圆形磁场中的几个典型问题

合集下载

磁场中最小面积问3题

磁场中最小面积问3题

磁场中最小面积问题一、磁场范围为圆形例1. 在如图所示的平面直角坐标系xoy中,有一个圆形区域的匀强磁场(图中未画出),磁场方向垂直于xoy平面,O点为该圆形区域边界上的一点。

现有一质量为m,带电量为+q的带电粒子(重力不计)从O点为以初速度vo沿+x方向进入磁场,已知粒子经过y轴上p点时速度方向与+y方向夹角为θ=30º,OP=L 求:⑴磁感应强度的大小和方向⑵该圆形磁场区域的最小面积。

二、磁场范围为矩形例2.如图所示,第四象限内有互相正交的匀强电场E与匀强磁场B1,E的大小为0.5×103V/m, B1大小为0.5T;第一象限的某个矩形区域内,有方向垂直纸面向里的匀强磁场B2,磁场的下边界与x轴重合.一质量m=1×10-14kg、电荷量q=1×10-10C的带正电微粒以某一速度v沿与y轴正方向成60°角从M点沿直线运动,经P点进入处于第一象限内的磁场B2区域。

一段时间后,微粒经过y轴上的N点并与y轴正方向成60°角的方向飞出,M点的坐标为(0,-10),N点的坐标为(0,30).不计粒子重力,g取10m/s2.(1)请分析判断匀强电场E的方向并求微粒运动速度的v大小;(2)匀强磁场B2的大小为多大?;(3) B2磁场区域的最小面积为多少?三、磁场范围为三角形例3如图5,一个质量为,带电量的粒子在BC边上的M点以速度垂直于BC边飞入正三角形ABC。

为了使该粒子能在AC边上的N点(CM=CN)垂真于AC边飞出ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场。

若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力。

试求:(1)粒子在磁场里运动的轨道半径r及周期T;(2)该粒子在磁场里运动的时间t;(3)该正三角形区域磁场的最小边长;四、磁场范围为树叶形v的初速例4.如图,ABCD是边长为a的正方形。

质量为m、电荷量为e的电子以大小为度沿纸面垂直于BC变射入正方形区域。

带电粒子在圆形区域磁场中的运动问题探究

带电粒子在圆形区域磁场中的运动问题探究

粒 子 与 圆筒 碰撞 3次 又 从 入射 孔 射 出 , 以 所 勰析 粒 子 在磁场 中运 动 的轨迹 为 4段半径 相 同的
圆 弧 , 段 圆 弧 的 偏 向 角 为 9 。 每 段 圆 弧 所 对 圆 心 角 每 O. 为 9 。整 个 运 动 用 时 f × 0. 一4 T— T- - .



速 圆周运 动 的周 期.或 用 t T 3 0计 算 , 中 0为 一0 / 6 其
圆弧所对 的圆心角 , 位 为度. 单
在 圆形 区域磁 场 中的匀 速 圆周 运动 问题作 一浅 析.
1 带 电粒 子在 圆形 区域 磁 场 中运 动轨 迹的 几何特 点
解 决 此题 的关 键 是 由碰 撞 次 数 确 定 每 次 碰 撞 后
直于 y轴 的速 度 从 Y轴 上 的 a点 射 人 第 一象 限 的
区域. 了使 该粒 子能从 z轴上 的 b点 垂 直于 z 轴射 为 出 , 图 2所 示 , 如 可在 适 当 的地 方 加一 个 垂 直 于 : r Oy 平面 的匀 强 磁 场 B. 该 磁 场 分 布 在 一 个 圆 形 区域 若
点连线 是 2个 圆弧 的公用 弦. ② 公用 弦 的中垂 线过 圆形 区 域磁 场 边 界 圆 和运 动粒 子轨迹 圆圆心 , 轨迹 关于 中垂 线对 称. ③ 若 入射 速度方 向指 向圆形 区域 磁场 边界 圆心 , 则 出射速 度 的反 向延 长 线 必 过 圆 形 区 域磁 场 边 界 圆 t 出射 速度 与圆形 区域 磁场 边 界 圆半 径 的夹 角 等 于 7; 入 射速 度与 圆形 区域磁 场边 界 圆半 径 的夹角 . ④ 垂直 入射 速度 和 出射 速度 分别作 垂线 , 两垂 线 的交点 就是轨 迹 圆心. ⑤ 轨 迹 圆弧所对 圆心 角等 于弦切 角 的 2倍 .

