人教版七年级数学上册近似数

合集下载

近似数数学七年级上册同步教学课件(人教版)

近似数数学七年级上册同步教学课件(人教版)
(2)68.4698,68.470,(精确到0.001) (3)0.07038≈0.070,(精确到0.001 ) (4)4.09×104≈4.1×104,(精确到千位).
17
8.下列由四舍五入法得到的近似数,各精确到哪一位? (1)127.32; (2)0.040 7; (3)20.053; (4)230.0千; (5)4.002.
(4)5.649≈5.6.
2.下列数据精确到什么位?
(1)小王的身高1.53米;
精确到0.01
(2)月球与地球相距38万千米; 精确到万位
(3)圆周率π取3.14159.
精确到0.00001
12
• 典例讲解
【例1】下列由四舍五入得到的近似数,各精确到哪一位
(1)600万;
(2) 7.03万;
(3) 5.8亿 ;
3 下列各对近似数中,精确度一样的是( B )
A.0.28与0.280
B.0.70与0.07
C.5百万与500万
D.1.1×103与1 100
4 下列各数表示正确的是( C ) A.57 000 000=57×106 B.0.015 8(用四舍五入法精确到0.001)≈0.015 C.1.804(用四舍五入法精确到十分位)≈1.8 D.25 700=2.57×105
11
3.用四舍五入法对下列各数取近似数.
(1)0.463 0(精确到百分位); 解:(1)0.463 0≈0.46.
(2)0.029 66(精确到0.001);
(2)0.029 66≈0.030.
(3)1.572 8(保留两位小数); (3)1.572 8≈1.57.
(4)5.649(精确到0.1).
10
• 学习检测

人教版七年级数学上册第一章1.5 第4课时 近似数2

人教版七年级数学上册第一章1.5 第4课时 近似数2

5.【例2】用四舍五入法对下列各数按括号中的要求取近似值: (1)2.768≈ 2.77 (精确到百分位); (2)9.403≈ 9 (精确到个位); (3)8.965≈ 9.0 (精确到0.1); (4)17.289≈ 17.29 (精确到0.01). 小结:精确到哪一位,只看下一位,够五则进,不够则舍.
4.【例1】下列划线的数据中,哪些数是准确数?哪些数是近 似数? (1)新星学校有 30 个教学班,有学生 1 300 余人; (2)学校有标准的 100 米跑道,操场一圈 400 多米; (3)截至北京时间2020年7月6日7时,全球累计新冠肺炎确诊 病例超过 1 000万 例.
解:(1)30 是准确数,1 300 是近似数. (2)100 是准确数,400 是近似数. (3)1 000 万是近似数.
10.用四舍五入法按要求对0.050 19分别取近似值,其中错误 的是( B ) A.0.1(精确到0.1) B.0.05(精确到千分位) C.0.05(精确到百分位) D.0.050 2(精确到0.000 1)
7.【例 4】指出下列由四舍五入法得到的数各精确到哪一位?
(1)54.9;
(2)0.070 8;
10.下列说法错误的是( C ) A.近似数16.8与16.80表示的意义不同 B.近似数0.2900是精确到0.0001 C.49564精确到万位是5.0×104 D.0.35万与3.5×103的精确度相同
变式练习
8.下列划线的数据中,哪些数是准确数?哪些数是近似数? (1)小琳称得体重为 38 千克; (2)现在的气温是 -2 ℃; (3)1 m等于 100 cm; (4)教室里有 50 张课桌.
解:(1)38 是近似数. (2)-2 是近似数. (3)100 是准确数. (4)50 是准确数.

新人教版七年级数学(上)——科学计数法与近似数

新人教版七年级数学(上)——科学计数法与近似数

科学计数法与近似数第一部分:知识精讲知识点一、科学记数法10的形式,其中a 是整数数位只有一位的数(即1一般地,把一个绝对值大于10的数记成a×n≤a<10),n是正整数,这种记数法叫做科学记数法。

知识点二、近似数一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。

知识点三、有效数字一个数,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

第二部分:例题精讲例1.用科学记数法记出下列各数:(1)696 000; (2)1 000 000;(3)58 000; (4)―7 800 000例2.下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4; (2)0.0572; (3)2.40万例3.用四舍五入法,按括号中的要求把下列各数取近似数。

(1)0.34082(精确到千分位); (2)64.8 (精确到个位);(3)1.504 (精确到0.01); (4)0.0692 (保留2个有效数字);(5)30542 (保留3个有效数字)。

例4.比较8.76×1011与1.03×1012大小。

例5.已知5.13亿是由四舍五入取得的近似数,它精确到( )A.十分位B.千万位C.亿位D.十亿位第三部分:课堂同步A*夯实基础1.用科学记数法表示下列各数:(1)2730=_________; (2)7 531 000=__________;(3)-8300.12=__________; (4)17014=__________; (5)10 430 000=__________; (6)-3 870 000=__________;2.保留三个有效数字得到21.0的数是( )A.21.2B.21.05C.20.95D.20.943.用科学记数法表示0.0625,应记作( )A.110625.0-⨯B.21025.6-⨯C.3105.62-⨯D.410625-⨯4.“125•”汶川大地震后,世界各国人民为抗震救灾,积极捐款捐物,截止2008年5月27日12时,共捐款人民币327.22亿元,用科学记数法(保留两位有效数字)表示为( )A.101027.3⨯B.10102.3⨯C.10103.3⨯D.11103.3⨯5.地球的质量为13106⨯亿吨,太阳的质量为地球质量的5103.3⨯倍,则太阳的质量为( )亿吨.A.1.98×1018B.1.98×1019C.1.98×1020D.1.98×10656.科学记数法表示下列各数:(1)太阳约有一亿五千万千米; (2)地球上煤的储量估计为15万亿吨以上。

