地幔流体的稳定同位素地球化学综述

合集下载

地球化学总结 地壳与地幔地球化学 地球的元素丰度的估算方法: 1 陨石

地球化学总结 地壳与地幔地球化学 地球的元素丰度的估算方法: 1 陨石

地球化学总结地壳与地幔地球化学地球的元素丰度的估算方法:1 陨石类比法,该估算方法是建立在以下假设根底之上的:1)陨石是太阳系内的产物2)陨石与小行星带物质成分相同3)陨石是星体的碎片4)陨石母体的内部结构和成分与地球相似2 地球模型法和陨石类比法在地球模型的根底上求出各圈层的质量和比值,利用陨石类型或陨石相的成分计算各圈层的元素丰度,最后用质量加权平均法求出全球的元素的丰度。

例如:华盛顿球粒陨硫铁可以代表地核的成分;球粒陨石中硅酸盐的平均成分代表地幔和地壳的成分可以按比例各取一定质量的陨石,然后分别计算出各元素的全球丰度克拉克值:地壳的平均化学成分,可以有多种表示方法重量克拉克值:指地壳中元素的重量平均含量原子克拉克值:指地壳中元素的原子平均含量地壳的平均化学成分确实定方法:1)岩石平均化学组成法克拉克将岩石圈的全部岩石分为两类:火成岩,质量占95%,水成岩占5%。

然后取样按质量加权平均值法计算地壳的成分2)细粒碎屑岩法戈尔德施密特认为,细碎屑岩是沉积物源区出露岩石经过剥蚀,搬运,并均匀混合的产物,其成分可以代表物源区地壳的平均化学组成Taylor和McLennan 那么用细粒碎屑沉积岩,特别是泥质岩作为上地壳的混合样品进行了研究。

3)地壳模型法Taylor和McLennan提出,现今大陆壳质量的75%在太古宙时期形成的,25%是在后太古宙时期形成的。

后太古宙的大陆壳生长主要发生在岛弧地区,代表性物质是岛弧安山岩,由此他们计算出了现代大陆壳的元素丰度地壳元素丰度特征:1)地壳中各种元素的丰度是极不均匀的,其中,前三种元素O,Si,Al就占了82%,前8种元素占了98%2)随原子序数的递增其丰度趋于降低,但Li,Be,B的丰度仍表现为亏损3)除了惰性气体和少数元素外,质量数为偶数的元素丰度大于奇数4)元素的丰度仍表现为质量数位4的倍数占主导地位5)相对地球整体,地壳最亏损亲铁元素,次亏损亲铜元素和少量亲氧相容元素;富集亲氧不相容元素地壳中某些元素丰度的偶数原那么被破坏的原因:1)惰性气体元素丰度异常低的原因:不易参于其他元素相结合,在漫长的地质演化历史过程中,它们易于从固体地球内部不断地通过排气作用进入大气圈,在通过脱离地球的引力作用而释放到宇宙中2)在地壳与地幔分异的过程中,局部相容元素停留在地幔中元素克拉克值在研究地球化学中的意义1〕元素的克拉克值决定了元素的地球化学行为克拉克值高的元素可以形成独立矿物,而克拉克值低的元素只能以类质同像的形式存在于主要矿物的晶格中2〕作为元素集中分散的标尺浓度克拉克值=观测值/克拉克值>1说明富集<1说明贫化3)标志地壳中元素的富集和成矿的能力浓集系数=矿石的边界品位/克拉克值浓集系数越大越不容易成矿主要类型岩石中元素的丰度特征1)超基性岩富集亲铁元素和亲氧中的相容元素2)基性岩富集亲铜元素和分配系数接近于1的亲氧元素3)酸性岩富集不相容的亲氧元素和挥发元素载体矿物:岩石中某元素主要赋存的矿物富集矿物:某元素的含量远远高于岩石平均含量的矿物地幔地球化学地幔成分的研究方法:1)上地幔成分确实定:幔源的玄武岩及其所携带的地幔岩包体,或通过构造推覆上来的地幔岩块2)下地幔成分确实定:一是根据实测的地球内部地震波速资料和高温高压下矿物的或岩石的原位声速测量资料进行综合研究获得,二是根据宇宙化学资料研究获得地幔不均一性的研究方法:1)地幔化学研究不均一性的样品地幔橄榄玄武岩玄武岩类岩石方法:元素比值和同位素比值,同位素和强的不相容元素之间的比值可以代表地幔源区岩石的比值元素丰度模式法:一种图解法,类似于用球粒陨石标准化的稀土元素模式图地幔不均一性的原因:1)在地球形成的行星吸积过程中就存在组成的化学不均一性。

21-23稳定同位素地球化学

21-23稳定同位素地球化学
Element Notation
Hydrogen Lithium Boron Carbon Nitrogen Oxygen Sulfur δ D δ 6Li δ δ δ δ δ δ
11 6
Ratio
D/H(2H/1H) li/7Li B/10B C/12C N/14N O/16O O/16O S/32S
18 18 216 1/3C16O2+ H O ƒ 1/3C O + H 3 2 3 2 O
α=1.0492
α=1.0286
反应使岩石中富集了18O、而在水中富集16O。由于大 部分岩石中氢的含量很低,因此水岩同位素交换反应 中氢同位素成分变化不大,但在含OH-的矿物中,水 岩反应结果使得矿物的δD增高。
1000ln A 10 / T B
6 2
α是分馏系数;T是绝对温度;A、B是常数,由实验 确定。从上式可知,温度越高,分馏越小;温度越低, 分馏越大。 在实际进行同位素地质温度测定时,只要测定两个共 生矿物的同位素组成,便可根据公式进行同位素平衡 温度计算。
稳定同位素地球化学
例子:含石英、白云母和磁铁矿的花岗片麻岩
H-O同位素地球化学
(3) 矿物晶格化学键 对氧同位素的选择 当火成岩和变质岩 达到氧同位素平衡时, 岩石中矿物氧同位素 有一个相应的分馏次 序,其中Si-O-Si键的 矿物中最富18O,其 次为Si-O-Al键、SiO-Mg键等。
H-O同位素地球化学
云和沉积物五个库间进行。
H-O同位素地球化学
1.H-O同位素的分馏 (1)蒸发-凝聚分馏: 水在蒸发过程中轻水分子H216O比重水分子D218O易于富 集在蒸汽相中,而凝聚作用相反,重的水分子优先凝结。 因此在气、液相之间发生H、O同位素的物理分馏。 由于水分子经过反复多次蒸发-凝聚过程使得内陆及高纬