圆形磁场中的几个典型问题的相关规律练习

圆形磁场中的几个典型问题的相关规律练习

圆形磁场中的几个典型问题的相关规律练习一、当圆形磁场的半径与圆轨迹半径相等时,即“磁聚焦”存在两条特殊规律规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。

【典型题目练习】1.如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电,电荷量为q ,质量为m ,速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是( )A .只要对着圆心入射,出射后均可垂直打在MN 上B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C .对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足qBR v m,沿不同方向入射的粒子出射后均可垂直打在MN 上 2.如图所示,长方形abed 的长ad =0.6m ,宽ab =0.3m ,O 、e 分别是ad 、bc 的中点,以e 为圆心eb 为半径的四分之一圆弧和以O 为圆心Od 为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T 。

一群不计重力、质量m=3×10-7kg 、电荷量q=+2×10-3C 的带正电粒子以速度v =5×102m/s 沿垂直ad 方向且垂直于磁场射人磁场区域,则下列判断正确的是( )A .从Od 边射入的粒子,出射点全部分布在Oa 边B .从aO 边射入的粒子,出射点全部分布在ab 边C .从Od 边射入的粒子,出射点分布在ab 边D .从ad 边射人的粒子,出射点全部通过b 点3.如图所示,在坐标系xOy 内有一半径为a 的圆形区域,圆心坐标为O 1(a ,0),圆内分布有垂直纸面向里的匀强磁场,在直线y =a 的上方和直线x =2a 的左侧区域内,有一沿x 轴负方向的匀强电场,场强大小为E ,一质量为m 、电荷量为+q (q >0)的粒子以速度v 从O 点垂直于磁场方向射入,当入射速度方向沿x 轴方向时,粒子恰好从O 1点正上方的A 点射出磁场,不计粒子重力,求:(1)磁感应强度B 的大小;(2)粒子离开第一象限时速度方向与y 轴正方向的夹角;(3)若将电场方向变为沿y 轴负方向,电场强度大小不变,粒子以速度v 从O 点垂直于磁场方向、并与x轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总时间t。

数学圆法巧解磁场中的临界问题(解析版)

数学圆法巧解磁场中的临界问题(解析版)

数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。

可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。

如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。

圆形有界磁场中“磁聚焦”规律(有答案)

圆形有界磁场中“磁聚焦”规律(有答案)

mv 0.3m 知,在磁场中圆周运动的半径与圆形磁场磁场的半径相等,从 Oa 入射 qB
的粒子,出射点一定在 b 点;从 Od 入射的粒子,经过四分之一圆周后到达 be,由于边界无 磁场,将沿 be 做匀速直线运动到达 b 点;选项 D 正确。 3.解析: (1)当粒子速度沿 x 轴方向入射,从 A 点射出磁场时,几何关系知:r=a; 由 qvB m
2mE L ,区域Ⅲ的圆心坐标为(0, ) 、磁场方向垂直于 xOy 平面向外; qL 2 L ) 、磁场方向垂直于 xOy 平面向里。两个质量均为 m、电荷量 2
区域Ⅳ的圆心坐标为(0,
3 L 3 2 3 均为 q 的带正电粒子 M、N,在外力约束下静止在坐标为( L , ) 、 ( L, L) 2 2 2 4
qBR ,沿不同方向入射的粒子出射后均可垂直打在 MN 上 m
2.如图所示,长方形abed的长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以e为圆 心eb为半径的四分之一圆弧和以O为圆心Od为半径的四分之一 圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场) 磁感应强度B=0.25T。一群不计重力、质量m=3×10-7kg、电荷量 q=+2×10-3C的带正电粒子以速度v=5×102m/s沿垂直ad方向且垂 直于磁场射人磁场区域,则下列判断正确的是( A.从Od边射入的粒子,出射点全部分布在Oa边 B.从aO边射入的粒子,出射点全部分布在ab边 C.从Od边射入的粒子,出射点分布在ab边 D.从ad边射人的粒子,出射点全部通过b点 3.如图所示,在坐标系 xOy 内有一半径为 a 的圆形区域,圆心坐标为 O1(a,0) ,圆内分 布有垂直纸面向里的匀强磁场,在直线 y=a 的上方和直线 x=2a 的左侧区域内,有一沿 x 轴 负方向的匀强电场,场强大小为 E,一质量为 m、电荷量为+q(q>0)的粒子以速度 v 从 O 点垂直于磁场方向射入,当入射速度方向沿 x 轴方向时,粒子恰好从 O1 点正上方的 A 点射 出磁场,不计粒子重力,求: (1)磁感应强度 B 的大小; (2)粒子离开第一象限时速度方向与 y 轴正方向的夹角; (3)若将电场方向变为沿 y 轴负方向,电场强度大小不变,粒子以速度 v 从 O 点垂直于磁 场方向、并与 x 轴正方向夹角θ=300 射入第一象限,求粒子从射入磁场到最终离开磁场的总

