高中数学重点、难点突破(4)指数、对数函数
指数函数与对数函数重难点总结
指数函数与对数函数重难点总结指数函数与对数函数可是数学里的一对“好兄弟”呢,它们的重难点可不少,今天咱就来好好唠唠。
一、指数函数。
指数函数的形式是y = a^x(a>0且a≠1)。
1. 图像。
- 当a > 1时,指数函数的图像是上升的,就像小火箭一样一飞冲天。
而且它过定点(0,1),这个点可重要啦,就像是指数函数的“老家”。
不管a怎么变,只要是指数函数,都得经过这个点。
- 当0 < a < 1时,图像是下降的,就像小滑梯一样慢慢往下滑。
同样也过(0,1)这个定点。
2. 性质。
- 定义域是R,也就是全体实数。
这就意味着x可以取任何实数,就像一个超级大的舞台,x在上面可以尽情地表演。
- 值域是(0,+∞)。
这是因为不管x取啥值,a^x都大于0。
就像指数函数有个底线,不能是负数或者0,它总是积极向上(大于0)的呢。
- 单调性是个重难点哦。
当a > 1时是增函数,当0 < a < 1时是减函数。
这个单调性在比较大小的时候可有用啦。
比如说a^x_1和a^x_2比较大小,如果a > 1,x_1>x_2,那就有a^x_1>a^x_2;如果0 < a < 1,x_1>x_2,则a^x_1。
二、对数函数。
对数函数的形式是y=log_ax(a>0且a≠1),它和指数函数可是关系密切呢,就像照镜子一样。
1. 图像。
- 当a > 1时,对数函数的图像是上升的,不过它和指数函数上升的样子不太一样。
它过定点(1,0),这个点也是对数函数的标志性地点。
- 当0 < a < 1时,图像是下降的,也过(1,0)这个点。
2. 性质。
- 定义域是(0,+∞)。
这是因为对数函数里x得是正数才行,就像只有正数才能进入对数函数这个“小城堡”。
- 值域是R,全体实数都可以是对数函数的值,就像对数函数的胸怀很宽广,可以容纳任何实数呢。
- 单调性也很重要哦。
(精选试题附答案)高中数学第四章指数函数与对数函数考点突破
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数考点突破单选题1、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg 101≈2.0043,lg 99≈1.9956) ( )天. A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x =1.01x ,即(1.010.99)x =100,∴x =log 1.010.99100=lg 100lg 1.010.99=lg 100lg 10199=2lg 101−lg 99 ≈22.0043−1.9956=20.0087≈230. 故选:D .2、若2x −2y <3−x −3−y ,则( )A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y|>0D .ln|x −y|<0 答案:A分析:将不等式变为2x −3−x <2y −3−y ,根据f (t )=2t −3−t 的单调性知x <y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.由2x −2y <3−x −3−y 得:2x −3−x <2y −3−y ,令f(t)=2t−3−t,∵y=2x为R上的增函数,y=3−x为R上的减函数,∴f(t)为R上的增函数,∴x<y,∵y−x>0,∴y−x+1>1,∴ln(y−x+1)>0,则A正确,B错误;∵|x−y|与1的大小不确定,故CD无法确定.故选:A.小提示:本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到x,y 的大小关系,考查了转化与化归的数学思想.3、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.4、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN),它表示:在受噪声干扰的信道中,最大信息传递速率C取决于信道带宽W、信道内信号的平均功率S、信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至5000,则C大约增加了()(附:lg2≈0.3010)A.20%B.23%C.28%D.50%答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解.将信噪比SN 从1000提升至5000时,C大约增加了Wlog2(1+5000)−Wlog2(1+1000)Wlog2(1+1000)=log25001−log21001log21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B.5、函数y=|lg(x+1)|的图像是()A.B.C.D.答案:A分析:由函数y=lgx的图象与x轴的交点是(1,0)结合函数的平移变换得函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),即可求解.由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),显然四个选项只有A选项满足.故选:A.6、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,10b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.7、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.8、在同一平面直角坐标系中,一次函数y=x+a与对数函数y=log a x(a>0且a≠1)的图象关系可能是()A.B.C.D.答案:C分析:根据对数函数的图象以及直线方程与图象关系分别进行讨论即可.A.由对数图象知0<a<1,此时直线的纵截距a>1,矛盾,B.由对数图象知a>1,此时直线的纵截距0<a<1,矛盾,C.由对数图象知0<a<1,此时直线的纵截距0<a<1,保持一致,D.由对数图象知a>1,此时直线的纵截距a<0,矛盾,故选:C.9、已知f(x)=a−x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是()A.a>0B.a>1C.a<1D.0<a<1答案:D分析:把f(-2),f(-3)代入解不等式,即可求得.因为f(-2)=a2,f(-3)=a3,f(-2)>f(-3),即a2>a3,解得:0<a<1.故选:D10、基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天答案:B分析:根据题意可得I(t)=e rt=e0.38t,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t1天,根据e0.38(t+t1)=2e0.38t,解得t1即可得结果.因为R0=3.28,T=6,R0=1+rT,所以r=3.28−16=0.38,所以I(t)=e rt=e0.38t,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t1天,则e0.38(t+t1)=2e0.38t,所以e0.38t1=2,所以0.38t1=ln2,所以t1=ln20.38≈0.690.38≈1.8天.故选:B.小提示:本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题. 填空题11、若f(x)=1+a3x+1(x∈R)是奇函数,则实数a=___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.12、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).13、若log 9(2a +b )=log 3√ab ,则a +8b 的最小值为______. 答案:25分析:利用对数的运算可得出1a +2b =1,分析出a >0,b >0,将代数式a +8b 与1a +2b 相乘,展开后利用基本不等式可求得a +8b 的最小值.因为log 9(2a +b )=log 3√ab =log 9ab ,所以,2a +b =ab >0,则a >0,b >0, 所以,b+2a ab=1a+2b=1,因为a +8b =(a +8b )(1a +2b)=17+8b a+2a b≥17+2√8b a⋅2a b=25,当且仅当a =2b 时,等号成立,故a +8b 的最小值为25. 所以答案是:25. 14、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒ 原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2 =(1+1232)(1+1216)(1+128)×(1−128)×2 =(1+1232)(1+1216)×(1−1216)×2 =(1+1232)×(1−1232)×2 =(1−1264)×2 =2−1263所以答案是:2−1263﹒15、函数y =(12)x,(−3≤x ≤1)的值域是__________.答案:[12,8]分析:根据指数函数的单调性,结合定义域,即可得答案. 因为指数函数y =(12)x在[−3,1]上为单调递减函数, 所以当x =-3时,函数有最大值为(12)−3=8,当x =1时,函数有最小值为12. 所以值域为[12,8]. 所以答案是:[12,8]解答题16、某工厂以x kg/h 的速度生产运输某种药剂(生产条件要求边生产边运输且3<x ≤10),每小时可以获得的利润为100(2x +1+8x−2)元.(1)要使生产运输该药品3h 获得的利润不低于4500元,求x 的取值范围; (2)x 为何值时,每小时获得的利润最小?最小利润是多少? 答案:(1)[6,10];(2)当x 为4kg/h 时,每小时获得的利润最小,最小利润为1300元. 分析:(1)由题设可得2x +1+8x−2≥15,结合3<x ≤10求不等式的解集即可.(2)应用基本不等式求y =100(2x +1+8x−2)的最小值,并求出对应的x 值.(1)依题意得:3×100(2x +1+8x−2)≥4500,即2x +1+8x−2≥15,由3<x ≤10,故8x−2>0,可得x 2-9x +18≥0,即(x -3)(x -6)≥0,解得x ≤3或x ≥6, ∴x 的取值范围为[6,10]. (2)设每小时获得的利润为y .y =100(2x +1+8x−2)=100[2(x -2)+8x−2+5] ≥100[2√2(x −2)(8x−2)+5]=100(8+5)=1300,当2(x -2)=8x−2时取等号,此时x =4.于是当生产运输速度为4kg/h ,每小时获得的利润最小,最小值为1300元. 17、计算:(1)(214)12−9.60−(338)−23+1.5−2;(2)√(π−134)44+(1649)−12+(−8)23+80.25×√24.答案:(1)12 (2)11−π分析:(1)将带分数化为假分数,将负指数幂化为正指数幂,再根据幂的运算法则计算可得; (2)将根式化为分数指数幂,再根据幂的运算法则计算可得. (1)解:(214)12−9.60−(338)−23+1.5−2=(94)12−1−(278)−23+(32)−2=(94)12−1−(827)23+(23)2=32−1−49+49=12.(2)解:√(π−134)44+(1649)−12+(−8)23+80.25×√24=|π−134|+(4916)12+(−2)2+234×214 =134−π+74+4+2=11−π.小提示:指数幂运算的基本原则:①化负指数为正指数;②化根式为分数指数幂;③化小数为分数;④化带分数为假分数;⑤底数是负数的先确定符号.18、已知函数f(x)=(log a x)2−log a x−2(a>0,a≠1).(1)当a=2时,求f(2);(2)求解关于x的不等式f(x)>0;(3)若∀x∈[2,4],f(x)≥4恒成立,求实数a的取值范围.答案:(1)−2;(2)当a>1时,f(x)>0的解集为(0,1a )∪(a2,+∞),当0<a<1时;(0,a2)∪(1a,+∞)(3)[√2 2,1)∪(1,√23].分析:(1)将a=2直接代入解析式计算即可.(2)将f(x)=(log a x)2−log a x−2>0整理为(log a x−2)(log a x+1)>0,解得log a x<−1或log a x>2,再对a讨论即可解不等式.(3)将问题转化为f(x)min≥4,分别分a>1和0<a<1讨论,求f(x)最小值,令其大于4,即可求解.(1)当a=2时,f(x)=(log2x)2−log2x−2∴f(2)=1−1−2=−2(2)由f(x)>0得:(log a x)2−log a x−2=(log a x−2)(log a x+1)>0∴log a x<−1或log a x>2当a>1时,解不等式可得:0<x<1a或x>a2当0<a<1时,解不等式可得:x>1a或0<x<a2综上所述:当a>1时,f(x)>0的解集为(0,1a)∪(a2,+∞);当0<a<1时,f(x)>0的解集为(0,a2)∪(1a,+∞)(3)由f(x)≥4得:(log a x)2−log a x−6=(log a x−3)(log a x+2)≥0∴log a x≤−2或log a x≥3①当a>1时,(log a x)max=log a4,(log a x)min=log a2∴log a4≤−2=log a a−2或log a2≥3=log a a3,解得:1<a≤√23②当0<a<1时,(log a x)max=log a2,(log a x)min=log a4∴log a2≤−2=log a a−2或log a4≥3=log a a3,解得:√22≤a<1综上所述:a的取值范围为[√22,1)∪(1,√23]小提示:本题主要考查了复合函数的单调性、考查函数的最值和恒成立问题、考查分类讨论的思想,属于中档题.19、(1)若函数y=log2(ax2+2x+1)的定义域为R,求a的范围;(2)若函数y=log2(ax2+2x+1)的值域为R,求a的范围.答案:(1)(1,+∞);(2)[0,1].分析:(1)将问题转化为ax2+2x+1>0对x∈R恒成立,分别在a=0和a≠0的情况下进行讨论,从而求得结果;(2)将问题转化为(0,+∞)是f(x)=ax2+2x+1的值域的子集的问题,分别在a=0和a≠0的情况下根据包含关系构造不等式求解即可.(1)∵y=log2(ax2+2x+1)的定义域为R,∴ax2+2x+1>0对x∈R恒成立;当a=0时,不等式变为2x+1>0,即x>−12,不合题意;当a≠0时,若ax2+2x+1>0恒成立,则{a>0Δ=4−4a<0,解得:a>1;综上所述:实数a的取值范围为(1,+∞);(2)设f(x)=ax2+2x+1的值域为A,∵y=log2(ax2+2x+1)的值域为R,∴(0,+∞)⊆A;当a=0时,f(x)=2x+1,则A=R,满足题意;当a≠0时,若(0,+∞)⊆A,则{a>0Δ=4−4a≥0,解得:0<a≤1;综上所述:实数a的取值范围为[0,1].。
高中数学第四章指数函数与对数函数重难点归纳(带答案)