同位素地球化学第五章 同位素地球化学

同位素地球化学第五章  同位素地球化学
2)所测定同位素的衰变常数的精度能满足要求。
3)放射性同位素应具有较高的地壳丰度,在当前的技术 条件下,能以足够的精度测定它和它所衰变的子体含 量。
4)矿物、岩石结晶时,只含某种放射性同位素,而不含 与之有蜕变关系的子体或虽含部分子体,其数量亦是 可以估计的。
常用放射性同位素体系
同位素年代学方程
• Each process transforms a radioactive parent nucleus into one or more daughter nuclei.
a-decay
Emission of an a-particle or 4He nucleus (2 neutrons, 2 protons)
放射性衰变
自然界中部分核素在能量上处于不稳定状 态,自发地从某一核素衰变成为另一核素, 并伴随各种粒子形式的能量释放的过程称为 放射性衰变。
发生放射性衰变的同位素称放射性同位素, 或母体同位素(radioactive parent nucleus )。
放射性衰变过程中及最终形成的稳定同位 素称为放射成因同位素或子体同位素 (radiogenic daughter nuclei) 。
Radioactive and rediogenic elements
二、衰变定律
1902年Rutherford通过实验发现放射性同位素 衰变反应不同一般的化学反应,具有如下性质:
(1)衰变作用是发生在原子核内部的反应,反应结果 由一种核素变成另一种核素;
(2)衰变自发地不断地进行,并有恒定的衰变比例;
N
dN
t
dt
N N0
t 0
ln N t
N0
值的意义
是比例常数,后来称之为衰变 常数,量纲为时间的倒数。其意 义为一个放射性核素的原子在在 所描述的时间范围内发生衰变的 概率(probability)。

《地球化学》章节笔记

《地球化学》章节笔记

《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。

它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。

2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。

3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。

二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。

2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。

三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。

Mo同位素地球化学综述

Mo同位素地球化学综述

Mo同位素地球化学综述张洪求(东华理工大学地球科学学院,江西 南昌 330013)摘 要:随着样品纯化技术的改进以及多接收等离子体质谱仪发展(MC-ICP-MS),使得Mo同位素可以被精确地测定。

Mo同位素作为氧化还原的敏感元素,可用来示踪各种地质过程和演化历史:古环境演化、成矿物质来源和海洋Mo的循环等。

本文从Mo同位素的测试方法、自然界的分布、分馏机制和地质中的应用等方面进行了论述,系统总结Mo同位素地球化学特征。

关键词:Mo同位素;分馏机制;示踪中图分类号:P597 文献标识码:A 文章编号:1002-5065(2020)20-0170-2A review of Mo isotope geochemistryZHANG Hong-qiu(School of Earth Sciences, East China University of Technology,Nanchang 330013,China)Abstract: With the improvement of sample purification technology and the development of multi-receiving plasma mass spectrometer (MC-ICP-MS), Mo isotopes can be accurately determined. Mo isotopes, as sensitive elements of redox, can be used to trace various geological processes and evolutionary histories: ancient environmental evolution, mineral sources and ocean Mo cycles. This paper discusses the test method of Mo isotopes, the distribution of nature, the distillation mechanism and the application of geology, and systematically summarizes the geochemical characteristics of Mo isotopes. Keywords: Mo isotope; fractionation mechanism; tracer近年来,随着样品纯化技术的改进以及MC-ICP-MS 的发展,其高电离率和稳定的质量分馏行为特点,使得Mo 同位素组成的高精度测量成为可能。

地球化学 第四讲 同位素地球化学

地球化学 第四讲 同位素地球化学

② 同位素交换反应:就是在化学反应中反应物和生成物之间由 于物态、相态及化学键性质的变化,使轻重同位素分别富集在不 同分子中而发生分异,称同位素交换反应。(轻同位素易断裂) 例如:大气圈与水圈之间发生氧同位素交换反应
2H 2 18O16O2 2H 2 16O18O2
(0℃:α=1.074, :α=1.006)
Geochemistry
College of geological science & engineering, Shandong university of science & technology
问题:如何用δ求解αA-B=RA/RB αA-B=RA/RB=(δA+1)/(δB+1) 4、同位素富集系数:
③ 生物化学反应:动植物及微生物在生存过程中经常与介质交换 物质、并通过生物化学过程引起同位素分馏。 例如:植物通过光合作用,使12C更多地富集在有机体中,因此 生物成因地质体如煤、油、气等具有高的12C。生物成因的34S低。 (前生物时代碳质成因?)
Geochemistry
College of geological science & engineering, Shandong university of science & technology
Creativity
Geochemistry
College of geological science & engineering, Shandong university of science & technology
元素:具有相同质子数的核素称为元素。
同位素:具有相同质子数,不同中子数的一组核
Geochemistry

地球化学第六章 同位素地球化学-稳定同位素

地球化学第六章 同位素地球化学-稳定同位素

第六章同位素地球化学——稳定同位素第一节基本概念一、同位素的定义核素:是由一定数量的质子(P)和中子(N)构成的原子核。

核素具有质量、电荷、能量、放射性和丰度5中主要性质。

元素:具有相同质子数和中子数的核素.同位素:原子核内质子数相同而中子数不同的一类原子叫做同位素(isotope),他们处在周期表上的同一位置二、同位素的分类– 放射性同位素(radioactive isotope):原子核是不稳定的,它们能够白发地衰变成其他的同位素。

最终衰变为稳定的放射性成因同位素。

目前已知的放射性同位素达1200种左右,由于大部分放射性同位素的半衰期较短,目前已知自然界中存在的天然放射性同位素只有60种左右。

放射性同位素例子:238U→234Th+4He(α)+Q→206Pb;235U→207Pb;232Th→208Pb– 稳定同位素(stable isotope):原子核是稳定的,迄今还未发现它们能够自发衰变形成其他的同位素。

