应用多元统计分析习题解答-因子分析

合集下载

应用多元统计分析试题及答案(1)

应用多元统计分析试题及答案(1)

应用多元统计分析试题及答案(1)多元统计分析是现代统计学中不可或缺的一部分,它是用于对不同数据进行相关分析的高级统计方法。

对于需要进行多因素分析的问题,多元统计分析是必须掌握的技能。

以下是一些应用多元统计分析的试题及答案。

试题1:假设你要进行一项研究,以评估学生在学期末考试成绩与他们的就业情况之间是否存在关联。

你将分析什么类型的多元统计分析?答案:此问题需要进行一种二元多元回归分析。

此方法可以用于探索学期末考试成绩和就业情况之间的相关性。

通过回归分析,我们可以计算出两个变量之间的相关系数以及建立一个数学模型来预测就业成功与否的可能性。

试题2:你是一家旅游公司的行销经理,你想了解你们的财务状况、品牌信誉和市场定位之间的关系。

采用哪种多元统计分析来解决这个问题?答案:这个问题需要进行一种因子分析。

因子分析是一种常用的多元统计技术,可用于探索大量变量之间的共性或相似性。

因此,行销经理可以使用因子分析来探究这三个因素之间的关系,以帮助公司更好地了解市场需求、推广策略和产品定位。

试题3:你是一名医学研究员,你需要研究新型药物的效果以及它是否与特定人群的特征相关。

哪种多元统计分析可用于研究?答案:这个问题需要使用一种路径分析方法。

路径分析是一种分层回归分析技术,可用于探索变量间的直接和间接影响关系。

因此,研究人员可以使用路径分析来研究新型药物的效果以及与特定人群特征的相关性,以便更好地理解治疗效果的影响因素。

试题4:你是一名市场分析师,你需要研究不同年龄、性别和教育水平的人群之间的消费习惯。

采用哪种多元统计分析来解决这个问题?答案:这个问题需要使用一种聚类分析方法。

聚类分析是一种将成为节点的相似对象分组的过程。

因此,市场分析师可以使用聚类分析来将相似的人群以及他们的共同消费习惯分成几个类别,以便更好地了解不同年龄、性别和教育水平背景下的人群之间的消费习惯和偏好。

结论:多元统计分析是一种有用的技术,可以用于探索大量不同变量之间的关系,对于需要分析多个变量之间关系的问题,多元统计分析是必须学习的基本技能。

应用多元统计分析习题解答因子分析

应用多元统计分析习题解答因子分析

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

试述因子分析与主成分分析的联系与区别。

试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②简化数据的技术。

②两种分析的求解过程是类似的,两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、如果说主成分分析是将原指标综合、如果说主成分分析是将原指标综合、归纳,归纳,那么因子分析可以说是将原指标给予分解、演绎。

分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,变换到变异程度大的方向上为止,突出数据变异的方向,突出数据变异的方向,突出数据变异的方向,归纳重要信息。

归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

子模型。

7.2 因子分析主要可应用于哪些方面?因子分析主要可应用于哪些方面?因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,测的的潜在因素是什么,起的作用如何等。

起的作用如何等。

应用多元统计分析试题及答案

应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。

通常聚类分析分为 Q型聚类和 R型聚类。

4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。

5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。

6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。

二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、简述相应分析的基本思想。

相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。

对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。

要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。

3、简述费希尔判别法的基本思想。

从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。

将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。

指导应用多元统计分析资料报告习题解答_因子分析资料报告

指导应用多元统计分析资料报告习题解答_因子分析资料报告

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。

应用多元统计分析A卷答案

应用多元统计分析A卷答案

1.常见的统计图有直方图,轮廓图,雷达图,调和曲线图以及散点图。

2.系统聚类分析方法有最短距离法,最长距离法,中间距离法,重心法,类平均法和可变类平均法。

3.因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。

4.R 型因子分析是指对变量进行分析,Q 型因子分析是指对样品进行分析。

二、简述( 10 分×2) 1.比较主成分分析与因子分析的异同点。

主成分分析与因子分析的相同点:两者都是一种降维,简化数据的技术;两种方法的求解过程是类似的,都是从协方差出发,利用特征值、特征向量求解。

不同点:主成分分析的数学模型本质上是一种线形变换,将原始坐标变换到变异程度最大的方向上,突出数据变异的方向,归纳重要信息。

而因子分析是从现在变量去提取潜在因子的过程。

2.简述聚类分析中系统聚类法的基本思想设有n个样品,每个样品测得m 项指标,系统聚类法的基本思想是:首先定义样品间的距离和类与类之间的距离,初始将样品看n个成n 类,这时类间的距离与样品间的距离是等价的;然后将距离最近的两类合并成为新类,并计算新类与其它类的类间距离,在按最小距离原则并类。