圆形边界磁场知识讲解

圆形边界磁场知识讲解

B
·
O•1 R
x
r2R vqBr2qBR r
mm
qU 1 mv2 2
U 2qB2R2
600
r
O2
6.如图所示,一个质量为m、电量为q的正离子,在小 孔S处正对着圆心O以速度v射入半径为R的绝缘圆筒中。
圆筒内存在垂直纸面向里的匀强磁场,磁感应强度的大
小为B。要使带电粒子与圆筒内壁碰撞多次后仍从A点 射出,求正离子在磁场中运动的时间t.设粒子与圆筒内 壁碰撞时无能量和电量损失,不计粒子的重力。
此时速度方向与y轴的夹角为300,P到O的距离为L,如图
所示.不计重力的影响.求磁场的磁感强度B的大小和xy
平解:面上qv磁B场区m域v的2 半径LR. 3r
300 y
r
B mv 3mv qr qL
P Lr A
r
R2rco3s00 3L 3
0 vR
1. 如图所示,当滑动变阻器R3的滑片C向B方向移 动时,电路中各电表示数如何变化?(电表内阻对电 路的影响不计)
O’
y
v
y
P(x y)
v
oO• x
B
t 600 T12mm
3600 6 qB 3qB xRco6s00 1R 2
yRsin600 3R
x
2
P(1 R, 3 R)
22
2.在圆形区域内有垂直纸面向里的匀强磁场.从磁
场边缘A点沿半径方向射人一束速率不同的质子,对
这些质子在磁场中的运动情况的分析中,正确的是:
无损失)
B
解:粒子经过n=2,3,4……次与圆筒
碰撞从原孔射出,其运动轨迹具
有对称性.当发生最少碰撞次数
r
. R vO0

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

圆形磁场试题及答案

圆形磁场试题及答案

圆形磁场试题及答案1. 一个带正电的粒子以速度v垂直于磁场方向进入一个均匀的圆形磁场中,其半径为R。

如果粒子的电荷量为q,磁场强度为B,求粒子在磁场中的运动轨迹。

答案:粒子在磁场中将做匀速圆周运动。

根据洛伦兹力提供向心力的原理,有qvB = m*v^2/R,其中m为粒子的质量。

解得粒子的运动半径R' = mv/qB。

2. 若上述粒子的质量为m,求粒子在磁场中运动的周期T。

答案:周期T可以通过公式T = 2πm/qB计算得出。

3. 一个带负电的粒子以速度v进入一个垂直于磁场方向的圆形磁场中,磁场强度为B,求粒子在磁场中的运动半径。

答案:由于粒子带负电,其运动半径R'与正电粒子相反,即R' = -mv/qB。

4. 若磁场强度B增大为原来的2倍,求粒子在磁场中的运动周期。

答案:磁场强度B增大为原来的2倍,粒子在磁场中的运动周期T不变,因为周期T与磁场强度B无关。

5. 一个带电粒子在圆形磁场中做匀速圆周运动,已知粒子的电荷量为q,质量为m,磁场强度为B,求粒子的运动速度v。

答案:根据洛伦兹力提供向心力的原理,有qvB = m*v^2/R,解得粒子的运动速度v = qBR/m。

6. 若磁场强度B减小为原来的一半,求粒子在磁场中的运动半径。

答案:磁场强度B减小为原来的一半,粒子在磁场中的运动半径R'将增大为原来的2倍,即R' = 2mv/qB。

7. 一个带电粒子在圆形磁场中做匀速圆周运动,已知粒子的电荷量为q,质量为m,求粒子的运动周期T。

答案:根据周期公式T = 2πm/qB,可以计算出粒子的运动周期T。

8. 若粒子的质量m增大为原来的2倍,求粒子在磁场中的运动半径。

答案:粒子的质量m增大为原来的2倍,粒子在磁场中的运动半径R'将减小为原来的1/2,即R' = mv/2qB。

9. 一个带电粒子在圆形磁场中做匀速圆周运动,已知粒子的电荷量为q,磁场强度为B,求粒子的质量m。

圆形磁场中的几个典型问题分析

圆形磁场中的几个典型问题分析

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手, 分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题” 体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键一一抓弦长 1 .求最长时间的问题例1真空中半径为 R=3X 10 m 的圆形区域内,有一磁感应强 度为B=0.2T 的匀强磁场,方向如图 1所示一带正电的粒子以初速 度v o =106m / s 从磁场边界上直径 ab 一端a 点处射入磁场,已知 该粒子比荷为q/m=108c / kg ,不计粒子重力,若要使粒子飞离磁 场时偏转角最大,其入射时粒子初速度的方向应如何?(以V 。

与Oa 的夹角二表示)最长运动时间多长?小结:本题涉及的是一个动态问题, 即粒子虽然在磁场中均做同一半径的匀速圆周运动, 但因其初速度方向变化, 使粒子运动轨迹的长短和位置均发生变化, 并且弦长的变化一定对应速度偏转角的变化, 同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为 m ,电量为q ,以平行于 Ox 轴 的速度v 从y 轴上的a 点射人如图3所示第一象限的区域.为 了使该质点能从 x 轴上的b 点以垂直于x 轴的速度v 射出,可 在适当的地方加一个垂直于 xoy 平面、磁感应强度为 B 的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区 域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题, 而且同时考查了空间想象能力, 即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁 场中做匀速圆周运动,所以粒子运动的1 /4圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长. 二、汇聚发散问题的解题关键一一抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律; 规律一:带电粒子从圆形有界磁场边界上某点射入磁场, 如杲圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入 射点的切线方向平行,如甲图所示。