自然界中共有1700余种同位素,其中稳定同位素有260余种。

z轻稳定同位素,又称天然的稳定同位素,是核合成以来就保持稳定。

其特点是①原子量小,同—元素的各同位素间的相对质量差异较大;②轻稳定同位素变化主要原因是同位素分馏作用所造成的,其反应是可逆的。

如氢同位素(1H和2H)、氧同位素(16O和18O)、碳同位素(12C和13C)等。

z重稳定同位素,又称放射成因同位素(radiogenic isotope):稳定同位素中部分是由放射性同位素通过衰变后形成的稳定产物。

其特点是①原子量大,同—元素的各同位素间的相对质量差异小(0.7%~1.2%)环境的物理和化学条件的变化通常不导致重稳定同位素组成改变;②重稳定同位素变化主要原因是放射性同位素衰败引起,这种变化是单向的不可逆的。

如87Sr是由放射性同位素87Rb衰变而来的;三、同位素的丰度和原子量1.同位素丰度(isotope abundance) :可分为绝对丰度和相对丰度绝对丰度是指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H=1012)或28Si(取28Si=106)的比值表示。

地幔地球化学研究进展_微量元素和同位素特征

地幔地球化学研究进展_微量元素和同位素特征

第14卷第2期1999年4月地球科学进展ADVANCE I N E ARTH SCIE NCESV ol.14 N o.2Apr.,1999地幔地球化学研究进展:微量元素和同位素特征Ξ匡少平,徐 仲(中国地质大学地球化学研究所, 湖北 武汉 430074)摘 要:系统介绍了近年来地幔同位素地球化学的研究进展,概述了Sr2Nd2H f2Pb、Os、He2Ar和Ne 同位素在幔源岩石示踪和成因鉴别上所取得的成果,指出同位素在地幔岩石研究的重要作用;简要总结了全球及区域地幔平均化学成分的主要研究手段和某些全球均一比值(如Nb/U、Y/H o和Ce/ Pb)的意义;并提出分析技术的落后和基础理论的停滞是影响同位素和微量元素在地幔研究中应用和发展的主要因素。

关键词:地幔演化;地幔成分;同位素;微量元素;地球化学中图分类号:P597;P59112 文献标识码:A 文章编号:100128166(1999)022******* 自20世纪60年代以来,地质学家和地球化学家一直在研究地幔成分及其演化机制。

随着国际上地幔计划(UMP)、深海钻探计划(DS DP)等的实施,凭借地幔捕虏体和幔源火山岩所具有的深部信息,地幔地球化学研究取得了许多重要进展和突破,特别是在同位素和微量元素研究方面,目前已积累了大量的资料,它们在解释壳幔演化中起到了独特的作用。

1 地幔同位素成分特征由于地球中放射性母核素(如147Sm、87Rb、176Lu、187Re、40K、232Th、238U和235U等)的半衰期长,因此,其子同位素比值可以反映壳幔的长期演化历史。

111 Sr2Nd2H f2Pb同位素H ofmann〔1〕对太平洋、大西洋、印度洋等洋脊玄武岩(MORB)、全球洋岛玄武岩(OI B)、富集地幔(E MA)、高U/Pb地幔(HI MU)及大陆地壳在内的Sr、Nd、H f同位素进行了研究,结果表明,143Nd/144Nd一般与87Sr/86Sr呈反相关,而与176H f/177H f呈正相关。

化学地层学-稳定同位素

化学地层学-稳定同位素

2011-7-20
Wang X.L.
3
利用宇宙事件所造成的沉积物内铱含量的 增大等进行事件地层划分和对比; 增大等进行事件地层划分和对比;也可利 用不同地质时代化学元素含量的变化, 用不同地质时代化学元素含量的变化,推 断地球化学环境演变的规律, 断地球化学环境演变的规律,等。 化学地层学已在地层界线层型剖面的研究 中得到广泛的应用。 中得到广泛的应用。
2011-7-20
Wang X.L.
11
因而, 因而,当: δ>0,表示样品中重同位素比标准富集; > ,表示样品中重同位素比标准富集; δ<0,表示样品中重同位素比标准亏损。 < ,表示样品中重同位素比标准亏损。 实际应用中, 值就是物质同位素组成的代 实际应用中,δ值就是物质同位素组成的代 名词。 名词。
2011-7-20 Wang X.L. 19
在古气候研究中也可用碳酸盐氧同位素 标准: 标准: 其13C/12C=1123.72×10-5, × 18O/16O=2067.1×10-6 × 根据定义, 根据定义,其δ13C=0,相对 ,相对SMOW,其 , δ18O=30.86‰。 = 。
2011-7-20
化学地层学
马锦龙 兰州大学资源环境学院
2011-7-20 Wang X.L. 1
概念
化学地层学是地层学的一个新分支学科 和新兴的边缘学科, 和新兴的边缘学科,它是地球化学在地 层学中的具体应用, 层学中的具体应用,也是地球化学与地 层学综合研究的结果。 层学综合研究的结果。
2011-7-20
Wang X.L.
2011-7-20
Wang X.L.
10
R样——样品中某元素的同位素比值 样品中某元素的同位素比值 R标——指定标准中某元素的同位素比值 指定标准中某元素的同位素比值

稳定同位素地球化学

稳定同位素地球化学

元素 H、O
C C S
标准样 大洋水平均 美国南卡罗莱纳州,皮迪组的美洲箭石(已耗尽) 索洛霍芬石灰岩 美国亚利桑那州坎宁迪亚布洛铁陨石中的陨硫铁
缩写 SMOW
PDB NBS—20
CD
STABLE ISOTOPE
• 2.质谱仪测定:

质谱仪是目前同位素成分测定的
主要手段(MAT—261,MAT—251)。
其工作原理是:把待测元素的原子或分
子正离子化,并引入电场和磁场中运动,
带正电的质点因质量不同而被分离测定。
• δA=
STABLE ISOTOPE
• 热力学性质 • 电能---电子层分布 • 平动能 • 转动能 • 振动能---产生同位素分馏的主要原因 • 振动频率与原子的质量成反比 • 含有较轻同位素的分子比重同位素的分子具有
STABLE ISOTOPE
② 同位素交换反应:就是参与反应的各相物质在保持化学平衡的 状态下,各物相间发生同位素再分配的现象。 使轻重同位素分别富集在不同分子中而发生分异,称同位素交换反应。
例如:方铅矿和闪锌矿之间达到反应平衡时, 大气圈与水圈之间发生氧同位素交换反应
2 (0H ℃2 :1 α=O 18 . 071 4O , 6 2 25 ℃:α2 =H 1.02 01 6O )6 1O 8 2
近年来,稳定同位素地球化学以同位素分馏理论为基础,将 重点从同位素平衡体系转向非平衡体系(如同位素交换动力学)。 激光探针同位素分析技术的日趋成熟,又大大促进了应用研究。 目前,稳定同位素应用正向着地球科学的各个领域渗透,研究已 涉及水圈、古海洋、气候学、冰川学、古环境、考古学、天体化
STABLE ISOTOPE
• 习惯上把微量(较小相对丰度)同位素 放在R的分子上,这样可以从样品的δ值, 直接看出它含微量同位素比标准样品是 富集了,还是贫化了。 • δ>0表示34S比标准样品是富集了; • δ<0表示34S比标准样品是贫化了。

