二元一次方程组基础中等难度测试题

合集下载

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

第八章二元一次方程组测试题(二)

第八章二元一次方程组测试题(二)

第八章二元一次方程组测试题(二)一、选择题(本大题共10小题,每小题3分,共30分)1.【导学号68490301】下列方程组中,不是二元一次方程组的是()A.21,346x yx z=+⎧⎨-=⎩B.1,4x yx y-=⎧⎨+=⎩C.5,5x yx+=⎧⎨=⎩D.2,2223x yyy x⎧+=⎪⎪⎨⎪=⎪⎩2.【导学号68490943】关于二元一次方程5a-11b=23的解,下列说法正确的是()A.有且只有一组解B.有无数组解C.无解D.有且只有两组解3.【导学号68490300】解方程组2344,1569x yx y+=⎧⎨-=⎩①②时,你认为最简单的方法是()A.用代入法先消去x或y B.用①×15-②×23,先消去xC.用①×6-②×4,先消去y D.用①×3+②×2,先消去y4.【导学号68490722】下列各组中,不是二元一次方程x+2y=5的解的是()A.1,2xy=⎧⎨=⎩B.2,1.5xy=⎧⎨=⎩C.6,1xy=⎧⎨=-⎩D.9,2xy=⎧⎨=-⎩5.【导学号68490317】已知a,b满足方程组512,34,a ba b+=⎧⎨-=⎩则a+b的值为()A.-4 B.4 C.-2 D.26.【导学号68490487】为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m长的彩绳截成2 m或1 m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.4 B.3 C.2 D.17.【导学号68490298】我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问:有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100,33100x yx y+=⎧⎨+=⎩B.100,3100x yx y+=⎧⎨+=⎩C.100,131003x yx y+=⎧⎪⎨+=⎪⎩D.100,3100x yx y+=⎧⎨+=⎩8.【导学号68490296】已知(x-y+3)2,则x+y的值为()A.0 B.-1 C.1 D.59. 【导学号68490308】若方程组431,(1)3x yax a y+=⎧⎨--=⎩的解x与y互为相反数,则a的值等于()A.1 B.2 C.3 D.410.【导学号68490292】为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.图1是张磊家2016年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元,0.6元B.0.4元,0.5元C.0.3元,0.4元D.0.6元,0.7元图1二、填空题(本大题共8小题,每小题4分,共32分)11.【导学号68490315】已知方程3x-ay=8,若3,1xy=⎧⎨=⎩是它的一组解,则a的值为__________.12. 【导学号68490726】已知方程x-2y=6,用含x的式子表示y,y=__________;用含y的式子表示x,x=__________.13.【导学号92700702】已知x m-1+2y m+n+1=0是关于x,y的二元一次方程,那么m-n= .14.【导学号92700688】以方程组22,1y xy x=+⎧⎨=-+⎩的解为坐标的点P(x,y)在第象限.15.【导学号68490312】若方程组7,353,x yx y+=⎧⎨-=-⎩则3(x+y)-(3x-5y)的值是__________.16.【导学号68490639】已知2,1xy=⎧⎨=⎩是二元一次方程组7,1ax byax by+=⎧⎨-=⎩的解,则a-b=__________.17.【导学号68490314】如图2,在长为14 m,宽为10 m的长方形展厅中划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为__________m.18. 【导学号68490293】定义新运算“※”,规定x※y=ax2+by,其中a,b 图2 为常数,若1※2=5,2※1=6,则2※3= __________.三、解答题(本大题共5小题,共58分)19. 【导学号68490295】(每小题6分,共12分)解方程组:(1)237,x3y8.x y+=⎧⎨-=⎩①②(2)3(1)5, 5(y-1)3(5).x yx-=+⎧⎨=+⎩20. 【导学号68490303】(10分)已知关于x,y的二元一次方程x-y=3a和x+3y=4-a.(1)如果5,1xy=⎧⎨=-⎩是方程x-y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解.21. 【导学号68490316】(10分)如图3-①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图3-②.这个拼成的长方形的长为30,宽为20,求图②中Ⅱ部分的面积.①②图322.【导学号92700693】(12分)观察下列方程组,解答问题:(1)解下列方程组(直接写出方程组的解):①2,21x yx y-=⎧⎨+=⎩的解为;②26,322x yx y-=⎧⎨+=⎩的解为;③312,433x yx y-=⎧⎨+=⎩的解为.(2)在以上三个方程组的解中,你发现x与y有什么数量关系.(不必说理)(3)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(2)中的结论.23.【导学号68490699】(14分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B 同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062 (1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,则商店是打几折出售这两种商品的?附加题(15分,不计入总分)【导学号68490484】阅读理解:解方程组327,2114x yx y⎧+=⎪⎪⎨⎪-=⎪⎩时,如果设1x=m,1y=n,则原方程组可变形为关于m,n的方程组327,214,m nm n+=⎧⎨-=⎩解这个方程组得5,4.mn=⎧⎨=-⎩由15x=,14y=-,求得原方程组的解为1,51.4xy⎧=⎪⎪⎨⎪=-⎪⎩利用上述方法解方程组:5211,3213.x yx y⎧+=⎪⎪⎨⎪-=⎪⎩(辽宁陈琴)第八章二元一次方程组测试题(二)参考答案一、1.A 2.B 3.D 4. C 5. B 6. B 7. C 8.C 9. B10. A 提示:设第一阶梯电价每度x元,第二阶梯电价每度y元.根据题意,得20020112, 20065139,x yx y+=⎧⎨+=⎩解得0.5,0.6.xy=⎧⎨=⎩二、11.1 12.12x-3 6+2y 13. 4 14. 二15. 24 16. -117. 16 提示:设小长方形的长为x m,宽为y m. 由图可得214,210.x yx y+=⎧⎨+=⎩将两个方程相加,化简得x+y=8,所以每个小长方形的周长为8×2=16(m).18. 10 提示:根据题意,得25,4 6.a ba b+=⎧⎨+=⎩解得1,2.ab=⎧⎨=⎩所以2※3=1×22+2×3=4+6=10.三、19. 解:(1)①+②,得3x=15,解得x=5. 把x=5代入①,得10+3y=7,解得y=-1.所以原方程组的解为5,1. xy=⎧⎨=-⎩(2)原方程组化简,得38,5y-3x20. x y-=⎧⎨=⎩①②①+②,得4y=28,解得y=7.把y=7代入①,得3x-7=8,解得x=5.所以原方程组的解为5,7. xy=⎧⎨=⎩20. 解:(1)将5,1xy=⎧⎨=-⎩代入方程x-y=3a中,得5+1=3a,解得a=2.(2)当a=1时,将两方程联立得:3,3 3. x yx y-=⎧⎨+=⎩①②由①得x=3+y,代入②得3+y+3y=3,解得y=0. 将y=0代入①中,得x=3.所以两方程的公共解为3,0. xy=⎧⎨=⎩21. 解:根据题意,得30,20.a ba b+=⎧⎨-=⎩解得25,5.ab=⎧⎨=⎩故图②中Ⅱ部分的面积是:b·(a-b)=5×20=100.22. 解:(1)①1,1xy=⎧⎨=-⎩②2,2xy=⎧⎨=-⎩③3,3xy=⎧⎨=-⎩(2)在以上三个方程组的解中,x与y的数量关系为:x+y=0.(3)第④个方程组为420, 54 4.x yx y-=⎧⎨+=⎩①②①+②,得6x=24,解得x=4.把x=4代入①,解得y=-4.所以x+y=4-4=0.23. 解:(1)三(2)设商品A的标价为x元,商品B的标价为y元.根据题意,得651140,371110.x yx y+=⎧⎨+=⎩解得90,120.xy=⎧⎨=⎩答:商品A的标价为90元,商品B的标价为120元.(3)设商店是打a 折出售这两种商品. 由题意,得(9×90+8×120)×10a=1062.解得a=6. 答:商店是打6折出售这两种商品的. 附加题 解:设11,m n x y ==,原方程组可化为5211,3213.m n m n +=⎧⎨-=⎩解得3,2.m n =⎧⎨=-⎩所以原方程组的解为1,31.2x y ⎧=⎪⎪⎨⎪=-⎪⎩。

第五章二元一次方程组测试题.docx

第五章二元一次方程组测试题.docx

第五章二元一次方程组5.1认识二元一次方程组基础导练1、在方程(T)5x-3y 4,②7x-∣y = 5, @4.0' + x-6y 0, (Sβχ-(y-2) -1,⑤x2+3,τ = 2,⑥5x」= 9,⑦四-XZl = IO中,是二元一次方程的有 __________ 、F 3 22、已知方程2√"γ产=3是关于*,y的二元一次方程,则/Ii=,n =、3、在(1) (2)仁:,(3) {:/中,是方程2x + y = 5 的解;是方程3κ-2y = 4的解:姥方程组广一广5的I3.v-2y≡4解、4、若[;:]是方程3χ+.=5的一个解,则a=、5、若A.1是方程组的解,则Qa= 、6、关于x、y的二元一次方程4x+3y=2()的所有非负整数解是、7、若一个二元一次方程的一个解为I"?则这个方程可以LV=T是、(只要求写出一个)8、把方程5Λ-37=6变形,用X表示y应为,用j,表示*应为、9、下列方程组属于二元一次方程组的是()10、若方程a*-3y=4x+5处二元一次方程,则a的取值范围处()A、aNo B > «≠ 3 C¼ a≠4D¼ a≠5IK以下各组中,是方程组F = 3'的解的是()A、尸:B、尸:C、D、12、小丽只带了2元和5元两种人民币,买了一件物品只付了27元,则付款的方法有()A、一种B、两种C、三种【)、四种能力提升13、已知2x÷5y-3=0,则代数式9—4χ-IOy=、14、若∣α-3∣与+ 互为相反数,则α + 3⅛ 、15、现有1角、5角、1元硬币各10枚,从中取出15枚,共值7元、1 角、5角、1元硬币分别取____________ 枚,枚,枚、16、若是方程5*+9y=0的解,且吁0,则()A、见〃同号B、见〃异号C、儡〃可能同号也可能异号D、无法确定17、方程x+2p=7在自然数范围内的解有()A、一个Bs二个C、三个D、四个18、某校初二(3)班40名同学为“希望工程”捐款,共捐款IOO元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2 元的有X名,捐款3元的有y名同学,根据题意,可得方程组()A j∙r + 2∙v = 27 B !*+「= 27 C 卜+ y = 27 D y + )∙ = 27■ ' [2x + 3y = 66 、∣2.r + 3y=IOO 八∣3κ + 22 = 66'13.T + 2y = IOO 19、已知方程S+3)ΛM Js-2)/"+竺=6是关于*, y的二元一次方程,求a, b, c的值、20.甲、乙两人共同解方程组]:::;::,;由于甲同学看错了方程①中X =-4的&得到方程组的解为 3 ,乙看错Γ方程②中的仇得到方程组的解),=—为{::9、请计算代数式叫产•的值、参考答案1、5Λ-3y=4, 7x-→∙=53x-(y-2)=l, —-2Ξ!=∣O2、m=-1, n=23、⑴ ⑶;⑵ ⑶:⑶4、15、-76、{;::;7、*-y=3(答案不唯一〉8、,-短刀9 9、B 10、Iy = O 3 5 5C 11、A 12、C 13.3 14、—3 15.5,7,3 16、B 17、D 18、A 19、a=3, b≈~2, C=O 20、-1、。

