最新人教A版必修二 旋转体与简单组合体的结构特征 学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转体与简单组合体的结构特征
学习目标
1.认识组成我们生活世界的各种各样的旋转体;
2.认识和把握圆柱、圆锥、圆台、球体的几何结构特征.
知识点一 圆柱
思考 观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?
答案 以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体. 圆柱的结构特征
圆柱
图形及表示
定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱
图中圆柱表示为:
圆柱O ′O 相关概念: 圆柱的轴:旋转轴
圆柱的底面:垂直于轴的边旋转而成的圆面 圆柱的侧面:平行于轴的边旋转而成的曲面
圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边 思考 仿照圆柱的定义,你能定义什么是圆锥吗?
答案 以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.
圆锥的结构特征
思考下图中的物体叫做圆台,也是旋转体,它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台、圆台还可以怎样得到呢?
答案(1)圆台可以是直角梯形以垂直于底边的腰所在的直线为旋转轴,其他三边旋转一周形成的面所围成的几何体.
(2)圆台也可以看作是等腰梯形以其底边的中垂线为轴,各边旋转180°形成的面所围成的几何体.
(3)类比棱台的定义圆台还可以如下得到:
用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.
圆台的结构特征
思考球也是旋转体,它是由什么图形旋转得到的?
答案以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体.
球的结构特征
思考下图中的两个空间几何体是柱、锥、台、球体中的一种吗?它们是如何构成的?
答案这两个几何体都不是单纯的柱、锥、台、球体,而是由柱、锥、台、球体中的两种或三种组合而成的几何体.
简单组合体
(1)概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.
(2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.
类型一旋转体的结构特征
例1 判断下列各命题是否正确:
(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;
(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;
(3)圆锥、圆台中经过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的旋转轴截面是等腰梯形;
(4)到定点的距离等于定长的点的集合是球.
解(1)错.由圆柱母线的定义知,圆柱的母线应平行于轴.
(2)错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.
(3)正确.(4)错.应为球面.
反思与感悟 辨析几何体的结构特征,一要准确理解空间几何体的定义,准确掌握其结构特征;二要多观察实物,提高空间想象能力. 跟踪训练1 下列叙述中正确的个数是( )
①以直角三角形的一边为轴旋转所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆;
④用一个平面去截圆锥,得到一个圆锥和一个圆台. A .0 B .1 C .2 D .3 答案 A
解析 ①应以直角三角形的一条直角边所在直线为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的腰所在直线为轴旋转才可以得到圆台;③它们的底面为圆面;④用平行于圆锥底面的平面截圆锥才可得到一个圆锥和一个圆台.故四种说法全不正确. 类型二 旋转体中的计算问题
例2 用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台的母线长.
解 设圆台的母线长为l ,截得圆台的上、下底面半径分别为r,4r .根据相似三角形的性质得,33+l =r
4r
,解得l =9 cm.所以,圆台的母线长为9 cm. 反思与感悟 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.
跟踪训练2 圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积
之和,求圆台的高被截面分成的两部分的比.
解 将圆台还原为圆锥,如图所示.O 2,O 1,O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2,
则⎩⎪⎨⎪⎧
h +h 1h =
49+1
21,h +h 1
+h 2
h =
491
,
所以⎩
⎪⎨
⎪⎧
h 1=4h ,h 2=2h ,
即h 1∶h 2=2∶1.
类型三 组合体的结构特征 例3 描述下列几何体的结构特征.
解 图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.
反思与感悟 组合体是由简单几何体拼接、截去或挖去一部分而成的,因此,要仔细观察组合体的组成,结合柱、锥、台、球的几何结构特征,对原组合体进行分割. 跟踪训练3 (1)下图中的组合体的结构特征有以下几种说法:
①由一个长方体割去一个四棱柱构成.
②由一个长方体与两个四棱柱组合而成.
③由一个长方体挖去一个四棱台构成.
④由一个长方体与两个四棱台组合而成.
其中正确说法的序号是________.
(2)观察下列几何体,分析它们是由哪些基本几何体组成的.
答案(1)①②
(2)图1是由圆柱中挖去圆台形成的,图2是由球、棱柱、棱台组合而成的.