初中数学人教版七年级上册《1.近似数》课件

初中数学人教版七年级上册《1.近似数》课件
精确数:8,2,4,6,56; 近似数:3,20,3.5 和 4.5.
准确数:与实际完全符合的数,称为准确数.
近似数:许多实际情况中,较难取得准确数,把接近准确数但不等 于准确数的数称为近似数.
近似数的来源 (1)用测量工具测量得到的数一般都是近似数;
(2)某些计算的结果也会产生近似数,例如,除不尽的数会对商 取近似数,有圆周率 π 参与计算的结果也会取近似数; (3)不容易获得准确数或不可能得到准确数时,只能取近似数, 如人口普查的结果就只能是一个近似数.
去尾法:去尾法是去掉数字的小数部分,取其整数部分的取近似数 的方法.例如,把一根 20 cm 长的钢筋截成 6 cm 长的小段作零件, 由20÷6=3.3…可知能截得的零件数为3.
进一法:进一法是去掉多余部分的数字后,在保留部分的最后一个 数字上加 1 的取近似数的方法.例如,有112名学生外出旅游,计算 租用 45 座的客车的辆数时,由于112÷45 =2. 48…,此时应取近 似数 3,即租用 3 辆 45 座的客车才能确保 112 名学生旅游所需.
1.5.3
近似数
人教版 七年级数学上
1.用科学记数法表示绝对值较大的数: 把一个绝对值大于 10 的数表示成 a×10n(1≤|a|<10,n 是正整数)的情势,其中 a 的整数位数为 1,数的正负符 号不变,n 为原数的整数位数减 1.
2.将用科学记数法表示的数还原的方法:
把一个用科学记数法表示的数还原为原数时,只需将小数 点向右移动 n 位(不足的数位用 0 补齐),并把 10n 去掉 即可.
谢谢大家
(1) 0.0158(精确到0.001);对8四舍五入 (2) 304.35(精确到个位); 对3四舍五入 (3) 1.804(精确到0.1); 对0四舍五入 (4) 1.804(精确到0.01). 对4四舍五入

人教版七年级数学上册:1.5.3《近似数》说课稿

人教版七年级数学上册:1.5.3《近似数》说课稿

人教版七年级数学上册:1.5.3《近似数》说课稿一. 教材分析《近似数》是人教版七年级数学上册第一章第五节的一部分,主要介绍了近似数的概念、求法以及应用。

这一节的内容是在学生掌握了实数、小数和分数的基础上进行的,为后续学习百分数、概率等知识打下了基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数、小数和分数的概念有了初步的了解。

但学生在求近似数方面可能还存在一些困难,例如不理解四舍五入的原理,对于近似数的应用也还不够清晰。

因此,在教学过程中,需要注重引导学生理解四舍五入的原理,并通过实际例子让学生感受近似数在生活中的应用。

三. 说教学目标1.知识与技能:让学生理解近似数的概念,掌握求近似数的方法,能运用近似数解决实际问题。

2.过程与方法:通过观察、实践、探究等活动,培养学生的动手操作能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探究、积极思考的科学精神。

四. 说教学重难点1.重点:近似数的概念、求法及应用。

2.难点:理解四舍五入的原理,以及如何运用近似数解决实际问题。

五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学。

六. 说教学过程1.导入新课:通过一个生活中的实际问题,引发学生对近似数的思考,从而导入新课。

2.知识讲解:讲解近似数的概念,并通过例题演示求近似数的方法。

3.实践操作:让学生动手操作,尝试自己求近似数,并解释四舍五入的原理。

4.应用拓展:通过实际例子,让学生感受近似数在生活中的应用。

5.总结反思:让学生总结本节课所学内容,反思自己在求近似数方面的不足。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。

可以设计如下板书:•概念:与实际非常接近的数•求法:四舍五入•应用:解决实际问题八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、作业完成情况、考试成绩等方面进行。

人教版-数学-七年级上册-《近似数》知识点解读

人教版-数学-七年级上册-《近似数》知识点解读

《近似数》知识点解读知识讲解:准确数是与实际完全符合的数,如班级的人数,一个单位的车辆数等.近似数是与实际非常接近的数,但与实际数还有差别.如我国有12亿人口,地球半径为×106m等.相关概念:有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。

举几个例子:3一共有1个有效数字,有一个有效数字,有4个有效数字,×103有两个有效数字(不要被103迷惑,只需要看的有效数字就可以了,10n 看作是一个单位)。