这样每次缩小一类,直到所有的样品都并成一类为止。

三、证明(10 分× 1)设随机向量X 的均值向量、协方差矩阵分别为、试证:E(XX )证明:=V(X) E[( X EX)(X EX)]E(XX ) (EX)(EX)E(XX )四、数据分析( 20分× 2)1.测量20 名学生的生理指标和运动指标共计6 个变量,对这六个变量进行主成分分析输出结果如下:提取方法:主成份。

1)当贡献率超过85% 时应该选取几个主成分。

应该选取 3 个主成分2)写出第一、第二主成分表达式Z1 0.242 X1 0.265X2 0.127X 3 0.239X4 0.27X 5 0.182X6Z2 0.342X1 0.285X 2 0.461X3 0.244X 4 0.238X 5 0.519X63)第一到第三主成分的方差分别是多少3.25,1.255,0.7324)进行适当的主成分分析通过分析可以看出,第一主成分代表的是先天的身体素质,第二主成分代表的是运动指标2.在某年级44 名学生的期末考试中,有的课程采用闭卷,有的课程采用开卷,对数据进行了因子分析,输出结果如下:Eigenvalues of the Correlation Matrix: Total = 5 Average = 1Eigenvalue Difference Proportion Cumulative1 2.61195302 1.539887240.52240.52242 1.072065780.502619810.21440.736830.569445970.133506180.11390.850740.435939800.125344370.08720.937950.310595420.0621 1.0000Factor PatternFactor1 Factor2 Factor3x1 力学(闭)0.62491 0.58706 0.46831x2物理(闭)0.670150.44046-0.58552x3代数(开)0.84837-0.021560.07721x4几何(开)0.80568-0.261710.03545x5统计(开)0.63520-0.681520.00893 Rotated Factor PatternFactor1Factor2x1力学(闭)0.054880.85565x2物理(闭)0.188110.77957x3代数(开)0.633990.56414x4几何(开)0.766980.35967x5统计(开)0.92948-0.06329Standardized Scoring CoefficientsFactor1Factor2x1力学(闭)0.239250.54760x2物理(闭)0.256570.41085x3代数(开)0.32480-0.02011x4几何(开)0.30846-0.24411x5统计(开)0.24319-0.635701)初次进行因子分析时,贡献率不超过85% ,应该选取几个因子?选取 2 个因子2)试结合输出结果解释为何进行因子旋转,并说明因子旋转的效果。

应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答

应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答
(3) 试求误差平方和Q(m)<0.1的主成分解. 因Q(2)=0.07331<0.1,故m=2的主成分解满足要求.
10
j m 1
,
2 j
p
第八章 因子分析
8-3 验证下列矩阵关系式(A为p×m阵) (1) ( I AD 1 A) 1 AD 1 A I ( I AD 1 A) 1 ;
18
Q(2) 2 (0.1708 0.0475 0.0403 )
i 1 j 1 2 ij 2 2 2 3 3

0.06611
9
第八章 因子分析
或者利用习题8-4的结果:
Q(m)
i 1 j 1 2 2 2 3 2 2 ij p p p j m1 2 2 1 2 2 j
8 2 已知8 1中R的特征值和特征向量为 1 1.9633 l1 (0.6250 ,0.5932 ,0.5075 ), 2 0.6795 l2 (0.2186 ,0.4911 ,0.8432 ), 3 0.3672 l3 (0.7494 ,0.6379 ,0.1772 ). (1) 取公因子个数 m 1时, 求因子模型的主成分解 , 并计算误差平方和 Q (1).
1 11 12 1
B AB
1 11 2 1 11 2
B A 1 I m A B112 A
1 11 2
12
由逆矩阵的对应块相等,即得:
第八章 因子分析
B
1 11 2
D D AB
1 11 2
1
1
1 221
1 11 AD B
17
第八章 因子分析
(3) 主成分分析是将主成分表示为原变量的线 性组合,而因子分析是将原始变量表示为公因子 和特殊因子的线性组合,用假设的公因子来“解 释”相关阵的内部依赖关系. 这两种分析方法又有一定的联系.当估计方法 采用主成分法,因子载荷阵A与主成分的系数相 差一个倍数;因子得分与主成分得分也仅相差一 个常数.这种情况下可把因子分析看成主成分分 析的推广和发展. 这两种方法都是降维的统计方法,它们都可用 来对样品或变量进行分类.