二元一次方程组培优竞赛测试题(2)

二元一次方程组培优竞赛测试题(2)

二元一次方程组测试题姓名: 得分:一、选择题(每小题3分,共30分):1、若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y =0,则m ∶n 等于( ).(A)3∶4(B)-3∶4(C)-1∶4(D)-1∶122、已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ).(A)31-=x y (B)21+=y x (C)352-=x y(D)312--=x y3、方程1132=+++--y x y x 的整数解的个数是( ). A .1个 B .2个 C .3个 D .4个4、方程组0ax by mx ny +=⎧⎨+=⎩有不等于零的解的条件是( )(A ) 0a ≠ (B )0b ≠ (C )am =bn (D )an =bm5、已知方程组 ||10||12x x y y x y ++=⎧⎨+-=⎩,则x+y 的值为()(A )185 (B )195 (C )4 (D )2156、已知:一等腰三角形的两边长x y 、满足方程组23328x y x y -=⎧⎨+=⎩,,则此等腰三角形的周长为( )A.5B.4C.3D.5或47、小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的31给我,我就有10颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组是( )A .⎩⎨⎧=+=+303202y x y xB .⎩⎨⎧=+=+103102y x y xC .⎩⎨⎧=+=+103202y x y xD .⎩⎨⎧=+=+303102y x y x8、如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=09、若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,210、若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是( )(A )0 (B )1 (C )2 (D )-1 选择题答题卡二、填空题(每小题3分,共15分)11、已知(k -2)x|k |-1-2y =1,则k ______ 时,它是二元一次方程;k =______ 时,它是一元一次方程.12、已知m 为正整数,二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x 、y 均为整数,则2m =______.13、如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是1,则六边形 的周长是_________.14、某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则他的付款方式有____ 种(指付出2元和5元钱的张数);付款方式付出的张数最少的是 ____ 张。

二元一次方程组基础中等难度测试题

二元一次方程组基础中等难度测试题

二元一次方程组基础题F 列方程中,属于二元一次方程的是( xA. 3x 6 2xB. xy 3C. y2、下列方程组中,是二元一次方程组的是(3、下列方程组中,是 元一次方程组的是(A.3x2 y10x 8yxy 4 B.x 2y 6x y 2C. 1 o3yxD. x 2y 47x 9y 5y 1 x 时,代入正确的是(x 2y 4A .x 2x4B.x 2 2x 4c .x 2 2x 4D .x 2 x 4xy 5 A.3 x 3z 7x 2y xy B.4x 5y 2xC.y xD.1 x24、二兀一次方程组 2y 2x 10,的解是(x 4, A. y 3;xB.y 3,6;x 2, C. y 4;x D.4,2.5、二兀一次方程组 y 3的解是(y 1xA.yx 1 B. y 2x 2 C. y 1xD.6、在方程3y 2x 中,用含x 的式子表示y ,则( A. y 2x 6 B. y 2x 6 3 6 2xC. y丁D . y2x 6 37、方程组2x y 3x 2y 5 8消去y 后得到的方程是(A. 3x 4x 10B. 3x 4x 5 8C.3x 2 5 2xD.3x 4x 10 82x8、用代入法解方程组9、用加减法解二元一次方程组2X 3y 3①,以下正确的是( 3x 5y 1 ②A.①X 3+ ②X 2B.①X 5+ ②X 3C.①X 2-②X 3D.①X 5-②X 3张和y 张,则下、面的方程组正确的是()x — 11-8x y 10xy 8 A. 2B. xyC.D.8x 2y 8x2y 10x yx 2y 1011、下列方程①2x - 1 ;②x3 3;2 2③x y4 ;32 y④5(xy)7(x y); ⑤ 2x 23;⑥x1 4 .其中是二一元 •次方程的是y12、若 x 2y 3,则 5 x 2y ____________13、已知方程 2x 3y 4,用含x 的代数式表示 y ,贝U y ____________________ ,用含y 的代数式表示 x ,则x .14、某次足球比赛的记分规则如下: 胜一场得3分,平一场得1分,负一场是0分.某队踢了 14场,其中负5场, 共得19分。

中考数学常考考点专题之二元一次方程组测试题

中考数学常考考点专题之二元一次方程组测试题

中考数学常考考点专题之二元一次方程组测试题一.选择题(共10小题)1.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )A .5种B .6种C .7种D .8种2.《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x 两,燕每只y 两,则可列出方程组为( )A .{5x +6y =165x +y =6y +xB .{5x +6y =164x +y =5y +xC .{6x +5y =166x +y =5y +xD .{6x +5y =165x +y =4y +x 3.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A .{7x −7=y 9(x +1)=yB .{7x +7=y 9(x +1)=yC .{7x −7=y 9(x −1)=yD .{7x +7=y 9(x −1)=y 4.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( )A .{3x +2y =955x +7y =230B .{2x +3y =955x +7y =230C .{3x +2y =957x +5y =230D .{2x +3y =957x +5y =2305.有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音h ú,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设大桶可以盛酒x 斛,小桶可以盛酒y 斛,则可列方程组为( )A .{5x +y =3,x +5y =2B .{5x +y =3,x +y =2C .{x +5y =3,5x +y =2D .{5x +5y =3,x +5y =26.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为( )A .{x =3(y +2)x =2y −18B .{x =3(y −2)x =2y −18C .{x =3(y +2)x =2y +9D .{x =3(y −2)x =2y +9 7.我国古代数学著作《九章算术》记载了一道“牛马问题”:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价.问牛、马价各几何.”其大意为:现有两匹马加一头牛的价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛各多少钱?设一匹马价钱为x 元,一头牛价钱为y 元,则符合题意的方程组是( )A .{2x +y −10000=x 2x +2y −10000=y 2B .{2x +y −10000=x 210000−(x +2y)=y 2C .{2x +y +10000=x 2x +2y −10000=y 2D .{2x +y +10000=x 210000−(x +2y)=y 2 8.已知{x =1y =2是二元一次方程3x ﹣ay =1的一个解,则a 的值为( ) A .﹣1 B .1 C .﹣2 D .29.若关于x ,y 的方程组{2x −y =5k +64x +7y =k的解满足x +y =2023,则k 的值为( ) A .2020 B .2021 C .2022 D .202310.方程组{x =4y x +2y =−12的解是( ) A .{x =−4,y =−1 B .{x =−8,y =−2 C .{x =4,y =−8 D .{x =−4,y =1二.填空题(共10小题)11.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格,将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等.如图所示是一个未完成的幻方,则x ﹣y = .x ﹣2y﹣2y 6 012.我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x 只,小鸡有y 只,可列方程组为 .13.关于x ,y 的二元一次方程组{mx +y =n x −ny =2m 的解是{x =0y =2,则m +n 的值为 . 14.(2023•吉安县校级模拟)有这样一道数学名题,其题意:一群老者去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,请问几个老者几个梨?设有老者x 人,梨y 个,则可列二元一次方程组: .15.《九章算术》方程章节中有这样一个题目:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”意思是不知道甲乙二人各有多少钱,如果把乙的钱的一半给甲,则甲50钱;如果把甲钱的23给乙,则乙也有50钱.则原来甲有的钱数是 .16.在正方形网格中,格线与格线的交点称为“格点”,各顶点都在格点上的多边形称为“格点多边形”.设小正方形的边长均为1,则“格点多边形”的面积S 可用公式S =a +12b −1计算,其中a 是多边形内部的“格点”数,b 是多边形边界上的“格点”数,这个公式称为“皮克定理”.如图所示的6×6的正方形网格:∵a =16,b =12,∴图中格点多边形的面积是21.已知一个格点多边形的面积为14,且边界上的点数b 是内部点数a 的3倍,则a +b = .17.关于x ,y 的方程组{2x +y =4x +2y =m的解满足x +y =1,则m 的值为 . 18.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为 .19.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为 .20.甲、乙两种车辆运土,已知5辆甲车和4辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组 .三.解答题(共5小题)21.某公司要生产960件新产品,准备让A 、B 两厂生产,已知先由A 厂生产30天,剩下的B 厂生产20天可完成,共需支付工程款81000元;若先由B 厂生产30天,剩下的A 厂可用15天完成,共需支付工程款81000元.(1)求A 、B 两厂单独完成各需多少天;(2)若公司可以由一个厂完成,也可由两厂合作完成,但为保证质量,加工期间公司需派一名技术员到现场指导(若两厂同时生产也只需派一名),每天需支付这名技术员工资及午餐费120元,从经费考试应怎样安排生产,公司花费最少的金额是多少?22.为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270 小乐妈妈30 20 230(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);①根据上表,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为(80﹣4m)包,(4m+8)包,A,B两种包装的销售总额为17280元.求m的值.23.制作一张方桌要用1个桌面和4条桌腿,若1m3木材可制作20个桌面或400条桌腿,现有12m3木材,要使生产出来的桌面和桌腿恰好都配成方桌,求应安排多少木材用来制作桌面.24.一方有难,八方支援.郑州暴雨牵动数万人的心,众多企业也伸出援助之手.某公司购买了一批救灾物资并安排两种货车运往郑州.调查得知,2辆小货车与3辆大货车一次可以满载运输1800件;3辆小货车与4辆大货车一次可以满载运输2500件.(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)现有3100件物资需要再次运往郑州,准备同时租用这两种货车,每辆均全部装满货物,有几种租车方案?请写出所有租车方案.25.列方程(组)解应用题如图,巴桑家客厅的电视背景墙是由10块形状大小相同的长方形墙砖砌成.(1)求一块长方形墙砖的长和宽;(2)求电视背景墙的面积.。