专题1:圆磁场问题

专题1:圆磁场问题

圆弧应是磁场区域的下边界。
两边界之间图形的面积即为所求。图中的阴影区域面 积,即为磁场区域面积:
S2(1 4r2r2 2)(21)m e22 B v0 2 2
一点发散成平行
R r
R r
平行会聚于一点
结论4:如果在圆形匀强磁场区域的 边界上某点向磁场发射速率相同的 带电粒子,且粒子在磁场中运动的 轨道半径与磁场区域半径相同,那 么粒子射出磁场时运动方向一定相 同.反之,粒子以相同速度平行射 人这样的磁场,粒子就能会聚于磁 场边界上的某点。
且初速度方向与磁场方向都垂直,该粒子的比荷为
q/m=1.0×108 C/kg,不计粒子重力.
(1)粒子的轨迹半径; (2)粒子在磁场中运动的最长时间;
(3)若射入磁场的速度改为v0=3.0×105 m/s,其他条
件不变,试用斜线画出该批粒子在磁场中可能出现的 区域.(sin37°=0.6,cos37°=0.8)
[解析 ] (1)由牛顿第二 定律可求得粒子在磁场中运动的半 径.qv0B= mvR02,
R=mqBv0=5.0×10-2 m.
(2)由于 R>r,要使粒子在磁场中运动的时间最长,则粒子在磁场中 运动的圆弧所对应的弧长最长,从图甲中可以看出,以直径 ab 为弦、R 为半径所作的圆周,粒子运动时间最长,
T=2qπBm, 运动时间 tm=22πα×T=2qαB·m,
又 sinα=Rr =35,∴tm=6.4×10-8 s.
(3)R′=mqvB0′=1.5×10-2 m, 粒子在磁场中可能出现的区域如图乙所示(以 aO 为直径的半圆加上 以 a 为圆心,aO 为半径所作圆与磁场相交的部分).
例题:在xoy平面内有很多质量为m,电量为e的电子,从 坐标原点O不断以相同速率沿不同方向射入第一象限, 如图所示.现加一垂直于xOy平面向里、磁感强度为B的 匀强磁场,要求这些入射电子穿过磁场都能平行于x轴 且沿x轴正向运动,试问符合该条件的磁场的最小面积

带电粒子在圆形有界磁场中磁聚焦问题

带电粒子在圆形有界磁场中磁聚焦问题

电磁场中磁聚焦和有界问题1、如图所示在xoy 坐标平面内以O ’为圆心,半径r=0.1m 的圆形区域内存在垂直纸面向外的磁感应强度B=0.1T 的匀强磁场,圆形区域的下端与x 轴相切于坐标原点O 。

现从坐标原点O 沿xoy 平面在y 轴两侧各30º角的范围内,发射速率均为v 0=1.0×106m/s 的带正电粒子,粒子在磁场中的偏转半径R 也为0.1m ,不计粒子的重力,粒子对 磁场的影响及粒子间的相互作用力,求①粒子的比荷q/m ,②沿y 轴正方向射入磁场的粒子在磁场中运动的时间。

③若在x ≥0.1m ,y>0的区域有竖直向下的匀强电场,其电场强度E=1.0×105N/C 则粒子到达x 轴的范围。

2.如图,在第二象限的圆形区域I 存在匀强磁场,区域半径为R ,磁感应强度为B ,且垂直于Oxy 平面向里;在第一象限的区域II 和区域III 内分别存在垂直Oxy 平面向外和垂直Oxy 平面向里的匀强磁场,磁场宽度相等,磁感应强度大小分别为B 和2B 。

质量为m 、带电荷量q (q >0)的粒子a 于某时刻从圆形区域I 最 高点Q (Q 和圆心A 连线与y 轴平行)进入区域I ,其速度v =qBR m。

已知a 在离开圆形区域I 后,从某点P 进入区域II 。

该粒子a 离开区域II 时,速度方向与x 轴正方向的夹角为30°;此时,另一质量和电荷量均与a 相同的粒子b 从P 点进入区域II ,其速度沿x 轴正向,大 小是粒子a 的31。

不计重力和两粒子之间的相互作用力。

求:(1)区域II 的宽度;(2)当a 离开区域III 时,a 、b 两粒子的y 坐标之差。

3、如图所示,在xoy 平面内,以O'(0,R )为圆心、R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等。

第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P 、Q 两点在坐标轴上,且OP 两点间的距离大于2R,在圆形磁场的左侧0<y<2R 的区间内、均匀分布着质量为m 、电荷量为+q 的一簇带电粒子,当所有粒子均沿x 轴正向以速度v 射入圆形磁场区域时,粒子偏转后都从O 点进入x 轴下方磁场,结果有一半粒子能打在挡板上。