同位素地球化学研究进展

同位素地球化学研究进展

同位素地球化学研究进展同位素地球化学是研究不同元素同位素组成及其在地球化学过程中的应用的学科领域。

随着科技的进步和研究方法的不断发展,同位素地球化学研究取得了许多重要进展。

本文将从同位素分馏、同位素示踪、同位素定年等方面介绍同位素地球化学研究的进展。

同位素分馏是指同一元素的不同同位素在地球化学过程中有选择地分离的现象。

同位素分馏的研究对于地球和行星的演化过程以及地球内部和外部物质循环过程有着重要的指示意义。

过去几十年,同位素分馏的研究主要集中在稳定同位素(如氢、氧、碳、氮等)和放射性同位素(如铀、钍、铅等)上。

研究表明,同位素分馏与地球化学过程密切相关,如同位素分馏可以揭示地球的形成和演化过程、大气和海洋中的物质循环过程、生物地球化学循环等。

近年来,随着新技术的发展,研究范围不断扩大,涵盖了更多的元素和同位素体系。

同位素示踪是利用同位素在地球化学过程中的特殊性质来追踪地球系统中的物质的流动和转化过程。

同位素示踪技术被广泛应用于环境、气候、生态、地质等领域的研究中。

近年来,同位素示踪研究的进展主要集中在气候变化、水资源和环境污染等方面。

例如,氧同位素和氢同位素广泛应用于追踪水体起源和循环过程,碳同位素和氮同位素用于研究气候变化和生物地球化学循环等。

同时,同位素示踪技术在环境和地质工程中的应用也得到了广泛关注。

同位素定年是利用一些具有放射性衰变性质的同位素来确定岩石、矿物和古代生物的年代。

同位素定年是地质学和考古学研究中非常重要的手段之一、传统的同位素定年方法主要包括放射性同位素定年(如铀-铅、钍-铅、锶-锶等)和稳定同位素定年(如碳-14、氚、钾-锶等)。

近年来,随着加速器质谱技术的发展,同位素定年的精确性和应用范围不断扩大。

例如,放射性同位素铀-铅定年可用于确定火山岩和古岩石的年代,碳-14定年可用于确定古代文物和化石的年代。

总的来说,同位素地球化学研究在过去几十年取得了许多重要进展,涉及的领域不断扩大。

稳定同位素技术在地质科学中的应用

稳定同位素技术在地质科学中的应用

稳定同位素技术在地质科学中的应用稳定同位素技术是利用地球物质中同一元素不同同位素在化学反应中的不同反应速率来分析地质过程的一种方法。

稳定同位素技术不仅在地球科学领域得到了广泛应用,也在其他领域,如生物学、生态学、环境科学等中发挥重要作用。

本文主要探讨稳定同位素技术在地质科学中的应用。

一、同位素地球化学同位素地球化学是稳定同位素技术的一个重要应用方向。

同位素地球化学研究的是地球物质中各元素同位素的分布与空间变化,通过同位素分析,可以从微观角度深入探讨地球物质的形成与演化机制。

如氧同位素就是一个较为常用的地质同位素,它主要用于研究大气、水体、沉积物等地质过程。

氧同位素在大气科学方面可以用于研究靠近海洋和陆地区域的降水同位素分布,以此揭示气象要素和局地气象变化。

在地质时标等领域,氧同位素也常常被人们用来研究不同地质时期的气候变化。

二、岩石地球化学稳定同位素技术在岩石地球化学领域也有着广泛的应用。

岩石和矿物中同位素含量的变化可以揭示岩石和矿物的形成和演化过程。

例如,石英和方解石中的氧同位素组成可以用于时间尺度的研究,而锶同位素组成与岩浆成因联系更为密切。

稳定同位素技术在岩石地球化学研究中的应用还包括研究成矿作用、火山喷发等地质现象。

三、环境地球化学稳定同位素技术在环境地球化学中的应用也越来越受到重视。

环境地球化学是研究环境中各种元素及其同位素分布、迁移和转化的科学,通过分析环境中元素和同位素的分布特征,可以认识到环境本质和特征,进而为环境治理和保护提供科学依据。

如氮、碳等同位素可以用于研究环境污染的来源和演变,硫同位素可用于研究酸雨的生成过程,而稳定铅同位素则可以用于重金属污染历史的追溯。

四、同位素地质年代学同位素地质年代学是通过同位素变化研究地质时间尺度的方法。

通过对地球物质中不同元素对时间的记录,可以研究地层的时代顺序以及地层岩石的物质来源和演化过程。

如铀-钍同位素法可用于绝对年龄并研究地壳物质循环过程,钾-氩同位素法可以用于研究火山岩的年龄,而锆石U-Pb同位素法是目前最常用的地质年代学方法之一。

地幔流体组成

地幔流体组成

收稿日期:19990614作者简介:张铭杰(1965— ),男,副研究员,博士,地球化学专业。

基金项目:国家自然科学基金资助项目(49233060,49133090)地幔流体组成张铭杰,王先彬,李立武(中国科学院兰州地质研究所,甘肃兰州730000)摘 要:地幔流体是当今地球科学研究中的前沿领域之一,具有重要的研究价值。