(完整版)二元一次方程组练习题含答案

(完整版)二元一次方程组练习题含答案

二元一次方程组专题训练1.⎩⎨⎧=-=+33651643y x y x 2. ⎩⎨⎧=+=-6251023x y x y ⎩⎨⎧=-=+19542023b a b a 1、 2、 3、 ⎩⎨⎧=-=+1572532y x y x4、⎩⎨⎧=+-=18435276t s t s 5、 ⎩⎨⎧=-=+574973p q q p 6、⎩⎨⎧=-=+42634y x y x7、⎩⎨⎧-=-=+22223n m n m 8、⎩⎨⎧=--=-495336y x y x 9、10、⎩⎨⎧=-=-yx y x 23532 11、⎩⎨⎧=-=+124532n m n m12、⎩⎨⎧=+=+10232556y x y x13、⎩⎨⎧=+=+2.54.22.35.12y x y x 14、⎪⎩⎪⎨⎧=-+-=+6)(3)1(26132y x x y x15、⎪⎩⎪⎨⎧=+--=-+-04235130423512y x y x 16、⎪⎩⎪⎨⎧=--=+-4323122y x y x yx17、⎪⎩⎪⎨⎧-=-++=-+52251230223x y x y x二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6 D .4x=2.下列方程组中,是二元一次方程组的是( )A .228423119...23754624x y x y a b xBCD x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )7.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( ) A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________. 15.以57x y =⎧⎨=⎩为解的一个二元一次方程是_________. 16.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?《二元一次方程组》单元测试题一、选择题(每题3分,共30分) 1.下列方程组中,是二元一次方程组的是( ). (A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩(D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x , 则输出的y 值是( )(A )0 (B )2- (C )2 (D )44.如果2315a b 与114x x y a b ++-是同类项,则x ,y 的值是( )(A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==32y x 5.已知12x y =⎧⎨=⎩ 是方程组错误!未找到引用源。

《二元一次方程组》基础测试+提高测试

《二元一次方程组》基础测试+提高测试

《二元一次方程》基础测试(一)填空题(每空2分,共26分):1.已知二元一次方程1213-+y x =0,用含y 的代数式表示x ,则x =_________; 当y =-2时,x =___ ____.【提示】把y 作为已知数,求解x .【答案】x =62y -;x =32.2.在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==354y x ,(3)⎪⎪⎩⎪⎪⎨⎧-==2741y x 这三组数值中,_____是方程组x -3y =9的解,______是方程2 x +y =4的解,______是方程组⎩⎨⎧=+=-4293y x y x 的解.【提示】将三组数值分别代入方程、方程组进行检验.【答案】(1),(2);(1),(3);(1).【点评】方程组的解一定是方程组中各个方程共同的解.3.已知⎩⎨⎧=-=54y x ,是方程41x +2 my +7=0的解,则m =_______.【提示】把⎩⎨⎧=-=54y x 代入方程,求m .【答案】-53.4.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =__,b =_.【提示】将⎩⎨⎧-=-=12y x 代入⎩⎨⎧=-=+137by ax by ax 中,原方程组转化为关于a 、b 的二元一次方程组,再解之.【答案】a =-5,b =3.5.已知等式y =kx +b ,当x =2时,y =-2;当x =-21时,y =3,则k =____,b =____. 【提示】把x 、y 的对应值代入,得关于k 、b 的二元一次方程组. 【答案】k =-2,b =2.【点评】通过建立方程组求解待定系数,是常用的方法. 6.若|3a +4b -c |+41(c -2 b )2=0,则a ∶b ∶c =_________. 【提示】由非负数的性质,得3 a +4 b -c =0,且c -2b =0.再用含b 的代数式表示a 、c ,从而求出a 、b 、c 的值.【答案】a =-32b ,c =2b ;a ∶b ∶c =-2∶3∶6. 【点评】用一个未知数的代数式表示其余的未知数,是一种常用的有效方法. 7.当m =_______时,方程x +2y =2,2x +y =7,mx -y =0有公共解.【提示】先解方程组⎩⎨⎧=+=+7222y x y x ,将求得的x 、y 的值代入方程mx -y =0,或解方程组⎪⎩⎪⎨⎧=-=+=+.07222y mx y x y x【答案】⎩⎨⎧-==14y x ,m =-41.【点评】“公共解”是建立方程组的依据.8.一个三位数,若百位上的数为x ,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.【提示】将各数位上的数乘相应的位数,再求和. 【答案】100 x +10 y +2(x -y ). (二)选择题(每小题2分,共16分):9.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x , 其中属于二元一次方程组的个数为………………………………………………( ) (A )1 (B )2 (C )3 (D )4【提示】方程组(2)中含有三个未知数,方程组(3)中y 的次数都不是1,故(2)、(3)都不是二元一次方程组.【答案】B .10.已知2 x b+5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为………………………( )(A )2 (B )-2 (C )1 (D )-1【提示】由同类项定义,得⎩⎨⎧-==+b a a b 42325,解得⎩⎨⎧=-=21b a ,所以b a =(-1)2=1.【答案】C .11.已知方程组⎩⎨⎧-=-=+1242m ny x n y mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为……( ) (A )⎩⎨⎧-==11n m (B )⎩⎨⎧==12n m (C )⎩⎨⎧==23n m (D )⎩⎨⎧==13n m【提示】将⎩⎨⎧-==11n m 代入方程组,得关于m 、n 的二元一次方程组解之.【答案】D .12.三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是…………………………………………( )(A )⎪⎩⎪⎨⎧===501z y x (B )⎪⎩⎪⎨⎧===421z y x (C )⎪⎩⎪⎨⎧===401z y x (D )⎪⎩⎪⎨⎧===014z y x【提示】把三个方程的两边分别相加,得x +y +z =6或将选项逐一代入方程组验证,由x +y =1知(B )、(D )均错误;再由y +z =5,排除(C ),故(A )正确,前一种解法称之直接法...;后一种解法称之逆推验证法......【答案】A . 【点评】由于数学选择题多为单选题——有且只有一个正确答案,因而它比一般题多一个已知条件:选择题中有且只有一个是正确的.故解选择题除了直接法以外,还有很多特殊的解法,随着学习的深入,我们将逐一向同学们介绍. 13.若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为……………( )(A )-4 (B )4 (C )2 (D )1【提示】把x =y 代入4x +3y =14,解得x =y =2,再代入含a 的方程.【答案】C . 14.若关于x 、y 的方程组⎩⎨⎧=-=+ky x ky x 73的解满足方程2x +3y =6,那么k 的值为( )(A )-23 (B )23 (C )-32 (D )-23【提示】把k 看作已知常数,求出x 、y 的值,再把x 、y 的值代入2 x +3 y =6,求出k .【答案】B . 15.若方程y =kx +b 当x 与y 互为相反数时,b 比k 少1,且x =21,则k 、b 的值分别是…………( ) (A )2,1 (B )32,35 (C )-2,1 (D )31,-32【提示】由已知x =21,y =-21,可得⎪⎩⎪⎨⎧=-+=-.12121b k b k 【答案】D .16.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组……………………………( )(A )⎩⎨⎧=-=+y x y x 3847 (B )⎩⎨⎧=++=x y x y 3847(C )⎩⎨⎧+=-=3847x y x y (D )⎩⎨⎧+=+=3847x y x y【提示】由题意可得相等关系:(1)7组的学生数=总人数-4;(2)8组的人数=总人数+3.【答案】C .(三)解下列方程组(每小题4分,共20分):17.⎩⎨⎧-=-=-.557832y x y x 【提示】用加减消元法先消去x .【答案】⎩⎨⎧-=-=.65y x18.⎪⎪⎩⎪⎪⎨⎧=+=+.15765545.04332y x y x 【提示】先整理各方程,化为整数系数的方程组,用加减法消去x .【答案】⎪⎩⎪⎨⎧=-=.223y x 19.⎪⎩⎪⎨⎧=+=4.1%40%2552y x y x 【提示】由第一个方程得x =52y ,代入整理后的第二个方程;或由第一个方程,设x =2 k ,y =5 k ,代入另一个方程求k 值.【答案】⎪⎪⎩⎪⎪⎨⎧==.15142528y x20.⎩⎨⎧-=++=+.b a y x b a y x 2127521257(a 、b 为非零常数)【提示】将两个方程左、右两边分别相加,得x +y =2a ①,把①分别与两个方程联立求解. 【答案】⎩⎨⎧-=+=.b a y b a x【点评】迭加消元,是未知数系轮换方程组的常用解法.21.⎪⎩⎪⎨⎧=++=-+=+-.10076702302z y x z y x z y x【提示】将第一个方程分别与另外两个方程联立,用加法消去y .【答案】⎪⎩⎪⎨⎧===.753z y x【点评】分析组成方程组的每个方程中各未知项系数的构成特点,是选择恰当解题方法的关键所在,因而解题前要仔细观察,才能找出解题的捷径. (四)解答题(每小题6分,共18分):22.已知方程组⎩⎨⎧+=+=+25332n y x ny x 的解x 、y 的和为12,求n 的值.【提示】解已知方程组,用n 的代数式表示x 、y ,再代入 x +y =12. 【答案】n =14.23.已知方程组⎩⎨⎧-=+=-1332by ax y x 与⎩⎨⎧=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.【提示】先解方程组⎩⎨⎧=+=-1123332y x y x 求得x 、y ,再代入方程组⎩⎨⎧=+-=+3321by ax by ax 求a 、b .【答案】⎩⎨⎧=-=52b a .【点评】当n 个方程组的解相同,可将方程组中的任意两个方程联立成新的方程组.24.已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值. 【提示】由题意得关于a 、b 的方程组.求出a 、b 写出这个代数式,再求当x =3时它的值. 【答案】5.【点评】本例在用待定系数法求出a 、b 的值后,应写出这个代数式,因为它是求值的关键步骤. (五)列方程组解应用问题(每1小题10分,共20分):25.某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.【提示】设去年一年级男生、女生分别有x 人、y 人,可得方程组⎪⎩⎪⎨⎧=--+=-.30)100251()100201(80x y y x【答案】x =280,y =200.26.A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A 地,乙继续前进,当甲回到A 地时,乙离A 地还有2千米,求甲、乙两人的速度. 【提示】由题意,相遇前甲走了2小时,及“当甲回到A 地时,乙离A 地还有2千米”,可得列方程组的另一个相等关系:甲、乙同向行2小时,相差2千米.设甲、乙两人的速度分别为x 千米/时,y 千米/时,则⎩⎨⎧=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千米/时,乙的速度为4.5千米/时.《二元一次方程组》提高测试(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________.【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数. 【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a cb a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值. 【答案】a =61,b =41,c =31.【点评】设“比例系数”是解有关数量比的问题的常用方法. 8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………()(A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D )-4或10 【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法. 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1) (C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解. 【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值. 【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c 时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b .【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1 【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A BA , 进而求得x ,y .【答案】⎩⎨⎧-==.11y x20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值.【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k , y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错. 【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值. 【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5. 【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x=-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少? 【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米,根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。

