三视图如图所示,则这个几何体是( )A. B. C. D.5.如图,二次函数y =ax 2+bx +c(a≠0)的图象经过点A ,B ,C .现有下面四个推断:①抛物线开口向下;②当x=-2时,y 取最大值;③当m<4时,关于x 的一元二次方程ax 2+bx +c=m 必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A ,C ,当kx+c> ax 2+bx +c 时,x 的取值范围是-4<x<0;其中推断正确的是( )A .①②B .①③C .①③④D .②③④6.如图,四边形AOBC 和四边形CDEF 都是正方形,边OA 在x 轴上,边OB 在y 轴上,点D 在边CB 上,反比例函数8y x=,在第二象限的图像经过点E ,则正方形AOBC 与正方形CDEF 的面积之差为( )A.6B.8C.10D.127.2018年舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( ) A .4.995×1010 B .49.95×1010 C .0.4995×1011D .4.995×10118.已知实数a 在数轴上的位置如图所示,则化简21a a +--的结果为( )A .21a --B .21a +C .-3D .39.如图,矩形ABCD 中,AB=2, AD=1, 分别以AB 、CD 为直径做半圆,两弧交于点E 、F,则线段EF 的长为( )A .2B .3C .32D .25310.已知抛物线2y ax bx c =++开口向下,与x 轴交于点(1,0)A -,顶点坐标为(1,)n ,与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①20a b +=;②213a -≤≤-;③对于任意实数m ,126a a -总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根. 其中结论正确的个数是( ) A .1个 B .2个 C .3个D .4个11.如图,在Rt △ABC 中,已知∠ACB =90°,BC =3,AB =5,扇形CBD 的圆心角为60°,点E 为CD 上一动点,P 为AE 的中点,当点E 从点C 运动至点D ,则点P 的运动路径长是( )A .2π B .6π C .πD .3212.分式方程, 2133xx x +=-+-的解为( ). A .0x = B .6x = C .15x =- D .15x =二、填空题13.初三年级参加体育运动会时组成队形为10排,第一排20人,而后面每排比前排多1 人,写出每排人数m 与这排数n 之间的函数关系式__________,自变量的取值范围是_________; 14.计算:23(1)8---=_____.15.若a ,b 都是实数,b =12a -+21a -﹣2,则a b的值为_____.16.计算12﹣913的结果是_____. 17.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 18.若式子3x -有意义,那么x 的取值范围是________. 三、解答题19.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据:从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下: 甲班65 75 75 80 60 50 75 90 85 65 乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据:按如下分数段整理、描述这两组样本数据: 成绩x 人数 班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲班 1 3 3 2 1乙班 2 1 m 2 n在表中:m=______,n=______.(3)分析数据:①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班72 x 75乙班72 70 y在表中:x=______,y=______.②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有______人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.20.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q 四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.21.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁于2014年底开工.按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,最快列车时速是最慢列车时速的29 20倍,求京张高铁最慢列车的速度是多少?22.113532 3(5)(1)(3)(10)10 464675 +----++-23.如图,已知⊙A与菱形ABCD的边BC相切于点E,与边AB相交于点F,连接EF.(1)求证:CD是⊙A的切线;(2)若⊙A 的半径为2,tan ∠BEF =33,求图中阴影部分的面积.24.如图,排球运动员站在点M 处练习发球,将球从M 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足抛物线解析式.已知球达到最高2.6m 的D 点时,与M 点的水平距离EM 为6m .(1)在图中建立恰当的直角坐标系,并求出此时的抛物线解析式;(2)球网BC 与点M 的水平距离为9m ,高度为2.43m .球场的边界距M 点的水平距离为18m .该球员判断此次发出的球能顺利过网并不会出界,你认为他的判断对吗?请说明理由. 25.已知ABC △内接于O ,D 是BC ︵上一点,OD BC ^,垂足为H ,连接AD 、CD ,AD 与BC 交于点P .I.如图1,求证:ACD APB ∠=∠; Ⅱ.如图2,若AB 过圆心,30ABC ∠=︒,O 的半径长为3,求AP 的长。