精确度:即数字末尾数字的单位。

比如说:精确到十分位(又叫做小数点后面一位),80万精确到万位。

9×105精确到10万位(总共就9一个数字,10n看作是一个单位,就和多少万是一个概念)。

请判断下列题的对错,并解释.1.近似数的精确度与近似数25一样. ()2.近似数4千万与近似数4000万的精确度一样. ()3.近似数660万,它精确到万位.有三个有效数字. ()4.用四舍五入法得近似数和是相等的. ()5.近似数的二次与近似数370的精确度一样. ()满意回答1.错。

前者精确到十分位(小数点后面一位),后者精确到个位数。

2.错。

4千万精确到千万位,4000万精确到万位。

3.对。

4.错。

值虽然相等,但是取之范围和精确度不同.5.错。

^2精确到十位,370精确到个位.典型例题:例1判断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有43名学生,数学期末考试的平均成绩是分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm的圆的周长是;(4)检查一双没洗过的手,发现带有各种细菌80000万个;(5)1999年我国国民经济增长%.解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以一般是近似数;(2)一万二千是近似数;(3)10是准确数,因为是π的近似值,所以是近似数;(4)80000万是近似数;(5)1999是准确数,%是近似数.说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.2.产生近似数的主要原因:(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;(4)由于不必要知道准确数而产生近似数.例2下列由四舍五入得到的近似数,各精确到哪一位各有哪几个有效数字(1)38200;(2);(3);(4)4×104分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象有三位小数就精确到千分位;像就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.(2)精确到千分位(即精确到有两个有效数字4、0.(3)精确到十万分位(即精确到,有七个有效数字2、0、0、5、0、0、0.(4)4×104精确到万位,有一个有效数字4.说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如的有效数字是2、0、0、5、0、0、0七个.而的有效数字是2、0、0、5四个.因为精确到,而精确到,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.(2)对有效数字,如,4左边的两个0不是有效数字,4右边的0是有效数字.(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.例3下列由四舍五入得到的近似数,各精确到哪一位各有几个有效数字(1)70万;(2)万;(3)亿;(4)×105.分析:因为这四个数都是近似数,所以(1)的有效数字是2个:7、0,0不是个位,而是“万”位;(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.解:(1)70万. 精确到万位,有2个有效数字7、0;(2)万.精确到百位,有3个有效数字9、0、3;(3)亿.精确到千万位,有2个有效数字1、8;(4)×105.精确到千位,有3个有效数字6、4、0.说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如万=90300,因为“3”在百位上,所以万精确到百位.例4 用四舍五入法,按括号里的要求对下列各数取近似值.(1)(精确到; (2)(保留两个有效数字);(3)(精确到个位); (4)(保留三个有效数字).分析:四舍五入是指要精确到的那一位后面紧跟的一位,如果比5小则舍,如果比5大或等于5则进1,与再后面各位数字的大小无关.(1)要精确到即百分位,只看它后面的一位即千分位的数字,是8>5,应当进1,所以近似值为.(2)保留两个有效数字,3左边的0不算,从3开始,两个有效数字是3、0,再看第三个数字是4<5,应当舍,所以近似值为.(3)、(4)同上.解:(1)≈;(2)≈;(3)≈3;(4)≈.说明:与的最后一个0都不能随便去掉.是表示精确到,而表示精确到.对,最后一个0也是表示精确度的,表示精确到千分位,而只精确到百分位.例5用四舍五入法,按括号里的要求对下列各数取近似值,并说出它的精确度(或有效数字).(1)26074(精确到千位); (2)7049(保留2个有效数字);(3)000(精确到亿位) ;(4)(保留3个有效数字).分析:根据题目的要求:(1)26074≈26000;(2)7049≈7000;(3)000≈000;(4)≈705.(1)、(2)、(3)题的近似值中看不出它们的精确度,所以必须用科学记数法表示.解:(1)26074=×104≈×104,精确到千位,有2个有效数字2、6.(2)7049=×103≈×103,精确到百位,有两个有效数字7、0.(3)000=×1010≈×1010,精确到亿位,有三个有效数字2、6、1.(4)≈705,精确到个位,有三个有效数字7、0、5.说明:求整数的近似数时,应注意以下两点:(1)近似数的位数一般都与已知数的位数相同;(2)当近似数不是精确到个位,或有效数字的个数小于整数的位数时,一般用科学记数法表示这个近似数.因为形如a×10n(1≤a<10,n为正整数=的数可以体现出整数的精确度.反馈练习:1. 由四舍五入得到的近似数的有效数字是()A. 1个B. 2个C. 3个D. 4个2. 用四舍五入法取近似值,精确到百分位的近似值是_________,精确到千分位近似值是________.3. 用四舍五入法取近似值,精确到的近似数是_________,保留三个有效数字的近似数是___________.4. 用四舍五入法取近似值,精确到十位的近似数是______________;保留两个有效数字的近似数是____________.5. 用四舍五入法得到的近似值精确到_____位,万精确到___位.答案:1. C 2. ,. 3. ,.4. 400,×102.5. 千分,百.。