《二元一次方程组》基础测试题+能力测试题及参考答案(精编)

《二元一次方程组》基础测试题+能力测试题及参考答案(精编)

《二元一次方程》基础测试题一、选择题1.方程2x+y =0,3x-xy =1,2x+y ﹣x =7,x −1y =0二元一次方程的个数是( ) A .1个 B .2个 C .3个 D .4个2.把方程2x-y=3改写成用含x 的式子表示y 的形式( )A .y=2x-3B .y=2x+3C .1322x y =+D .132x y =+ 3.若{x =5y =2是关于x 和y 的二元一次方程2x ﹣by =6的解,则b 的值是( ) A . 2 B .﹣2 C . 4 D .﹣44.关于二元一次方程组{y =x +1x −2y =7,消去y 可得( ) A .x-x ﹣1=7 B .x-2x ﹣1=7 C .x-2x ﹣2=7 D .x+2x-2=75.已知二元一次方程组{2x −y =7x −2y =−3,则x+y 的值为( ) A .﹣4 B .4 C .﹣5 D .56.若方程x+y =2,x ﹣2y =8和kx-y =6有公共解,则k 的值是( )A .1B .﹣1C .2D .﹣27.现在小强的年龄是小玲的2倍,2年前小强的年龄是小玲的3倍,今年小强和小玲的年龄是多少岁?设小强今年x 岁,小玲今年y 岁,可列方程组( )A .{x +2=3(y +2)x =2yB .{x −2=3(y −2)x =2yC .{x +2=2(y +2)x =3yD .{x −2=3(y −2)x =3y8.若|4x+2y ﹣1|+√x −y +2=0,则x+y 的值为( )A .4B .2C .1D .09.一个两位数数位上的数字之和是8,将它的十位数字和个位数字交换后,得到新的两位数,若新两位数比原两位数小18,则原两位数为( )A .26B .53C .35D .6210.已知关于x 、y 的二元一次方程组的解3+2=+22+3=x y k x y k ⎧⎨⎩满足x+y=2,则k 的值为( ) A .0 B .1 C .2 D .411.已知方程组213616x y z x y z -+=-⎧⎨+-=⎩,则x+y 的值为( ) A .3 B .4 C .5 D .612.今有牛五、羊二,值金十两.牛二、羊五,值金八两,牛、羊各值金几何?题目大意是:5头牛、2只羊共值金10两,2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?解:设一头牛值金x 两,一只羊值金y 两,则列方程组( )A .{5y −2x =102y −5x =8B .{5y −2x =82y −5x =10C .{5y +2x =102y +5x =8D .{5y +2x =82y +5x =10二、填空题13.方程ax+(a +1)y =3a -1是关于x 、y 的二元一次方程,则a 的范围是_______。

单元测试(四) 二元一次方程组

单元测试(四)  二元一次方程组

单元测试(四) 二元一次方程组(时间:45分钟满分:100分) 一、选择题(每小题3分,共24分)1.已知3,2xy=-=⎧⎨⎩是方程2x+ky=4的一个解,则k的值是( )A.2B.3C.4D.52.方程3x+2y=15的自然数解有( )A.1个B.2个C.3个D.无数个3.若a+b=3,a-b=7,则ab=( )A.-10B.-40C.10D.404.方程组224x yx y-=+=⎧⎨⎩,的解是( )A.12xy==⎧⎨⎩B.31xy==⎧⎨⎩C.2xy==-⎧⎨⎩D.2xy==⎧⎨⎩5.如果3a7x b y+7和-7a2-4y b2x是同类项,那么x,y的值是( )A.x=-3,y=2B.x=2,y=-3C.x=-2,y=3D.x=3,y=-26.以二元一次方程组37,1x yy x+=-=⎧⎨⎩的解为坐标的点(x,y)在平面直角坐标系的( )A.第一象限B.第二象限C.第三象限D.第四象限7.小亮解方程组2212x yx y+=-=⎧⎨⎩●,的解为5xy==⎧⎨⎩,★,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为( )A.82==⎧⎨⎩●★B.82==-⎧⎨⎩●★C.82=-=⎧⎨⎩●★D.82=-=⎨-⎧⎩●★8.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比小客车多行驶20千米.设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是( )A.207717066x yx y+=+=⎧⎪⎨⎪⎩B.207717066x yx y-=+=⎧⎪⎨⎪⎩C.207717066x yx y+=-=⎧⎪⎨⎪⎩D.77170 667720 66x yx y+=-=⎧⎪⎪⎨⎪⎪⎩二、填空题(每小题4分,共16分)9.若一个二元一次方程的解为2,1,xy==-⎧⎨⎩则这个方程可以是__________(只要求写出一个).10.用加减消元法解方程组31,421,x yx y+=-=⎨+⎧⎩①②由①×2-②得__________.11.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为__________元.12.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为__________.三、解答题(共60分)13.(10分)解方程组:(1)21,3211x yx y+=-=⎧⎨⎩①;②(2)()()()3223,21.3412x y x yx y x y+--=⎧-+-=-⎪⎨⎪⎩14.(8分)已知2,3xy==-⎧⎨⎩是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.15.(8分)已知关于x,y的方程组5,4522x yax by+=+=-⎧⎨⎩与21,80x yax by-=--=⎧⎨⎩有相同的解,求a,b的值.16.(10分)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.17.(12分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮助算算,用哪种方式购票更省钱?18.(12分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x,y的式子表示地面总面积;(2)已知客厅面积比卫生间面积多21 m2,且地面总面积是卫生间面积的15倍.若铺1 m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?参考答案1.D2.C3.A4.D5.B6.A7.B8.D9.如x+y=1 10.2x=-3 11.440 12.9613.(1)①+②,得4x=12.解得x=3.把x=3代入①,得3+2y=1.解得y=-1.所以原方程组的解是3,1. xy==-⎧⎨⎩(2)原方程组整理得:53,511 1.y x x y ⎨-=-=-⎧⎩①② 由①,得x=5y-3.③把③代入②,得25y-15-11y=-1.解得y=1. 将y=1代入③,得x=5×1-3=2.所以原方程组的解为2,1.x y ==⎧⎨⎩14.∵2,3x y ==-⎧⎨⎩是关于x,y 的二元一次方程3x=y+a 的解, ∴3×2=-3+a.解得a =9.∴a(a-1)=9×(9-1)=72.15.由题意可将x+y=5与2x-y=1组成方程组5,2 1.x y x y +=-=⎧⎨⎩解得2,3.x y ==⎧⎨⎩把2,3x y ==⎧⎨⎩代入4ax+5by=-22,得8a+15b=-22.① 把2,3x y ==⎧⎨⎩代入ax-by-8=0,得2a-3b-8=0.② ①与②组成方程组,得81522,2380.a b a b +=---=⎧⎨⎩解得1,2.a b==-⎧⎨⎩ 16.设大宿舍有x 间,小宿舍有y 间.根据题意,得 5086360.x y x y +=+=⎧⎨⎩,解得30,20.x y ==⎧⎨⎩ 答:大宿舍有30间,小宿舍有20间.17.(1)设去了x 个成人,y 个学生,依题意,得12,40400.5400.x y x y +=+⨯=⎧⎨⎩解得8,4.x y ==⎧⎨⎩ 答:他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384(元).∵384<400,∴按团体票购票更省钱.18.(1)地面总面积为:6x+2y+18(m2).(2)由题意,得6221,6218152.x yx y y-=++=⨯⎧⎨⎩解得4,3.2xy⎧==⎪⎨⎪⎩∴地面总面积为:6x+2y+18=6×4+2×32+18=45(m2).∴铺地砖的总费用为:45×80=3 600(元).。

二元一次方程组测试卷

二元一次方程组测试卷

二元一次方程组测试卷一、选择题(每题3分,共30分)1. 下列方程中,是二元一次方程的是()A. x + (1)/(y)=2B. xy = 9C. 3x - 2y = 4D. x^2+y = 62. 方程2x + y = 9在正整数范围内的解有()A. 1组。

B. 2组。

C. 3组。

D. 4组。

3. 若x = 2 y = 1是关于x、y的二元一次方程ax - 3y = 1的解,则a的值为()A. 2.B. -2.C. 5.D. -5.4. 二元一次方程组x + y = 5 x - y = 3的解是()A. x = 4 y = 1B. x = 1 y = 4C. x = 2 y = 3D. x = 3 y = 25. 用代入法解方程组y = 1 - x x - 2y = 4时,代入正确的是()A. x - 2 - x = 4B. x - 2 - 2x = 4C. x - 2 + 2x = 4D. x - 2 + x = 46. 已知x = m y = n和x = n y = m是方程2x - 3y = 1的解,则m - n的值为()A. 1.B. -1.C. 0.D. 2.7. 若方程组ax + by = 2 ax - by = 2与2x + 3y = 4 4x - 5y = -6的解相同,则a,b的值为()A. a = (23)/(11) b = (4)/(11)B. a = (23)/(11) b = -(4)/(11)C. a = -(23)/(11) b = (4)/(11)D. a = -(23)/(11) b = -(4)/(11)8. 某班有x名学生,其中女生人数占45%,则男生人数为()A. 0.45xB. 0.55xC. (x)/(0.45)D. (x)/(0.55)9. 甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,设甲的速度为x米/秒,乙的速度为y米/秒,下列方程组正确的是()A. 5x = 5y + 10 4x = 4y + 2yB. 5x - 5y = 10 4x - 2x = 4yC. 5x + 10 = 5y 4x - 4y = 2D. 5x - 5y = 10 4x - 4y = 2y10. 关于x,y的方程组3x - y = m x + my = n的解是x = 1 y = 1,则| m - n|的值是()A. 5.B. 3.C. 2.D. 1.二、填空题(每题3分,共15分)1. 若x^2m - 1+5y^3n - 2m=7是二元一次方程,则m=_ ,n=_ 。

