新高考数学专题复习-《应用题》专题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学《应用题》专题
一、复习目标:
数学应用性问题是高考命题的主要题型之一.解答应用题关键是深刻理解题意,会从文字语言向数学的符号语言进行转化,这就需要我们建立恰当的数学模型,其中函数、数列、不等式、是较为常见的模型,而三角,立几,解析等模型也不容忽视.
二、考试要求:应用题在高考中一般是中等难度的题型,只要有耐心,再加上细心,抓住关键词、句一般同学都能拿到70%的分数,而大多数同学怕应用题,看到文字叙述比较长就读不下去,因此应用题也就变成了难题,而老师一讲评,又感到很简单,所以解答应用题一定要有信心和耐心 三、基础知识、基本方法归纳:
解应用题的一般步骤是:
1.读题:读懂和深刻理解,译为数学语言,找出主要关系;往往是求那个量,就设这个量为变量x,解答时注意名数是否统一(广东08应用题17);
2.建模:把主要关系数量化、符号化,抽象成数学问题,即转化为一个数学表达式,注意要根据实际意义写出函数的定义域(如一模应用题20);
3.求解:化归为纯数学问题,选择合适的数学方法求解;往往是转化为求函数的最值 4.作答:根据解答结果,回答问题的解决情况。四个步骤用框图可简单表示为:
在近几年高考中,经常涉及的数学模型,有以下一些类型:数列模型、函数模型、不等式模型、三角模型等等.
Ⅰ.函数模型 现实世界中普遍存在着的最优化问题,常常可归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数知识和方法去解决. Ⅱ.几何模型 如航行、建桥、测量等涉及一定图形属性的应用问题,常常需要应用几何图形的性质,或用方程、不等式或用三角函数知识来求解.
Ⅲ.数列模型 如增长率、、存款复利、分期付款等与年(月)份有关的实际问题,大多可归结为数列问题,即通过建立相应的数列模型来解决.在解应用题时,是否是数列问题主要看自变量是否与正整数有关. 五、课堂练习与例题 1.一种专门占据内存的计算机病毒开始时占据内存2KB ,工作时3分钟自身复制一次,(即复制后所占内存是原来的2倍),那么,开机后( )分钟,该病毒占据64MB (1210
MB KB )。
A. 45
B. 48
C. 51
D. 42
2.福州某中学的研究性学习小组为考察闽江口的一个小岛的湿地开发情况,从某码头乘
汽艇出发,沿直线方向匀速开往该岛,靠近岛时,绕小岛环行两周后,把汽艇停靠岸
边上岸考察,然后又乘汽艇沿原航线提速返回。设t 为出发后的某一时刻,S 为汽艇
与码头在时刻t 的距离,下列图象中能大致表示S =f (x)的函数关系的为 ( )
D.
C.
B.
A.
y
y
y
x
x
x
o
o
o
o
y
x
3.某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先 将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放
入右 盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金 ( )
A .大于10g
B .小于10g
C .大于等于10g
D .小于等于10g
4.13年前一笔扶贫助学资金,每年的存款利息(年利率10.00%,不纳税)可以资助100人上学,平均每人每月50元,现在(存款年利率2.5%,并且扣20%的税)用同样一笔资
金每年的存款利息最多可以资助多少人上学(平均每人每月100元) ( )
A 、10
B 、12
C 、15
D 、20 5.某新区新建有5个住宅小区(A 、B 、C 、D 、
E ),现要铺设连通各小区的自来水管道,
请问:最短的管线长为 ( ) A .13 B .14 C .15 D .17 6.毛泽东在《送瘟神》中写到:“坐地日行八万里”。又知地球的体积大约是火星的8倍,
则火星的大圆周长约____4_____万里。 7.代号为“狂飙”的台风于某日晚8点在距港口的A 码头南偏东60°的400千米的海面上形成,预计台风中心将 以40千米/时的速度向正北方向移动,离台风中心350千米的范围都会受到台风影响,则A 码头从受到台风影响到影响结束,将持续______小时. 8. 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm 2,四周空白的宽度为10cm ,两栏之间的中缝空白
的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),
能使矩形广告面积最小?
9.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件。为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下
(1)求y与x之间的函数关系式;
(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;
(3)如果投入的年广告费为10 ~ 30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?
10.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
11.某县与沙漠化进行长期的斗争. 全县面积为 p , 2002 年底绿化率达 2
5 ,从 2003 年
开始,每年绿化原有沙漠面积的 15 ,但与此同时,原有绿化面积的 1
20 被沙化. 设2002
年底的绿化面积为 a 1,经过 n 年后的绿化面积为 a n +1 . (I) 求2003年底的绿化面积 (II ) 经过多少年后,绿化率达7
10
?
12.随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(4202140< 多创利0.1x 万元,但公司需付下岗职员每人每年4万元的生活费,并且该公司正常运转情况下,所裁人数不超过50人,为获得最大的经济效益,该公司应裁员多少人? 六.课后练习 1.天文台用3.2万元买一台观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为 49 10 n +元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的日平均耗资最少)为止,一共使用了( ) A.600天 B.800天 C.1000天 D.1200天