人教版七年级数学上册近似数教学课件PPT

人教版七年级数学上册近似数教学课件PPT

人教版七年级数学上册 1.5.3 近似数 教学课件(27张PPT)
人教版七年级数学上册 1.5.3 近似数 教学课件(27张PPT)
合作探究
下列各题中的数据,哪些是准确数,哪些是近似数?
(1)通过第三次全国人口普查得知,某省人口总数为3297万; (2)生物圈中,已知绿色植物约有30万种; (3)某校有1148人; (4)这个路口每分钟有3人经过.
解:(1)3297万是近似数; (3)1148是准确数;
(2)30万是近似数; (4)3是近似数.
人教版七年级数学上册 1.5.3 近似数 教学课件(27张PPT)
人教版七年级数学上册 1.5.3 近似数 教学课件(27张PPT)
归纳总结
近似数的精确度
近似数与准确数的接近程度,可以用精确度表示. 注意:精确度的确定方法:
四舍五入的数放在小数点的后面,然后再四舍五入.
人教版七年级数学上册 1.5.3 近似数 教学课件(27张PPT)
人教版七年级数学上册 1.5.3 近似数 教学课件(27张PPT)
合作探究
按四舍五入法对圆周率π取近似值时,有 π≈3(精确到个位), π≈3.1(精确到0.1,或叫做精确到十分位), π≈3.14(精确到0.01,或叫做精确到百分位), π≈3.142(精确到 0.001 ,或叫做精确到 千分位 ), π≈3.141 6(精确到 0.000 1 ,或叫做精确到万分位 ).
①一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到 哪一位;
②精确度是近似数的最后一位,最后一位在哪位上,就说这个近似数精 确到哪一位. 如近似数3206.828的精确度是精确到0.001,或精确到千分位.
③特别地,带有“万”“亿”等计数单位的近似数,看精确到哪一位, 要先把带有单位的数恢复成原数,然后看近似数的末位在原数的哪一 位上,这个数就精确到哪一位. 如9.86万是精确到百位,而不是百分位.

初中数学人教七年级上册第一章有理数-近似数

初中数学人教七年级上册第一章有理数-近似数

⑵0.03086,精确到 十万分位(或精确到0.00001) .
(3)0.4070,精确到 万分位(即精确到
.
(4)2.00,精确到 百分0.位00(01即) 精确到0.01
.

2.我国的国土面积约为9596960平方千米,按四舍五入精确
到万位,则我国的国土面积约为 ( C )
A.9597万平方千米
准确数--与实际完全符合的数 。近似数--与实际接近的数。
答一答:看谁答得准
精确度—— 近似数与准确数的接 下列各数,哪些是近似数?
近程度可以用精确度表示.
哪些是准确数?
⑴ 1 小时有60分;
利用四舍五入法得到的近似数, ⑵绿化队今年植树约2棵;
四舍五入到哪一位,就说这个 近似数精确到哪一位.
⑶小明到书店买了10本书; ⑷一次数学测验中,有2
学习目标: •1.能指明近似数的精确度及有效 数字; •2.能按要求写出近似值.
学习重点:能给出由四舍五入得到 的近似数及精确度
学习难点:合理地对一个数四舍五 入取近似值
在许多情况下,很难取得准确数,或者
不必使用准确数,而可以使用近似数
1.宇宙现在的年龄约为200亿年 2.长江长约6300千米 3.圆周率π约为3.14 4.小明的身高约为1.6米
人得100分;
⑸某区在校中学生近75人;
⑹七年级二班有56人.
按四舍五入法对圆周率π取近似值时,有 π≈3(精确到个位), π≈3.1(精确到0.1,或叫做精确到十分位), π≈3.14(精确到0.01,或叫做精确到百分位), π≈3.142(精确到 0.001,或叫做精确到 千分位), π≈3.141 6(精确到 0.000 ,1或叫做精确到 万分位), ·······

秋人教版七年级数学上册课件:第一章 近似数(共16张PPT)

秋人教版七年级数学上册课件:第一章 近似数(共16张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/192021/9/192021/9/192021/9/199/19/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月19日星期日2021/9/192021/9/192021/9/19 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/192021/9/192021/9/199/19/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/192021/9/19September 19, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/192021/9/192021/9/192021/9/19
略.
启后
任务三:学习教材第44~45页,完成题目 1. 在任务二的第2小题中,第___(__1_)__(__2_)___题中的 数字是准确的,第_(__3_)__(__4_)__题中的数字是与实际 接近的,这种只是接近实际数字,但与实际数字还有 差别的数被称为___近__似__数____.
2. 按四舍五入对圆周率π取近似数时,有:π≈3 (精确到个位), π≈3.1(精确到0.1,或叫精确到十分位), π≈3.14(精确到__0_._0_1_,或叫精确到___百__分__位), π≈3.142(精确到___0_._0_0_1___,或叫精确到__千__分_ 位), π≈3.141 6(精确到___0_._0_0_0__1___,或叫精确到 __万__分___位), ……
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/192021/9/19Sunday, September 19, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/192021/9/192021/9/199/19/2021 6:31:27 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/192021/9/192021/9/19Sep-2119-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/192021/9/192021/9/19Sunday, September 19, 2021