人教版《二次函数与一元二次方程》PPT课件初中数学ppt

人教版《二次函数与一元二次方程》PPT课件初中数学ppt
20.5 m
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4
当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
二次函数与一元二次方程的关系(1)
已知二次函数,求自变量的值
解一元二次方程的根
,4),(,)。
习题答案
1. (1)略. (2)1,3.
2. (1)x1 = 1,x2 = 2;(2)x1 = x2 = -3 ;
(3)没有实数根; (4)x1 = -1,x2 = 1 .
3. (1)略. (2)10m.
2
4. x = 1
例:利用函数图象求方 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
实际问题
以 40 m /s的速度将小球沿与地面成 30°角的方 向击出时,球的飞行路线是一条抛物线,如果不考 虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2
考虑下列问题: (1)球的飞行高度能否达到 15 m? 若能,需要 多少时间? (2)球的飞行高度能否达到 20 m? 若能,需要 多少时间? (3)球的飞行高度能否达到 20.5 m?为什么? (4)球从飞出到落地要用多少时间?
解:当 y = 0 时, x2 – x+ 1 = 0
因为(-1)2-4×1×1 = -3 < 0
o
x 所以与 x 轴没有交点。
二次函数与一元二次方程的关系(2)
确定二次函数图象与 x 轴的位置关系
解一元二次方程的根
二次函数 y=ax2+bx+c 的图象和x轴交点

《一元二次方程的解法》PPT课件 (公开课获奖)2022年苏科版 (18)

《一元二次方程的解法》PPT课件 (公开课获奖)2022年苏科版 (18)

答复以下问题:
〔1〕假设方程是一元二次方程 ,求m的值;
〔2〕假设方程是一元一次方程 ,那么m的值是否存 在? 假设存在 ,请求出m的值并求出方程的解;假设不存 在 ,请说明理由 .
你能用方程这个工具描述下面问题中的数量关系吗 ? 问题4:某校图书馆的藏书在两年内从5万册增加到 万册 ,该图书馆藏书平均每年增长的百分率是 x .
证明(1)
【例1】有两条如以以以下图小路 ,这两条小路哪 个长 ?这两条小路的面积怎样 ?
证明(1)
【例2 】小明和小林在研究代数式2-2m+m2的
值的情况时 ,得出了两种不同的结论.
小明填写表格:
m
-2 0 4 6 ……
2-2m+m2 10 2 10 26 ……
小林填写m表格: -6 -4 2
证明(1)
【能力检测】 2.今年五一节期间 ,||王老板在其 经营的服装店里卖出两件衣服 ,其中一件是裤子 售价为168元 ,盈利20% ,一件是夹克衫售价也是 168元 ,但亏损20% ,问||王老板在这次的交易过 程中是赚了还是亏了 ,如果是赚了 ,赚了多少 ?如 果是亏了 ,亏了多少 ?还是不赚不亏 ?
2-2m+m2 50 26 2
0 …… 2 ……
请你再取一些m的值代入代数式算一算 ,说明 小明和小林的结论是否正确.你是否有新的发现 ? 新的结论 ?
证明(1)
【数学实验一】〔1〕在提供的模板中取两个直
角三角形和两个直角梯形 ,按图①拼成8×8的正
方形 ,用胶带粘好.
〔2〕用同样的两个直角三角形和两个直角梯
作业再现: 10. 根据题意 ,设未知数 ,用一元 二次方程解决问题〔不需要计算〕 〔2〕我国政府为解决老百姓看病难的问题 ,决定 下调药品的价格 ,某种药品经过经过两次降价 ,由 每盒36元调至||25元 ,求平均每次降价的百分率 .