文中总结了地幔流体组成研究的手段、实验方法及近年来的进展,探讨了目前存在的问题,认为当前需进一步工作的领域有:(1)确定适宜于地幔流体组成测定的实验方法,以便进行全球数据对比;(2)开展不同类型地幔源区中地幔流体稀有气体同位素体系与Pb Sr Nd Hf Os 同位素体系的对比性研究;(3)对不同构造单元中的地幔流体进行研究,建立不同端员地幔源区的地幔流体组成和稳定同位素制约因素;(4)研究壳幔相互作用过程中的地幔流体,确定地幔流体中再循环地壳组分的鉴别标志;(5)在全球范围内探讨地质历史时期地幔流体的组成、性质、运移及演化规律;(6)开展幔源H 2及烃类的研究,为非生物成因天然气理论及勘探提供依据。

关键词:样品;实验方法;组成;地幔流体中图分类号:O35,P61 文献标识码:A 文章编号:10052321(2000)02040112地幔流体是指在地幔环境下处于平衡稳定状态的气相和液相组分,其化学成分以C ,H ,O ,N ,S 等为主,并溶有多种碱性元素、稀有气体及F ,P ,Cl 等微量组分[1,2];其挥发份的种类和含量受源区特征、构造环境、演化历程及再循环地壳组分等因素的制约[3,4],是地球内部物质和能量传输最活跃的组分,对地幔状态、物理性质有着重要的影响,与深部地幔作用及浅表地层事件有着密切的关系,是当今地球科学研究的前沿领域之一。

1 地幔流体研究的手段、方法及意义1.1 地幔流体研究的重要意义(1)地幔流体在地球演化过程中具重要的意义。

原始地球在分异形成地核和原始地幔及其后的上、下地幔和地壳的过程中[5,6],地幔流体组分以各种方式脱出。

地球化学中的稳定同位素

地球化学中的稳定同位素

地球化学中的稳定同位素稳定同位素是指在自然界中,核外电子数量相同,但质子数或中子数不同的同一元素的不同类型。

在地球化学中,稳定同位素可以用于探究地球和生命的起源和演化,研究大气、水体和岩石圈的物质循环和生态系统的结构与功能。

下面本文将探讨稳定同位素在地球化学中的应用和意义。

一、稳定同位素的定义和特征同一元素的同位素结构、化学性质近似,只有不同中子数的核能够区分它们。

一般地,同位素的质量数是它的质子数和中子数的和,所以同位素的质量通常都不是整数。

而稳定同位素是相对于不稳定同位素而言的。

稳定同位素相对不稳定同位素,在核的构成上有较高的稳定性以及质量数成正比增大。

在地球化学中,常用稳定同位素作为指示地球环境的工具。

其主要特征是原子核中的质子和中子的比值稳定,不会发生α、β、γ衰变。

二、稳定同位素在地球化学中的应用地球化学中的很多研究都需要利用稳定同位素进行探究。

如下是一些稳定同位素在地球化学中的应用:1.碳同位素碳由两种同位素构成,即碳-12和碳-13,其中碳-12占总碳的98.9%。

在生态系统中,生物体对不同碳同位素的利用、转换过程与环境变化密切相关,因此,研究碳同位素在生态系统中的地位和作用,可对生态学、环境保护和气候变化等问题提供重要的参考。

2.氧同位素氧同位素主要包括氧-16、氧-17和氧-18。

在水文地球化学中,氧同位素是水循环研究中的重要因素。

依据氧同位素的比例、分布可以判断水来源,搞清水的运移路径。

同时因为不同温度条件下氧同位素比例存在一定的差异,所以也可以在探究过去的气候变化时提供参考。

3.硫同位素硫同位素有三种,分别为硫-32、硫-33和硫-34。

硫有广泛的利用价值,包括石油和天然气、硫酸等化工品生产,和生物活性。

硫同位素对矿床研究也有很大的帮助。

4.氢同位素常见的氢同位素有氢-1、氘和氚。

氢同位素的存在可以反映一些重要环境参数,如降水来源、植物的水分来源等。

同时,氢同位素还可以用于考察化石水的来源和多层储层的性质等。

第七讲 同位素地球化学Re-Os同位素体系

第七讲 同位素地球化学Re-Os同位素体系

0.02 1.59 1.96 13.24 16.15 26.26 40.78
其中187Os和186Os分别为187Re和190Pt的衰变子体。
Re-Os同位素地球化学特征
187Re的半衰期为约42 Ga(= 1.666 10-11 a-1),且Re的 地球化学性质与钼元素十分相近,因此 Re-Os体系作为 定年(如辉钼矿)和示踪研究方法较早得到了地质应用;
Table 1 Osmium isotope ratios and isotope percentage for the University of Maryland at College Park (UMCP) Johnson-Matthey Os standarda
Isotopic ratio Measured value Isotope
Percentage composition
184Os/188Os 0.0013313 ± 13 184Os
0.0177
186Os/188Osb 0.119848 ± 8
186Os
1.593
187Os/188Osb 0.113791 ± 15 187Os
1.513
189Os/188Os 1.21967 ± 14
0.075
Picrite, Basalt
Olivine
20
5
Picrite, Basalt
Sulfide
2000000
Synth MORB Olivine
Experimental Experimental phenocryst-matrix phenocryst-matrix 0.001 Experimental
Vanwestrenen et al. 2000