人教版初中数学七年级上册第一章近似数

人教版初中数学七年级上册第一章近似数

这里的1.8和1.80的精 确度相同吗?表示近似
数时,能简单地把 1.80后面的0去掉吗?
(2) 1.8935 ≈1.89 (3) 1.804 ≈1.8 (4) 1.804 ≈1.80
1.8与1.80的精确度 不同,表示近似数时 ,不能简单地把 1.80后面的0去掉
练习: 下列由四舍五入得到的近似数,各精确 到 哪一位?
分层作业
必做题:
1、按括号内的要求,写出下列各数的近似值: (1)69.5(精确到个位);(2)3.99501(精确到0.001); (3)1.9988(精确到千分位);(4)175.65(精确到十分位).
2、下列由四舍五入得到的近似数,各精确到哪一位? (1)25.8; (2)0.090; (3)3.2万; (4)6.51×105.
(× ) (× )
(√ )
你说我说大家说:
课堂小结:
一、三个概念:
1、准确数
2、近似数
3、精确度
二、已知精确度 → 写出近似数
给出近似数 → 判断精确到哪一位
三、温馨提示: 1、近似数1.8与1.80表示的精确程度不一样。 2、①求一个近似数a的取值范围
②带万、亿等单位的数的精确度; ③用科学记数法表示的数的精确度。
数还是近似数?
一般地,一个近似数,四舍五入到哪一位, 就说这个近似数精确到哪一位。
二.精确度 近似数与准确数的接近程度,可以用精确度来表示
按四舍五入法对圆周率π取近似值,填一填下面的问题
π =3.1415926···
π≈ 3 (精确到个位) π≈ 3.1 (精确到十分位 ,或叫做精确到0.1) π≈ 3.14 (精确到百分位 ,或叫做精确到0.01) π≈3.142(精确到千分 位,或叫做精确到0.001 ) π≈3.1416(精确到万分 位,或叫做精确到 0.0001 )

人教版七年级上册数学1.5.3 近似数

人教版七年级上册数学1.5.3 近似数
3.如果由四舍五入得到的近似数是78,那么该数不可能是下列各数中的( D )
A.78.01 B.77.99 C.77.50 D.77.49
练习 4.已知有理数x的近似值是5.4,则x的取值范围是 ( C )
A.5.35<x<5.44 B.5.35<x≤5.44 C.5.35≤x<5.45 D.5.35≤x≤5.45
2.近似数与准确数的接近程度,可以用___精__确__度__表示,对一个准确 数取近似值时常用__四__舍__五__入____法.
活动4 例题与练习
例1 教材P46 例6. 按括号内的要求,用四舍五入法对下列各数取近似数:
(1)0.0158(精确到0.001); 对8四舍五入 (2)304.35(精确到个位); 对3四舍五入 (3)1.804(精确到0.1); 对0四舍五入 (4)1.804(精确到0.01). 对4四舍五入 解: (1)0.0158 ≈0.016;(2)304.35≈304;
第一章 有理数 1.一步认识准确数和近似数,并会根据要求用“四舍五入”的方法 省略一个数的尾数求近似数,会用“万”或“亿”作单位求一个大数的近 似数. 2.给一个近似数,会说出它精确到哪一位. 3.在认识、理解近似数的过程中感受近似数的使用价值,增强学生 的应用意识,提高应用能力.
5.某地2019年公共财政收入用四舍五入法取近似值后为37.39亿元.这个
值精确到 ( D )
A.亿位 B.百分位 C.千万位 D.百万位
例3 用四舍五入法对下列各数按要求取近似值: (1)2.340 7精确到0.001的近似值是___2_.3_4_1____; (2)465 721精确到万位的近似值是___4_7_万__或__4_.7_×__1_0_5__.
例4 用四舍五入法,按要求对下列各数取近似值: (1)0.500 36(精确到千分位)__0_.5_0_0__; (2)23 560(精确到万位)__2_×__1_0_4_或__2_万___.

1.5.3近似数七年级数学人教版(上册)(解析版)

1.5.3近似数七年级数学人教版(上册)(解析版)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第一章有理数1.5.3近似数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.据统计,2017年某市实现地区生产总值2279.55亿元,用四舍五入法将2279.55精确到0.1的近似值为A.2280.0B.2279.6C.2279.5D.2279【答案】B【解析】2279.55≈2279.6(精确到0.1),故选B.2.按括号内的要求用四舍五入法取近似数,下列正确的是A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.0(精确到0.1)D.0.0136≈0.014(精确到0.0001)【答案】C3.用四舍五入法,把3.14159精确到千分位,取得的近似数是A.3.14B.3.142C.3.141D.3.1416【答案】B【解析】把3.14159精确到千分位约为3.142,故选B.4.用四舍五入法按要求对1.06042取近似值,其中错误的是A.1.1(精确到0.1)B.1.06(精确到0.01)C.1.061(精确到千分位)D.1.0604(精确到万分位)【答案】C【解析】1.06042≈1.1(精确到0.1);1.06042≈1.06(精确到0.01);1.06042≈1.060(精确到千分位);1.06042≈1.0604(精确到万分位).故选C.5.四舍五入得到的近似数6.49万,精确到A.万位B.百分位C.百位D.千位【答案】C【解析】近似数6.49万精确到百位.故选C.二、填空题:请将答案填在题中横线上.6.把0.70945四舍五入精确至百分位是__________.【答案】0.71【解析】0.70945≈0.71(精确至百分位).故答案为:0.71.7.209506精确到千位的近似值是__________.【答案】2.10×105【解析】209506≈2.10×105(精确到千位).故答案为:2.10×105.8.8.4348精确到千分位的近似数是__________.【答案】8.435【解析】8.4348精确到千分位的近似数为8.435.故答案为:8.435.9.近似数3.20×106精确到__________位.【答案】万【解析】3.20×106精确到万位.故答案为:万.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.用激光技术测得地球和月球之间的距离为377985654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.【答案】(1)3.77986×108米,(2)3.8×108米,(3)4×108米.11.下列各数精确到什么位?请分别指出来.(1)0.016;(2)1680;(3)1.20;(4)2.49万.【答案】(1)0.016精确到千分位;(2)1680精确到个位;(3)1.20精确到百分位;(4)2.49万精确到百位.【解析】(1)0.016精确到千分位;(2)1680精确到个位;(3)1.20精确到百分位;(4)2.49万精确到百位.12.车工小王加工生产了两根轴,当他把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?【答案】(1)2.595m≤x<2.605m,(2)产品不合格。