应用多元统计分析习题解答 第七章讲解学习

应用多元统计分析习题解答 第七章讲解学习

应用多元统计分析习题解答第七章第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a aa a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mik k j i j k a F F F ε=+∑=ij a若对iX作标准化处理,=ija,因此ija一方面表示iX对jF的依赖程度;另一方面也反映了变量i X对公共因子jF的相对重要性。

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX对公共因子jF的相对重要性。

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。

应用多元分析第八章 因子分析

应用多元分析第八章   因子分析

1.00 0.32 0.33 0.18 0.00
1.00 0.24 1.00 0.34 0.24 1.00 -0.02 0.17 -0.00 1.00
例8.1.2 为了评价即将进大学的高中生的学习能力, 抽了200名高中生进行问卷调查,共50个问题。素 有这些问题可以归结为阅读理解、数学水平和艺 术素养三个方面。 例8.1.3 公司老板对48名应聘者进行面试,并给出 他们在15个方面的得分,这15个方面是:申请书 的形式(x1)、外貌(x2)、专业能力(x3)、讨人喜欢 (x4)、自信心(x5)、精明(x6)、诚实(x7)、推销能力 (x8)、经验(x9)、积极性(x10)、抱负(x11)、理解能 力(x12)、潜力(x13)、交际能力(x14)、适应性(x15)。 通过因子分析,这15个方面可归结为应聘者的外露 能力、讨人喜欢的程度、经验、专业能 i i 1,,10.
j 1
4
十项全能运动员得分相关矩阵
X1
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 1.00 0.59 0.35 0.34 0.63 0.40 0.28 0.20 0.11 -0.77
X2
X3
X4
X5
X6
X7


i 1
i
i 1
一、主成分法:
1 n 1 n x xi , S ( xi x )( xi x ) ' n i 1 n 1 i 1
ˆ ˆ 1、求出S的特征值1 p 0, 相应的正交单位特征向量
ˆ ti , i 1, , p。
2、估计:




data examp733(type=corr); input x1-x8; cards; 1.000 . . . . . . . 0.923 1.000 . . . . . . 0.841 0.851 1.000 . . . . . 0.756 0.807 0.870 1.000 . . . . 0.700 0.775 0.835 0.918 1.000 . . . 0.619 0.695 0.779 0.864 0.928 1.000 . . 0.633 0.697 0.787 0.869 0.935 0.975 1.000 . 0.520 0.596 0.705 0.806 0.866 0.932 0.943 1.000 ; proc factor data=examp733(type=corr); var x1-x8; proc factor data=examp733(type=corr) n=2; var x1-x8; run;

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章因子分析7.1试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子 分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。

7.3 简述因子模型、一 m 卜中载荷矩阵A 的统计意义。

答:对于因子模型X i PF W2F 2• O j Fj •… WmF m;ii =1,2,…,pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k 「F j )kTm= Cov(' a ik F k ,F j ) Cov( ;i ,F j )k d=a ij若对X i 作标准化处理,=a 0 ,因此a jj —方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j 的相对重要性。