带电粒子在圆形磁场中运动问题分类解析

带电粒子在圆形磁场中运动问题分类解析
射入 磁 场 , 由对 称 性 可 知 , 离 子
L。
点评 : 本题 给 定 带 电粒 子 在 有 界 磁 场 中运 动 的
入射 速度 和 出射 速 度 的 大 小和 方 向 , 但 由 于 有 界 磁
场发 生改 变( 磁 感应 强 度 不 变 , 但 磁 场 区域 在 改 变) , 从 而 改 变 了该 粒 子在 有界 磁 场 中运 动 的 轨 迹 图 , 导
三 ,讨论 带 电粒子 在 圆形磁 场 中的多解 问题
迹 如 图 4所 示 。 由几 何 知 识 可 知 , 离 子 在 磁 场 中
当带 电粒 子 在 圆 形 磁 场 中 运 动 时 , 会 因 为 带 电
粒子 运动 轨迹 的对 称性 而形 成多解 。
做 圆周 运 动 的半 径 r —R一 1 O 、 / 3 c m。设 离 子 的 电
( 3 ) 保持 M 、 N 间场 强 E 不变 , 仅将 M 板 向上 平 移 ÷ , 粒子 仍从 M 板边 缘 的 P 处 由静 止 释放 , 粒 子 自进 入 圆 筒 至 从 S 孔 射 出 期 间 。 与 圆 筒 的 碰 撞 次
数 。
置 为所 求 范 围 的左 端 点 , 解 得 离 子射 出 电 场 后 的速
中掌 生数理化. 富一 一 赢三使用
带 电粒子在 圆形磁场 中运动 问题分类解析
一 湖 北 陈 宏 姚 昌新
带 电粒子 在 圆形 磁 场 中的 运动 问题 是 高考 中常 考 的 问题 , 只要 将 带 电 粒 子 的 初 速 度 和 进 入 圆形 磁 场 的位 置略 作 变 化 , 便 可 构 成 情 景 各 异 的全 面 考 查
荷量 为 g 、 质 量 为 m, 进 入磁 场 时 的速 度 为 7 3 , 由

圆形磁场中地几个典型问题

圆形磁场中地几个典型问题

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径 ab 一端 a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以 v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于 Ox 轴的速度v从y轴上的a点射人如图 3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度 v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的 1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

关于圆形有界磁场的几个结论

关于圆形有界磁场的几个结论

关于圆形有界磁场的几个结论
1.圆形有界磁场的磁感应是沿着圆形有界磁场的中心点放射且向偏离中心点的位置递减的。

2.圆形有界磁场的磁感应强度受圆形有界磁场的半径的影响,当半径变大时磁感应强度变小。

3.圆形有界磁场的磁场强度沿着圆形磁场的中心点向偏离中心点方向递减,但在距离磁场中心太远时磁场强度几乎不受影响。

4.由于圆形有界磁场的磁感应强度和磁场强度是沿着圆形磁场的中心点向偏离中心点方向递减的,因此圆形有界磁场可用两个独立的、以原点为中心的坐标系统来确定。

圆形区域磁场问题归类例析

圆形区域磁场问题归类例析

圆形区域磁场问题归类例析作者:谭喜强来源:《物理教学探讨》2008年第10期带电粒子垂直进入匀强磁场,在洛伦兹力作用下,它将做匀速圆周运动,有界磁场是其中一类常见题目,而圆形磁场的问题又是一个难点,许多学生感到无从下手,容易将磁场圆和轨迹圆混淆。

解决此类问题的基本思路:画轨迹→找圆心→求半径,同时要特别注意对称性,弄清这两个圆的几何关系。

下面试举例说明。

1 确定带电粒子在磁场中的运动时间设带电粒子在磁场中的周期为T,转过的圆心角为θ,则运动时间t=θ2πT。

在周期一定的情况下,运动时间只与圆心角θ有关,而与粒子速度、运动轨迹等无直接关系。

例1 如图1所示,图形区域里匀强磁场方向垂直于纸面向外,有一束速率各不相同的电子自A点沿半径方向射入磁场,这些电子在磁场中()A.其轨迹对应的圆心角越大,则运动时间越长B.其轨迹越长,则时间越长C.入射速率越小,运动时间越短D.入射速率越大,运动时间越短解析由于电子在磁场中的周期相同,求运动时间关系是找圆心角的大小,A显然正确。

本题中,带电粒子初速度方向指向磁场的圆心,我们估且称之为“对心入射”,根据对称性,不论初速度的大小如何,粒子的出射速度反向延长线也一定要对磁场的圆心,即一定沿着“径向射出”,这是非常重要的结论。

分别作入射、出射速度方向的垂线,交点即为圆周运动的圆心,如图2所示。

不难看出:入射粒子速度越大,则圆周运动的圆心角越小,运动时间就越短,因此D正确。

2 求粒子的最大偏转角例2 真空中,半径-的圆形区域内有匀强磁场,方向如图3所示,磁感应强度B=0.2T,一个带正电的粒子,以初速度从磁场边界上直径ab一端a射入磁场,已知该粒子的比荷,不计粒子重力,若要使粒子飞离磁场时有最大偏转角,求入射时v0方向与ab的夹角θ及粒子的最大偏转角φ。

分析粒子出射方向与入射方向之间的夹角称为速度偏转角,它等于圆周运动对应的圆心角。

在轨道半径一定的情况下,为使圆心角最大,其所对的弦应最长,这个弦既是轨迹圆的弦,也是磁场圆的弦,显然,最长的弦应是匀强磁场区域的直径。

圆形磁场问题

圆形磁场问题

圆形磁场问题1.圆形区域内存在垂直纸面的半径为R的匀强磁场,磁感强度为B,现有一电量为q、质量为m的正离子从a点沿圆形区域的直径射入,设正离子射出磁场区域的方向与入射方向的夹角为600,求此离子在磁场区域内飞行的时间及射出的位置。