人教版数学七年级上册1.5.3《近似数》教案

人教版数学七年级上册1.5.3《近似数》教案

人教版数学七年级上册1.5.3《近似数》教案一. 教材分析《近似数》是人教版数学七年级上册第1.5.3节的内容,主要介绍了近似数的概念、求法及其应用。

本节内容是学生学习实数部分的重要一环,对于培养学生的数感、逻辑思维能力以及实际应用能力具有重要意义。

通过学习本节内容,学生能够理解近似数的概念,掌握求近似数的方法,并能运用近似数解决实际问题。

二. 学情分析七年级的学生已经具备了一定的实数基础,对于数的运算、比较大小等有一定的了解。

但近似数的概念和求法对于他们来说是一个新的领域,需要通过实例和练习来逐步理解和掌握。

此外,学生对于实际应用问题的解决能力还有待提高,因此在教学过程中,需要注重培养学生的实际应用能力。

三. 教学目标1.了解近似数的概念,掌握求近似数的方法。

2.能够运用近似数解决实际问题,提高实际应用能力。

3.培养学生的数感、逻辑思维能力,提高学生的学习兴趣。

四. 教学重难点1.近似数的概念和求法。

2.运用近似数解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,通过实例和问题引导学生理解和掌握近似数的概念和求法。

2.利用多媒体辅助教学,通过动画和图像直观地展示近似数的概念和求法。

3.采用小组合作学习的方式,让学生在讨论和交流中共同解决问题,提高合作能力。

4.注重练习和实际应用,通过解决实际问题提高学生的实际应用能力。

六. 教学准备1.多媒体教学设备。

2.近似数的教学PPT。

3.实际应用问题相关的案例和数据。

4.练习题和测试题。

七. 教学过程1.导入(5分钟)利用多媒体展示一些与近似数相关的实例,如天气预报中的温度、身高、体重等,引导学生思考:这些数据是如何得到的?它们与准确数有何区别?2.呈现(10分钟)介绍近似数的概念,讲解求近似数的方法,如四舍五入、进一法、去尾法等,并通过实例进行演示。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用所学的方法求近似数,并解释结果的意义。

1-5-3 近似数 课件 人教版七年级数学上册

1-5-3 近似数 课件 人教版七年级数学上册

精确到数字8 对0四舍五入
(4). 1.804(精确到0.01).
精确到数字0 对4四舍五入
解:(1). 0.0158 ≈0.016
(2). 304.35 ≈304
(3). 1.804 ≈1.8
(4). 1.804 ≈1.80
新知讲解
思考:
这里的1.8和1.80的精确度相同吗?表示近似数时,能简单地把
报道说:“会议秘书处宣布,参加今天会议的有513人.”这里数
准确 数.另一则报道
字513确切地反映了实际人数,它是一个______
说:“约有五百人参加了今天的会议.”五百这个数只是接近实
际人数,但与实际人数还有_____
13 ,它是一个________
近似 数.
新知讲解
阅读P45—P46的内容,回答下列问题:
课堂练习
7.下列各数是通过四舍五入得到的近似数:
百分
(1) 0.80它精确到_______位:
(2) 4.10× 精确到________位:


(3) 3.6万精确到________位.
2.用四舍五入法,按要求取近似值:
7.05
(1) 7.05072 (精确到0.01)≈________;
面所有数再向前进位,则4.2046≈4.205
(4)解:3.102百分位数字是0,后一位是2,小于5,则直接舍掉
后面所有数字,且0要保留,则3.102≈3.10
课堂总结
1.精确度的两种形式∶
(1)精确到个位,十分位,百分位…
(2)精确到1,0.1,0.01...
2.近似数的表示方法∶
先根据要求,找准所在位的数字,再把这个数字后面一位四舍五入.