因子分析考试题及答案

因子分析考试题及答案

因子分析考试题及答案一、单项选择题1. 因子分析中,公共因子提取的目的是:A. 减少变量的数量B. 提高数据的解释性C. 降低数据的维度D. 增加变量的个数答案:C2. 在因子分析中,方差贡献率是指:A. 每个因子解释的总方差的比例B. 每个变量解释的总方差的比例C. 每个因子解释的方差占总方差的比例D. 每个变量解释的方差占总方差的比例答案:C3. 因子分析中,因子载荷矩阵中的值表示:A. 变量与因子之间的相关性B. 变量与因子之间的因果关系C. 变量与因子之间的回归系数D. 变量与因子之间的距离答案:A4. 因子分析中,因子旋转的目的是为了:A. 提高模型的稳定性B. 增加模型的解释性C. 减少模型的复杂性D. 增加模型的预测能力答案:B5. 因子分析中,Kaiser-Meyer-Olkin (KMO) 测试是用来评估的:A. 因子模型的适用性B. 变量的多变量正态性C. 变量之间的相关性D. 变量的独立性答案:A二、多项选择题6. 因子分析中,以下哪些指标可以用来确定因子的数量:A. 特征值大于1的规则B. 累积方差贡献率C. Scree图D. Bartlett球形度检验答案:A, B, C7. 因子分析中,以下哪些因素可能影响因子载荷的解释:A. 变量的测量误差B. 变量之间的相关性C. 样本大小D. 因子的旋转方式答案:A, B, D8. 在因子分析中,以下哪些方法可以用来进行因子旋转:A. 正交旋转B. 斜交旋转C. 最大似然估计D. 最小二乘法答案:A, B9. 因子分析中,以下哪些步骤是因子分析过程的一部分:A. 计算相关矩阵或协方差矩阵B. 提取公共因子C. 因子旋转D. 构建因子得分答案:A, B, C, D10. 因子分析中,以下哪些是因子载荷矩阵的属性:A. 矩阵是对称的B. 矩阵的对角线元素为1C. 矩阵的行表示变量D. 矩阵的列表示因子答案:C, D三、简答题11. 简述因子分析的基本步骤。

应用多元统计分析章节后习题答案详解北大高惠璇习题解答市公开课金奖市赛课一等奖课件

应用多元统计分析章节后习题答案详解北大高惠璇习题解答市公开课金奖市赛课一等奖课件

第10页 10
第八章 因子分析
8-3 验证下列矩阵关系式(A为p×m阵)
(1) (I AD1A)1 AD1A I (I AD1A)1;
(2) ( AA D)1 D1 D1A(I AD1A)1 A1D1;
(3) A( AA D)1 (Im AD1A)1 AD1.
解:利用分块矩阵求逆公式求下列分块矩阵逆:
(3) 主成份分析是将主成份表示为原变量线性 组合,而因子分析是将原始变量表示为公因子和 特殊因子线性组合,用假设公因子来“解释”相 关阵内部依赖关系.
这两种分析办法又有一定联系.当预计办法采 用主成份法,因子载荷阵A与主成份系数相差一 个倍数;因子得分与主成份得分也仅相差一个常 数.这种情况下可把因子分析当作主成份分析推 广和发展.
并计算误差平方和Q(2).
解 : m 2的因子模型的主成分解为:
0.8757 0.1802
A(
1l1,
2
l2
)
0.8312
0.4048,
0.7111 0.6950
第7页
7
第八章 因子分析
D
0.2007 0 0
0 0.1452
0
0.0100131
则m 2的正交因子模型为
X1 0.8757F1 0.1802F2 1 X 2 0.8312F1 0.4048F2 2 X 3 0.7111F1 0.6950F2 3
p
m
p
S ilili ilili ilili
i 1
i 1
i m 1
其中1 2 p 0 为S特性值,li为相应原则
特性向量。
第14页 14
第八章 因子分析
设A,D是因子模型主成份预计,即

《应用多元统计分析》各章作业题及部分参考答案

《应用多元统计分析》各章作业题及部分参考答案

60.6
16.5
2 76
58.1
12.5
3 92
63.2
14.5
4 81
59.0
14.0
5 81
60.8
15.5
6 84
59.5
14.0
解:作如下假设 H0 : μ = μ0 , H1 : μ ≠ μ0
经计算,求的样本均值向量 x = (82.0, 60.2,14.5) ' ,x − μ0 = (−8, 2.2, −1.5) ' ,样本协差阵
x2
+
1 2
x3
+
1 2
x4 。
(2)第一主成分的贡献率为
λ1
+
λ2
λ1 +
λ3
+ λ4
= 1+ 3ρ 4
≥ 95% ,得 ρ
≥ 0.933 。
第 7 章 因子分析
1、设 x = (x1, x2 , x3 )′ 的相关系数矩阵通过因子分析分解为
⎛ ⎜
1