高中数学第四章指数函数与对数函数重难点归纳单选题1、函数f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0),满足对任意x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[13,1)C .a ∈(0,13]D .a ∈[13,2) 答案:C分析:根据条件可知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ⩽1,解出a 的范围即可.解:∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,因为f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0)∴{0<a <1a −2<0(a −2)×0+3a ⩽a 0,解得0<a ⩽13,∴a 的取值范围是(0,13]. 故选:C .2、已知函数y =a x 、y =b x 、y =c x 、y =d x 的大致图象如下图所示,则下列不等式一定成立的是( )A .b +d >a +cB .b +d <a +cC .a +d >b +cD .a +d <b +c 答案:B分析:如图,作出直线x =1,得到c >d >1>a >b ,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B3、我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c(t)(单位:mg/L)随着时间t(单位:h)的变化用指数模型c(t)=c0e−kt描述,假定某药物的消除速率常数k=0.1(单位:ℎ−1),刚注射这种新药后的初始血药含量c0=2000mg/L,且这种新药在病人体内的血药含量不低于1000mg/L时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln2≈0.693,ln3≈1.099)A.5.32hB.6.23hC.6.93hD.7.52h答案:C分析:利用已知条件c(t)=c0e−kt=2000e−0.1t,该药在机体内的血药浓度变为1000mg/L时需要的时间为t1,转化求解即可.解:由题意得:c(t)=c0e−kt=2000e−0.1t设该要在机体内的血药浓度变为1000mg/L需要的时间为t1c(t1)=2000e−0.1t1≥1000e−0.1t1≥1 2故−0.1t≥−ln2,t≤ln20.1≈6.93故该新药对病人有疗效的时长大约为6.93ℎ4、函数y =log 2(2x −x 2)的单调递减区间为( ) A .(1,2)B .(1,2] C .(0,1)D .[0,1) 答案:A分析:先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果 由2x −x 2>0,得0<x <2, 令t =2x −x 2,则y =log 2t ,t =2x −x 2在(0,1)上递增,在(1,2)上递减, 因为y =log 2t 在定义域内为增函数,所以y =log 2(2x −x 2)的单调递减区间为(1,2), 故选:A5、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a 3·√a 6=(−a )13⋅a 16=−a 13⋅a 16=−a 13+16=−a 12=−√a .故选:A.6、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a43b =(2a )2(23b )2=5232=259.7、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅lne−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.8、如图所示:曲线C1,C2,C3和C4分别是指数函数y=a x,y=b x,y=c x和y=d x的图象,则a,b,c,d与1的大小关系是()A .a <b <1<c <dB .a <b <1<d <cC .b <a <1<c <dD .b <a <1<d <c 答案:D分析:先根据指数函数的单调性,确定a ,b ,c ,d 与1的关系,再由x =1时,函数值的大小判断. 因为当底数大于1时,指数函数是定义域上的增函数, 当底数小于1时,指数函数是定义域上的减函数, 所以c ,d 大于1,a ,b 小于1,由图知:c 1>d 1 ,即c >d , b 1<a 1,即 b <a , 所以b <a <1<d <c , 故选:D 多选题9、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14,则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 12x 1+log 12x 2=log 12(x 1x 2)=f (x 1⋅x 2),C 是;对于D ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 3x 1+log 3x 2=log 3(x 1x 2)=f (x 1⋅x 2),D 是. 故选:CD10、下列函数中,有零点且能用二分法求零点的近似值的是( ) A .y =2x −3B .y ={−x +1,x ≥0x +1,x <0C .y =x 2−3x +3D .y =|x −2| 答案:AB分析:根据二分法定义,只有零点两侧函数值异号才可用二分法求近似值. 对于选项A ,当x =1时,y =21−3=−1<0,当x =12时,y =212−3=1>0,所以能用二分法求零点的近似值.对于选项B ,当x =2时,y =−2+1=−1<0,当x =12时,y =−12+1=12>0,能用二分法求零点的近似值.对于选项C ,y =x 2−3x +3=(x −32)2+34>0,故不能用二分法求零点的近似值. 对于选项D ,y =|x −2|≥0,故不能用二分法求零点的近似值. 故选:AB .11、某工厂生产一种溶液,按市场要求该溶液的杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,若使这种溶液的杂质含量达到市场要求,则过滤次数可以为(参考数据:lg2≈0.301,lg3≈0.477)( ) A .7B .8C .9D .10 答案:BCD分析:由2100×(23)n≤11000解不等式可得答案.设经过n 次过滤,这种溶液的杂质含量达到市场要求,则2100×(23)n≤11000, 即(23)n≤120,两边取对数,得nlg 23≤−lg20,即n (lg2−lg3)≤−(1+lg2), 得n ≥1+lg2lg3−lg2≈7.4. 故选:BCD.12、下面几个结论正确的是( )A .已知a =(√32)23,b =(45)13,c =ln3,则a <b <cB .已知a =312,b =√63,c =log 47,则a <c <b C .已知a =0.32,b =log 20.3,c =20.3,则b <c <a D .已知log 12a >log 12b >0,则a b <a a <b a答案:AD 分析:对于A ,a =(√32)23=(34)13<(45)13<1,c =ln3>1,即可得到大小关系;对于B ,a 6=(312)6=27,b 6=(√63)6=36可得到a <b ,再选取中间量32,通过比较,得到最终结果;对于C ,b <0,a <1,c >1,可得到大小关系;对于D ,通过构造对数函数和幂函数,利用函数的单调性可得到最终结果.对于A ,a =(√32)23=(34)13<(45)13<1,c =ln3>1,所以a <b <c ;故A 正确;对于B ,a 6=(312)6=27,b 6=(√63)6=36>27∴a <b c =log 47,∵32=log 4432,∵(32)3=278,b 3=6>278∴b >32(432)2=64>72=49∴c <32,∴c <b ∵a >32∴c <a 最终为:c <a <b .故B 错误;对于C ,b =log 20.3<0,a =0.32=0.09<1,c =20.3>20=1∴b <a <c ;故C 错误; 对于D ,当log 12a >log 12b >0时,∵y =log 12x 在定义域内是减函数,故得到0<a <b <1,∵y =a x 是减函数,故得到a b <a a ,又因为y =x α在x >0时是增函数,故得到a a <b a ,故D 正确. 故选:AD.13、给定函数f (x )=2x x 2+1( )A .f (x )的图像关于原点对称B .f (x )的值域是[−1,1]C .f (x )在区间[1,+∞)上是增函数D .f (x )有三个零点 答案:AB分析:对于A :由函数f (x )的定义域为R ,f (−x )=−f (x ),可判断; 对于B :当x =0时,f (x )=0,当x ≠0时,f (x )=2x+1x,由x +1x ≥2或x +1x ≤−2,可判断;对于C :由t =x +1x 在[1,+∞)单调递增可判断;对于D :令f (x )=0,解方程可判断.解:对于A :因为函数f (x )的定义域为R ,且f (−x )=2(−x )(−x )2+1=−2xx 2+1=−f (x ),所以函数f (x )是奇函数,所以f (x )的图像关于原点对称,故A 正确; 对于B :当x =0时,f (x )=0, 当x ≠0时,f (x )=2x+1x,又x +1x≥2或x +1x≤−2,所以0<f (x )≤1或−1≤f (x )<0,综上得f (x )的值域为[−1,1],故B 正确;对于C :因为t =x +1x 在[1,+∞)单调递增,所以由B 选项解析得, f (x )在区间[1,+∞)上是减函数,故C 不正确;对于D :令f (x )=0,即2xx 2+1=0,解得x =0,故D 不正确, 故选:AB. 填空题14、把满足log 23×log 34×⋅⋅⋅×log n+1(n +2),n ∈N ∗为整数的n 叫作“贺数”,则在区间(1,50)内所有“贺数”的个数是______. 答案:4分析:利用换底公式计算可得log 23×log 34×⋅⋅⋅×log n+1(n +2)=log 2(n +2),即可判断. 解:因为log 23×log 34×⋅⋅⋅×log n+1(n +2) =lg3lg2×lg4lg3×⋅⋅⋅×lg (n+2)lg (n+1)=lg (n+2)lg2=log 2(n +2),又log 24=2,log 28=3,log 216=4,log 232=5,log 264=6,……, 所以当n +2=4,8,16,32时,log 2(n +2)为整数, 所以在区间(1,50)内“贺数”的个数是4. 所以答案是:415、函数f (x )=2√2−x+lg (x +3)的定义域为______.答案:(−3,2)分析:根据给定函数有意义列出不等式组,求解即可得原函数定义域. 函数f (x )=2√2−x lg (x +3)有意义,则有{2−x >0x +3>0,解得−3<x <2,所以函数f (x )的定义域为(−3,2). 所以答案是:(−3,2)16、已知125x =12.5y =1000,则y−x xy=________.答案:13分析:先把指数式化为对数式,再由换底公式化为同底数对数运算即可. 解:因为125x =12.5y =1000,所以x =log 1251000,y =log 12.51000,y−xxy =1x −1y =log 1000125−log 100012.5=log 100012512.5=log 100010=13.所以答案是:13.小提示:本题考查指对数互化公式、换底公式和对数运算,属于基础题. 解答题17、已知函数f(x)=log 2(2x +1). (1)求不等式f(x)>1的解集;(2)若函数g(x)=log 2(2x −1)(x >0),若关于x 的方程g(x)=m +f(x)在[1,2]有解,求m 的取值范围. 答案:(1){x |x >0};(2)[log 213,log 235].分析:(1)由f(x)>1可得2x +1>2,从而可求出不等式的解集, (2)由g(x)=m +f(x),得m =g (x )−f (x )=log 2(1−22x +1),再由x ∈[1,2]可得log 2(1−22x +1)的范围,从而可求出m 的取值范围(1)原不等式可化为2x +1>2,即2x >1,∴x >0, 所以原不等式的解集为{x |x >0}(2)由g(x)=m +f(x), ∴m =g (x )−f (x )=log 2(1−22x +1),当1≤x ≤2时,25≤22x +1≤23,13≤1−22x +1≤35,m ∈[log 213,log 235]18、对于定义在区间[m,n ]上的两个函数f (x )和g (x ),如果对任意的x ∈[m,n ],均有|f (x )−g (x )|≤1成立,则称函数f (x )与g (x )在[m,n ]上是“友好”的,否则称为“不友好”的.已知函数f (x )=log a (x −3a ),g (x )=log a1x−a(a >0,a ≠1).(1)若f (x )与g (x )在区间[a +2,a +3]上都有意义,求a 的取值范围; (2)讨论函数f (x )与g (x )在区间[a +2,a +3]上是否“友好”. 答案:(1)(0,1) (2)答案见解析分析:(1)由题意解不等式组{a +2−3a >0a +2−a >0即可;(2)假设存在实数a ,使得f (x )与g (x )在区间[a +2,a +3]上是“友好”的,即|f (x )−g (x )|=|log a (x 2−4ax +3a 2)|≤1,即−1≤log a (x 2−4ax +3a 2)≤1,只需求出函数y =log a (x 2−4ax +3a 2)在区间[a +2,a +3]上的最值,解不等式组即可. (1)若f (x )与g (x )在区间[a +2,a +3]上都有意义,则必须满足{a +2−3a >0a +2−a >0,解得a <1,又a >0且a ≠1,所以a 的取值范围为(0,1). (2)假设存在实数a ,使得f (x )与g (x )在区间[a +2,a +3]上是“友好”的,则|f (x )−g (x )|=|log a (x 2−4ax +3a 2)|≤1,即−1≤log a (x 2−4ax +3a 2)≤1,因为a ∈(0,1),则2a ∈(0,2),a +2>2,所以[a +2,a +3]在x =2a 的右侧,由复合函数的单调性可得y =log a (x 2−4ax +3a 2)在区间[a +2,a +3]上为减函数, 从而当x =a +2时,y max =log a (4−4a ),当x =a +3时,y min =log a (9−6a ),所以{log a(4−4a)≤1log a(9−6a)≥−10<a<1,即{4−4a≥a9a−6a2−1≤00<a<1,解得0<a≤9−√5712,所以当0<a≤9−√5712时,f(x)与g(x)在区间[a+2,a+3]上是“友好”的;当9−√5712<a<1时,f(x)与g(x)在区间[a+2,a+3]上是“不友好”的.。
最新高考数学难点突破_难点09__指数、对数函数
难点9 指数函数、对数函数问题指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点得:x13log8x1=3x1log8x1,由于x1>1知log8x1≠0,∴x13=3x1.又x1>1,∴x1=3,则点A的坐标为(3,log83).[例2]在xOy平面上有一点列P1(a1,b1),P2(a2,b2),…,P n(a n,b n)…,对每个自然数n点P n位于函数y =2000(10a )x(0<a <1)的图象上,且点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(1)求点P n 的纵坐标b n 的表达式;(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围; (3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),其中x ∈(-∞,+∞),那么( )A.g (x )=x ,h (x )=lg(10x +10-x +2)B.g (x )=21[lg(10x +1)+x ],h (x )= 21[lg(10x +1)-x ] C.g (x )=2x ,h (x )=lg(10x +1)-2xD.g (x )=-2x ,h (x )=lg(10x +1)+2x二、填空题参考答案难点 解:(1)由xx-+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则F (x 2)-F (x 1)=(122121x x ---)+(11222211log 11log x x x x -+--+) )1)(1()1)(1(log )2)(2(212122112x x x x x x x x -++-+---=,⎩<--)2( ,21x x 4.解析:由题意,5分钟后,y 1=ae -nt,y 2=a -ae-nt,y 1=y 2.∴n =51l n 2.设再过t 分钟桶1中的水只有8a ,则y 1=ae -n (5+t )=8a ,解得t =10.答案:10三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′. ∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log aax -21,∴g (x )=log aax -1.(2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.8.解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)( 21log x +3)≤0.∴-3≤log x ≤-3. 23。
高一数学指数函数对数函数知识点
高一数学指数函数对数函数知识点导语:在高中数学中,指数函数与对数函数是一个非常重要的数学概念和知识点。
它们在不同领域的应用非常广泛,比如金融、科学等。
本文将深入探讨高一数学中的指数函数和对数函数的基本概念、性质以及它们之间的关系。
一、指数函数的基本概念与性质1. 指数函数的定义指数函数是以常数e(自然对数的底)为底的函数,表示为f(x) = a^x,其中a > 0且a ≠ 1,x为实数。