变式:圆心为O、半径为r的圆形区域中有一个磁感强度为B、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L的O'处有一竖直放置的荧屏MN,今有一质量为m的电子以速率v从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P点,如图所示,求O'P的长度和电子通过磁场所用的时间2.在圆形区域内有垂直纸面向里的匀强磁场.从磁场边缘A点沿半径方向射人一束速率不同的质子,对这些质子在磁场中的运动情况的分析中,正确的是:A.运动时间越长的,在磁场中通过的距离越长B.运动时间越短的,其速率越大C.磁场中偏转角越小的,运动时间越短D.所有质子在磁场中的运动时间都相等变式:在直角坐标系xOy中,有一半径为R的圆形磁场区域,磁感强度为B,磁场方向垂直xOy平面指向纸内,该区域的圆心坐标为(R,0)。

如图所示,有一个质量为m、带电量为-q的离子,由静止经匀强电场加速后从点(0,R/2)沿x轴正方向射入磁场,离子从射入到射出磁场通过了该磁场的最大距离,不计重力影响。

求:⑴.离子在磁场区域经历的时间。

⑵.加速电场的加速电压。

3.一匀磁场,磁场方向垂直于xy平面,在xy平面上,磁场分布在以O为中心的一个圆形区域内.一个质量为m、电荷量为q的带电粒子,由原点O开始运动,初速为v,方向沿x正方向.后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为300,P到O的距离为L,如图所示.不计重力的影响.求磁场的磁感强度B的大小和xy平面上磁场区域的半径R.变式:一带电质点,质量为m,电量为q,重力忽略不计,以平行于ox轴的速度v从y轴上的a点射入.如图中第一象限所示的区域。

为了使该质点能从x轴上的b点以垂直于ox的速度射出,可在适当的地方加一垂直于xy平面、磁感应强度为B的匀强磁场。

带电粒子在磁场中运动之圆形磁场边界问题

带电粒子在磁场中运动之圆形磁场边界问题

考点4.3 圆形磁场边界问题考点4.3.1 “粒子沿径向射入圆形磁场”边界问题特点:沿径向射入必沿径向射出,如图所示。

对称性:入射点与出射点关于磁场圆圆心与轨迹圆圆心连线对称,两心连线将轨迹弧平分、弦平分,圆心角平分。

1.如图所示,一半径为R的圆内有垂直纸面的匀强磁场,磁感应强度为B,CD是该圆一直径.一质量为m、电荷量为q的带电粒子(不计重力),自A点沿指向O点方向垂直射入磁场中,恰好从D点飞出磁场,A点到CD的距离为R2,根据以上内容( )A.可判别圆内的匀强磁场的方向垂直纸面向里B.不可求出粒子在磁场中做圆周运动的轨道半径C.可求得粒子在磁场中的运动时间D.不可求得粒子进入磁场时的速度2.如图所示,为一圆形区域的匀强磁场,在O点处有一放射源,沿半径方向射出速度为v的不同带电粒子,其中带电粒子1从A点飞出磁场,带电粒子2从B点飞出磁场,不考虑带电粒子的重力,则()A.带电粒子1的比荷与带电粒子2的比荷比值为3∶1B.带电粒子1的比荷与带电粒子2的比荷比值为3∶1C.带电粒子1与带电粒子2在磁场中运动时间比值为2∶1D.带电粒子1与带电粒子2在磁场中运动时间比值为1∶23.如图所示,半径为R的绝缘筒中为匀强磁场区域,磁感应强度为B、磁感线垂直纸面向里一个质量为m、电荷量为q的正离子,以速度v从圆筒上C孔处沿直径方向射入筒内,如果离子与圆筒碰撞三次(碰撞时不损失能量,且时间不计),又从C孔飞出,则离子在磁场中运动的时间为( )A.2πR/v B.πR/vC.2πm/qB D.πm/qB4. 如图所示,一半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,一质量为m ,电荷量为q 的正电荷(重力忽略不计)以速度v 沿正对着圆心O 的方向射入磁场,从磁场中射出时速度方向改变了θ角.磁场的磁感应强度大小为( )A.mv qR tan θ2B.mv qR cot θ2C.mv qR sin θ2D.mv qR cosθ25. 如图所示圆形区域内,有垂直于纸面方向的匀强磁场,一束质量和电荷量都相同的带电粒子,以不同的速率,沿着相同的方向,对准圆心O 射入匀强磁场,又都从该磁场中射出,这些粒子在磁场中的运动时间有的较长,有的较短,若带电粒子在磁场中只受磁场力的作用,则在磁场中运动时间越长的带电粒子( ) A . 速率一定越小 B . 速率一定越大C . 在磁场中通过的路程越长D . 在磁场中的周期一定越大6. 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图11所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出. (1) 请判断该粒子带何种电荷,并求出其比荷qm ;(2) 若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?7. 如右图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B =0.10 T ,磁场区域半径r =233 m ,左侧区圆心为O 1,磁场向里,右侧区圆心为O 2,磁场向外.两区域切点为C .今有质量m =3.2×10-26kg .带电荷量q =1.6×10-19C 的某种离子,从左侧区边缘的A 点以速度v =106 m/s正对O 1的方向垂直磁场射入,它将穿越C 点后再从右侧区穿出.求:(1) 该离子通过两磁场区域所用的时间.(2) 离子离开右侧区域的出射点偏离最初入射方向的侧移距离为多大?(侧移距离指垂直初速度方向上移动的距离)8. 如图所示,有一对平行金属板,两板相距为0.05m .电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里.图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为33B =T ,方向垂直于纸面向里.一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出.已知速度的偏向角=3πθ ,不计离子重力.求:(1) 离子速度v 的大小; (2) 离子的比荷q /m ;(3) 离子在圆形磁场区域中运动时间t .9.如图所示,在两个水平平行金属极板间存在着向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E=2×106N/C和B1=0.1T,极板的长度l=33m,间距足够大.在板的右侧还存在着另一圆形区域的匀强磁场,磁场的方向为垂直于纸面向外,圆形区域的圆心O位于平行金属极板的中线上,圆形区域的半径R=33m.有一带正电的粒子以某速度沿极板的中线水平向右飞入极板后恰好做匀速直线运动,然后进入圆形磁场区域,飞出圆形磁场区域后速度方向偏转了60°,不计粒子的重力,粒子的比荷qm=2×108C/kg.求:(1)粒子的初速度v;(2)圆形区域磁场的磁感应强度B2的大小;(3)在其它条件都不变的情况下,将极板间的磁场B l撤去,为使粒子飞出极板后不能进入圆形区域的磁场,求圆形区域的圆心O离极板右边缘的水平距离d应满足的条件.考点4.3.2 “粒子不沿半径方向射入圆形磁场”边界问题特点:入射点与出射点关于磁场圆圆心与轨迹圆圆心连线对称,两心连线将轨迹弧平分、弦平分,圆心角平分。