R
=
⎜ ⎜
−1 3
⎜ ⎜⎜⎝
2 3
−1 3 1
54.58
11.67
产品净值率 10.7
6.2
21.41
11.67
7.90
2、 设 G1, G2 , G3 三个组,欲判别某样品 x0 属于何组,已知 p1 = 0.05, p2 = 0.65, p3 = 0.3,
应用多元统计分析
pofeel@
3
f1 (x0 ) = 0.10, f2 (x0 ) = 0.63, f3 (x0 ) = 2.4 ,假定误判代价矩阵为:
⎢⎣ 4.5 ⎥⎦

应用多元统计分析习题解答第七章

应用多元统计分析习题解答第七章

第七章因子分析7.1试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子 分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。

7.3简述因子模型、一 m 卜中载荷矩阵A 的统计意义。

答:对于因子模型X i =a i 1F 1 - mF ?a j F j I" a m F m•;ii =1,2,Hl , pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k °F j )k=im= Cov(' a ik F k ,F j ) Cov(「F j )k d= a ij若对X i 作标准化处理,=a j ,因此a ij 一方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j的相对重要性。

因子分析考试题及答案

因子分析考试题及答案

因子分析考试题及答案一、选择题(每题2分,共20分)1. 因子分析中,公共因子是指:A. 只与一个变量相关的因子B. 与多个变量相关的因子C. 只与一个变量相关的特殊因子D. 与多个变量相关的特殊因子答案:B2. 因子分析中,特殊因子是指:A. 只与一个变量相关的因子B. 与多个变量相关的因子C. 只与一个变量相关的公共因子D. 与多个变量相关的公共因子答案:A3. 因子分析中,变量的共同度是指:A. 变量方差中可以由公共因子解释的部分B. 变量方差中不能由公共因子解释的部分C. 变量方差中可以由特殊因子解释的部分D. 变量方差中不能由特殊因子解释的部分答案:A4. 因子分析中,因子载荷矩阵中的值表示:A. 变量与因子之间的相关系数B. 变量与因子之间的回归系数C. 变量与因子之间的相关系数的平方D. 变量与因子之间的回归系数的平方答案:A5. 因子分析中,旋转的目的是什么?A. 增加因子的解释性B. 减少因子的解释性C. 提高因子的稳定性D. 降低因子的稳定性答案:A6. 因子分析中,主成分分析(PCA)是一种:A. 描述性统计方法B. 推断性统计方法C. 探索性统计方法D. 预测性统计方法答案:C7. 因子分析中,最大似然法(ML)是一种:A. 描述性统计方法B. 推断性统计方法C. 探索性统计方法D. 预测性统计方法答案:B8. 因子分析中,Kaiser-Meyer-Olkin(KMO)测度是用来评估:A. 变量的共同度B. 变量的独立性C. 变量的偏度D. 变量的球形度答案:D9. 因子分析中,Bartlett的球形度检验是用来评估:A. 变量的共同度B. 变量的独立性C. 变量的偏度D. 变量的球形度答案:D10. 因子分析中,提取因子的数目通常由以下哪个指标决定:A. 特征值大于1的规则B. 累积方差解释率C. 因子载荷矩阵D. 因子旋转结果答案:A二、简答题(每题10分,共40分)1. 简述因子分析的基本步骤。

应用多元统计分析课后习题答案高惠璇第六章习题解答

应用多元统计分析课后习题答案高惠璇第六章习题解答
应用多元统计分析课后习题答案高惠璇第六章习题解答
目录
习题一:多元线性回归分析 习题二:主成分分析 习题三:因子分析 习题四:聚类分析
01
习题一:多元线性回归分析
多元线性回归模型的建立
总结词:多元线性回归模型是用来研究多个自变量与因变量之间线性关系的统计方法。