举例来说,函数f(x) = 2^x就是一个指数函数,其中以2为底。
2. 指数函数的性质①指数函数的定义域为实数集, 即所有实数x。
②指数函数的值域为正数集, 即所有大于0的实数。
③指数函数是递增函数,即当x1 < x2时,a^x1 < a^x2。
④当a > 1时,指数函数的图像是递增的;当0 < a < 1时,指数函数的图像是递减的。
二、对数函数的基本概念与性质1. 对数函数的定义对数函数是指数函数的反函数。
以常数e为底的对数函数称为自然对数函数,记作ln(x)。
举例来说,函数g(x) = log2(x)就是一个以2为底的对数函数。
2. 对数函数的性质①对数函数的定义域为正数集,即只有正实数才有对数。
②对数函数的值域为实数集。
③对数函数是递增函数,即当x1 < x2时,log(x1) < log(x2)。
④对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x。
三、指数函数与对数函数之间的关系注意:以下的例子仅为了便于理解,具体数值仅供参考。
1. 自然对数与指数函数的关系e^x = a 可以转化为 ln(a) = x。
例如,e^2 = 7.39 可以转化为 ln(7.39) = 2。
2. 对数函数的性质与指数函数的性质对数函数的一些基本性质与指数函数的一些基本性质是相互关联的,如:① loga(xy) = loga(x) + loga(y)② loga(x/y) = loga(x) - loga(y)③ loga(x^y) = y * loga(x)④ loga(b) = logc(b) / logc(a)3. 指数函数与对数函数的实际应用指数函数与对数函数在实际中有着广泛的应用,主要体现在以下几个方面:①金融领域:在复利计算、投资分析等方面,指数函数与对数函数被广泛应用。
指数函数与对数函数的重点知识点再归纳
指数函数与对数函数的重点知识点再归纳指数函数与对数函数的重点知识点再归纳指数函数和对数函数是高中函数考查的重点,在近期的上课过程中发现大家对知识点掌握和题型的识别还是不太好,我再做一个总结。
1、指数和对数的运算指数和对数的运算是学习指数函数和对数函数的基础,在初中我们接触了一些指数和对数的运算法则,但是在高中阶段我们对纯粹的计算要求不高,但是应用很多的,所以必须记住相应的计算法则,和一些常用的特殊值如这样的恒等式,对解答本部分题目用处很大,也对我们接指数对数方程和不等式用处很大。
2、指数函数和对数函数指数函数和对数函数是高考考查的重点,必须记住常见的指对数函数,如还有两个特殊的利用这些函数记住相应的函数的性质和图像,这部分题目考查有函数过定点,函数值得大小比较,函数的图像变换等等3、指数方程,对数方程及其不等式这是我们在解题过程中常用到的,也是由函数的单调性得到的函数的一类应用问题,化成同底是解决这类问题的关键,方程就要注意特殊值,不等式就要注意函数的单调性,但是对于对数函数来说的话,必须注意定义域的限制!4、指数型和对数型的复合函数复合函数的求值,复合函数的单调性等都是考查的重点,所以必须熟悉常见的复合函数的处理方法,复合函数的单调性的判断法则等。
对数型复合函数是考查的重点,因为涉及到定义域问题是学生最最容易出现的问题,所以应该明白为什么上课的时候总是在强调函数问题在处理的时候一定要定义域优先了!5、指数函数和对数函数的关系指数函数和对数函数互为反函数,图像关于直线对称,把握住这两点就没有问题了,像2013年的陕西文科的最后一道题的第一问就涉及到指数函数的反函数问题,其实就是所对应的对数函数而已!总之函数的学习一定要注意归纳题型和方法,总结解题的常见思路和方法,从而慢慢的掌握解题的思路和方法,解题是一个复杂的过程,还是需要多多的练习了!。
高一对数指数函数知识点
高一对数指数函数知识点在高中数学中,对数和指数函数是重要的数学概念。
它们在各个科学领域中都有广泛的应用。
本文将探讨高一阶段涉及的对数和指数函数的知识点。
一、指数函数指数函数是一种形如f(x) = a^x(a为常数)的函数。
其中,a称为底数。
1.指数函数的性质- 当a>1时,指数函数在整个定义域上是递增的;当0<a<1时,指数函数在整个定义域上是递减的。
- 指数函数在x轴上的图像必过点(0,1)。
2.指数函数的图像与性质- 当底数a<1时,指数函数的图像逐渐接近x轴,但永远不会触及。
- 当底数a=1时,指数函数的图像是一条水平线y=1。
- 当底数a>1时,指数函数的图像在x<0时位于y轴下方,经过点(0,1),在x>0时逐渐远离x轴。
二、对数函数对数函数是指形如f(x) = loga(x)(a为正实数且a≠1)的函数。
1.对数函数与指数函数之间的关系对数函数与指数函数是互逆的。
即,如果y = f(x)是指数函数,那么x = f^(-1)(y) = loga(y)是对数函数。
2.对数函数的性质- 当0<a<1时,对数函数在整个定义域上是递减的;当a>1时,对数函数在整个定义域上是递增的。
- 对数函数在y轴上的图像必过点(1,0)。
3.对数函数的图像与性质- 当底数a>1时,对数函数的图像从负无穷趋近于y轴,经过点(1,0),在x>1时逐渐远离y轴。
- 当底数0<a<1时,对数函数的图像在x>0时位于y轴上方,在x<1时逐渐向y轴靠近。
三、指数方程与对数方程指数方程和对数方程是数学问题中常见的类型。
在解决这些问题时,需要应用指数函数和对数函数的性质。
1.指数方程指数方程是指形如a^x = b(a、b为常数)的方程。
解这种方程时,可将两边同时取以底数为a的对数,然后运用对数函数的性质。
举个例子,解方程2^x = 8:取以底数为2的对数,得到x = log2(8) = 3。
高考数学难点突破_难点09__指数对数函数
高考数学难点突破_难点09__指数对数函数指数对数函数是高考数学中的一个重要的难点,也是学生普遍认为比较难理解和掌握的内容之一、本文将从基本概念、性质、解题技巧等方面进行详细介绍,帮助学生突破这一难点。
一、基本概念1.指数函数:指数函数是以指数为自变量,以底数为底的函数。
比如y=2^x就是一个指数函数,其中2是底数,x是指数。
2. 对数函数:对数函数是指数函数的逆运算,也就是说,指数函数和对数函数互为反函数。
比如 y = log2(x) 就是一个对数函数,其中 2 是底数,y 是对数。
二、性质1.指数函数的性质:(1)底数为正数且不等于1;(2)指数为任意实数;(3)当底数小于1时,指数函数是递减函数;(4)当底数大于1时,指数函数是递增函数。
2.对数函数的性质:(1)底数为正数且不等于1;(2)对数为任意正数;(3)对数函数的定义域是正数集合,值域是实数集合;(4)对数函数图象是一条过点(1,0)的上凸曲线。
三、解题技巧1.指数函数的解题技巧:(1)利用指数函数的性质进行函数图象的绘制;(2)将指数转化为对数的形式,利用对数的性质简化计算;(3)注意指数函数的定义域和值域,避免出现无解的情况;(4)利用指数函数的性质解决等式、不等式,注意正确应用换底公式。
2.对数函数的解题技巧:(1)利用对数函数的性质进行函数图象的绘制;(2)利用对数函数的反函数性质化简等式、不等式的解;(3)根据定义域和值域限制,判断函数是否有解;(4)注意合理利用换底公式,化简对数运算。
四、经典题型1. 解对数方程:如 log2(x+3) + log2(x-2) = 3,将对数方程转化为指数方程求解。
2.判断函数性质:如f(x)=5^(x-3),要求判断指数函数f(x)的增减性和定义域。
3.运用指数对数函数求最值:如y=3^x-3^(1-x),通过化简求函数的最值。
4. 判断指数函数与对数函数的关系:如 f(x) = 2^x 和 g(x) = log2(x),要求判断两个函数的值域和定义域。
高中数学必修一指数函数对数函数知识点
高中数学必修一指数函数对数函数知识点高中数学必修一中,指数函数和对数函数是重要的知识点。
指数函数是一种以指数为自变量的函数,形式为y = a^x,其中a为底数,x为指数。
而对数函数是指数函数的逆运算,形式为y = loga(x),其中a为底数,x为真数。
以下是关于指数函数和对数函数的具体知识点。
一、指数函数的图像和性质1.指数函数的基本形式:-y=a^x,其中a>0且a≠12.指数函数的基本性质:-当0<a<1时,指数函数呈现递减的图像;-当a>1时,指数函数呈现递增的图像;-当a=1时,指数函数为常数函数y=1二、对数函数的图像和性质1.对数函数的基本形式:- y = loga(x),其中a > 0且a≠12.对数函数的基本性质:- 对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x;-对数函数的图像关于直线y=x对称;-对数函数的定义域为正实数集,值域为实数集。
三、指数函数和对数函数的运算性质1.指数函数的运算性质:-a^x*a^y=a^(x+y);- (a^x)^y = a^(xy);- (ab)^x = a^x * b^x;-a^0=1,其中a≠0。
2.对数函数的运算性质:- loga(xy) = loga(x) + loga(y);- loga(x^y) = y * loga(x);- loga(x/y) = loga(x) - loga(y);- loga(1) = 0,其中a≠0。
四、指数函数和对数函数的应用1.指数函数在生活中的应用:-经济增长模型中的应用;-指数衰减与物质的半衰期计算;-大自然中的指数增长现象。
2.对数函数在生活中的应用:-pH值的计算;-放大器的功率增益计算;-数字音乐的音量计算。
综上所述,指数函数和对数函数是高中数学必修一中的重要知识点。
掌握了指数函数和对数函数的基本形式、性质以及运算规律,能够理解其图像特征和在实际问题中的应用。
高中数学必修一第四章指数函数与对数函数重点归纳笔记(带答案)
高中数学必修一第四章指数函数与对数函数重点归纳笔记单选题1、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b=(2a )2(23b )2=5232=259.故选:C.2、设log 74=a,log 73=b ,则log 4936=( ) A .12a −b B .12b +a C .12a +b D .12b −a答案:C分析:根据对数的运算性质计算即可.解:log 4936=log 7262=log 76=log 72+log 73=12log 74+log 73=12a +b . 故选:C.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34)C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916).故选:D .4、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2) 答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13, ∴a 的取值范围是(0,13].故选:C .5、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e)D .(0,√e )答案:B分析:f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0), 函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,通过数形结合即可得解. f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为: f(−x)=x 2+e −x −12(x >0),函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,即f(−x)=g(x)有解,即x 2+e −x −12=x 2+ln(x +a),整理的:e −x −12=ln(x +a), y =e −x −12和y =ln(x +a)的图像存在交点,如图:临界值在x =0处取到(虚取),此时a =√e ,故当a <√e 时y =e −x −12和y =ln(x +a)的图像存在交点, 故选:B.6、已知函数f(x)={log 12x,x >0,a ⋅(13)x,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞) 答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围. 令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x=0,此时函数有无数个零点,不符合题意;当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1,则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件; 当a >0时,要使直线y =1与y =f(x)的图象只有一个交点, 则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点, 因为x ≤0 时,f (x )=a ⋅(13)x∈[a,+∞),此时f (x ) 最小值为a , 所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞), 故选:B.7、已知对数式log (a+1)24−a(a ∈Z )有意义,则a 的取值范围为( )A .(−1,4)B .(−1,0)∪(0,4)C .{1,2,3}D .{0,1,2,3} 答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可. 由题意可知:{a +1>0a +1≠124−a >0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0.∵a ∈Z ,∴a 的取值范围为{1,2,3}. 故选:C.8、若函数f (x )=ln(ax +√x 2+1)是奇函数,则a 的值为( ) A .1B .-1 C .±1D .0 答案:C分析:根据函数奇函数的概念可得ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0,进而结合对数的运算即可求出结果.因为f (x )=ln(ax +√x 2+1)是奇函数,所以f (-x )+f (x )=0.即ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0恒成立,所以ln [(1−a 2)x 2+1]=0,即(1−a 2)x 2=0 恒成立,所以1−a 2=0,即a =±1. 当a =1时,f (x )=ln(x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 当a =−1时,f (x )=ln(−x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 故选:C. 多选题9、如图,某池塘里的浮萍面积y (单位:m 2)与时间t (单位:月)的关系式为y =ka t (k ∈R 且k ≠0,a ≠1).则下列说法正确的是( )A.浮萍每月增加的面积都相等B.第6个月时,浮萍的面积会超过30m2C.浮萍面积从2m2蔓延到64m2只需经过5个月D.若浮萍面积蔓延到4m2,6m2,9m2所经过的时间分别为t1,t2,t3,则t1+t3=2t2答案:BCD分析:由题意结合函数图象可得{ka=1ka3=4,进而可得y=2t−1;由函数图象的类型可判断A;代入x=6可判断B;代入y=2、y=64可判断C;代入y=4、y=6、y=9,结合对数的运算法则即可得判断D;即可得解.由题意可知,函数过点(1,1)和点(3,4),则{ka=1ka3=4,解得{k=12a=2(负值舍去),∴函数关系式为y=12×2t=2t−1,对于A,由函数是曲线型函数,所以浮萍每月增加的面积不相等,故选项A错误;对于B,当x=6时,y=25=32>30,故选项B正确;对于C,令y=2得t=2;令y=64得t=7,所以浮萍面积从2m2增加到64m2需要5个月,故选项C正确;对于D,令y=4得t1=3;令y=6得t2=log212;令y=9得t3=log218;所以t1+t3=3+log212=log2144=2log212=2t2,故选项D正确.故选:BCD.小提示:本题考查了函数解析式的确定及函数模型的应用,考查了运算求解能力,合理转化条件是解题关键,属于基础题.10、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项. 依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD11、已知函数f(x)=lg(√x2−2x+2−x+1),g(x)=2x+62x+2则下列说法正确的是()A.f(x)是奇函数B.g(x)的图象关于点(1,2)对称C.