【全】初中数学 一元二次方程知识点总结

【全】初中数学 一元二次方程知识点总结

一元一次方程一.知识框架二.知识概念1.含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解2.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.等式的性质:性质1、等式两边加(或减)同一个数(或式子),结果仍相等。

2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

4.一元一次方程解法的一般步骤:整理方程…… 去分母…… 去括号…… 移项…… 合并同类项…… 系数化为 1 …… (检验方程的解).5.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”.(3)步骤: 设未知数。

‚找出相等的数量关系,ƒ根据相等关系列方程,解决问题。

6.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=πR 2h.。

初中数学《一元二次方程》单元教学设计以及思维导图

初中数学《一元二次方程》单元教学设计以及思维导图


际问题中抽象出数学问题,得出结论,再用来解决实际问
题的学习数学的思路,这也符合新课程标准所要求的“实
际问题——建立模型——解释、应用与拓展”的思路
单元学习重点:掌握一元二次方程的解法,韦达定理的应用。 单元学习难点:一元二次方程的应用及韦达定理的应用。 1、设计丰富的问题情境,让学生真正经历模型化的过程,从而更好 的理解方程的意义的作用,激发学生的学习兴趣。 2、重视学生的活动,鼓励学生进行探索和交流,鼓励与提倡解决问 题策略的多样化。 本单元共设三个专题:专题 1、一元二次方程的定义,学生分组进 行讨论探讨一元二次方程的定义。专题 2、一元二次方程的解法,主 要包括配方法、公式法、因式分解法。学生充分展开讨论,反复练习
2、过程与方法 (1)经历抽象一元二次方程的概念过程,使学生进一步体会方程是刻 画现实世界的一个有效的数学模型。 (2)通过学生进行探索和交流,培养学生应用意识和应用能力。 3、情感态度与价值观 (1)通过丰富的问题情境,激发学生的学习兴趣和求知欲。 (2)通过探索交流的过程,养成学生勤于思考,勤于钻研的学习态 度。
上述三个方程有什么共同特点?一元二次方程定义:
活动三:随堂练习,巩固所学
1、判断下列方程是不是一元二次方程,并说明理由。

1

x2-y=1
(2)
1/x2-3=2 (3)2x+x2=3 (4)(x-1)(x2+x+1)=(x2-2x+1)(x-1)
(5)(a-1)x2+x=1 (6)3x-1=0 (7) (5x+2)(3x-7)=15x2
、一元二次方程的定义是什么?一元二次方程的一般形式 是什么? 2.你能根据实际情景列出一元二次方程吗? 主题单 3.你能估算出一元二次方程的解吗? 元问题 4.用配方法解一元二次方程的一般形式? 设计 5.一元二次方程的求根公式是什么? 6.用公式法解一元二次方程的步骤? 7.用因式分解法解一元二次方程

中考数学大一轮数学复习专题ppt课件:一元二次方程根的判别式及根与系数的关系

中考数学大一轮数学复习专题ppt课件:一元二次方程根的判别式及根与系数的关系

夯实基本 知已知彼
基础知识回顾
1. 一元二次方程根的判别式
关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式为________.
(1)b2-4ac>0⇔一元二次方程ax2+bx+c=0(a≠0)有两个________实数
根,即x1,2=________. (2)b2-4ac=0⇔一元二次方程ax2+bx+c=0(a≠0)有____________相等
1 2 3
13
中考大一轮复习讲义◆ 数学
热点看台 快速提升
易错题跟踪 1. (2014·湖北襄阳)若正数a是一个一元二次方程x2-5x+m=0的一个根,-a 是一元二次方程x2+5x-m=0的一个根,则a的值是____5____. 2. (2014·湖北鄂州)一元二次方程mx2-2mx+m-2=0. (1)若方程有两实数根,求m的取值范围. (2)设方程两实根为x1,x2,且|x1-x2|=1,求m.
课后总结
1
学生:同伴之间相互交流学习心得。
2 师生:共同归纳本课学习知识。
16
中考大一轮复习讲义◆ 数学
作业
1
教科书本课课后习题。
2
课时达标册本课练习习题。
17
中考大一轮复习讲义◆ 数学
下课啦!
18
中考大一轮复习讲义◆ 数学
谢谢 指导
2022
19
中考大一轮复习讲义◆ 数学 20
D. m≤12
1
5. (2013·山东滨州)对于任意实数 k,关于 x 的方程 x2-2(k+1)x-k2+2k
-1=0 的根的情况为( C )
A. 有两个相等的实数根
B. 没有实数根
C. 有两个不相等的实数根
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、《一元二次方程》的知识结构框架图
二、本章知识点概括
1、相关概念
(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),
其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