人教版七年级数学上册:1.5.3 《近似数》教学设计

人教版七年级数学上册:1.5.3 《近似数》教学设计

人教版七年级数学上册:1.5.3 《近似数》教学设计一. 教材分析人教版七年级数学上册1.5.3《近似数》是学生在学习了有理数、实数等基础知识后,对数的进一步理解。

本节内容主要介绍近似数的概念、求法及其应用,通过学习,使学生掌握求近似数的方法,能够准确地运用近似数进行计算和估算,为后续的学习和实际应用打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对实数、有理数等概念有了初步的了解。

但学生在求近似数方面可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解近似数的概念,以及如何准确地求出近似数。

三. 教学目标1.理解近似数的概念,掌握求近似数的方法。

2.能够准确地运用近似数进行计算和估算。

3.培养学生的数感,提高学生的数学思维能力。

四. 教学重难点1.近似数的概念及其求法。

2.运用近似数进行计算和估算。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过生活实例引入近似数的概念,引导学生主动探究求近似数的方法,并在小组合作中互相交流、讨论,从而达到理解掌握的目的。

六. 教学准备1.教学课件:制作课件,展示近似数的定义、求法及应用。

2.教学素材:准备一些生活实例,用于引入近似数的概念。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如购物时找零、测量身高等,引导学生思考:什么是近似数?为什么要用近似数?从而引出本节内容。