若函数F(x)=f(x)+g(x)在x∈[1−m,1+m]上的最大值、最小值分别为M、N,则M+N=4D.令F(x)=f(x)+g(x),若F(a)+F(−2a+1)>4,则实数a的取值范围是(−1,+∞)答案:BCD分析:利用函数的奇偶性的定义,可判定A错误;利用图像的平移变换,可判定B正确;利用函数的图象平移和奇偶性,可得判定C正确;利用函数的单调性,可判定D正确.由题意函数f(x)=lg(√x2−2x+2−x+1)=lg(√(x−1)2+1−(x−1)),因为√(x−1)2+1−(x−1)>0恒成立,即函数f(x)的定义域为R,又因为f(0)=lg(√2+1)≠0,所以f(x)不是奇函数,所以A错误;将g (x )=2x +62x +2的图象向下平移两个单位得到y =2x +62x +2−2=2−2x 2+2x,再向左平移一个单位得到ℎ(x )=2−2x+12+2x+1=1−2x 1+2x,此时ℎ(−x )=1−2−x1+2−x =2x −12x +1=−ℎ(x ),所以ℎ(x )图象关于点(0,0)对称, 所以g (x )的图象关于(1,2)对称,所以B 正确;将函数f (x )的图象向左平移一个单位得m (x )=lg(√x 2+1−x), 因为m (−x )+m (x )=lg(√x 2+1+x)+lg(√x 2+1−x)=lg1=0, 即m(−x)=−m(x),所以函数m (x )为奇函数, 所以函数f (x )关于(1,0)点对称,所以F (x )若在1+a 处 取得最大值,则F (x )在1−a 处取得最小值,则F(1+a)+F(1−a)=f(1+a)+f(1−a)+g(1+a)+g(1−a)=0+4=4,所以C 正确; 由F(a)+F(−2a +1)>4,可得f(a)+f(1−2a)+g(a)+g(1−2a)>4, 由f (x )=lg(√(x −1)2+1−(x −1)), 设m (x )=lg(√x 2+1−x),t =√x 2+1−x , 可得t ′=√x 2+1−1<0,所以t =√x 2+1−x 为减函数,可得函数m (x )=lg(√x 2+1−x)为减函数,所以函数f (x )=lg(√(x −1)2+1−(x −1))为单调递减函数, 又由g (x )=2x +62x +2=1+42x +2为减函数,所以F (x )为减函数,因为F (x )关于点(1,2)对称,所以F (a )+F (−2a +1)>4=F(a)+F(2−a),即F(−2a +1)>F(2−a), 即−2a +1<2−a ,解得a >−1,所以D 正确. 故选:BCD.小提示:求解函数有关的不等式的方法及策略: 1 、解函数不等式的依据是函数的单调性的定义, 具体步骤:①将函数不等式转化为f(x 1)>f(x 2)的形式;②根据函数f (x )的单调性去掉对应法则“f ”转化为形如:“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解. 2 、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 填空题12、若√4a 2−4a +1=√(1−2a )33,则实数a 的取值范围_________ .答案:(−∞,12]分析:由二次根式的化简求解由题设得√4a 2−4a +1=√(2a −1)2=|2a −1|,√(1−2a )33=1−2a ,所以|2a −1|=1−2a 所以1−2a ≥0,a ≤12.所以答案是:(−∞,12]13、已知10p =3,用p 表示log 310=_____. 答案:1p ##p −1分析:根据指数和对数的关系,以及换底公式,分析即得解. ∵10p =3,∴p =lg3,∴log 310=1g101g3=11g3=1p . 所以答案是:1p .14、对于任意不等于1的正数a ,函数f (x )=log a (2x +3)+4的图像都经过一个定点,这个定点的坐标是_______. 答案:(−1,4)分析:根据log a 1=0求得正确结论.依题意,当2x +3=1,即x =−1时,f (−1)=log a 1+4=4, 所以定点为(−1,4). 所以答案是:(−1,4)解答题15、已知函数f(x)=2x−12x.(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。
高一最难的数学知识点指数对数
高一最难的数学知识点指数对数在高中数学中,指数和对数是其中最具挑战性的知识点之一。
对于大部分高一学生来说,掌握这两个概念可能需要一些时间和努力。
本文将介绍高一最难的数学知识点之一——指数和对数,并通过例题和解析,帮助读者更好地理解和应用这些概念。
一、指数指数是数学中重要且常见的概念之一。
在数学中,指数表示一个数的乘积中,相同因子的重复次数。
指数的表示通常采用上标形式,如2³表示2的三次方。
在学习指数时,我们需要了解指数运算的基本规则。
其中包括乘法法则、除法法则和幂运算法则等。
1. 乘法法则乘法法则指出,两个具有相同底数的指数相乘,等于底数不变,指数相加。
例如,aⁿ * aᵐ = a^(n+m)。
通过使用乘法法则,我们可以简化复杂的指数运算,并进行快速计算。
2. 除法法则除法法则是乘法法则的逆运算。
两个具有相同底数的指数相除,等于底数不变,指数相减。
例如,aⁿ / aᵐ = a^(n-m)。
掌握除法法则对于解决涉及指数的复杂问题非常重要。
3. 幂运算法则幂运算法则规定,一个数的指数上再次有指数,等于底数不变,指数相乘。
即(aⁿ)ᵐ = a^(n*m)。
理解幂运算法则有助于我们处理复合指数和简化指数表达式。
二、对数对数是指数的逆运算。
在数学中,对数表示一个数以某个底数为指数时的结果。
对数有时候也被称为幂运算的反函数。
对数的表示通常采用log的形式,如logₐb表示以底数a为指数时,结果为b的对数。
掌握对数的规则和性质是理解和解决对数问题的关键。
以下是一些基本的对数性质。
1. 对数的乘法法则对数的乘法法则指出,两个数相乘后取对数,等于将两个数分别取对数再相加。
即logₐ(m*n) = logₐm + logₐn。
这个性质可以用于简化复杂的对数运算。
2. 对数的除法法则对数的除法法则是乘法法则的逆运算。
两个数相除后取对数,等于将两个数分别取对数再相减。
即logₐ(m/n) = logₐm - logₐn。
(精选试题附答案)高中数学第四章指数函数与对数函数重难点归纳
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数重难点归纳单选题1、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375= 0.0625<0.1,所以满足精确度0.1;所以方程x3+x2−2x−2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B .故选:B2、已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.3、已知f (x )是定义在R 上的奇函数,当x ≥0时,f(x)=log 2(x +2)+t ,f (−6)=( ) A .−2B .2C .−4D .4 答案:A分析:因f (x )是定义在R 上的奇函数,所以f (0)=0,从而可求t ,再由奇函数的定义即可求出f (−6)的值. 解:∵f (x )是定义在R 上的奇函数,又当x ≥0时,f(x)=log 2(x +2)+t , ∴ f (0)=log 2(0+2)+t =0, ∴t =−1,∴当x ≥0时,f(x)=log 2(x +2)−1,∴f (−6)=−f (6)=−[log 2(6+2)−1]=−(log 223−1)=−2, 故选:A.4、已知函数f(x)=9+x 2x,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可. 当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a , 所以254≥3+a ,可得a ≤134.故选:A5、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为( )A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x是增函数,y 1=(13)x与y 3=10−x=(110)x是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A . 故选:A6、设a =30.7, b =(13)−0.8, c =log 0.70.8,则a,b,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案:D分析:利用指数函数与对数函数的性质,即可得出a,b,c 的大小关系. 因为a =30.7>1, b =(13)−0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1, 所以c <1<a <b . 故选:D.小提示:本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:y =a x ,当a >1时,函数递增;当0<a <1时,函数递减;(2)利用对数函数的单调性:y =log a x ,当a >1时,函数递增;当0<a <1时,函数递减; (3)借助于中间值,例如:0或1等.7、若32是函数f (x )=2x 2−ax +3的一个零点,则f (x )的另一个零点为( )A .1B .2C .(1,0)D .(2,0) 答案:A分析:由32是函数f (x )=2x 2−ax +3的一个零点,可得a 值,再利用韦达定理列方程解出f (x )的另一个零点. 因为32是函数f (x )=2x 2−ax +3的一个零点,所以f (32)=2×(32)2−a ×32+3=0,解得a =5.设另一个零点为x 0,则x 0+32=52,解得x 0=1,所以f (x )的另一个零点为1. 故选:A .8、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项. 因为0<a <1,故y =a x 的图象经过第一象限和第二象限, 且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限. 故选:A .9、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( ) A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增 C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0,得x ≠±12.又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ), ∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增, 又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增, 在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .10、设f(x)={e x−1,x <3log 3(x −2),x ≥3,则f(f (11))的值是( )A .1B .eC .e 2D .e −1分析:根据自变量的取值,代入分段函数解析式,运算即可得解. 由题意得f(11)=log 3(11−2)=log 39=2, 则f(f (11))=f (2)=e 2−1=e . 故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题. 填空题11、已知log a 13>1,则实数a 的取值范围为______.答案:(13,1).分析:分0<a <1和a >1两种情况求解即可.解:当0<a <1时,由log a13>1,可得log a13>log aa,解得13<a <1;当a >1时,log a 13>1,可得log a13>log aa,得a <13,不满足a >1,故无解.综上所述a 的取值范围为:(13,1). 所以答案是:(13,1).12、已知a ,b 为正数,化简√a 5b 2⋅(a 2b )−1⋅√b 3=_______.答案:a 12b 12分析:根据根式与分数指数幂的互化以及指数幂的运算公式即可求出结果.原式=a 52b 2⋅a −2b −1⋅b 32=a 12b 12. 所以答案是:a 12b 12.13、已知√(a −1)44+1=a ,化简(√a −1)2+√(1−a)2+√(1−a)33=_________. 答案:a −1分析:根据已知条件判断a 的范围,再结合根式的运算性质,即可求得结果. 由已知√(a −1)44+1=a ,即|a −1|=a −1,即a ⩾1,所以(√a −1)2+√(1−a)2+√(1−a)33=(a −1)+(a −1)+(1−a)=a −1, 所以答案是:a −1小提示:本题考查根式的运算性质,属简单题;注意公式的熟练应用即可. 14、函数f (x )=3x −3−x 3x +3−x+2,若有f (a )+f (a -2)>4,则a 的取值范围是________.答案:(1,+∞)分析:构造函数F (x )=f (x )-2,则f (a )+f (a -2)>4等价于F (a )+F (a -2)>0,分析F(x)奇偶性和单调性即可求解.设F (x )=f (x )-2,则F (x )=3x −3−x3x +3−x ,易知F (x )是奇函数,F (x )=3x −3−x3x +3−x =32x −132x +1=1-232x +1在R 上是增函数,由f (a )+f (a -2)>4得F (a )+F (a -2)>0, 于是可得F (a )>F (2-a ),即a >2-a ,解得a >1. (1,+∞)15、已知函数f (x )={x 2+4x x ≥22|x−a | x <2 ,若对任意的x 1∈[2,+∞),都存在唯一的x 2∈(−∞,2),满足f (x 2)=f (x 1),则实数a 的取值范围是______. 答案:0≤a <4分析:由题意可得函数f (x )在[2,+∞)时的值域包含于函数f (x )在(−∞,2)时的值域,利用基本不等式先求出函数f (x )在x ∈[2,+∞)时的值域,当x ∈(−∞,2)时,对a 分情况讨论,分别利用函数的单调性求出值域,从而求出a 的取值范围. 解:设函数g (x )=x 2+4x , x ≥2的值域为A ,函数ℎ(x )=2|x−a | , x <2的值域为B ,因为对任意的x 1∈[2,+∞),都存在唯一的x 2∈(−∞,2),满足f (x 2)=f (x 1), 则A ⊆B ,且B 中若有元素与A 中元素对应,则只有一个.当x1∈[2,+∞)时,g(x)=x2+4x =x+4x,因为x+4x ≥2√x⋅4x=4,当且仅当x=4x,即x=2时,等号成立,所以A=[4,+∞),当x2∈(−∞,2)时,ℎ(x)=2|x−a| , x<2①当a≥2时,ℎ(x)=2a−x , x<2,此时B=(2a−2,+∞),∴2a−2<4,解得2≤a<4,②当a<2时,ℎ(x)={2a−x,x<a2x−a,a≤x<2,此时ℎ(x)在(−∞,a)上是减函数,取值范围是(1,+∞),ℎ(x)在[a,2)上是增函数,取值范围是[1,22−a),∴22−a≤4,解得0≤a<2,综合得0≤a<4.所以答案是:0≤a<4小提示:关键点点睛:本题即有恒成立问题,又有存在性问题,最后可转化为函数值域之间的包含关系问题,最终转化为最值问题,体现了转化与化归的思想.解答题16、已知函数ℎ(x)=|log12x|.(1)求ℎ(x)在[12,a](a>12)上的最大值;(2)设函数f(x)的定义域为I,若存在区间A⊆I,满足:对任意x1∈A,都存在x2∈A(其中A表示A在I上的补集)使得f(x1)=f(x2),则称区间A为f(x)的“Γ区间”.已知ℎ(x)=|log12x|(x∈[12,2]),若A=[12,a)为函数ℎ(x)的“Γ区间”,求a的最大值.答案:(1)答案见解析;(2)1.解析:(1)作出函数ℎ(x)=|log12x|的图象,分12<a≤2,a>2,利用数形结合法求解.(2)根据对任意x1∈A,都存在x2∈A使得f(x1)=f(x2),分12<a≤1,1<a≤2,分别求得ℎ(x)在[12,a)和[a,2]上的值域,利用集合法求解.(1)函数ℎ(x)=|log12x|的图象如图所示:当12<a≤2时,ℎ(x)的最大值为ℎ(12)=1,当a>2时,ℎ(x)的最大值为ℎ(a)=−log12a.