多元线性回归模型的参数估计
总结词:参数估计是多元线性回归模型建立的重要步骤,常用的方法有最小二乘法和加权最小二乘法等。
步骤4
重新计算每个聚类的中心,并更新聚类中心。
步骤5
重复步骤3和4,直到聚类中心收敛或达到预设的最大迭代次数。
算法
常见的聚类算法包括K-means、层次聚类、DBSCAN等。
聚类分析的步骤与算法
感谢您的观看
THANKS
01
主成分在几何上表示数据集的投影方向,即数据在各主成分上的投影点形成的直线方向。
02
第一主成分是数据点散布最广的方向,第二主成分是数据点散布次广的方向,以此类推。
主成分的几何意义
03
习题三:因子分析
因子分析的基本概念
因子分析是一种多元统计分析方法,用于从一组变量中提取公因子,并对这些公因子进行解释。
习题四:聚类分析
聚类分析的目标是发现数据的内在结构,以便对数据进行更深入的理解和分类。
聚类分析广泛应用于数据挖掘、模式识别、图像处理等领域。
聚类分析是一种无监督学习方法,通过将数据点或观测值分组,使得同一组(即聚类)内的数据尽可能相似,而不同组之间的数据尽可能不同。
聚类分析的基本思想
设$X = {x_1, x_2, ..., x_n}$为数据集,其中每个$x_i$是一个$p$-维向量。
正的因子载荷表示正相关,负的因子载荷表示负相关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++L L 1,2,,i p =L因子载荷阵为11121212221212(,,,)m m mp p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦L L L L L L L LAi X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。

变量共同度2211,2,,miijj h ai p ===∑L2221122()()()()()i i i im m i D X a D F a D F a D F D ε=++++L 22i i h σ=+ 说明变量i X 的方差由两部分组成:第一部分为共同度2i h ,它描述了全部公共因子对变量i X 的总方差所作的贡献,反映了公共因子对变量i X 的影响程度。

第二部分为特殊因子i ε对变量i X 的方差的贡献,通常称为个性方差。

而公共因子j F 对X 的贡献2211,2,,pjiji g aj m ===∑L表示同一公共因子j F 对各变量所提供的方差贡献之总和,它是衡量每一个公共因子相对重要性的一个尺度。

7.4 在进行因子分析时,为什么要进行因子旋转?最大方差因子旋转的基本思路是什么? 答:因子分析的目标之一就是要对所提取的抽象因子的实际含义进行合理解释。

但有时直接根据特征根、特征向量求得的因子载荷阵难以看出公共因子的含义。

这种因子模型反而是不利于突出主要矛盾和矛盾的主要方面的,也很难对因子的实际背景进行合理的解释。

这时需要通过因子旋转的方法,使每个变量仅在一个公共因子上有较大的载荷,而在其余的公共因子上的载荷比较小。

最大方差旋转法是一种正交旋转的方法,其基本思路为: ①A其中令***(),/ijp m ij iji a d a h ⨯===A A Γ 211p j ij i d d p ==∑ *A 的第j 列元素平方的相对方差可定义为2211()p j ij j i V d d p ==-∑ ②12m V V V V =+++L最大方差旋转法就是选择正交矩阵Γ,使得矩阵*A 所有m 个列元素平方的相对方差之和达到最大。

7.5 试分析因子分析模型与线性回归模型的区别与联系。

答:因子分析模型是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法的模型。

而线性回归模型回归分析的目的是设法找出变量间的依存(数量)关系, 用函数关系式表达出来。

因子分析模型中每一个变量都可以表示成公共因子的线性函数与特殊因子之和。

即1122i i i im m i X a F a F a F ε=++++L ,(1,2,,i p =L ) 该模型可用矩阵表示为:=+X AF ε而回归分析模型中多元线性回归方程模型为:其中是常数项,是偏回归系数,是残差。

因子模型满足:(1)m p ≤; (2)(,)0Cov =F ε,即公共因子与特殊因子是不相关的;(3)101()01F m D ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦D F I O ,即各个公共因子不相关且方差为1; (4)212220()0p D εσσσ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦D εO ,即各个特殊因子不相关,方差不要求相等。

而回归分析模型满足(1)正态性:随机误差(即残差)e 服从均值为 0,方差为σ2的正态分布;(2)等方差:对于所有的自变量x ,残差e 的条件方差为σ2,且σ为常数;(3)独立性:在给定自变量x 的条件下,残差e 的条件期望值为0(本假设又称零均值假设);(4)无自相关性:各随机误差项e 互不相关。

两种模型的联系在于都是线性的。

因子分析的过程就是一种线性变换。

7.6 设某客观现象可用X=()’来描述, 在因子分析时,从约相关阵出发计算出特征值为 由于,所以找前两个特征值所对应的公共因子即可, 又知对应的正则化特征向量分别为(0.707,-0.316,0.632)’及(0,0.899,0.4470)’,要求:(1)计算因子载荷矩阵A ,并建立因子模型。