地球化学中的同位素地球化学研究

地球化学中的同位素地球化学研究

地球化学中的同位素地球化学研究同位素地球化学研究是当今地球化学领域最为活跃的研究方向之一。

这项研究是通过对同一元素不同同位素的丰度和比例分析,揭示地球物质的起源、演化以及各种地质过程的发生机制。

同位素地球化学已经成为理解地球内部构造、大气环境变化和生物进化等领域中不可或缺的工具。

本文将从同位素基础知识、同位素地球化学在地球内部、生物地球化学和环境地球化学中的应用等角度进行探讨。

一、同位素基础知识同位素是指在原子核中具有相同原子序数(即相同的元素)但质量数却不同的原子。

例如,氧元素有三种同位素,分别是氧-16、氧-17和氧-18。

因为同位素中的质子数相等,所以它们的化学性质是相同的,但由于中子数不同,所以它们的原子质量不同,它们之间的物理、化学性质也存在一定的差异。

同位素的相对丰度与比例是通过同位素质谱仪等仪器测定的。

同位素质谱仪是用来对同一元素的不同同位素进行分析的强大工具。

它利用质点分析法,即利用质量分析仪或光谱仪分析并测量样品中同位素的相对比例。

同位素的测定对于地球化学的研究是至关重要的。

例如,在确定元素的起源、演化历史、地质过程中的作用以及环境变化等问题中,同位素贡献了很大的帮助。

二、同位素地球化学在地球内部的应用同位素地球化学在地球内部的应用主要是通过元素同位素的分析研究地球内部的演化进程以及地质过程的发生机制。

例如,在板块构造和地幔对流机制的研究中,同位素地球化学成为了一个非常重要的工具。

同位素地球化学的一个应用在于研究地球内部物质的来源及其演化历史。

地幔是地球内部最丰富的化学元素储存区之一,它的成分对于地球的演化、板块构造、火山喷发等一系列地质过程至关重要。

地幔中的同位素丰度和比例可以揭示地球的起源、演化进程、地热流体的循环、岩浆的形成和演化等群体过程。

另一个同位素地球化学在地球内部的应用在于板块构造的研究。

例如,钯、钌、铂、铱等铂系元素在地球内部广泛存在,在板块构造过程中扮演着极为重要的角色。

第七章 稳定同位素地球化学

第七章 稳定同位素地球化学

第七章稳定同位素地球化学稳定同位素地球化学研究自然界稳定同位素的丰度及其变化。

同位素丰度发生变化的主要原因是同位素的分馏作用,即轻同位素和重同位素在物质中的分配发生变化,造成一部分物质富集轻同位素,另一部分富集重同位素。

同位素及其化合物在物理或化学性质上的差异叫做同位素效应。

同位素效应的产生从根本上讲是由于同位素在质量上的差异引起的,同位素质量差越大,所引起的物理化学性质上的差异也就越大。

因此,对质量较轻的元素,其同位素的相对质量差异较大。

如H与D 质量差100%,O16和18O质量差12.5%,而204Pb和206Pb质量差仅1%,在目前技术条件下,能测量到的由于同位素效应所造成的自然界同位素丰度变异仅限于质量数小于40的元素内。

这就是稳定同位素地球化学目前所涉及的同位素仅限于元素氢(H/D)、碳(14C/13C)、氧(18O/16O)、和硫(34S/32S)以及硼(11B/10B)、氮(15N/14N)的原因所在。

7.1 同位素分馏和组成的表示7.1.1同位素分馏由于同位素效应所造成的同位素以不同比例在不同物质或不同相之间的分配称为同位素分馏。

这里需引入二个概念。

同位素比值:定义为单位物质中某元素的重同位素和轻同位素的原子数之比,如在陨石中硫同位素比值为:R=34S/32S=1/22.22当我们谈论同位素比值时,总是指重同位素和轻同位素之比。

同位素分馏系数:定义为在平衡条件下,经过同位素分馏之后二种物质(或馏份)中某元素的相应同位素比值之商。

设某二种物质为A,B,某元素的同位素比值为R A,R B,则同位素分馏系数为:所以当我们讨论同位素分馏系数时,必须指明是那种物质对那种物质。

一般α值为接近1的一个数字,离1愈远,同位素分馏就愈大,α=1表示物质间无同位素分馏。

R值可通过具体对象的测定而获得,某种物理化学环境下的α值则可通过实验过程确定。

把R和α两者联系起来,可用来探讨地质过程的物理化学状况。

同位素地球化学第五章 同位素地球化学

同位素地球化学第五章  同位素地球化学

放射性衰变
自然界中部分核素在能量上处于不稳定状 态,自发地从某一核素衰变成为另一核素, 并伴随各种粒子形式的能量释放的过程称为 放射性衰变。
发生放射性衰变的同位素称放射性同位素, 或母体同位素(radioactive parent nucleus )。
放射性衰变过程中及最终形成的稳定同位 素称为放射成因同位素或子体同位素 (radiogenic daughter nuclei) 。
放射性同位素丰度的变异记载着地质作用 的时间,同时它们又是地质过程有效的示踪剂, 而对于稳定同位素丰度的变异或分镏除了示踪 地质过程外,还可指示地质过程中的物理化学 条件等。
同位素地球化学在研究地球或宇宙体的成 因与演化,主要包括地质时钟、地球热源、壳 幔相互作用及壳幔演化、成岩成矿作用、构造 作用及古气候和古环境记录等方面提供了重要 有价值的信息,为地球科学从定性到定量的发 展作出了重要贡献。
t1/2=0.693/
•母体(N)和子体同位素(D)存在如下关系: N0=N+D
D N
D N (et 1)
Evolution of daughter isotopes
No/ So
*
Daughter D/S
Concentration ratios
Parent N/S
0 0
t 1/2
2 3 time
变质砾岩中花岗岩质砾石中的锆石年龄,其地 质含义是花岗岩的形成年龄,应该早于砾岩的地 层年龄。
谐和线年龄,上交点年龄为 2573±52Ma。 表面加权年龄,2580Ma。 谐和线年龄和表面加权年龄结果很相近,结果 是可信的。 综合来说:花岗岩的形成时代为2573±52Ma是 可信的。砾岩的地层年龄应晚于2573Ma。根据目 前的年龄结果,不支持砾岩比郭家窑组老的认识。

稳定同位素地球化学

稳定同位素地球化学

简单地以硫化物的δ34S值代表成矿溶 液中硫的来源是不恰当的,在分析硫化 物矿床的硫的来源时,矿床形成时的氧 逸度、酸碱度以及其它物理化学条件 的 了解是极其重要的。
小 结 硫同位素分馏与氧逸度(fO2)和PH值的关系: (1)高氧逸度(log fO2 >-38) 成矿溶液沉淀的硫化物比低氧逸度下的同种矿物 富集32S。 (2)低氧逸度(log fO2 <-38) PH降低氢离子活度增加,有利于H2S(溶液)和 HS-的形成,两者相对硫化物优先富集34S,成 矿液体中沉淀出的硫化物随PH降低,不断富集 32S。
水溶液中硫的存在状态取决于fO2及pH值。 成矿流体中重要的含硫组分有H2S、HS-与S-2、 SO4-2 、HSO4- 等,它们之间存在下列平衡: H2S(溶液)===== H++ HSHS- ======= H++ S-2 (还原条件) 2H++ SO4-2 === H2S(溶液)+2O2 HSO4- === H++ SO4-2 在上述平衡中,氢离子活度控制着共存的 H2S 、HS-与S-2的相对比例,而氧逸度控制SO4-2 相 对水溶液中H2S的丰度。
第六章
稳定同位素地球化学
天然同位素按其核稳定性分为稳定和 不稳定两类,稳定同位素不能自发产生核 衰变而转变为其它同位素, 放射性同位素—放射性元素的衰变、 计时原理——同位素地质年代学。 稳定同位素——同位素分馏原理—— 稳定同位素地球化学 探讨地质作用的物理化学环境和物质 的来源等问题。是当今环境科学领域中最 重要的方法和手段.
三 硫同位素的生物分馏作用
自然界中,硫同位素组成变化的重要原因之 一是厌氧细菌引起硫酸盐离子的还原作用 这些细菌从硫酸盐离子中分离出氧并释放出 比硫酸盐更富集32S的H2S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地幔流体的稳定同位素地球化学综述王先彬 吴茂炳张铭杰(中国科学院兰州地质研究所,兰州,730000)摘 要 总结了20年来国内外学者对地幔流体研究的成果和认识。