2.呈现(10分钟)介绍近似数的定义,通过课件展示,使学生对近似数有直观的认识。

接着讲解求近似数的方法,如四舍五入、进一法、去尾法等,并给出具体例子,让学生明白各种方法的适用场景。

3.操练(10分钟)学生在课堂上进行近似数的计算练习,教师巡回指导,解答学生疑问。

练习题可包括简单的生活实例和计算题,让学生在实际操作中掌握求近似数的方法。

4.巩固(10分钟)学生分组进行小组讨论,总结近似数的求法及其应用。

教师引导学生归纳总结,加深对知识点的理解。

七年级数学上册人教版1.5.3近似数优秀教学案例

七年级数学上册人教版1.5.3近似数优秀教学案例
三、教学策略
(一)情景创设
1.利用多媒体展示实际生活中的近似数例子,如购物时的找零、天气预报中的温度等,引起学生的兴趣和关注。
2.设计有趣的数学游戏或竞赛,让学生在轻松愉快的氛围中理解和掌握近似数的概念和求法。
3.创设问题情境,如测量教室的长度、计算班级的平均身高等,引导学生运用近似数解决实际问题。
2.向学生提出问题:“你们在生活中有没有遇到过类似的问题?”,引导学生思考和讨论。
3.总结学生提出的例子,引出近似数的概念,并提出本节课的学习目标。
(二)讲授新知
1.利用PPT或板书,详细讲解近似数的概念、求法及应用。
2.通过数学公式、例题和讲解,让学生理解和掌握近似数的计算方法和技巧。
3.结合生活实例,解释近似数在实际生活中的重要作用和意义。
(二)问题导向
1.提出引导学生思考的问题,如“为什么要使用近似数?”“近似数是如何产生的?”“如何准确求出一个数的近似值?”等,激发学生的思考和探究欲望。
2.通过问题的解答和讨论,引导学生理解和掌握近似数的概念、求法及应用,培养学生的数学思维能力。
3.鼓励学生提出自己的问题,并与同学和老师进行交流和探讨,培养学生的提问和解决问题的能力。
2.组织学生进行同伴评价和小组评价,鼓励学生互相鼓励和肯定,培养学生的评价能力和同理心。
3.教师对学生的学习情况进行总结和评价,给予及时的反馈和指导,帮助学生进一步提高学习效果和能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个生活中的近似数例子,如超市购物时的找零问题,引起学生的兴趣和关注。
七年级数学上册人教版1.5.3近似数优秀教学案例
一、案例背景
本案例背景以七年级数学上册人教版1.5.3近似数为教学内容,旨在通过实际教学情境,帮助学生理解和掌握近似数的概念、求法及应用。在课程开始前,学生已掌握了实数的相关知识,但对于近似数在实际生活中的运用尚不清晰。针对这一情况,我设计了本节优秀教学案例,通过生活实例引入近似数的概念,引导学生感受近似数在实际生活中的重要性,同时结合数学运算和问题解决,使学生能够深刻理解并熟练运用近似数。在教学过程中,注重培养学生的数学思维能力、合作交流能力和创新意识,使他们在掌握知识的同时,能够提高解决问题的能力,为今后的数学学习打下坚实基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册 1.5.3 近似数
按四舍五入法对圆周率π取近似数,有
π≈3(精确到个位), π≈3.1(精确到0.1,或叫做精确到十分位), π≈3.14(精确到0.01,或叫精确到百分位), π≈3.140(精确到0.001,或叫做精确到千分位 ), π≈3.1416(精确到0.0001,或叫做精确到万分位), ……
1·5·3 近似数
导入新课
情境引入
北京地铁1号线是我国最早的地铁路线,全长31.04公理. “31.04”一定是准确的数据吗?它又是怎么来的?
小小实验
与实际完全符 合的数
1.统计班级的男生人数和女生人数.
2.量一量《数学课本》的宽度.
与实际非常 接近的数
讲授新课
一 准确数与近似数
辨一辨
下列语句中,那些数据是精确的,哪些数据是近似的? 1.我和妈妈去买水果,买了 8 个苹果,大约 3 千克. 2.小民与小李买了 2 瓶水,4 根黄瓜,6 袋香巴拉牛 肉干,约 20 元,然后骑车去大约 3.5 km外去郊游,大 约玩了 4.5 小时回家. 3.我国共有 56 个民族.
人教版七年级数学上册 1.5.3 近似数
人教版七年级数学上册 1.5.3 近似数
2. ⑴ 我校振华初一年级415名师生,想租 用45座的客车外出秋游,问:应该租用多 少辆客车?
解:因为415 45=9.222 所以应该租用10辆客车。
“进一法”
⑵ 工人师傅把一根100厘米的圆钢锯短,用 来做6厘米长的零件,可加工多少件?
人教版七年级数学上册 1.5.3 近似数
人教版七年级数学上册 1.5.3 近似数
问题2:近似数与准确数有何区别? 准确数是完全符合实际的数.而近似数是一个
与实际接近的数.
人教版七年级数学上册 1.5.3 近似数
人教版七年级数学上册 1.5.3 近似数
答一答:看谁答得准
精确度—— 近似数与 准确数的接近程度可 以用精确度表示.
解:因为100 6=16.666 所以可加工16件。
“去尾法”
人教版七年级数学上册 1.5.3 近似数
课堂小结
精确度—— 近似数与准确数的接近程 度可以用精确度表示.
利用四舍五入法得到的近似数,四舍 五入到哪一位,就说这个近似数精确 到哪一位.
人教版七年级数学上册 1.5.3 近似数
2 下列由四舍五入得到的近似数,各精确到哪一位?
(1) 600万 ; (2) 7.03万;
(3) 5.8亿
(4) 3.30×105.
解:(1)600万,精确到万位; (2)7.03万,精确到百位; (3)5.8亿,精确到千万位; (4)3.30×105,精确到千位.
精确数:8,2,4,6,56; 近似数:3,20,3.5和4.5.
人教版七年级数学上册 1.5.3 近似数
客观条件无法 得到或难以得 到准确数据
有时实际问题中无 需得到准确数据
1.35 m
我国人口总数 约为12.953 3
某词典共有1 234页 身高约为1.35 m
(1)上亿面的数据,哪些是准确的?哪些是近似的?
人教版七年级数学上册 1.5.3 近似数
人教版七年级数学上册 1.5.3 近似数
二、例题讲解
例1:下列由四舍五入法得到的近似数, 各精确到哪一位?
(1)132.4精确到_十__分_位__。 (2) 0.0572精确到_万_分__位__,。 (3)2.4 万精确到__千_位___。
(4)2.4 104精确到__千_位___。
做一做
1.用四舍五入法,按括号中的要求对下列各 数取近似数。
⑴0.6328
(精确到0.001)
⑵75
(精确到百位)
⑷130.06
(精确到0.1)
⑸460215
(精确到百位)
⑹2.746
(精确到十分位)
⑺3.40105 (精确到万位)
人教版七年级数学上册 1.5.3 近似数
(2)举例说明生活中哪些数据是准确的,哪些数据是近似的?
人教版七年级数学上册 1.5.3 近似数
人教版七年级数学上册 1.5.3 近似数
问题1:什么样的数是近似数? 1.我们得不到与实际完全相符的数,而是通过 测量、估算得到的数都是近似数.例如,姚明的身高 是2.26米. 2.有时我们为了叙述、书写方便,通过四舍五 入得到的数也是近似数. 例如,2016年全国高考报名 的考生共940万人.
金钥匙: 近似数精确到哪一位,只需看这 个数的最末一位在原数的哪一位。
人教版七年级数学上册 1.5.3 近似数
人教版七年级数学上册 1.5.3 近似数
例2:用四舍五入法,按括号中的要求对下列各 数取近似数。
⑴0.34482 (精确到百分位) ⑵1.5046 (精确到0.01) ⑶0.0697 (精确到0.001) ⑷30542 (精确到百位) ⑸603400 (精确到千位)
解:0.34482 ≈0.34 解:1.5046 ≈1.50 解:0.0697 ≈0.070 解:30542 ≈3.05 104 解:603400 ≈6.03 105
当四舍五入到十位或十位以上时,应 小窍门:先用科学记数法表示这个数,再按要
求取近似数。
人教版七年级数学上册 1.5.3 近似数
人教版七年级数学上册 1.5.3 近似数
先把数还原,再 看0所在的数位
人教版七年级数学上册 1.5.3 近似数
人教版七年级数学上册 1.5.3 近似数
三、实际问题
1. 李明测得一根钢管的长度为0.8米 (1)试举例说明该近似数可能是由哪些数四舍五入
得来的? (2)按照李明测得的结果,你能求出钢管的准 确 长度X应在什么范围吗?
答:0.75≤x<0.85
利用四舍五入法得到的 近似数,四舍五入到哪 一位,就说这个近似数 精确到哪一位.
下列各数,哪些是近似数? 哪些是准确数? ⑴ 1 小时有60分; ⑵绿化队今年植树约200棵; ⑶小明到书店买了10本书; ⑷一次数学测验中,有2 人得100分; ⑸某区在校中学生近75人; ⑹七年级二班有56人.
人教版七年级数学上册 1.5.3 近似数
相关文档
最新文档