(2)计算共同度。

(3)计算第一公因子对X的“贡献”。

解:(1)根据题意,A==建立因子模型为(2)(3)因为是从约相关阵计算的特征值,所以公共因子对X的“贡献”为。

7.7 利用因子分析方法分析下列30个学生成绩的因子构成,并分析各个学生较适合学文科序号数学物理化学语文历史英语1 65 61 72 84 81 792 77 77 76 64 70 553 67 63 49 65 67 574 80 69 75 74 74 635 74 70 80 84 81 746 78 84 75 62 71 647 66 71 67 52 65 578 77 71 57 72 86 719 83 100 79 41 67 5010 86 94 97 51 63 5511 74 80 88 64 73 6612 67 84 53 58 66 5613 81 62 69 56 66 5214 71 64 94 52 61 5215 78 96 81 80 89 7616 69 56 67 75 94 8017 77 90 80 68 66 6018 84 67 75 60 70 6319 62 67 83 71 85 7720 74 65 75 72 90 7321 91 74 97 62 71 6622 72 87 72 79 83 7623 82 70 83 68 77 8524 63 70 60 91 85 8225 74 79 95 59 74 5926 66 61 77 62 73 6427 90 82 98 47 71 6028 77 90 85 68 73 7629 91 82 84 54 62 6030 78 84 100 51 60 60解:令数学成绩为X1,物理为X2,化学为X3,语文为X4,历史为X5,英语为X1,用spss 分析学生成绩的因子构成的步骤如下:1. 在SPSS窗口中选择Analyze→Data Reduction→Factor,调出因子分析主界面,并将六个变量移入Variables框中。

图7.1 因子分析主界面2. 点击Descriptives按钮,展开相应对话框,见图7.2。

选择Initial solution复选项。

这个选项给出各因子的特征值、各因子特征值占总方差的百分比以及累计百分比。

单击Continue按钮,返回主界面。

图7.2 Descriptives子对话框3. 点击Extraction按钮,设置因子提取的选项,见图7.3。

在Method下拉列表中选择因子提取的方法,SPSS提供了七种提取方法可供选择,一般选择默认选项,即“主成分法”。

在Analyze栏中指定用于提取因子的分析矩阵,分别为相关矩阵和协方差矩阵。

在Display 栏中指定与因子提取有关的输出项,如未旋转的因子载荷阵和因子的碎石图。

在Extract栏中指定因子提取的数目,有两种设置方法:一种是在Eigenvalues over后的框中设置提取的因子对应的特征值的范围,系统默认值为1,即要求提取那些特征值大于1的因子;第二种设置方法是直接在Number of factors后的矩形框中输入要求提取的公因子的数目。

这里我们均选择系统默认选项,单击Continue按钮,返回主界面。

图7.3 Extraction子对话框4.点击Rotation按钮,设置因子旋转的方法。

这里选择Varimax(方差最大旋转),并选择Display栏中的Rotated solution复选框,在输出窗口中显示旋转后的因子载荷阵。

单击Continue按钮,返回主界面。

图7.4 Rotation子对话框5.点击Scores按钮,设置因子得分的选项。

选中Save as variables复选框,将因子得分作为新变量保存在数据文件中。

选中Display factor score coefficient matrix复选框,这样在结果输出窗口中会给出因子得分系数矩阵。

单击Continue按钮返回主界面。

图7.5 Scores子对话框6. 单击OK按钮,运行因子分析过程。

结果分析:表7.1 旋转前因子载荷阵表7.2 旋转后因子载荷阵成份矩阵a成份1 2x1 -.662 .503x2 -.530 .478x3 -.555 .605x4 .900 .233x5 .857 .357从表7.1中可以看出,每个因子在不同原始变量上的载荷没有明显的差别,为了便于对因子进行命名,需要对因子载荷阵进行旋转,得表7.2。

经过旋转后的载荷系数已经明显地两极分化了。

第一个公共因子在后三个指标上有较大载荷,说明这三个指标有较强的相关性,可以归为一类,属于文科学习能力的指标;第二个公共因子在前三个指标上有较大载荷,同样可以归为一类,这三个指标同属于理科学习能力的指标。

相关文档
最新文档