二元一次方程组测试题.docx

二元一次方程组测试题.docx

二元一次方程组测试题1. 解下列二元一次方程组,并找出x和y的值:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]2. 已知方程组:\[\begin{cases}3x + 2y = 8 \\2x - 3y = -7\end{cases}\]求x和y的值。

3. 判断下列方程组是否有解,并说明理由:\[\begin{cases}x + y = 1 \\x + y = 2\end{cases}\]4. 解方程组并找出所有可能的解:\[\begin{cases}x - 3y = 4 \\4x + y = 1\end{cases}\]5. 给定方程组:\[\begin{cases}x + y = a \\2x - y = b\end{cases}\]其中a和b是已知数,求x和y的表达式。

6. 解下列方程组,并找出x和y的值:\[\begin{cases}3x + 5y = 15 \\5x - 3y = 11\end{cases}\]7. 已知方程组:\[\begin{cases}x + 2y = 6 \\3x - y = 1\end{cases}\]求x和y的值。

8. 解下列方程组,并找出x和y的值:\[\begin{cases}2x + 3y = 10 \\4x - y = 8\end{cases}\]9. 判断下列方程组是否有无穷多解,并说明理由: \[\begin{cases}x + y = 3 \\2x + 2y = 6\end{cases}\]10. 解下列方程组,并找出x和y的值:\[\begin{cases}x - 2y = 1 \\3x + y = 5\end{cases}\]。

专题06二元一次方程组(测试)(学生版)-2023年中考一轮复习讲练测(浙江专用)

专题06二元一次方程组(测试)(学生版)-2023年中考一轮复习讲练测(浙江专用)

2023年中考数学总复习一轮讲练测(浙江专用)专题06二元一次方程组 (测试)班级:________ 姓名:__________ 得分:_________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 本试卷所选题目为浙江地区中考真题、模拟试题、阶段性测试题.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•上城区一模)二元一次方程4x ﹣y =2的解可以是( )A .{x =−2y =10B .{x =−1y =2C .{x =1y =2D .{x =2y =−62.(2021•西湖区校级三模)解方程组{3x −2y =13x +y =3加减消元法消元后,正确的方程为( ) A .6x ﹣y =4 B .3y =2 C .﹣3y =2 D .﹣y =23.(2020•温州三模)已知方程组{3a +b =53a +5b =13,则a +b 的值为( ) A .1 B .2 C .3 D .44.(2022春•温州期末)用加减消元法解二元一次方程组{3x −2y =7①x −y =2②时,下列方法中可以消元的是( ) A .①+② B .①﹣② C .①+②×2 D .②×3﹣①5.(2022春•龙湾区期中)用代入消元法解方程组{n =m −12m +n =3,代入消元正确的是( ) A .2m ﹣m +1=3 B .2m +m +1=3 C .2m +m ﹣1=3 D .2m ﹣m ﹣1=36.(2022春•西湖区校级期中)在解关于x ,y 的方程组{ax −2by =8①2x =by +2②时,小明由于将方程①的“﹣”,看成了“+”,因而得到的解为{x =2y =1,则原方程组的解为( ) A .{a =2b =2 B .{x =2y =2 C .{x =−2y =−3 D .{x =2y =17.(2022春•嘉兴期中)解关于x ,y 的方程组{(a +2)x +(3b +2)y =3①(5b −1)x −(4a −b)y =7②可以用①×3﹣②,消去未知数x ,也可以用①+②×4消去未知数y ,则a ,b 的值分别为( )A .1,﹣2B .﹣1,﹣2C .1,2D .﹣1,28.(2022春•青田县校级月考)用加减法解方程组{x +3y =52x −y =4时,要使方程组中同一个未知数的系数相等或互为相反数,必须适当变形.以下四种变形中正确的是( )①{2x +6y =52x −y =4②{2x +6y =102x −y =4③{x +3y =56x −3y =4④{x +3y =56x −3y =12A .①②B .②③C .①③D .②④9.(2022春•杭州期中)已知关于x ,y 的方程组{x +2y =k 2x +3y =3k −1,以下结论其中不成立是( ) A .不论k 取什么实数,x +3y 的值始终不变B .存在实数k ,使得x +y =0C .当y ﹣x =﹣1时,k =1D .当k =0,方程组的解也是方程x ﹣2y =﹣3的解10.(2022•宁波模拟)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两.问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x 两,一枚白银的重量为y 两,则可列方程组为( )A .{9x =11y 9x −y =11y −x +13B .{9x =11y 9x −y =11y −x −13C .{9x =11y 8x +y =10y +x +13D .{9x =11y 8x +y =10y +x −13 二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022•黄岩区一模)方程组{x +y =12x +y =5的解是 . 12.(2022•诸暨市二模)已知{x =1y =−3是方程4x ﹣ay =7的一个解,那么a 的值是 . 13.(2022•镇海区校级二模)有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需215元;购买甲商品1件、乙商品2件、丙商品3件共需185元.那么购买甲、乙、丙商品各1件时共需 元.14.(2022•松阳县一模)已知关于x ,y 的二元一次方程组{x +y =a +b −6x −y =a −b +6(a ,b 为实数). (1)若x =2a ﹣1,则a 的值是 ;(2)若x ,y 同时满足ax +by +4=0,2x +5y ﹣ay =0,则a +b 的值是 .15.(2022•舟山二模)如图,用图1中的a 张长方形和b 张正方形纸板作侧面和底面,做成如图2的竖式和横式两种无盖纸盒,若a +b 的值在285和315之间(不含285与315),且用完这些纸板做竖式纸盒比横式纸盒多30个,则a 的值可能是 .16.(2022•定海区校级模拟)已知关于x ,y 的二元一次方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =2y =3,则关于x ,y 的二元一次方程组{a 1(x +y)+b 1(x −y)=2c 1a 2(x +y)+b 2(x −y)=2c 2的解为 . 三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022•宁波模拟)解方程组:(1){y =2x −35x −y =3; (2){x 2+y 3=16x 3−y 4=5. 18.(2022春•青田县校级月考)已知关于x 、y 的方程组{mx −12ny =2mx +ny =5的解为{x =3y =2,求m 、n 的值. 19.(2022春•义乌市月考)当k 为何值时,方程组{3m −2n =2k 2m +7n =k −18的解m ,n 的值互为相反数? 20.(2022春•义乌市校级月考)若方程组{3x +2y =2k 5x +4y =k +3的解x 、y 的和为﹣5,求k 的值,并解此方程组. 21.(2017•江东区模拟)某工厂接到一批服装加工业务,若由甲车间独做,可比规定时间提前8天完成,甲车间在制作完这批服装的60%后因另有任务,立即将剩余服装全部交给乙车间,结果刚好按规定时间完成,已知甲、乙两个车间每天分别制作200和120件服装,求该工厂所接的这批服装件数和规定时间.22.(2022春•长兴县期中)“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份销售出这两款毛绒玩具的数量与十二月一样,求该旗舰店当月销售的利润.23.(2022春•上城区校级期中)目前,新型冠状病毒在我国虽可控可防,但不可松懈,建兰中学欲购置规格分别为200mL和500mL的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L的免洗手消毒液全部装入最大容量分别为200mL和500mL的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.。