圆形磁场中的几个典型问题83209

圆形磁场中的几个典型问题83209

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径 ab 一端 a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以 v0与 Oa的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于 Ox 轴的速度v从y轴上的a点射人如图 3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度 v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的 1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

(完整版)圆形磁场中的几个典型问题

(完整版)圆形磁场中的几个典型问题

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的 1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的 1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。

例3 如图5所示,x 轴正方向水平向右,y 轴正方向竖直向上.在半径为R 的圆形区域内加一与xoy平面垂直的匀强磁场.在坐标原点O 处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m 、电荷量q ( q > 0 )且初速为v0的带电粒子,不计重力.调节坐标原点O 处的带电微粒发射装置,使其在xoy平面内不断地以相同速率v0沿不同方向将这种带电微粒射入x 轴上方,现要求这些带电微粒最终都能平行于x 轴正方向射出,则带电微粒的速度必须满足什么条件?小结:研究粒子在圆形磁场中的运动时,要抓住圆形磁场的半径和圆周运动的半径,建立二者之间的关系,再根据动力学规律运动规律求解问题.3.如图甲所示,x轴正方向水平向右,y轴正方向竖直向上。

在xoy平面内有与y轴平行的匀强电场,在半径为R的圆形区域内加有与xoy平面垂直的匀强磁场。

在坐标原点O处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m、电荷量q()和初速为的带电粒子。

已知重力加速度大小为g。

(1)当带电微粒发射装置连续不断地沿y轴正方向发射这种带电微粒时,这些带电微粒将沿圆形磁场区域的水平直径方向离开磁场,并继续沿x轴正方向运动。

求电场强度和磁感应强度的大小和方向。

(2)调节坐标原点处的带电微粒发射装置,使其在xoy平面内不断地以相同速率v0沿不同方向将这种带电微粒射入第1象限,如图乙所示。

现要求这些带电微粒最终都能平行于x 轴正方向运动,则在保证匀强电场、匀强磁场的强度及方向不变的条件下,应如何改变匀强磁场的分布区域?并求出符合条件的磁场区域的最小面积。