(2) 当12<a≤1时,ℎ(x)在[12,a)上的值域为(log12a,1],ℎ(x)在[a,2]上的值域为[0,1],因为满足:对任意x1∈A,都存在x2∈A使得f(x1)=f(x2),所以(log12a,1)[0,1],成立;此时A=[12,a)为函数ℎ(x)的“Γ区间”,当1<a≤2时,ℎ(x)在[12,a)上的值域为[0,1],ℎ(x)在[a,2]上的值域为[−log12a,1],当1≤x1<a时,ℎ(x1)<ℎ(a)=−log12a,所以∃x1∈[1,a),ℎ(x1)∉[−log12a,1],即存在x1∈A,对任意x2∈A使得f(x1)≠f(x2),所以A=[12,a)不为函数ℎ(x)的“Γ区间”,所以a的最大值是1.小提示:方法点睛:双变量存在与恒成立问题:若∀x 1∈D 1,∀x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )min >g (x )max ;若∃x 1∈D 1,∃x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )max >g (x )min ;若∃x 1∈D 1,∀x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )max >g (x )max ;若∀x 1∈D 1,∃x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )miax >g (x )min ;若∀x 1∈D 1,∃x 2∈D 2, f (x 1)=g (x 2)成立,则 f (x )的值域是g (x )的子集;17、(1)计算:(279)12+(lg5)0+(2764)−13; (2)设4a =5b =100,求2(1a +2b )的值.答案:(1)4;(2)2.分析:(1)根据指数的运算性质直接计算即可;(2)通过换底公式可得1a=1log 4100=log 1004,1b =1log 5100=log 1005,进而可得解. (1)原式=(259)12+(lg5)0+[(34)3]−13=53+1+43=4. (2)∵4a =100, ∴a =log 4100.同理可得,b =log 5100,则1a =1log4100=log 1004,1b =1log 5100=log 1005, ∴1a +2b=log 1004+2log 1005=log 100(4×52)=log 100100=1. ∴2(1a +2b )=2.18、已知函数f (x )=log 12x +12x −172.(1)用单调性的定义证明:f (x )在定义域上是减函数;(2)证明:f (x )有零点;(3)设f (x )的零点在区间(1n+1,1n )内,求正整数n .答案:(1)证明见解析(2)证明见解析(3)10分析:(1)设0<x 1<x 2,则结合对数的运算法则可证得f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2)>0,则f (x 1)>f (x 2),由此可得证.(2)结合函数的解析式有f (1)=−8<0,f (116)=72>0,且f (x )在区间(116 , 1)上连续不断,由零点存在定理可得证.(3)结合函数的解析式可得f (110)f (111)<0,由此可得答案.(1)因为f (x )的定义域为(0,+∞),设x 1,x 2是(0,+∞)内的任意两个不相等的实数,且x 1<x 2,则f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2), 因为x 2−x 1>0,x 1x 2>0,所以log 12x 1−log 12x 2>0,12x 1−12x 2=x 2−x 12x 1x 2>0,所以f (x 1)>f (x 2),故f (x )在定义域(0,+∞)上是减函数.(2)因为f (1)=0+12−172=−8<0,f (116)=4+8−172=72>0, 所以f (1)⋅f (116)<0,所以f (x )有零点.(3)f (111)=log 12111+112−172=log 211−3>log 28−3=0,f (110)=log 12110+5−172=log 210−72=log 25−52=log 2√25−log 2√32<0,所以f (110)f (111)<0,又f (x )在(0,+∞)上为减函数,所以f (x )的零点在区间(111,110)内,故n =10. 19、某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量y (件)与售价x (元/件)之间满足一次函数关系,部分对应数据如下表所示.(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?答案:(1)y =−20x +840(20⩽x ⩽40)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元分析:(1)设y =ax +b ,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与x 的关系,由二次函数的性质得最大值.(1)设y =ax +b ,不妨选择两组数据(20,440),(22,400)代入,可得{440=20a +b,400=22a +b,解得{a =−20,b =840, ∴一次函数的解析式为y =−20x +840(20⩽x ⩽40).(2)设利润为S 元,由题意可得S =(−20x +840)(x −20)=−20x 2+1240x −16800=−20(x −31)2+2420,∴当x =31时,S max =2420,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元.。
指数对数函数知识点
指数对数函数知识点指数和对数函数是高中数学中重要的概念。
它们在解决各种复杂的问题中起着重要的作用。
本文将介绍指数和对数函数的基本性质和应用。
一、指数函数指数函数是以某个常数为底数,以自变量为指数的函数。
常见的指数函数形式为 y = a^x,其中 a 为底数,x 为指数。
指数函数具有以下几个重要的性质。
1. 当 a > 0 且a ≠ 1 时,指数函数的图像是递增的,呈现上升趋势。
当 0 < a < 1 时,指数函数的图像在 x 轴右侧逐渐靠近 x 轴,但没有交点。
当 a > 1 时,指数函数在 x 轴右侧逐渐远离 x 轴,但没有交点。
2. 指数函数 y = a^x 的图像经过点 (0, 1),这是因为任何数的 0 次方都等于 1。
3. 指数函数的性质还包括:当 x 为正无穷时,指数函数的值趋向于正无穷;当 x 为负无穷时,指数函数的值趋向于 0。
这表明指数函数在某个点附近很大或很小。
二、对数函数对数函数是指数函数的反函数,即 y = loga x,其中 a 为底数,x 为真数。
对数函数也具有一些重要的性质。
1. 对数函数的定义域是正实数集合 R+,值域是实数集合 R。
2. 对数函数的图像与指数函数的图像关于直线 y = x 对称,即 f(x) = loga x 在 y = x 时与 f(x) = a^x 相交。
3. 对数函数的图像基本特征是递增的,在 x 轴的左侧逐渐上升。
4. 对数函数的性质还包括:loga 1 = 0,loga a = 1。
这是因为对于任何数 a,a^0 = 1,a^1 = a。
三、指数和对数函数的应用指数和对数函数在各个领域中都有广泛的应用。
以下是其中的一些例子。
1. 金融领域:指数和对数函数用于计算复利问题,如投资收益率、债券价格等。
2. 成长模型:指数函数可以用于描述生物种群的增长模型,如细胞分裂、细菌繁殖等。
3. 天文学:指数函数可以用于描述恒星的亮度,对于测量星等有重要作用。
04高中数学《指数函数对数函数》知识点
指数函数、对数函数知识点知识点内 容典 型 题整数和有理指数幂的运算a 0=1(a ≠0);ࡡ࠱࠱ࡡ=࠱a ࡡ(a ≠0, n ∈N *)ࡡm ࡡ=n a ࠱m(a >0 , m ,n ∈N *, 且n >1)(a >0 ,m ,n ∈N *, 且n >1)当n ∈N * 时,࠱n a ࠱ࡡ=a当为奇数时,ࡡa n=a当为偶数时,ࡡa n=│a │=a (a ≥0)࠱a (a ࠱0)运算律:ࡡm ࡡn࠱Àa m Ƞn (a m )n ࠱Q a m n࠱a ࡡĩn ࠱࠱š n ࡡn1.计算: ࠱࠱ ࠱×࠱42࠱= .2. 2࠱࠱282= ;3࠱࠱3࠱3= . ࠱3࠱3࠱27= ;39࠱36 = .3.︒--++-45sin 2)12()12(014.指数函数的概念、图象与性质1、解析式:y ࠱ a x(a >0,且a ≠1)2、图象:3、函数y ࠱ a x(a >0,且a ≠1)的性质:①定义域:R ,即(-∞,+∞)值 域:R + , 即(0,+∞)②图象与y 轴相交于点(0,1).③单调性:在定义域R 上当a >1时, 在R 上是增函数当0<a <1时,在R 上是减函数④极值:在R 上无极值(最大、最小值)当a >1时,图象向左与x 轴无限接近;当0<a <1时,图象向右与x 轴无限接近.⑤奇偶性:非奇非偶函数.5.指数函数y ࠱ a x(>0且≠1)的图象过a a 点(3,π) , 求f (0)、f (1)、f (-3)的值.6.求下列函数的定义域:① ; ②.22x y -=2415-=-x y 7.比较下列各组数的大小:①1.22.5 1.22.51 , 0.4-0.1 0.4-0.2 ,②0.30.40.40.3,233322.③(23)࠱12,(23)࠱13,(12)࠱128.求函数的最大值.176221+-⎪⎭⎫ ⎝⎛=x x y 9.函数在(-∞,+∞)上是减函数,x a y )2(-=则的取值范围()a A.a <3 B.c C.a >3 D.2<a <310.函数在(-∞,+∞)上是减函数,xa y )1(2-=则a 适合的条件是( )A.|a |>1B.|a |>2C.a >D.1<|a |<22知识点内 容典 型 题对数的概念定义:设a >0且a ≠1,若a 的b 次幂为N ,即š b =N ,则b 叫做以a 为底N 的对数,记作log a N =b .(a 叫做底数,N 叫做真数,式子loga N 叫做对数式.)š b=N log a N =b (a >0且a ≠1)当a =10时,简记为lg x ,称x 10log 为常用对数;当a =e (e ≈2.718…)时,11.把化为对数式为 .5.09017.0=x12.把lg x =0.35化为指数式为 .13.把ln x =2.1化为指数式为.14. log 3 x =-,则x =.2115.已知:8a =9,2b =5,求log 9125.简记为ln x ,称为自然对数.x e log 对数运算的法则设a >0,b >0,a ≠1,b ≠1,M >0,N >0① š b=Nlog a N =b② 负数和零没有对数;③ log a 1=0, log a a =1 ④ =N ,Na alog N a Na =log ⑤(M ·N )=M +Na log a log a log ⑥=M -Na log N Ma log a log ⑦=n Ma log nM a log ⑨ 换底公式:N =b log b Na a log log 换底公式的推论:b =a log ab log 1( b ·a =1 )a logb log log a b =log a nbnlog a mb n=nmlog a b16.=.5log 8log 251log 932⋅17.若x =log a 3,则ࡡ࠱ࡡ࠱ɏa ࠱ɯ࠱Ÿࡡࡡ࠱ýࡡ࠱ x的值是.18.计算࠱l ࠱࠱࠱࠱= .19.计算下列各式:①16log 91log 42log 2)81(383log 21322⋅⋅+⋅ࡡ②)243log 81log 27log 9log 3(log 693216842)32(log ++++③2.1lg 1000lg 8lg 27lg -+④⎪⎭⎫⎝⎛++36log 43log 32log log 4212220.已知lg(x -y )+lg(x +2y )=lg x +lg y +lg 2则=.y x21.已知:log 1227=a ,求log 616的值.22.已知,,则lg5=( )p =3log 8q =5log 3A.B.53qp +q p pq ++31C. D.pqpq 313+22q p +知识点内 容典 型 题对数函数的概念及性质1.解析式:y =log a x (a >0,且a ≠1)2.图象:y =log a x 与y ࠱ a x(a >0,a ≠1)互为反函数,故二者图象关于直线y =x 对称.(如下图)3. y =log a x (a >0,且a ≠1)性质:①定义域:R +,即(0,+∞)值 域:R , 即(-∞,+∞);②过x 轴上的定点(1,0);③单调性:a >1时,在(0,+∞)上是增函数;0<a <1时,在(0,+∞)上是减函数④极值:在(0,+∞)上无最大(小)值,a >1,图象在左下方与y 轴无限接近;0<a <1,图象在左上方与y 轴无限接近.⑤奇偶性:非奇非偶.23.函数y =࠱࠱࠱ࡡ 的定义域为 .24.函数y =log 13(x ࠱1)的定义域是25.求函数y =log 2 (x 2࠱4x ࠱5)的定义域.26.对满足m >n 的任意两个非零实数,下列不等式恒成立的是()A.ࡡ>nB.lg(m 2 ) >lg(n 2 )C.m 4>n 4D.(࠱2)m <(࠱2)n27.比较各组数的大小:①log 120.2 log 120.21,lg1.1 lg1.11②,,从小到大为7.0667.06log 7.0③ log 89 log 98 , ④ log 25 log 75⑤ log 35log 6428.已知f (x )的图象与g (x )=(14)x的图象关于直线y =x 对称,则f (x )= .指数和对数不等式基本思路:利用指数、对数函数的图象(实质是判断利用函数的增减性),把原不等式转化为一元一次(或二次)不等式(组).①a f (x )>a g (x ) (a >0,a ≠1)型若a >1, f (x )>g (x )若0<a <1,f (x )<g (x )②log a f (x )>log a g (x ) (a >0,a ≠1)型若a >1, f (x )>g (x )若0<a <1,f (x )<g (x )29.解不等式:>123.0++x xxx5223.0+-30.若<0,则a 的取值范围是 .3log 2a -31.若<1,则a 的取值范围是 .32log a32.解不等式:log 12(x 2࠱4x ࠱5)<log 12(x 2࠱1)33.解不等式:log x (2x ࠱1)>log x 2知识点内容典型题简单的指数方程和对数方程1、同底的方程,直接比较指数或真数即可(略).2、指数方程的两种常见形式:①ࡡf (x)࠱b g (x)(a ,b>0,a≠1, b≠1)两边取对数,将方程化为:f(x)=g(x)log a b或f(x)log b a=g(x)②ࡡ2x࠱pa x࠱q࠱50(a>0,且a≠1)用换元法,令ࡡx=t,将原方程化为:ࡡ 2࠱ࡡࡡ࠱q࠱0求出t(若t≤0,应舍去这个t),t>0时可得x=log a t是原方程的解;若方程ࡡ 2࠱ࡡࡡ࠱q࠱0无正根,则原方程无解.3、对数方程的两种常见形式:①log a f (x)=b(a>0,a≠1)根据对数的定义,原方程可化为:f(x)=šb.②(x)2 + p x+q=0(a>0,a≠1)alogalog可用换元法,令log a x=t,得ࡡ 2࠱ࡡࡡ࠱q࠱0,解之得实数根t,进而得原方程的解为x=a t,如无实数根,则原方程无解(对数方程必须验根).解下列方程:34.=x⎪⎭⎫⎝⎛812435.1621=+x36.51)10(1.052-⨯=⋅xxx37.8116827941=⎪⎭⎫⎝⎛⋅⎪⎭⎫⎝⎛-xx38.3x+2࠱32࠱x=8039.࠱o࠱࠱ijx=240.2log3x=1441.log2(x࠱3)2࠱442.log2(x࠱1)2࠱log4(x࠱1)࠱543.2)22(log)12(log122=+⋅++xx44.x lg x࠱2࠱100045.432log2xxx=复合函数的单调性复合函数y=f [g(x)]的单调性由u=g(x)与y=f(u)的单调性共同决定,其规律如下表:函数单调性(同增异减)u=g (x)增增减减y=f (u)增减增减y=f [g (x)]增减减增46.在(-∞,0)上为增函数的是( )A.y=-2xB.y=-x2C.y=2-2xD.y=log2(-x)47.函数y=在(-∞,+∞)上是( )5ࡡxA.增函数B.减函数C.奇函数D.偶函数48.求函数y=的单调递增区间.24331x x-+-⎪⎭⎫⎝⎛49.*已知f(x)的图象与g(x)=(14)x的图象关于直线y=x对称,则f(x)=,f(2x-x2)的单调递减区间是.。
高中数学重点、难点突破(4)指数、对数函数-副本