主要包括地幔流体的性质和组成;地幔流体中同位素的含量、组成和赋存形式;同位素分馏和地幔脱气等作用对地幔组分的影响等。

在不同地区和不同构造环境条件的地幔流体中,各种组分含量和同位素组成变化可以很大,从一个侧面指示地幔组分的不均一性,反映了不同地幔物质的形成历程不同或来自不同的地幔源区。

此外,还讨论了目前存在的几个疑点。

关键词 地幔流体 稳定同位素地球化学 同位素分馏 地幔脱气作用 地幔源第一作者简介 王先彬 男 1941年出生 研究员 主要从事稀有气体地球化学、非生物成因天然气及同位素地球化学等领域的研究工作 随着高精度探测技术的出现和地球科学知识的积累,人们对地球的认识进入到更深的层次。

从传统的地壳到壳-幔作用,近几年来又深入到核-幔边界以至对地核的认识[1],使得对地球深部物质的研究与深部地球物理和地球化学进一步结合成为可能,并为提出全面统一的地球演化动力理论和模式准备了条件。

地幔流体的研究是了解地球深部的重要手段之一。

本文就地幔流体中稳定同位素方面的近期研究进展作一综述。

1 地幔流体的性质作为地球内部的一种重要介质流体,是研究地球深部地质作用、了解深部物质的物理化学环境乃至地球发展演化的重要组分,其重要性愈来愈被更多的人所认识,是近20年来地学研究的热点。

流体,在地球科学研究中,常常是挥发组分的液相、气相及其超临界相以及硅酸盐熔体的统称,但在许多情况下不包括硅酸盐熔体。

因此,地幔流体是指在地幔条件下(物相、温度、压力和氧逸度等)处于平衡并稳定共存的挥发组分[2],其形成温度大约在900℃至1400℃之间,其化学组成不均一,受多种因素控制,一般地以C、H、O、N和S(CHONS)为主要化学组分并以含较高的氢为特征,且含微量的稀有气体、F、P、Cl等。

地幔挥发1999年11月2日收稿,12月8日改回。

份具有与地幔高p-t条件相适应的物理化学特性(如高的气体密度等),其地球化学性质以易溶于硅酸盐熔体(特别是富碱硅酸盐熔体)为特征,促进低熔点并且饱和挥发份的高钾原始岩浆和地幔交代熔体的形成,同时对于微量元素有高的溶解度(如大离子半径亲石元素、高价阳离子和稀土元素等),并且具有使溶质及各种微量元素产生再沉淀作用(如地幔交代作用导致地幔富集事件)。

地幔流体的性质决定了它是地球内部能量和质量传输最活跃的组分,它控制着地幔岩浆作用、交代作用以及地幔变质变形等地质、地球化学作用的发生和发展,是对地球形成、发展和演化起重要作用的组分,具有重要的研究意义。

2 地幔流体的稳定同位素地球化学研究进展 自R oedder(1965)观察到全球碱性玄武岩的超镁铁质捕虏体中均找到CO2包裹体以来,地幔流体的研究工作陆续展开。

许多学者采用各种测试方法(如电子探针、离子探针、激光拉曼探针、质谱计等)对认为是来自地幔的岩石矿物样品(如金刚石、金伯利岩、碳酸岩、大洋玄武岩、地幔包体等)进行了包裹体挥发组分及熔体主要元素的测定,发现不同地区、不同环境条件的地幔流体中各组分的含量变化很大,从一个侧面指示了地幔组分的不均一性。

962000年第28卷第3期Vol.28,No.3,2000 地 质 地 球 化 学GEOLO GY2GEOCHEMISTR Y2.1 地幔流体中碳的赋存形式及其同位素组成地幔是地球碳的主要源区之一,它的同位素组成及分布能够提供碳的地球化学循环的限制,并为我们认识地幔提供广泛的信息。

地幔的碳同位素组成是通过来自地幔深部的各类含碳物质的碳同位素测定获得的,主要有金伯利岩中的金刚石、碳酸岩、地幔包体中的CO2流体包裹体和石墨、洋中脊溢出的CO2等。

地幔中CO2含量甚低,但分布较广泛。

Tracy等(1987)[3]发现1180~1530℃、3GPa压力下,碳在橄榄石熔体中的溶解量大于100×10-6(重量)[3],这为碳在地幔中的普遍存在提供了实验依据。

金伯利岩中的金刚石和碳酸岩中的碳酸盐是地幔碳同位素测定的直接样品。

G alimov (1985)[4]总结了前苏联数百个碳同位素数据,发现大部分金刚石的δ13C(PDB)值在-2‰至-9‰之间,但范围却宽达-34.2‰~+2.4‰。

Deines(1992)[5]对比了前苏联和南非大陆金伯利岩中金刚石的δ13C值,认为两者没有明显的不同,它们的主众数同为-55‰,加权平均值都为-7‰。

Boyd等(1994)[6,7]研究了非洲南部、澳大利亚和北美等地的八面体金刚石,分出高碳和低碳两类,其δ13C值分别为-6.4‰~-2.9‰和-19.4‰~-9.5‰,δ13C值与δ15N值呈反相关关系;而且,组成外壳膜的纤维状立方金刚石含有大量的亚微米级包裹体,有高的δ13C值(-7.5‰~-4.1‰),而其包裹的金刚石晶核的δ13C值低(-21.1‰~-1.9‰),反映出二者的成因不同。