答案三、边界交点问题的解题关键―抓轨迹方程例 4 如图7 所示,在xoy平面内x>0区域中,有一半圆形匀强磁场区域,圆心为O,半径为R =0.10m ,磁感应强度大小为B=0.5T,磁场方向垂直xoy平面向里.有一线状粒子源放在y 轴左侧(图中未画出),并不断沿平行于x 轴正方向释放出电荷量为q=+1.6×10-19C ,初速度v0 = 1.6×106m / s 的粒子,粒子的质量为m =1.0×10-26kg ,不考虑粒子间的相互作用及粒子重力,求:从y 轴任意位置(0,y)入射的粒子离开磁场时的坐标.点评:带电粒子在磁场中的运动是最能反映抽象思维与数学方法相结合的物理模型,本题则利用圆形磁场与圆周运动轨迹方程求交点,是对初等数学的抽象运用,能较好的提高学生思维.四、周期性问题的解题关键——寻找圆心角1 .粒子周期性运动的问题例5 如图9 所示的空间存在两个匀强磁场,其分界线是半径为R 的圆,两侧的磁场方向相反且垂直于纸面,磁感应强度大小都为B .现有一质量为m 、电荷量为q 的带正电粒子(不计重力)从A点沿aA 方向射出.求:(1)若方向向外的磁场范围足够大,离子自 A 点射出后在两个磁场不断地飞进飞出,最后又返回A 点,求返回A 点的最短时间及对应的速度.(2)若向外的磁场是有界的,分布在以O 点为圆心、半径为R 和2R的两半圆环之间的区域,上述粒子仍从A 点沿QA 方向射出且粒子仍能返回 A 点,求其返回 A 点的最短时间.2.磁场发生周期性变化例 6 如图12 所示,在地面上方的真空室内,两块正对的平行金属板水平放置.在两板之间有一匀强电场,场强按如图13所示规律变化(沿y 轴方向为正方向)在两板正中间有一圆形匀强磁场区域,磁感应强度按图14 所示规律变化,如果建立如图12 所示的坐标系,在t=0时刻有一质量m=9.0×10-9kg 、电荷量q =9.0×10-6C 的带正电的小球,以v0=1m / s 的初速度沿y 轴方向从O 点射入,分析小球在磁场中的运动并确定小球在匀强磁场中的运动时间及离开时的位置坐标.小结:对于周期性问题,因为粒子运动轨迹和磁场边界都是圆,所以要充分利用圆的对称性及圆心角的几何关系,寻找运动轨迹的对称关系和周期性.五、磁场问题的规律前面分析的六个典型例题,其物理情景各异,繁简不同,但解题思路和方法却有以下四个共同点.(1)物理模型相同即带电粒子在匀强磁场中均做匀速圆周运动.(2)物理规律相同即洛伦兹力提供运动的向心力,通常都由动力学规律列方程求解.(3)数学规律相同即运用几何知识求圆心角、弧长、半径等物理量.(4)解题关键相同:一是由题意画出正确轨迹;二是寻找边界圆弧和轨迹圆弧的对应圆心角关系;三是确定半径和周期,构建合适的三角形或平行四边形,再运用解析几何知识求解圆的弦长、弧长、圆心角等,最后转化到题目中需求解的问题.【同步练习】1.如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P垂直磁场射入大量的带正电,电荷量为q,质量为m,速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是()DA.只要对着圆心入射,出射后均可垂直打在MN上B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D.只要速度满足qBRvm,沿不同方向入射的粒子出射后均可垂直打在MN上2.如图所示,长方形abcd的长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以e 为圆心eb为半径的四分之一圆弧和以O为圆心Od为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T。

一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带正电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射人磁场区域,则下列判断正确的是()CDA.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在ab边D.从ad边射人的粒子,出射点全部通过b点3、一质量为、带电量为的粒子以速度从O点沿轴正方向射入磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30°,如图1所示(粒子重力忽略不计)。

试求:(1)圆形磁场区的最小面积;(2)粒子从O点进入磁场区到达点所经历的时间;(3)点的坐标。

解:(1)带电粒子在磁场中做匀速圆周运动的半径由图可知,磁场区域最小半径磁场区域最小面积(2)粒子从O至a做匀速圆周运动的时间,从a飞出磁场后做匀速直线运动∵∴∴(3)∵∴∴故b点的坐标为(,0)4、在xoy平面内有许多电子(质量为、电量为),从坐标O不断以相同速率沿不同方向射入第一象限,如图所示。

现加一个垂直于平面向内、磁感强度为的匀强磁场,要求这些电子穿过磁场后都能平行于轴向正方向运动,求符合该条件磁场的最小面积。

5.如图所示,在坐标系xoy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场,在直线y=a的上方和直线x=2a的左侧区域内,有一沿x轴负方向的匀强电场,场强大小为E,一质量为m、电荷量为+q(q>0)的粒子以速度v从O 点垂直于磁场方向射入,当入射速度方向沿x轴方向时,粒子恰好从O1点正上方的A点射出磁场,不计粒子重力,求:(1)磁感应强度B的大小;(2)粒子离开第一象限时速度方向与y轴正方向的夹角;(3)若将电场方向变为沿y轴负方向,电场强度大小不变,粒子以速度v从O点垂直于磁场方向、并与x轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总时间t。

解:(1)设粒子在磁场中做圆运动的轨迹半径为R,牛顿第二定律有粒子自A点射出,由几何知识解得(2)粒子从A点向上在电场中做匀减运动,设在电场中减速的距离为y1得所以在电场中最高点的坐标为(a,)(3)粒子在磁场中做圆运动的周期粒子从磁场中的P点射出,因磁场圆和粒子的轨迹圆的半径相等,OO1PO2构成菱形,故粒子从P点的出射方向与y轴平行,粒子由O到P所对应的圆心角为θ1=60°由几何知识可知,粒子由P点到x轴的距离S=acosθ粒子在电场中做匀变速运动,在电场中运动的时间粒子由P点第2次进入磁场,由Q点射出,PO1QO3构成菱形,由几何知识可知Q点在x轴上,粒子由P 到Q的偏向角为θ2=120°则粒子先后在磁场中运动的总时间粒子在场区之间做匀速运动的时间解得粒子从射入磁场到最终离开磁场的时间【答案】(1);(2);(3);(4)轨迹如图。

相关文档
最新文档