方程与不等式之二元一次方程组基础测试题含答案

方程与不等式之二元一次方程组基础测试题含答案

方程与不等式之二元一次方程组基础测试题含答案一、选择题1.已知关于x ,y 的方程组34{3x y ax y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x +y=4-a 的解;②当a=-2时,x 、y 的值互为相反数;③若x≤1,则1≤y≤4;④5{1x y ==-是方程组的解,其中正确的是( )A .①②B .③④C .①②③D .①②③④【答案】C 【解析】 【分析】 【详解】 解:解方程组34{3x y a x y a +=--=,得12{1x ay a=+=-,∵-3≤a ≤1,∴-5≤x ≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a 两边相等,结论正确; ②当a=-2时,x=1+2a=-3,y=1-a=3,x ,y 的值互为相反数,结论正确; ③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1, ∴-3≤a ≤0∴1≤1-a ≤4∴1≤y ≤4结论正确, ④5{1x y ==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C . 【点睛】本题考查二元一次方程组的解;解一元一次不等式组.2.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( ) A .7161328x y x y +=⎧⎨+=⎩B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩【答案】D 【解析】 【分析】根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组.【详解】设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩,故选D . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.3.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=10 【答案】A 【解析】 【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩ ,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值. 【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ , 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0, ∴k=-5. 故选A. 【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.4.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( )A .42a b =⎧⎨=⎩B .24a b =⎧⎨=⎩C .24a b =-⎧⎨=-⎩D .42a b =-⎧⎨=-⎩【答案】A 【解析】 【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可. 【详解】∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩,故选:A . 【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.5.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( ) A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩ D .302100200x y x y +=⎧⎨⨯=⎩【答案】C 【解析】 【分析】根据题意可以列出相应的二元一次方程组,本题得以解决. 【详解】 由题意可得,{x y 302200x 100y+=⨯=,故答案为C 【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.6.若215(3)()x mx x x n +-=++,则m 的值为() A .-2 B .2C .-5D .5【答案】A 【解析】 【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解. 【详解】解:∵()()()2215333x mx x x n x n x n +-=++=+++∴3315m n n =+⎧⎨=-⎩①②由②得,5n =-把5n =-代入①得,2m =- ∴m 的值为2-. 故选:A 【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.7.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩,给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是() A .①② B .①③C .②③D .①②③【答案】D 【解析】 【分析】①将5k =代入方程组可得3563510x y x y +=⎧⎨+=⎩,解方程组即可作出判断;②将10k =代入方程组可得35631010x y x y +=⎧⎨+=⎩求得方程组的解后,再将解代入61516x y +=即可作出判断;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,根据k 为整数即可作出判断.【详解】解:①当5k =时,关于x 、y 的二元一次方程组为:3563510x y x y +=⎧⎨+=⎩,此时方程组无解,故本说法正确;②当10k =时,关于x 、y 的二元一次方程组为:35631010x y x y +=⎧⎨+=⎩,解得2345x y ⎧=⎪⎪⎨⎪=⎪⎩,将其代入61516x y +=,能使其左右两边相等,故本说法正确;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,因为k 为整数而x 、y 不能都为整数,故本说法正确. 故选:D 【点睛】此题考查了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中两方程同时成立的未知数的值.8.三个二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则k 的值是( ) A .3 B .163-C .-2D .4【答案】D 【解析】 【分析】先结合37x y -=,231x y +=,求出x 、y 的值,然后代入9y kx =-,即可求出k 的值. 【详解】 解:根据题意,有37231x y x y -=⎧⎨+=⎩, 解得:21x y =⎧⎨=-⎩;把21x y =⎧⎨=-⎩代入9y kx =-,得 291k -=-,解得:4k =; 故选:D . 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握代入消元法和加减消元法.9.《九章算术》中记载:“今有共买羊,人出五,不足四十五人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( ). A .54573y x y x =+⎧⎨=-⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=+⎩D .54573y x y x =-⎧⎨=-⎩【答案】C 【解析】 【分析】根据羊价不变即可列出方程组. 【详解】解:由“若每人出5钱,还差45钱”可以表示出羊价为:545y x =+,由“若每人出7钱,还差3钱”可以表示出羊价为:73y x =+,故方程组为54573y x y x =+⎧⎨=+⎩.故选C. 【点睛】本题考查了二元一次方程组的应用,正确理解题意,明确羊价不变是列出方程组的关键.10.二元一次方程3x+y =7的正整数解有( )组. A .0 B .1C .2D .无数【答案】C 【解析】 【分析】分别令x=1、2进行计算即可得 【详解】 解:方程3x+y=7, 变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1, 则方程的正整数解有二组 故本题答案应为:C 【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.11.如果方程组x 35ax by =⎧⎨+=⎩的解与方程组y 42bx ay =⎧⎨+=⎩的解相同,则a 、b 的值是( ) A .a 12b =-⎧⎨=⎩B .a 12b =⎧⎨=⎩C .a 12b =⎧⎨=-⎩D .a 12b =-⎧⎨=-⎩【答案】A 【解析】【分析】 把34x y =⎧⎨=⎩代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩,解方程组可得.【详解】解:由于两个方程组的解相同,所以这个相同的解是34x y =⎧⎨=⎩, 把34x y =⎧⎨=⎩代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩ 解得a 12b =-⎧⎨=⎩故选A . 【点睛】本题考核知识点:解二元一次方程组.解题关键点:熟练解二元一次方程组.12.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x +=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩【答案】B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可. 【详解】根据图示可得,2753x y x y +=⎧⎨=⎩故选B . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.13.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.104937466x yx y+=⎧⎨+=⎩B.103749466x yx y+=⎧⎨+=⎩C.466493710x yx y+=⎧⎨+=⎩D.466374910x yx y+=⎧⎨+=⎩【答案】A【解析】【分析】设49座客车x辆,37座客车y辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组.【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得:10 4937466x yx y+=⎧⎨+=⎩故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.14.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【答案】B【解析】【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【详解】设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=4043x-,∵x、y均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B.【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.15.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A.B.C.D.【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.16.方程组2x yx y3n+=⎧+=⎨⎩的解为{x2y==n,则被遮盖的两个数分别为( )A.2,1 B.5,1 C.2,3 D.2,4【答案】B【解析】把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选B.17.已知方程组31331x y mx y m+=+⎧⎨+=-⎩的解满足0x y+>,则m取值范围是()A .m >1B .m <-1C .m >-1D .m <1【答案】C 【解析】 【分析】直接把两个方程相加,得到12mx y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】解:31331x y m x y m +=+⎧⎨+=-⎩,直接把两个方程相加,得: 4422x y m +=+,∴12mx y ++=, ∵0x y +>, ∴102m+>, ∴1m >-; 故选:C. 【点睛】本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12mx y ++=,然后进行解题.18.利用两块相同的长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两木块的位置,按图②方式放置测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm【答案】C 【解析】 【分析】设长方体木块的长是xcm ,宽是ycm ,由题意得5x y -=,再代入求出桌子的高度即可. 【详解】设长方体木块的长是xcm ,宽是ycm ,由题意得8070x y y x -+=-+可得5x y -=则桌子的高度是8080575x y cm -+=-=故答案为:C .【点睛】本题考查了二元一次方程的实际应用,掌握解二元一次方程的方法是解题的关键.19.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩ B .5152x y x y =-⎧⎪⎨=+⎪⎩ C .525x y x y =+⎧⎨=-⎩ D .525x y x y =-⎧⎨=+⎩ 【答案】A【解析】【分析】 根据“用绳索去量竿,绳索比竿长5尺”可知5x y =+,然后进一步利用“如果将绳索对半折后再去量竿,就比竿短5尺”可知152x y =-,由此即可得出相应的方程组,从而得出答案.【详解】由题意得:绳索长x 尺,竿长y 尺,∵绳索比竿长5尺,∴5x y =+,又∵将绳索对半折后再去量竿,就比竿短5尺,∴152x y =-, ∴可列方程组为:5152x y x y =+⎧⎪⎨=-⎪⎩, 故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出正确的等量关系是解题关键.20.如果方程组4x y m x y m +=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( )A .7B .6C .3D .2【答案】D【解析】【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值.【详解】()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m , 把x ,y 代入方程3x-5y-30=0得: 3×52m +5×32m -30=0, 解得m=2;故选D .【点睛】 本题的实质是解三元一次方程组,用加减法或代入法来解答.。

《二元一次方程组》综合测试题(A)

《二元一次方程组》综合测试题(A)
《 二元 一次方程组》 综台测试题( A)
温馨 提示 :. 1 考试 时 间 6 0分
2 本 套 测 试 题 共 三 道 大 题 , 分 1 O分 . 满 0
题 号 总 分




选 择 题 ( 题 4分 , 3 每 共 2分 )
1 知{ ’ 方 y 的 个 那么 值 ( ) . I 程2一 一 解, 的 是 . 已 是 x : a 3
Y 一1
A. 一3
B.3
C.1
2 元 次 程 {- =, 是 ) . 一 方 组弧Z 的 ( . 二 1 7解 2 +y
v = )
A f =3

【 {
v= 2
B{ .
f =l
l v=2
C { .
f =4
【 v=2
3 知 程 {一 ’解 { j 2 3的 为 ) . 方 组似 b : 为 ’ 。 b 值 ( . 已 , 的 则 一 y
1 + D’ : l v l 1.
A 4
R 6
r 一 6




I I



B. x +y = 25 73 22 4
。.
32
c. y= 2 + x 5
2 4
3 2
毽7 3 2
x = y - 5 0
A. { l
22 .
B{ .
f =83 .
I Y= 12 .
C{ .
f : 1 . 03
l y:2. 2
D{ .
f = 1 . 03
【 Y=0. 2
。~

难点详解冀教版七年级数学下册第六章二元一次方程组专题测试练习题(精选含解析)

难点详解冀教版七年级数学下册第六章二元一次方程组专题测试练习题(精选含解析)