碳酸岩是侵入杂岩体中岩浆成因的碳酸盐岩石,常与超基性岩、碱性超基性岩和碱性岩共生,其成因复杂,可能混染地壳物质。

Deines(1992)[5]认为,只有其碳酸盐的δ18O与地幔硅酸盐矿物达到氧同位素平衡的碳酸岩才最可能保存地幔碳同位素组成;根据δ18O值挑选出符合条件的30个来自世界各地的相应数据,他认为碳酸岩的δ13C 值为高斯分布,平均为- 5.4‰,标准偏差为±0.2‰。

越来越多的研究结果证实,地幔岩中CO2流体包裹体普遍存在,而且其主要组分为CO2,并含少量或微量的CH4、CO和COS等碳的化合物[8]。

Nadeau等(1990)[9]研究了北美西北部的上地幔包体中流体包裹体的碳同位素:用分阶段加热法加热至1000~1450℃抽提流体包裹体的总气体,发现不同类型地幔岩包体中流体包裹体的碳浓度变化于(0.1~66)×10-6范围,δ13C值在-10‰至-4‰之间。

其中方辉橄榄岩总碳含量最高,含碳(18~66)×10-6,δ13C值为-5‰~-4‰。

这些数据与富碳的幔源物质(碳酸岩、绝大多数金刚石)一致。

Pineau等(1990)[10]同样采用分步加热法研究了夏威夷Hualalai火山岩中超镁铁质地幔包体的碳同位素变化,并认为不同温度下提取的CO2反映了地幔包体中不同形式的含碳物质,其中,低于800℃时提取的CO2的δ13C值明显较低(约-25‰),而高于800℃时提取的CO2被认为是来自地幔矿物的,其δ13C值在-2‰至-10‰之间。

然而,世界上其它地区的研究也有与此不同的结果:高温段和低温段提取的CO2的δ13C值变化不很明显,而且其δ13C值明显较低,变化范围较大[11,12](可能与不同的实验系统有关)。

玄武岩是地幔部分熔融的产物。

由于地幔部分熔融、熔浆上升和喷发可能产生碳的同位素分馏和污染,玄武岩的碳同位素只能间接提供地幔的碳同位素信息。

Exley等(1986)[13]系统测定了各大洋的洋中脊玄武岩玻璃以及热点地区玄武岩玻璃中碳的丰度和碳同位素组成。

他们用分段加热法在高于600℃的条件下提取原生碳,结果显示,洋中脊玄武岩玻璃中碳的丰度范围为(52~169)×10-6,其平均δ13C值为-6.6‰;热点地区夏威夷Loihi海底山的样品其碳的含量为(17~110)×10-6,并显示其碳含量与样品的深度相关,说明这些玄武岩已部分脱气。

研究结果表明, Loihi拉斑玄武岩的δ13C值平均为-5.6‰,碱性玄武岩δ13C值平均为-7.1‰。

由于低于600℃提取的CO2一般比高于600℃提取的CO2相对贫13C,因此以前多认为低温段的CO2有污染。

Deines(1992)[5]在总结玄武岩的碳同位素数据时指出,大部分高温提取的CO2的δ13C值落在-4‰至-9‰之间,也有低达-25‰~-30‰的数据,经细心清洗的样品在低温下也很贫13C,这不应是污染造成的,而是玄武岩固有的碳。

因此,玄武岩的碳同位素组成分布几乎与金刚石、地幔包体相同。

已知的火山排出的CO2的δ13C值也在0‰至-31‰之间,其中大部分在-4‰至-5‰之间。

然而,不同学者对这种碳同位素组成变化的解释不一样,地幔去气假说有时是成功的。

Javoy07地质地球化学 2000年等(1991)[14]和Pineau等(1994)[15]用分步加热法和破碎法系统地研究了大西洋中脊多孔玄武岩玻璃后发现,至少存在三种类型的碳:以CO2气体为主的气泡、熔解于玄武玻璃中的碳和在气泡壁或裂隙中的沉淀碳。

气泡中CO2占95%,其δ13C =-3.68‰(PDB),且其稀有气体同位素具有典型MORB值,认为是脱气程度很低的上地幔气;沉淀在气泡壁或裂隙中的碳含量为40×10-6,其δ13C=-16±4‰;熔解于玄武玻璃中的碳的含量为(57~94)×10-6,其δ13C=- 5.6‰~-11.8‰。

由此可以认为,形成洋底玄武玻璃的岩浆在深部岩浆房中脱气90%以上,可使原来的δ13C值为-4‰的富碳岩浆的δ13C值降至-6‰~-8‰。

Macpherson等(1994)[16]对Central Lau Basin扩张中心玄武玻璃的碳含量及其同位素进行了测定和模拟:实测得出的碳含量为(9~217)×10-6,其δ13C=-16.4‰~-88‰,经模拟得出原始岩浆的碳含量为(410~440)×10-6,其δ13C=-7.7‰,喷发脱气时气体与熔体之间的碳同位素分馏为2.3‰。

储雪蕾(1996)[17]的总结认为,近年来对金刚石、金伯利岩、碳酸岩、大洋玄武岩和地幔包体等地幔样品的碳同位素研究发现,地幔碳同位素δ13C值主要集中分布在-5‰附近,并在-15‰~-25‰区段有另一较弱的分布;目前地幔碳的物相转变、沉积碳的俯冲混入和地幔去气等假说都很难解释这种碳同位素分布,原始地幔可能是碳同位素不均一的。

2.2 氢的赋存形式及其同位素组成Martin等(1972)[18]发现,幔源橄榄石和辉石中有羟基(OH-)存在。

而后大量的矿物显微红外光谱和显微拉曼光谱揭示,地幔矿物几乎都含有羟基[19,20]。

地幔矿物中羟基含量为(n~1000)×10-6,地幔岩石中羟基含量为(28~565)×10-6。

橄榄石和辉石中OH-含量与矿物生长的环境密切相关,也与矿物的成分和结构(如矿物晶体的点缺陷)有关[21,22]。

Skogby等(1990)[23]用红外光谱法测量了世界各地辉石的OH-含量,发现几乎所有的辉石都含有OH-,其含量与其产出的地质背景有关,幔源辉石的结构OH-含量最高。

相关文档
最新文档