高中数学重点、难点突破(4)指数函数与对数函数(培优)1.指数函数的定义、图象与性质 定义 函数叫做指数函数a >1 0<a <1图 象定义域值域性质在R 上是 在R 上是2.对数函数的定义、图象与性质定义 函数 叫做指数函数a >1 0<a <1图 象定义域值域性质在R 上是 在R 上是 3.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线 对称.1.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )等于( )A.12x B .2x -2 C .log 12x D .log 2x 2.如果0log log 2121<<y x 那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x3.已知函数f (x )=⎩⎪⎨⎪⎧|lg x | 0<x ≤10,-12x +6 x >10,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)4.已知函数f (x )=ln x ,g (x )=lg x ,h (x )=log 3x ,直线y =a (a <0)与这三个函数的交点的横坐标分别是x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 2<x 3<x 1B .x 1<x 3<x 2C .x 1<x 2<x 3D .x 3<x 2<x 15.设函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,log 12(-x ), x <0,若f (a )>f (-a ),则实数a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )=log 12(x 2-ax +3a )在区间[2,+∞)上是减函数,则实数a 的取值范围是( ) A .(-∞,4] B .(-∞,4) C .(-4,4] D .[-4,4]7.函数f (x )=2|x -1|的图象是( ) 8.当0<x ≤12时,4x <log a x ,则a 的取值范围是( ) A .(0,22) B .(22,1) C .(1,2) D .(2,2) 9.化简416x 8y 4(x <0,y <0)得( )10.方程4x -2x +1-3=0的解是________.11.计算(log 32+log 92)·(log 43+log 83)=12.函数y =log 2|x +1|的单调递减区间为________,单调递增区间为________.13.指数函数y =(a 2-1)x 在定义域内是减函数,则a 的取值范围是________.14.函数f (x )=(13)-x 2-4x +3的单调递减区间为________,值域为________. 15.已知f (x )=|2x -1|,(1)求f (x )的单调区间;(2)比较f (x +1)与f (x )的大小;16.若直线y=2a与函数y=|a x-1|(a>0,a≠1)的图象有两个公共点,求实数a的取值范围.17.已知函数f(x)=log a(2-ax),是否存在实数a,使函数f(x)在[0,1]上是关于x的减函数,若存在,求a的取值范围.18.已知函数f(x)=log a(8-ax)(a>0,a≠1),若f(x)>1在区间[1,2]上恒成立,求实数a的取值范围.。
高中数学第4章指数函数与对数函数4.3对数4.3.1对数的概念教学案第一册数学教学案
4.3.1 对数的概念(教师独具内容)课程标准:通过具体实例,理解对数的概念,了解常用对数与自然对数.理解对数的简单性质.教学重点:1.对数的概念,指数式与对数式的互化.2.对数的简单性质.教学难点:对数概念的理解,指数式与对数式之间的熟练转化.【知识导学】知识点一 对数的概念(1)对数的概念:如果□01a x =N (a >0,且a ≠1),那么数□02x 叫做以□03a 为底□04N 的对数,记作□05x =log a N ,其中□06a 叫做对数的底数,□07N 叫做真数. (2)两种特殊的对数①常用对数:通常□08以10为底的对数叫做常用对数,N 的常用对数log 10N 简记为□09lg_N ; ②自然对数:□10以e 为底的对数称为自然对数,N 的自然对数log e N 简记为□11ln_N (其中e =2.71828…). 知识点二 对数与指数的关系 (1)对数的基本性质①□01零和负数没有对数,即真数N >0; ②1的对数为□020,即log a 1=□030(a >0,且a ≠1);③底数的对数等于□041,即log a a=□051(a>0,且a≠1).(2)两个重要的对数恒等式①a log a N=□06N(a>0,且a≠1,N>0);②log a a N=□07N(a>0,且a≠1).【新知拓展】在对数的概念中为什么规定a>0且a≠1(1)若a<0,则当N为某些值时,x的值不存在,如:x=log(-2)8不存在.(2)若a=0,①当N≠0时,x的值不存在.如:log03(可理解为0的多少次幂是3)不存在;②当N=0时,x可以是任意正实数,是不唯一的,即log00有无数个值.(3)若a=1,①当N≠1时,x的值不存在.如:log13不存在;②当N=1时,x可以为任意实数,是不唯一的,即log11有无数个值.因此规定a>0,且a≠1.1.判一判(正确的打“√”,错误的打“×”)(1)因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对于同一个正数,当底不同时,它的对数也不相同.( )(4)等式log a 1=0对于任意实数a 恒成立.( ) 答案 (1)× (2)× (3)× (4)× 2.做一做(请把正确的答案写在横线上) (1)若5x=2019,则x =________. (2)lg 10=________;ln e =________. (3)将log 3a =2化为指数式为________. 答案 (1)log 52019 (2)1 1 (3)32=a 题型一 对数的概念例 1 (1)使对数log 2(-2x +1)有意义的x 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,+∞ C.⎝⎛⎭⎪⎫-∞,12D.⎝⎛⎭⎪⎫-∞,-12(2)在对数式b =log a -2(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <5 C .2<a <3或3<a <5D .3<a <4[解析] (1)要使对数log 2(-2x +1)有意义,只要使真数-2x+1>0即可,即x <12,所以x 的取值范围为⎝⎛⎭⎪⎫-∞,12,故选C.(2)由题意,得⎩⎪⎨⎪⎧a -2>0,a -2≠1,5-a >0,解得2<a <3或3<a <5.[答案] (1)C (2)C 金版点睛对数有意义的条件对数有意义的两个条件:①底数大于零且不等于1;②对数的真数必须大于零.[跟踪训练1] (1)函数f (x )=lgx +1x -1中x 的取值范围是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)(2)若log (2x -1)(x +2)有意义,求x 的取值范围. 答案 (1)C (2)见解析 解析(1)要使函数有意义,必有⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1且x ≠1,故选C.(2)若对数有意义,则真数大于0,底数大于0且不等于1,所以⎩⎪⎨⎪⎧x +2>0,2x -1>0,2x -1≠1,解得x >12,且x ≠1.即x的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12,且x ≠1. 题型二 指数式与对数式的互化例 2 (1)将下列指数式改写成对数式:24=16;2-5=132;34=81;⎝ ⎛⎭⎪⎫12m=n ;(2)将下列对数式改写成指数式:log 5125=3;log 1216=-4;ln a =b ;lg 1000=3.[解] (1)log 216=4;log 2132=-5;log 381=4;log 12n =m .(2)53=125;⎝ ⎛⎭⎪⎫12-4=16;e b =a ;103=1000.金版点睛由指数式a b=N 可以写成log a N =b (a >0,且a ≠1),这是指数式与对数式互化的依据.对数式与指数式是同一种数量关系的两种不同表达形式.具体对应如下:[跟踪训练2] (1)若a =log 23,则2a +2-a =________; (2)将下列指数式化为对数式,对数式化为指数式: ①log 216=4;②log 3x =6;③43=64. 答案 (1)103(2)见解析解析 (1)因为a =log 23,所以2a=3,则2a+2-a=3+3-1=103.(2)①24=16;②(3)6=x ;③log 464=3. 题型三 对数性质的应用 例3 (1)给出下列各式:①lg (lg 10)=0; ②lg (ln e)=0;③若10=lg x ,则x =10; ④由log 25x =12,得x =±5.其中,正确的是________(把正确的序号都填上); (2)求下列各式中x 的值:①log 2(log 5x )=0;②log 3(lg x )=1; ③log (2-1)(2-1)=x ;④3x +3=2.[解析] (1)∵lg 10=1,∴lg (lg 10)=lg 1=0,①正确;∵ln e=1,∴lg (ln e)=lg 1=0,②正确;若10=lg x ,则x =1010,③错误;由log 25x =12,得x =25 12 =5,④错误.故填①②.(2)①∵log 2(log 5x )=0. ∴log 5x =20=1,∴x =51=5.②∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1000. ③∵log (2-1) (2-1)=x ,∴(2-1)x=2-1, ∴x =1.④∵x +3=log 32,∴x =log 32-3. [答案] (1)①② (2)见解析金版点睛对数性质在计算中的应用(1)对数的常用性质:log a a =1,log a 1=0(a >0,且a ≠1). (2)使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.[跟踪训练3] (1)若log 2(x 2-7x +13)=0,求x 的值;(2)已知log 2[log 3(log 4x )]=log 3[log 4(log 2y )]=0,求x +y 的值.解 (1)因为log 2(x 2-7x +13)=0, 所以x 2-7x +13=1,即x 2-7x +12=0, 解得x =4或x =3.(2)因为log 2[log 3(log 4x )]=0, 所以log 3(log 4x )=1,所以log 4x =3.所以x =43=64.同理求得y =16.所以x +y =80.题型四 对数恒等式的应用例4 求下列各式的值:(1)5log 54;(2)3log 34-2;(3)24+log 25.[解] (1)设5log 54=x ,则log 54=log 5x ,∴x =4. (2)∵3log 34=4,∴3log 34-2=3log 34×3-2=4×19=49.(3)∵2log 25=5,∴24+log 25=24×2log 25=16×5=80. 金版点睛运用对数恒等式时的注意事项(1)对于对数恒等式a log a N =N (a >0,且a ≠1,N >0)要注意格式:①它们是同底的;②指数中含有对数形式;③其值为对数的真数.(2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.[跟踪训练4] 求31+log 36-24+log 23+103lg 3+⎝ ⎛⎭⎪⎫19log 34的值.解 原式=31×3log 36-24×2log 23+(10lg 3)3+3-2×log 34=3×6-16×3+33+(3log 34)-2=18-48+27+116=-4716.1.若a >0,且a ≠1,c >0,则将a b=c 化为对数式为( ) A .log a b =c B .log a c =b C .log b c =a D .log c a =b 答案 B解析 由对数的定义直接可得log a c =b . 2.已知log x 16=2,则x 等于( ) A .±4 B.4 C .256 D .2 答案 B解析 ∵x 2=16且x >0,x ≠1,∴x =4.故选B.3.若log 3181=x ,则x =________.答案 -4解析 ∵log 3181=log 33-4,∴3x =3-4,∴x =-4.4.式子2log 25+log 32 1的值为________.答案 5解析 由对数性质知,2log 25=5,log 32 1=0,故原式=5.5.求下列各式中x 的值:(1)若log 3 1+2x3=1,求x 的值;(2)若log 2019(x 2-1)=0,求x 的值. 解 (1)∵log 31+2x 3=1,∴1+2x3=3,∴1+2x =9,∴x =4. (2)∵log 2019(x 2-1)=0,∴x 2-1=1,即x 2=2.∴x =± 2.。
指数函数与对数函数知识点总结
指数函数与对数函数知识点总结一、指数函数(一)指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a \neq 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。
(二)指数函数的图象与性质1、当\(a > 1\)时,指数函数的图象是上升的,函数在\(R\)上单调递增。
图象过定点\((0, 1)\),即当\(x = 0\)时,\(y = 1\)。
当\(x > 0\)时,\(y > 1\);当\(x < 0\)时,\(0 < y <1\)。
2、当\(0 < a < 1\)时,指数函数的图象是下降的,函数在\(R\)上单调递减。
图象过定点\((0, 1)\)。
当\(x > 0\)时,\(0 < y < 1\);当\(x < 0\)时,\(y >1\)。
(三)指数运算的基本法则1、\(a^m \times a^n = a^{m + n}\)2、\(\frac{a^m}{a^n} = a^{m n}\)(\(a \neq 0\))3、\((a^m)^n = a^{mn}\)4、\(a^0 = 1\)(\(a \neq 0\))5、\(a^{n} =\frac{1}{a^n}\)(\(a \neq 0\))(四)指数函数的应用1、指数函数在经济领域中的应用,比如计算利息、复利等。
2、在生物学中,指数函数可以用来描述细胞的分裂、细菌的繁殖等增长过程。
3、在物理学中,指数衰减的现象可以用指数函数来描述,比如放射性物质的衰变。
二、对数函数(一)对数函数的定义一般地,如果\(a^x = N\)(\(a > 0\)且\(a \neq 1\)),那么数\(x\)叫做以\(a\)为底\(N\)的对数,记作\(x =\log_aN\),其中\(a\)叫做对数的底数,\(N\)叫做真数。
函数\(y =\log_a x\)(\(a > 0\)且\(a \neq 1\))叫做对数函数,其中\(x\)是自变量,函数的定义域是\((0, +\infty)\)。
高二指数对数函数知识点
高二指数对数函数知识点在高二数学学科中,指数和对数函数是重要的知识点。
它们不仅在数学领域有广泛的应用,也在其他学科以及日常生活中起着重要作用。
本文将详细介绍高二指数对数函数的相关概念、特性和应用。
1. 指数函数指数函数是形如 y = a^x 的函数,其中 a 是底数,x 是指数。
指数函数具有很多重要特性,如以下几点。
1.1 指数函数的图像特征指数函数的图像可以分为几种不同的情况。
当底数 a 大于 1 时,函数呈现上升趋势且图像在 y 轴右侧,当底数 a 在 0 和 1 之间时,函数呈现下降趋势且图像在 y 轴左侧。
在图像上,指数函数会趋近于 x 轴但不会与其相交。
1.2 指数函数的性质指数函数具有以下性质:- 过点 (0,1);- 严格单调递增或递减;- 连续;- 无最大值或最小值。
2. 对数函数对数函数是指以某个正数为底,对应指数的函数。
常见的对数函数有以 10 为底的常用对数(log)和以自然常数 e 为底的自然对数(ln)。
以下是对数函数的相关特点。
2.1 对数函数的图像特征以常用对数为例,当 x>0 时,logx 的值大于 0,当 x=1 时,logx = 0,当 0<x<1 时,logx 的值为负数。
对数函数的图像在 x 轴左侧呈下降趋势,在 x 轴右侧呈上升趋势。
2.2 对数函数的性质对数函数具有以下性质:- 过点 (1,0);- 严格单调递增或递减;- 连续;- 无最大值或最小值。
3. 指数和对数函数的互为反函数关系指数函数和对数函数互为反函数,即 a^loga(x) = x,loga(a^x) = x。