七年级数学下册第六章二元一次方程组专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知x ,y 满足235348x y x y -=⎧⎨-=⎩,则x -y 的值为( ) A .3 B .-3 C .5 D .02、我校在举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程正确的是( )A .640850y x y x -=⎧⎨+=⎩B .640850y x y x +=⎧⎨-=⎩C .640850x y x y +=⎧⎨-=⎩D .640850y x y x -=⎧⎨-=⎩3、有下列方程组:①12xy x y =⎧⎨+=⎩;②311x y y x -=⎧⎪⎨+=⎪⎩;③20135x z x y +=⎧⎪⎨-=⎪⎩;④5723x x y =⎧⎪⎨-=⎪⎩ ;⑤11x x y π+=⎧⎨-=⎩,其中二元一次方程组有( )A .1个B .2个C .3个D .4个4、某学校体育有场的环形跑道长250m ,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔20s 相遇一次.如果同向而行,那么每隔50s 乙就追上甲一次,设甲的速度为m/s x ,乙的速度为m/s y ,则可列方程组为( )A.20()25050()250x yy x+=⎧⎨-=⎩B.20()50050()250x yx y-=⎧⎨+=⎩C.20()25050()250y xx y-=⎧⎨+=⎩D.20()25050()500x yy x+=⎧⎨-=⎩5、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有()A.2个B.3个C.4个D.5个6、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是()A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1)D.y=1﹣2x7、在某场CBA比赛中,某位运动员的技术统计如下表所示:注:①表中出手投篮次数和投中次数均不包括罚球;②总得分=两分球得分+三分球得分+罚球得分.根据以上信息,本场比赛中该运动员投中两分球和三分球各()个.A.5,6 B.6,5 C.4,7 D.7,48、已知x=3,y=-2是方程2x+my=8的一个解,那么m的值是()A.-1 B.1 C.-2 D.29、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为()A.48 B.52 C.58 D.6410、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为()A.46483538x yx y+=⎧⎨+=⎩B.46483538x yy x+=⎧⎨+=⎩C.46385348x yx y+=⎧⎨+=⎩D.46383548x yx y+=⎧⎨+=⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、红星体育用品厂生产了一种体育用品礼品套装,已知该套装一套包含2个足球,4个篮球,6副羽毛球.一爱心企业向该厂订购了一批礼品套装,捐赠给希望小学,以丰富师生的课外活动,他们需要厂家在10天内生产完该套装并交货.红星体育用品厂将工人分为A、B、C三个组,分别生产足球、篮球、羽毛球,他们于某天零点开始工作,每天24小时轮班连续工作.(假设每组每小时工作效率不变).若干天后的零点A组完成任务,再过几天后(不小于1天)的中午12点,B组完成任务,再过几天(不小于1天)后的下午6点(即当天18点),C组完成任务.已知A、B、C三个组每天完成的任务数分别是240个,320个,320副,则该爱心企业一共订购了__________套体育用品礼品套装.2、三元一次方程:含有___未知数,并且含有未知数的项的___都是____,这样的方程叫做三元一次方程.3、使二元一次方程两边____的两个未知数的值,叫二元一次方程的一组解.4、解二元一次方程组有___________和___________.5、2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴,与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徵章的销售总额多2200元,则徽章和风铃销售总额的最大值是______元.三、解答题(5小题,每小题10分,共计50分)1、对于任意一个四位正整数m ,若满足百位数字比千位数字大1,个位数字比十位数字大1,且各个数位上的数字不为零,我们就把这个数叫作“虎虎生威数”,将“虎虎生威数”m 的千位、个位上的数字交换位置,百位、十位上的数字也交换位置,得到一个新的数m ',记()1111m m F m '+=. (1)最小的虎虎生威数是______;()1223F =______;(2)已知p ,q 都是虎虎生威数,其中100010010p a b c d =+++,1100134q x =+(18a x c ≤≤、、,29b d ≤≤、:且均为整数),若()()334584F q F p a b c ++++=,且满足()F q 是11的倍数,求p 、q 的值.2、为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a ,b 的值.(2)6月份小王家用水32吨,应交水费多少元.(3)若林芳家7月份缴水费303元,她家用水多少吨?3、我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天” ⋯,在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”;1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)最大的“七巧数”是 ,最小的“七巧数”是 ;(2)若将一个“七巧数” n 的个位数字和千位数字交换位置,十位数字和百位数字交换位置得到一个新的“七巧数” n ',并记()F n n n =+',求证:无论n 取何值,()F n 为定值,并求出这个值;(3)若m 是一个“七巧数”,且m 的百位数字加上个位数字的和,是千位数字减去十位数字的差的2倍,请求出满足条件的所有“七巧数” m .4、已知方程(k +2)x +(k -6)y =k +8是关于x ,y 的方程.(1)k 为何值时,方程为一元一次方程?(2)k 为何值时,方程为二元一次方程?5、解方程组:(1)653615x y x y -=⎧⎨+=-⎩(2)4143314312x yx y+=⎧⎪--⎨-=⎪⎩-参考答案-一、单选题1、A【解析】【分析】用第二个方程减去第一个方程即可解答. 【详解】解:∵235 348x yx y-=⎧⎨-=⎩∴3x-4y-(2x-3y)=8-5x-y=3.故选A.【点睛】本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.2、B【解析】【分析】设这个班有y名同学,x本图书,根据题意可得:总图书数=人数×6+40,总图书数=人数×8-50,据此列方程组.【详解】解:设这个班有y名同学,x本图书,根据题意可得:640850y xy x+=⎧⎨-=⎩,故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.3、B【解析】略4、A【解析】【分析】此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.【详解】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y-x)=400.那么列方程组20()250 50()250x yy x+=⎧⎨-=⎩,故选:A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.5、C【解析】【分析】设原两位数的个位为,x 十位为,y 则这个两位数为10,y x 所以交换其个位数与十位数的位置,所得新两位数为10,x y 再列方程101045,x y y x 再求解方程的符合条件的正整数解即可.【详解】解:设原两位数的个位为,x 十位为,y 则这个两位数为10,y x交换其个位数与十位数的位置,所得新两位数为10,x y 则101045,x y y x整理得:5,x y -=,x y 为正整数,且09,09,x y94x y 或83x y ==⎧⎨⎩或72x y 或61x y =⎧⎨=⎩ 所以这个两位数为:49,38,27,16.故选C【点睛】本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.6、B【解析】【分析】设大马驮x 袋,小马驮y 袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.解:设大马驮x袋,小马驮y袋.根据题意,得1112(1)x yx y-=+⎧⎨+=-⎩.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.7、B【解析】【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y 的二元一次方程组,解之即可得出结论.【详解】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:2363311x yx y++=⎧⎨+=⎩,解得:65xy=⎧⎨=⎩.答:设本场比赛中该运动员投中两分球6个,三分球5个.故选:B.【点睛】本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.8、A【分析】根据题意把x =3,y =-2代入方程2x +my =8,可得关于m 的一元一次方程,解方程即可求出m 的值.【详解】解:把x =3,y =-2代入方程2x +my =8,可得:628m -=,解得:1m =-.故选:A.【点睛】本题考查二元一次方程的解的定义以及解一元一次方程,注意掌握一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.9、B【解析】【分析】设小长方形的宽为a ,长为b ,根据图形列出二元一次方程组求出a 、b 的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为a ,长为b ,由图可得:31626a b b a +=⎧⎨-=⎩①②, ①-②得:2a =,把2a =代入①得:10b =,∴大长方形的宽为:3632612a +=⨯+=,∴大长方形的面积为:1612192⨯=,7个小长方形的面积为:77210140ab =⨯⨯=,∴阴影部分的面积为:19214052-=.故选:B .【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出a 、b 的等量关系式是解题的关键.10、A【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x 两,牛每头价值y 两,根据题意可列方程组为:46483538x y x y +=⎧⎨+=⎩. 故选:A .【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.二、填空题1、360【解析】【分析】由套装中包含足球、篮球、羽毛球的数量可得出:生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,根据三种体育用品数量之间的关系,即可得出关于x,y,z的三元一次方程组,解之可得出2z=3y,结合y,z 均为一位正整数可得出z为3的倍数,分别代入z=3,z=6,z=9求出x值,再结合该套装一套包含2个足球即可求出该企业订购体育用品礼品套装的数量.【详解】解:∵该套装一套包含2个足球,4个篮球,6副羽毛球,∴生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,依题意得:12 32032022402418 320320324024y xz x⎧+⨯=⨯⎪⎪⎨⎪+⨯=⨯⎪⎩,∴213 439y xz x+=⎧⎨+=⎩,∴2z=3y.又∵x,y,z均为一位正整数,∴z为3的倍数.当z=3时,x=53,不合题意,舍去;当z=6时,x=3,此时y=4;当z=9时,x=133,不合题意,舍去.∴该爱心企业订购体育用品礼品套装的数量为240×3÷2=360(套).故答案为:360.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.2、三个次数 1【解析】【分析】由题意直接利用三元一次方程的定义进行填空即可.【详解】解:含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.故答案为:三个,次数,1.【点睛】本题考查三元一次方程的定义,注意掌握含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.3、相等【解析】略4、代入消元法加减消元法【解析】略5、6100【解析】【分析】设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列出方程求解即可.【详解】解:设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m 件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列方程得,-+---=,a m bmb m ma(120)2(1202)22200化简得,2260601100am bm a b -=--;徽章和风铃销售总额为2(1202)22120ma b m ma bm b +-=-+,把2260601100am bm a b -=--代入得,60601100a b +-;∵120a b +≤,当120a b +=时,徽章和风铃销售总额的最大,最大值是6012011006100⨯-=(元);故答案为:6100.【点睛】本题考查了方程和不等式的应用,解题关键是根据题意中的数量关系,设未知数,列出方程,根据等式的性质进行变形,整体代入求解.三、解答题1、 (1)1212,4(2)5623p =,7834q =【解析】【分析】(1)根据“虎虎生威数”的定义和()1111m m F m '+=进行计算求解即可; (2)根据()1111m m F m '+=求出()F q 和()F p ,再根据()F q 是11的倍数,求出q 的值,根据()()334584F q F p a b c ++++=求出p 的值即可.(1)解:根据“虎虎生威数”的定义可知千位上的数最小为1,则百位上的数为2,十位上的数最小为1,则个位上的数为2,最小的虎虎生威数是1212;()12233221122341111F +==; 故答案为:1212,4.(2)解:∵p ,q 都是虎虎生威数,100010010p a b c d =+++,∴1000100(1)101p a a c c =+++++,1000(1)10010(1)p c c a a '=+++++,()1000100(1)1011000(1)10010(1)11111a a c c c c a a F p a c +++++++++++==++; 同理()314F q x x =++=+;∵()F q 是11的倍数,18x ≤≤,∴7x =,110071347834q =⨯+=;∵()()334584F q F p a b c ++++=,∴113(1)34(1)584a c a a c +++++++=,即10866a c +=,∵18a c ≤≤、,∴5=a c =2,,1000510061023=5623p =⨯+⨯+⨯+.【点睛】本题考查了新定义和二元一次方程,解题关键是准确理解题意,列出二元一次方程求解.2、 (1) 2.24.2a b =⎧⎨=⎩ (2)129.6元(3)57.5吨【解析】【分析】(1)根据“4月份用水20吨,交水费66元;5月份用水25吨,交水费91元”,列出方程组,即可求解;(2)用(30-17)×4.2加上17×2.2再加上超过30吨的部分的污水处理的费用再加上自来水销售费用,即可求解;(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,然后设林芳家七月份用水x吨,根据题意列出方程,即可求解.(1)解:(1)由题意得:()()1720170.82066 1725170.82591a ba b⎧+-+⨯=⎪⎨+-+⨯=⎪⎩,解得2.24.2ab=⎧⎨=⎩;(2)(2)(30-17)×4.2+17×2.2+(32-30)×6+32×0.8=129.6(元).答:当月交水费129.6元;(3)(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,设林芳家七月份用水x吨,则(30-17)×4.2+17×2.2+(x-30)×6+x×0.8=303(元),6.8x=391,解得:x=57.5,即七月份林芳家用水57.5吨.【点睛】本题主要考查了二元一次方程组和一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.3、 (1)7700,1076(2)证明见解析,7777(3)5612,6341,7070【解析】【分析】( 1)根据“七巧数”的定义即可求解;( 2)设n 的个位数字为x ,十位数字为y ,则百位数字为7y ,千位数字(7)x -,依此可求n 和n ',进一步可求n n ;( 3)设m 的千位数字为a ,百位数字为b ,则十位数字为7b ,个位数字为7a ,根据m 的百位数字加上个位数字的和,是千位数字减去十位数字的差的2倍,依此可得321a b +=,再根据方程正整数解进行讨论即可求解.(1)解:最大的“七巧数”是:7700,最小的“七巧数”是:1076,故答案为:7700,1076;(2)证明:设n 的个位数字为x ,十位数字为y ,则百位数字为(7)y -,千位数字(7)x -,由题意得,1000(7)100(7)10n x y y x =-+-++,100010010(7)(7)n x y y x '=++-+-,()F n n n ='+1000(7)100(7)10100010010(7)(7)x y y x x y y x =-+-+++++-+-,7777=.故无论n 取何值,()F n 为定值,为7777;(3)设m 的千位数字为a ,百位数字为b ,则十位数字为(7)b -,个位数字为(7)a -,由题意得,(7)2[(7)]b a a b +-=--,即321a b +=,7,3b a 17a ,07b ,且a ,b 为整数,∴当5a =时,则6b =,5612m =,当6a =时,则3b =,6341m =,当7a =时,则0b =,7070m =,∴满足条件的所有“七巧数” m 为:5612,6341,7070.【点睛】本题考查的是新定义情境下的整式的加减运算,二元一次方程的正整数解问题,理解新定义,准确的列出代数式并合并同类项,列出二元一次方程并求解其符合条件的正整数解都是解本题的关键.4、 (1)k =-2或k =6;(2)k ≠-2且k ≠6时【解析】【分析】(1)根据一元次方程的定义,含有一个未知数,并且含未知数的项的次数为1的整式方程可得2060k k +=⎧⎨-≠⎩或2060k k +≠⎧⎨-=⎩ ,解方程组得; (2)根据方程是二元一次方程方程的定义含有两个未知数,含未知数的项的次数为1的整式方程可得2060kk+≠⎧⎨-≠⎩,解不等式组即可.【小题1】解:∵方程是一元一次方程,∴2060kk+=⎧⎨-≠⎩或2060kk+≠⎧⎨-=⎩∴解得k=-2或k=6.∴当k=-2或k=6时,该方程是一元一次方程.【小题2】解:∵方程是二元一次方程,∴2060 kk+≠⎧⎨-≠⎩∴解得k≠-2且k≠6.∴当k≠-2且k≠6时,该方程是二元一次方程.【点睛】本题考查一元一次方程的定义,二元一次方程方程的定义,掌握一元一次方程的定义,二元一次方程方程的定义是解题关键.5、 (1)23 xy=-⎧⎨=-⎩(2)3114 xy=⎧⎪⎨=⎪⎩【解析】【分析】根据加减消元的方法求解即可.(1)解:653615x y x y -=⎧⎨+=-⎩①②, 由①-②得:618y -=,∴3y =-,把3y =-代入②,解得:2x =-,∴方程组的解为23x y =-⎧⎨=-⎩;4143314312x y x y +=⎧⎪--⎨-=⎪⎩ (2)解:方程组整理得:414342x y x y +=⎧⎨-=-⎩①②, 由①+②,得:412x =,∴3x =,把3x =代入①,得:114y =, ∴方程组的解为3114x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组基础题1、下列方程中,属于二元一次方程的是( )A. x x 263=+B. 3=xyC. x x y 22=-D. 11=+xy 2、下列方程组中,是二元一次方程组的是( )A.⎪⎩⎪⎨⎧=-=+7353z x y xB.⎩⎨⎧=-=--25412y x xy y xC.⎩⎨⎧==+12y y xD.⎪⎪⎩⎪⎪⎨⎧-==+3132xy x 3、下列方程组中,是二元一次方程组的是( ).A. 2311089x y x y ⎧+=⎨-=-⎩B.426xy x y =⎧⎨+=⎩C.21734x y y x-=⎧⎪⎨-=-⎪⎩ D.24795x y x y +=⎧⎨-=⎩ 4、二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) A.⎩⎨⎧==;3,4y x B.⎩⎨⎧==;6,3y x C.⎩⎨⎧==;4,2y x D.⎩⎨⎧==.2,4y x 5、二元一次方程组⎩⎨⎧=-=+13y x y x 的解是( ) A. ⎩⎨⎧==21y x B. ⎩⎨⎧-==21y x C. ⎩⎨⎧==12y x D. ⎩⎨⎧-=-=21y x 6、在方程x y 263=+中,用含x 的式子表示y ,则( )A. 62-=x yB. 632-=x y C. 326x y -= D. 362-=x y 7、方程组⎩⎨⎧=-=-82352y x y x 消去y 后得到的方程是( ) A.01043=--x x B.8543=+-x x C.()82523=--x x D.81043=+-x x8、用代入法解方程组124y x x y =-⎧⎨-=⎩时,代入正确的是( ) A.24x x --= B.224x x --= C.224x x -+= D.24x x -+=9、用加减法解二元一次方程组⎩⎨⎧=-=+②153①332y x y x ,以下正确的是( )A. ①×3+②×2B. ①×5+②×3C. ①×2-②×3D. ①×5-②×310、刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用去10元。