(3)一元二次方程的根:一元二次方程的解也叫一元二次方程的根。

用“夹逼”法估算出一元二次方程的根的取值范围.
一次方程:一元一次方程,二元一次方程,三元方程
整式方程二次方程:一元二次方程,二元二次方程
*(4)有理方程高次方程:
分式方程
2、降次——解一元二次方程
(1)配方法:通过配成完全平方形式来解一元二次方程的方法,叫配方法.配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.其步骤是:
①方程化为一般形式;
②移项,使方程左边为二次项和一次项,右边为常数项;
③化二次项系数为1;
④配方,方程两边都加上一次项系数一半的平方,使方程左边是完全平方式,
从而原方程化为(mx+n)2=p的形式;
⑤如果p≥0就能够用开平方降次来求出方程的解了,如果p<0,则原方程无实数根。

(2)公式法:利用求根公式解一元二次方程的方法叫公式法.
其方法为:先将一元二次方程化为一般形式ax2+bx+c=0,当⊿=b2-4ac≥0时,•
将a、b、c代入求根公式x=
a2
ac 4
b
b2-
±
-
(b2-4ac≥0)就得到方程的根.
(3)分解因式法:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一
次式分别等于0,从而降次.这种解法叫做因式分解法.步骤是:
①通过移项将方程右边化为0;
②通过因式分解将方程左边化为两个一次因式乘积;
③令每个因式等于0,得到两个一元一次方程;
④解这两个一元一次方程,得一元二次方程的解。

3、一元二次方程根的判别式
(1)⊿=b 2-4ac 叫一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式。

(2)使用根的判别式,在不解方程的前提下判别根的情况:
①⊿=b 2-4ac >方程有两个不相等实数根;
②⊿=b 2-方程有两个相等实数根;
③⊿=b 2-4ac <方程没有实数根;
④⊿=b 2-4ac ≥方程有两个实数根。

(3)应用:
①不解方程,判别方程根的情况;
②已知方程根的情况确定方程中字母系数的取值范围;
③应用判别式证明方程的根的状况(常用到配方法);
注意:使用根的判别式的前提是该方程是一元二次方程,即:a ≠0。

*4、一元二次方程根与系数的关系(本部分内容为选学内容)
(1)如果一元二次方程ax 2
+bx+c=0(a ≠0)的两个实数根是21,x x , 那么a
c x x a b x x =-=+2121, (2)应用:
①验根,不解方程,利用根与系数的关系能够检验两个数是不是一元二次方程的两个根; ②已知方程的一个根,求另一根及未知系数的值;
③已知方程的两根满足某种关系,求方程中字母系数的值或取值范围;
④不解方程能够求某些关于21,x x 的对称式的值,通常利用到:
2122122212)(x x x x x x -+=+
212212214)()(x x x x x x -+=-
()|
a |x x 4x x ||2122121∆=-+=-x x 当21x x +=0且21x x ≤0,两根互为相反数;
当⊿≥0且21x x =1,两根互为倒数。

(重点强调:一元二次方程根与系数的关系是在二次项系数a ≠0,⊿≥0前提条件下应用的,解题中一定要注意检验)
⑩用公式法因式分解二次三项式ax 2+bx+c(a ≠0):
ax 2+bx+c=a (x-x 1)(x-x 2)其中21,x x 是方程ax 2
+bx+c=0(a ≠0)的两个实数根。

5、实际问题与一元二次方程
传播式分支问题;平均变化率问题;数字问题;利润问题;图形的面积问题;匀变速问题;握手、写信问题;银行利率问题;浓度问题;方案设计问题等。

相关文档
最新文档