这意味着对于指数函数中的底数 a 和对数函数中的底数 a,它们可以相互抵消。
这个特性在解一些数学问题时非常有用。
4. 指数和对数函数的应用指数和对数函数在不同学科和实际生活中都有广泛的应用。
以下是一些常见应用:4.1 财务领域指数和对数函数在财务计算中有广泛的应用。
高一数学第4章 指数函数与对数函数 章末重难点归纳总结(解析版)
第4章指数函数与对数函数章末重难点归纳总结重点一 指数对数的运算【例1】(2022·江苏)化简与求值: (1)123(31)(3)8π-(2)23log 3312514log 8lg lg25lg e 162-⎛⎫+-+-- ⎪⎝⎭(1)213102270.00210(51)8π---⎛⎫-+-+ ⎪⎝⎭.(2)2lg25lg2lg50(lg2)+⋅+ 【答案】(1)π; (2)1121551918;(4)2 【解析】(1)原式1331π3(2)=+-+π=.(2)原式232log 32252log 8lg +lg25lg8ln e 16=----161393lg(25)582=-+⨯⨯-36lg102=+-112=.(3)213102270.00210(51)8π---⎛⎫-+-+ ⎪⎝⎭()2313125150010123---⎡⎤+⎛⎫=-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦45555192=++1551918=; (4)2lg25lg2lg50(lg2)+⋅+()22lg5lg21lg5(lg2)=+++()2lg5lg2lg2lg2lg5=+++()2lg2lg5=+2=【一隅三反】1.(2022·全国·高一课时练习)计算:(1)7lg142lg lg 7lg183-+-;(2)()2lg53lg 22lg5lg 2lg5+++⨯;(3)()()223666661log 2log 33log 2log 18log 23⎛⎫++⨯ ⎪⎝⎭.(4)7log 237log 27lg 25lg 47log 1++++;lg 10lg 0.1⨯【答案】(1)0 (2)3 (3)1 (4)7 (5)4-【解析】(1)方法一:(直接运算)原式227147lg14lg lg 7lg18lg lg1037183⎛⨯⎛⎫=-+-==⎫⎪⎝⎭= ⎪⎝⎭⨯. 方法二:(拆项后运算)原式()()()2lg 272lg7lg3lg7lg 32=⨯--+-⨯lg 2lg72lg72lg3lg72lg3lg 20=+-++--=.(2)原式()()lg5lg5lg22lg2lg5lg2=⨯++++()lg5lg102lg10lg22lg5lg23=⨯++=++=. (3)原式()()3226666318log 2log 33log 2log 2=++⨯()()2236666log 2log 33log 2log 9=++⨯()()226666log 2log 32log 2log 3=++⨯()626log 2log 31=+=. (4)原式()3lg 2542527=+⨯+=+=;(5)原式()21128125lg lg1025411lg10lg102-⨯⨯===-⨯-⨯. 2.(2022·湖北)计算下列各式的值: (1)已知13x x -+=,求:221122x x x x--+-.(2)721163log 0.253432927211.58223lg25lg4()log3?4637-⎛⎫⎛⎫⨯++++ ⎪ ⎪⎝⎭⎝⎭【答案】(1)7±(2)115【解析】(1)因为()22212927x x x x--+=+-=-=,而21112221x x x x --⎛⎫-=-+= ⎪⎝⎭,所以11221x x --=±,所以2211227x x x x--+=±-.(2)原71111313333log 223442332222223lg1007log 3log 224272212333-⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯-+++=++⨯-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭115=. 3.(2022·全国·高一课时练习(理))(1)计算:())()242233330.123331228-⎛⎫⎛⎫-+⨯-= ⎪⎭- ⎪⎝⎝⎭________;(2)化简:12112133265a b a b a b---⎛⎫⋅⋅⋅ ⎪⎝⎭=⋅________. 【答案】221a【解析】(1)())()242233330.123331228-⎛⎫⎛⎫-+⨯-- ⎪ ⎪⎝⎭⎝⎭421331322431332192⎡⎤⎡⎤⎛⎫⎛⎫⎢⎥=+⨯-⨯⎢⎥ ⎪⎪⎢⎥⎝⎭⎢⎥⎝⎭⎣⎦⎢⎥⎣⎦4913212294=+⨯-=.(2)原式111111111533221032623615661a b ababa b aa b-----+--⋅⋅⋅==⋅=⋅=⋅.故答案为22,1a重点二 指数函数【例2】(2022·广东·深圳市)已知函数()()240,12x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值;(2)求函数()f x 的值域;(3)当()1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.【答案】(1)2a =(2)()1,1-(3)10,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)因为()f x 是定义在R 上的奇函数,所以()002420022a a a f a a a -+-===++,解得2a =, 当2a =时,()2121x x f x -=+,此时()()21122112x x x x f x f x -----===-++,所以2a =时,()2121x x f x -=+是奇函数.所以2a =;(2)由(1)可得()2121221212121x x x x x f x -+-===-+++,因为20x >,可得211x +>,所以10121x <<+,所以22021x -<-<+,所以211121x -<-<+,所以函数()f x 的值域为()1,1-;(3)由()220xmf x +->可得()22x mf x >-,即122221x x xm ->+-⋅,可得()()212122x xx m +->-对于()1,2x ∈恒成立, 令()211,3xt -=∈,则()()2121t t tt m t-=-++>,函数21y t t =-+在区间()1,3单调递增,所以221013133t t -+<-+=,所以103m ≥,所以实数m 的取值范围为10,3⎡⎫+∞⎪⎢⎣⎭.【一隅三反】1.(2022·贵州·黔西南州金成实验学校高一期末)已知函数4()12x f x a a=-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围. 【答案】(1)证明过程见解析;(2)()(),41,-∞-+∞(3)()(),11,k ∈-∞-+∞【解析】(1)由题意得:()40102f a=-=+,解得:2a =,142()112221x x f x +=-=-++, 任取12,x x R ∈,且12x x <,则()()()()()1212122121211111122222222222()112121212121212121x x x x x x x x x x xx f x f x +++++----=--+=-==++++++++因为12,x x R ∈,且12x x <,所以1211220x x ++-<,12210,210x x +>+>,所以()()()1221111222()02121x x x x f x f x ++--=<++,故()12()f x f x <所以函数()f x 在R 上单调递增; (2)()22(4)0f x x f x ++->,即()22(4)f x x f x +>--,因为2()121x f x =-+为定义在R 上的奇函数,所以()22(4)(4)f x x f x f x +>--=-, 因为2()121xf x =-+为定义在R 上单调递增,所以224x x x +>-,解得:1x >或4x <-,所以解集为:()(),41,-∞-+∞;(3)()()211121x g x kf x k ⎛⎫=-=-- ⎪+⎝⎭有零点,当0k =时,()()11g x kf x =-=-,没有零点,不合题意,舍去; 当0k ≠时,即21121xk-=+有根, 其中当0x >时,21x >,212x +>,20121x <<+, 故()2()10,121x f x =-∈+, 又因为2()121x f x =-+在R 上为奇函数, 所以当0x <时,()2()11,021xf x =-∈-+,且()00f =, 所以2()121x f x =-+在R 上的值域为()1,1-,故()()11,00,1k ∈-⋃, 解得:()(),11,k ∈-∞-+∞,所以实数k 的取值范围为()(),11,k ∈-∞-+∞.2.(2022·全国·高一课时练习)已知函数x f xb a (,a b 为常数,0a >,且1a ≠)的图象经过点()1,6A ,3,24B .(1)试确定函数()f x 的解析式;(2)若关于x 的不等式110x xm a b ⎛⎫⎛⎫+-≥ ⎪ ⎪⎝⎭⎝⎭在区间(],1-∞上恒成立,求实数m 的取值范围.【答案】(1)()32xf x =⨯(2)5,6⎛⎤-∞ ⎥⎝⎦【解析】(1)因为函数x f xb a 的图象经过点()1,6A 和3,24B ,可得3624ab b a =⎧⎨⋅=⎩,结合0a >,且1a ≠,解得2,3a b ==, 所以函数()f x 的解析式为()32xf x =⨯.(2)要使1123xxm 在区间(],1-∞上恒成立,只需保证函数1123x xy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在区间(],1-∞上的最小值不小于m 即可,因为函数1123xxy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在区间(],1-∞上单调递减,所以当1x =时,1123xxy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭取得最小值,最小值为56,所以只需56m即可,即实数m 的取值范围为5,6⎛⎤-∞ ⎥⎝⎦.3.(2020·广西·兴安县第二中学高一期中)已知定义域为R 的函数 2()2xxb f x a-=+ 是奇函数. (1)求a 、b 的值;(2)证明f (x )在(-∞,+∞)上为减函数;(3)若对于任意t ∈R ,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的范围 【答案】(1)1a =,1b =;(2)证明见解析;(3)13k <-【解析】(1)由已知1(0)01b f a -==+,1b =,12()21x x f x -=+, 121(1)22f a a -==-++,1112(1)1122f a a --==++,所以110221a a -+=++,解得1a =, 12()21x x f x -=+,此时()f x 定义域是R ,1221()()2112x xxxf x f x -----===-++,()f x 为奇函数. 所以1a =,1b =;(2)由(1)12()21x x f x -=+2121x=-++, 设任意两个实数12,x x ,12x x <,则1202121x x <+<+,12222121x x >++,所以1222112121x x -+>-+++,即12()()f x f x >,所以()f x 是减函数;(3)不等式22(2)(2)0f t t f t k -+-<化为22(2)(2)f t t f t k -<--, ()f x 是奇函数,则有22(2)(2)f t t f t k -<-+, ()f x 是减函数,所以2222t t t k ->-+,所以2211323()33k t t t <-=--恒成立,易知2113()33t --的最小值是13-,所以13k <-.重点三 对数函数【例3】(2022·甘肃定西·高一阶段练习)已知函数()()32log 2axf x a R x -=∈-的图象关于原点对称. (1)求a 的值;(2)当[]3,5x ∈时,()()3log 2f x x k <+恒成立,求实数k 的取值范围. 【答案】(1)1a =-(2)()1,+∞【解析】(1)函数()32log 2axf x x -=-的图象关于原点对称,则函数()32log 2axf x x -=-为奇函数,有()()f x f x -=-, 即3322log log 22ax ax x x +-=----,即322log 022ax ax x x +-⎛⎫⋅= ⎪---⎝⎭,即222414a x x 解得1a =±,当1a =时,不满足题意,∴1a =-. (2)由()()3log 2f x x k <+,得()332log log 22xx k x +<+-,即222x k x x +>--,令()24122x g x x x x x +=-=+---,易知()g x 在[]3,5x ∈上单调递减, 则()g x 的最大值为()32g =.又∴当[]3,5x ∈时,()()3log 2f x x k <+恒成立, 即222x k x x +>--在[]3,5x ∈恒成立,且20x k +>,∴22k >,1k >, 即实数k 的取值范围为()1,+∞. 【一隅三反】1.(2022·全国·高一课时练习)已知函数()()212log 23f x x ax =-+.(1)若函数()f x 的定义域为()(),13,-∞⋃+∞,求实数a 的值; (2)若函数()f x 的定义域为R ,值域为(],1∞--,求实数a 的值; (3)若函数()f x 在(],1-∞上单调递增,求实数a 的取值范围. 【答案】(1)2a =(2)实数a 的值为1或1-(3)[)1,2 【解析】(1)令()223u x x ax =-+,则由题意可知1,3为方程2230x ax -+=的两个根,所以函数()u x 的图像的对称轴方程为213222a x -+===-,即2a =. (2)由题意,对于方程2230x ax -+=,()224130a ∆=--⨯⨯<,即33a <<由函数()f x 的值域为(],1-∞-,可得当x a =时,()()212log 231f a a a a =-⨯+=-,解得1a =或1-.故实数a 的值为1或1-. (3)函数()f x 在(],1∞-上单调递增,则()223u x x ax =-+在(],1∞-上单调递减.易知函数()u x 的图像的对称轴为直线x a =,所以1a ≥. 易知()u x 在1x =时取得最小值,当1x =时,有()11230u a =-+>,得2a <, 所以实数a 的取值范围是[)1,2.2.(2022·全国·高一单元测试)已知函数()()log 1a f x bx =+(0a >且1a ≠),()11f =,()32f =. (1)求函数()f x 的解析式;(2)请从∴()()y f x f x =--,∴()()y f x f x =--,∴()()y f x f x =+-这三个条件中选择一个作为函数()g x 的解析式,指出函数()g x 的奇偶性,并证明. 注:若选择多个条件分别解答,按第一个解答计分. 【答案】(1)()()2log 1f x x =+;(2)答案见解析.【解析】(1)依题意,()()log 11log 132a a b b ⎧+=⎪⎨+=⎪⎩,2113a ba b =+⎧⎨=+⎩,而0a >且1a ≠,解得21a b =⎧⎨=⎩,所以函数()()2log 1f x x =+.(2)选择∴,()()()22log 1log 1g x x x =+--,则有1010x x +>⎧⎨->⎩,解得11x -<<,即()g x 的定义域为()1,1-, 又()()()()()()2222log 1log 1[log 1log 1]g x x x x x g x -=--+=-+--=-, 所以函数()g x 是定义在()1,1-上的奇函数. 选择∴,()()()22log 1log 1g x x x =--+,则有1010x x +>⎧⎨->⎩,解得11x -<<,即()g x 的定义域为()1,1-,又()()()()()()2222log 1log 1[log 1log 1]g x x x x x g x -=+--=---+=-, 所以函数()g x 是定义在()1,1-上的奇函数.选择∴,()()()22log 1log 1g x x x =++-,则有1010x x +>⎧⎨->⎩,解得11x -<<,即()g x 的定义域为()1,1-,又()()()22log 1log 1()g x x x g x -=-++=, 所以函数()g x 是定义在()1,1-上的偶函数. 3.