设刘刚买的两种贺卡分别为x 张和y 张,则下面的方程组正确的是( ) A. ⎪⎩⎪⎨⎧=+=+8102y x y x B. ⎪⎩⎪⎨⎧=+=+102821y x y x C. ⎩⎨⎧=+=+8210y x y x D. ⎩⎨⎧=+=+1028y x y x 11、下列方程: ①213y x -=; ②332x y +=; ③224x y -=; ④5()7()x y x y +=+;⑤223x =;⑥14x y+=.其中是二元一次方程的是 . 12、若23x y -=-,则52____x y -+=. 13、已知方程432=-y x ,用含x 的代数式表示y ,则___________=y ,用含y 的代数式表示x ,则.________________=x14、某次足球比赛的记分规则如下:胜一场得3分,平一场得1分,负一场是0分.某队踢了14场,其中负5场,共得19分。

若设胜了x 场,平了y 场,则可列出方程组: .15、写出一个以⎩⎨⎧==75y x 为解的二元一次方程组是 . 16、若4x 2m +n y m -n 与-8xy 5-n 是同类项,则m = ,n = .17、解下列方程组(1) (2)(3) (4)18、一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?19、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。

二元一次方程组中等题1、已知单项式532y x a b +与2244y a b --⨯的和仍是单项式,则x 、y 的值为( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .015x y =⎧⎪⎨=⎪⎩D .21x y =⎧⎨=⎩ 2、已知12x y =⎧⎨=⎩ 是方程组120.ax y x by +=-⎧⎨-=⎩, 的解,则a +b = ( ). A.2 B.-2 C.4 D.-43、如图2,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( ) A.9015x y x y +=⎧⎨=-⎩ B.90215x y x y +=⎧⎨=-⎩ C.90152x y x y +=⎧⎨=-⎩ D.290215x x y =⎧⎨=-⎩4、如果二元一次方程组⎩⎨⎧=+=-ay x a y x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是( ) A.3 B.5 C.7 D.95、若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A.4 B.3 C.2 D.16、已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为 ( ) A.12a b =⎧⎨=⎩ B.46a b =-⎧⎨=-⎩ C.62a b =-⎧⎨=⎩ D.142a b =⎧⎨=⎩ 7、某哨卡运回一箱苹果,若每个战士分6个,则少6个;若每个战士分5个,则多5个,则该哨卡战士有( )A.11人B. 10人C. 9人D. 8人8、若关于x ,y 的二元一次方程组23-12-2x y k x y +=⎧⎨+=⎩的解满足x +y =1,则k 的取值范围是 . A DB C图2 y °x °9、若2(5212)3260x y x y +-++-=,则y x 42+= .10、如果4x -5y =0,且x ≠0,那么12x 5y 12x+5y-的值是 . 11、如果关于x 、y 的二元一次方程组{{3x ay=16x 72x by 15y 1-=的解是+==,那么关于x 、y 的二元一次方程组{3(x+y)a(x y)=162(x+y)+b(x y)=15---的解是 . 12、学校的篮球数比排球的2倍少3个,篮球数与排球数的比是3:2,则两种球共有_________个.13、(1) 2)-(5-)(472-2⎪⎩⎪⎨⎧=+=++y x y x y x y x (2)⎪⎩⎪⎨⎧=+=+236244n m n m14、已知关于的方程组 和 的解相同,求b a ,的值.15、一个星期天,小明和小文同解一个二元一次方程组{ax+by=16bx+ay=1 ① ②小明把方程①抄错,求得的解为{x=1y=3-,小文把方程②抄错,求得的解为{x=3y=2,求原方程组的解。

16、已知22012()x y +与20132--y x 的值互为相反数,求:(1)x 、y 的值;(2)20122013y x +的值. 17、福建欣欣电子有限公司向工商银行申请了甲、乙两种贷款,共计68万元,每年需付出利息8.42万元.甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?18、甲、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈?3321123=+=+by ax y x 1332-=+=-by ax y x19、已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?二元一次方程组难题1. 对任意两个正整数x、y,定义一个运算“★”为x★y=(x+2xy+y),若正整数a、b满足a★b=1154,则有序正整数对(a,b)共有___对。

2. 课本中介绍我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只如果假设鸡有x只,兔有y只,请你列出关于x,y的二元一次方程组______.3. 三个同学对问题“若方程组{a1x+b1y=c1a2x+b2y=c2的解是{x=3y=4,求方程组{3a1x+2b1y=5c3a2x+2b2y=5c2的解。

”提出各自的想法。

甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”。

参考他们的讨论,你认为这个题目的解应该是___.4. 给出下列程序:若输入的x值为1时,输出值为1;若输入的x值为−1时,输出值为−3;则当输入的x值为12时,输出值为_____.5. 甲,乙两位同学在解方程组{ax+by=1cx+y=−1时,甲正确地解得方程组的解为{x=−1y=1.乙因大意,错误地将方程中系数c写错了,得到的解为{x=2y=−1;若乙没有再发生其他错误,试确定a,b,c的值.6.甲乙两人在同一起点,圆形跑道400米,如果两人一起往同一个方向跑,并且甲先让乙跑了200米之后20秒两人相遇,如果两人向背而跑,那么80秒之后相遇。

求甲、乙速度为多少?7.(12分)某通讯器材商场,计划用60000元从厂家购进若干部新款手机,以满足市场求,已知该厂家生产三种不同型号的手机,出厂价分别为:甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元。

(1)若商场同时购进某两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买?(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,要求乙种型号手机的购进数量是丙种型号手机数量的2倍,请你求出商场每种型号手机购进的数量。

8. 如图是按照一定规律排列的方程组集合和它的解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…方程组n.(1)将方程组1的解填入图中;(2)请依据方程组和它的解的变化的规律,将方程组n和它的解直接填入集合图中;(3)若将方程组{x+y=1x−my=100的解是{x=10y=−9,求m的值,并判断该方程组是否符合(2)中的规律?。

相关文档
最新文档