(2022·全国·高一课时练习)已知函数()141log 1axf x x -=-的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)当()1,x ∈+∞时,()()14log 1f x x m +-<恒成立,求实数m 的取值范围;(3)若关于x 的方程()()14log f x x k =+在[]2,3上有解,求实数k 的取值范围.【答案】(1)1a =-(2)[)1,-+∞(3)[]1,1- 【解析】(1)因为函数()141log 1axf x x -=-的图象关于原点对称,所以()()0f x f x +-=,即114411log log 011ax axx x -++=---, 所以1411log 011ax ax x x -+⎛⎫⨯= ⎪---⎝⎭恒成立, 所以11111ax ax x x -+⨯=---恒成立, 即22211a x x -=-恒成立,即()2210a x -=恒成立,所以210a -=,解得1a =±,又1a =时,()141log 1axf x x -=-无意义,故1a =-.(2)因为()1,x ∈+∞时,()()14log 1f x x m +-<恒成立,所以()11441log log 11x x m x ++-<-恒成立, 所以()14log 1x m +<在()1,x ∈+∞上恒成立,因为()14log 1y x =+是减函数,所以当()1,x ∈+∞时,()()14log 1,1x +∈-∞-,所以1m ≥-,所以实数m 的取值范围是[)1,-+∞. (3)因为()114412log log 111x f x x x +⎛⎫==+ ⎪--⎝⎭在[]2,3上单调递增,()()14log g x x k =+在[]2,3上单调递减,因为关于x 的方程()()14log f x x k =+在[]2,3上有解,所以()()()()22,33,f g f g ⎧≤⎪⎨≥⎪⎩即()()11441144log 3log 2,log 2log 3,k k ⎧≤+⎪⎨≥+⎪⎩ 解得11k -≤≤,所以实数k 的取值范围是[]1,1-.重难点四 零点定理【例4-1】(2022·课时练习)函数223,(0)y ax ax a =++≠的一个零点为1,则其另一个零点为______. 【答案】3-【解析】解法一:因为函数223,(0)y ax ax a =++≠的一个零点为1, 将(1,0)代入得230a a ++=,解得1a =-. 所以223y x x =--+.令2x 2x 30--+=,解得11x =,23x =-, 所以函数的另一个零点为3-.解法二:由函数223,(0)y ax ax a =++≠的一个零点为1,可得方程2230,(0)ax ax a ++=≠的一个根为1,根据根与系数的关系可得1222ax x a+=-=-,所以另一个根为3-.故函数的另一个零点为3-. 故答案为:3-.【例4-2】(2022·山东)方程ln 42x x =-的根所在的区间是( )A .()01,B .()12,C .()23,D .()34,【答案】B【解析】令()ln 24f x x x =+-,显然()ln 24f x x x =+-单调递增, 又因为()12420f =-=-<,()2ln 244ln 20f =+-=>,由零点存在性定理可知:()ln 24f x x x =+-的零点所在区间为()12,, 所以ln 42x x =-的根所在区间为()12,. 故选:B【例4-3】(2022·全国·高一课时练习)函数()sin 21f x x x π=-在区间(0,3]上的零点个数为( ) A .6 B .5 C .4 D .3【答案】C【解析】函数()sin 21f x x x π=-在(]0,3上零点的个数即方程sin 210x x π-=在(]0,3x ∈上解的个数, 方程sin 210x x π-=化简可得sin 2x π=1x, 所以方程方程sin 210x x π-=的解的个数为函数sin 2y x π=与函数y =1x的图象交点的个数,其中(0,3]x ∈,在同一坐标系中作出函数sin 2y x π=与函数y =1x的图象如图所示, 由图可知在区间(]0,3上,两函数图象有4个交点, 故函数()sin 21f x x x π=-在区间(0,3]上的零点个数为4, 故选:C .【例4-4】(2021·全国·高一期末)已知函数2,()5,x x x af x x x a ⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( ) A .(0,1)[5,)+∞ B .6(0,)[5,)5+∞C .(1,5]D .6(,5]5【答案】A【解析】()()4g x f x x =-有三个零点()y f x ∴=与4||y x =的图象有三个交点. 因为0a >,所以当0x ≤时,24x x x -=-,得3x =-或0x =,所以()y f x =与4||y x =的图象有两个交点,则当0x >时,()y f x =与4||y x =的图象有1个交点. 当0x >时,令45x x =-,得1x =,所以01a <<符合题意;令24x x x =-,得5x =,所以5a 符合题意.综上,实数a 的取值范围是()[)0,15,+∞.故选:A.【一隅三反】1.(2022·浙江·余姚市实验高中高一开学考试)函数3()ln f x x x=-的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,5【答案】B【解析】因为3ln ,==-y x y x 为()0,x ∈+∞上的单调递增函数,所以3()ln f x x x=-为()0,x ∈+∞上的单调递增函数,因为()31ln1301=-=-<f ,()32ln 202=-<f ,()33ln 303=->f ,由零点存在定理,(2,3)上必有唯一零点.故选:B .2.(2022·江苏·金沙中学高一阶段练习)函数sin sin()13y x x π=-+-在区间(0,2)π上的零点所在的区间为( )A .(0,)2πB .(,)2ππC .3(,)2ππ D .3(,2)2ππ 【答案】B【解析】sin sin()13y x x π=-+-,13sin 12=-x x ,sin()13x π=--,令sin()13x π-=,得232x k ππ-=+π,Z k ∈,526x k ππ∴=+,Z k ∈,()f x ∴在(0,2)π上的零点为5.6π故选:B3.(2022·北京大兴·高一期末)若函数2,1()(),1x a x f x x x a x ⎧-<=⎨-≥⎩恰有2个零点,则a 的取值范围是 ( )A .(1)-∞,B .(02),C .(0)+∞,D .[12),【答案】D【解析】因为()(),1f x x x a x =-≥时至多有一个零点,单调函数()2,1x f x a x =-<至多一个零点,而函数2,1()(),1x a x f x x x a x ⎧-<=⎨-≥⎩恰有2个零点,所以需满足()(),1f x x x a x =-≥有1个零点,()2,1x f x a x =-<有1个零点,所以2log 11a a <⎧⎨≥⎩,解得12a ≤<,故选:D4.(2021·广西·上林县中学高一期末)已知函数()||3f x x a =--,若函数(())f f x 无零点,则实数a 的取值范围为( ) A .(,6)-∞- B .(,6]-∞- C .(,0)-∞ D .(,0]-∞【答案】A【解析】令()t f x =,则()||30f t t a =--=的解为:3t a =±,由题意可知:()f x t =无解, 又()||33f x x a =--≥-,即min ()t f x <,又min ()3f x =-,即3333a a +<-⎧⎨-<-⎩,解得:6a <-.故选:A.5.(2022·全国·高一课时练习)函数()2ln 3f x x x =+-的零点个数为________.【答案】1【解析】解法一:令()0f x =,可得方程2ln 30x x +-=,即2ln 3x x =-, 故原函数的零点个数即为函数ln y x =与23y x =-图象的交点个数. 在同一平面直角坐标系中作出两个函数的大致图象(如图).由图可知,函数23y x =-与ln y x =的图象只有一个交点,故函数()2ln 3f x x x =+-只有一个零点,故答案为:1解法二:∴()21ln11320f =+-=-<,()22ln 223ln 210f =+-=+>,∴()()120f f <,又()2ln 3f x x x =+-的图象在()1,2上是不间断的,∴()f x 在()1,2上必有零点,又()2ln 3f x x x =+-在()0,∞+上是单调递增的,∴函数()f x 的零点有且只有一个, 故答案为:16.(2022·全国·高一课时练习)已知函数()()22,2,1,2,x x f x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程()f x k =有三个不同的实数根,则实数k 的取值范围是________.【答案】()0,1【解析】作出函数()f x 的图像和直线y k =,如图所示:由图可知,当()0,1k ∈时,函数()f x 的图像和直线y k =有三个交点,所以()0,1k ∈. 故答案为:()0,1或01k <<.。
指数对数函数基本知识点
指数对数函数基本知识点指数和对数函数是高中数学中的重要内容,它们在数学和实际问题中有着广泛的应用。
本文将介绍指数和对数函数的基本知识点,包括定义、性质、图像、应用等方面。
1.指数的定义:对于任意实数a和正整数n,指数a的n次方(记作a^n)表示将a连乘n次,其中a被称为底数,n被称为指数。
2.指数函数的定义:指数函数y=a^x表示底数为a的指数函数,其中a>0且a≠1,x为自变量,y为因变量。
3.指数函数的性质:(1)当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。
(2)指数函数的定义域为全体实数,值域为正实数。
(3)指数函数的图像在x轴的右侧逐渐上升(或下降),但不会与x轴相交。
(4)指数函数的反函数是对数函数,即y=a^x的反函数为x=logₐy。
1. 对数的定义:对于任意正数a、正整数n和正实数x,logₐn=x表示底数为a的对数函数,其中a>0且a≠1,n为真数,x为对数。
2. 对数函数的定义:对数函数y=logₐx表示底数为a的对数函数,其中a>0且a≠1,x为自变量,y为因变量。
3.对数函数的性质:(1)对数函数的定义域为正实数,值域为全体实数。
(2)当0<a<1时,对数函数是递增函数;当a>1时,对数函数是递减函数。
(3)对数函数的图像在y轴的左侧逐渐上升(或下降),但不会与y轴相交。
(4)对数函数的反函数是指数函数,即y=logₐx的反函数为x=a^y。
三、指数和对数函数的图像1.指数函数的图像:(1)当a>1时,指数函数的图像在x轴的右侧逐渐上升,且通过点(0,1);(2)当0<a<1时,指数函数的图像在x轴的右侧逐渐下降,且通过点(0,1)。
2.对数函数的图像:(1)当a>1时,对数函数的图像在y轴的左侧逐渐上升,且通过点(1,0);(2)当0<a<1时,对数函数的图像在y轴的左侧逐渐下降,且通过点(1,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学重点、难点突破(4)
指数函数与对数函数(培优)
★西■轉杞•常it甘■忧
知识体系械理
1•指数函数的定义、图象与性质
2.
3•反函数
指数函数y = a x(a>0且a* 1)与对数函数y= log a x(a>0且a* 1)互为反函数,它们的图象关于直线______________ 对称.
£点难点探究
1•若函数y = f(x)是函数y = a x (a > 0,
丄
A.?x B . 2X 「2 且a * 1)的反函数,且f(2) = 1,
1
log?x C . 则f (x )等于( )D lOg 2X
2.如果 log ! x log 1 y 0那么(
)D
2
A . y <x < 1 C . 1 < x < y 3•已知函数f (x )= 2
B . x v y < 1 D . 1<y < x
|lg x|
0< x w 10,
1
—?x + 6 x > 10, )C
a 、
b 、
c 互不相等,且 f(a)= f(b) = f(c),贝U abc
的取值范围是(
A . (1,10)
4.已知函数f(x) = ln x , g(x) = lg x , h(x) = log 3x ,直线y = a(a <0)与这三个函数的交点的横坐 标分别是X 1, X 2, X 3,贝y X 1 , X 2 , X 3的大小关系是( )A
A . X 2< X 3 < X 1
B . X 1< X 3< X 2
C . X 1< X 2< X 3 B . (5,6)
C . (10,12)
D . (20,24)
D . X 3V X 2V X 1
x > 0,
若f(a) > f( — a),则实数a 的取值范围是( )C x v 0,
(— a, — 1) U (1 ,+s ) D . ( — a, — 1)U (0,1)
a )上是减函数,则实数 a 的取值范围是( )C
11. 计算(log 32 + log 92) (log
43 + log 83)=
12. 函数y = Iog 2|x + 1|的单调递减区间为 _______ (— a, — 1) ( — 1 ,+a ) 13. 指数函数y = (a 2 — 1)x 在定义域内是减函数,则
a 的取值范围是
(—<2, — 1) U (1,曲
1
14. 函数f(x) = (3) — x 2— 4x + 3的单调递减区间为 15. 已知 f(x) = |2x — 1|,
(1) 求f(x)的单调区间;
(2) 比较f(x + 1)与f(x)的大小;
2X — 1, x 》0,
(1)由f(x)= |2x — 1|=
可作出函数的图象如图.因此函数
f(x)在(一a,
1 — 2x , x v 0.
v log 23^, f(x) > f(x + 1);
2
当 x = Iog 2§时,f(x)= f(x + 1); t 2丄 当 x > Iog 2§时,f(x)v f(x + 1).
16•若直线y = 2a 与函数y =『— 1|(a >0,
1)的图象有两个公共点,求实数 a 的取值范围.
log 2x ,
5.
设函数f(x)= 1 logq — x ,
A . (— 1,0) U (0,1)
B .
C . ( — 1,0) U (1 ,+a ) 1
6. 已知 f(x)= log^(x 2— ax + 3a)在区间[2 , +
A . ( — a, 4]
B . (— a, 4)
C . (— 4,4]
D . [ — 4,4] 7.
函数f(x) = 2|x
—11
的图象是(
) 8. 当 0<x W 2■时,4x <|og a x ,贝
U a
<2
A . (0,亍)
4, __ _ 诸,1)
C . (1 ,,⑵
D . ( 2 2)
9. 化简.'16x 8y 4
(x v 0, y v 0)得( 10. 方程4x — 2x +
1— 3 = 0的解是 )D
,单调递增区间为 ,值域为
O X
)b
的取值范围是 (
0)上递减;函数f(x )在(0 ,+^ )上递增.
⑵在同一坐标系中分别作出函数
f(x)、f(x + 1)的图象,如图所示.
从图象可见,当
x
分底数0v a v 1与a> 1两种情况,分别在同一直角坐标系中作出两函数的图象,如图:
1
即0v a v 2时,两函数才有两个交点.
1
所以实数a的取值范围为{a|0v a v㊁}.
17. 已知函数f(x)= log a(2 —ax),是否存在实数a,使函数f(x)在[0,1]上是关于x的减函数,若
存在,求a的取值范围.
【解】va> 0,且1,
•'u = 2—ax在[0,1]上是关于x的减函数.
又f(x) = log a(2 —ax)在[0,1]上是关于x的减函数,
•函数y= log a u是关于u的增函数,且对x€ [0,1]时,U = 2 —ax恒为正数.
a> 1,
其充要条件是
2 —a > 0,
即 1 v a v 2.
•'a的取值范围是(1,2).
18. 已知函数f(x)= log a(8 —ax)(a> 0, a* 1),若f(x) > 1在区间[1,2]上恒成立,求实数a的取值范围.
【解】当a> 1时,f(x) = log a(8 —ax)在[1,2]上是减函数,
由f(x) > 1恒成立,
贝U f(x) min = log a(8 —2a) > 1,
8
解之得1 v a v 3.
若0 v a v 1时,f(x)在x€ [1,2]上是增函数,
由f(x) > 1恒成立,
贝U f(x) min = log a(8 —a) > 1 ,
且8 —2a > 0,
•'a>4,且a v4,故不存在.
8
综上可知,实数a的取值范围是(1, §.。