绝对经典的低通滤波器设计报告

合集下载

低通滤波器实验报告

低通滤波器实验报告

竭诚为您提供优质文档/双击可除低通滤波器实验报告篇一:绝对经典的低通滤波器设计报告经典无源低通滤波器的设计团队:梦知队团结奋进,求知创新,追求卓越,放飞梦想队员:日期:20XX.12.10目录第一章一阶无源Rc低通滤波电路的构建 (3)1.1理论分析 (3)1.2电路组成 (4)1.3一阶无源Rc低通滤波电路性能测试 (5)1.3.1正弦信号源仿真与实测 (5)1.3.2三角信号源仿真与实测 (10)1.3.3方波信号源仿真与实测 (15)第二章二阶无源Lc低通滤波电路的构建 (21)2.1理论分析 (21)2.2电路组成 (22)2.3二阶无源Lc带通滤波电路性能测试 (23)2.3.1正弦信号源仿真与实测 (23)2.3.2三角信号源仿真与实测 (28)2.3.3方波信号源仿真与实测 (33)第三章结论与误差分析 (39)3.1结论 (39)3.2误差分析 (40)第一章一阶无源Rc低通滤波电路的构建1.1理论分析滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。

也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。

低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。

图1Rc低通滤波器基本原理图当输入是直流时,输出电压等于输入电压,因为xc无限大。

当输入频率增加时,xc减小,也导致Vout逐渐减小,直到xc=R。

此时的频率为滤波器的特征频率fc。

解出,得:在任何频率下,应用分压公式可得输出电压大小为:因为在=为:时,xc=R,特征频率下的输出电压用分压公式可以表述这些计算说明当xc=R时,输出为输入的70.7%。

按照定义,此时的频率称为特征频率。

1.2电路组成图2-一阶Rc电路multisim仿真电路原理图图3-一阶Rc实物电路原理图电路参数:c=1.0μFR1=50ΩR2=50ΩR3=20ΩR4=20ΩR5=20Ω1.3一阶无源Rc滤波器电路性能测试1.3.1正弦信号仿真与实测对于一阶无源Rc滤波器电路,我们用100hz、1000hz、10000hz三种不同正弦频率信号检测,其仿真与实测电路图如下:篇二:低通滤波器的设计沈阳航空航天大学课程设计(说明书)班级/学号学生姓名指导教师沈阳航空航天大学课程名称电子技术综合课程设计院(系)专业班级学号姓名课程设计题目低通滤波器的设计课程设计时间:年月日至年月1日课程设计的内容及要求:一、设计说明设计一个低通滤波器。

低通滤波器设计报告小结

低通滤波器设计报告小结

低通滤波器设计报告小结1. 引言低通滤波器是一种在信号处理中常用的滤波器,用于滤除高频信号而保留低频信号。

在本次设计中,我们旨在设计一个满足特定需求的低通滤波器。

本小结将对设计过程、结果和经验进行总结和分析。

2. 设计步骤成功设计一个低通滤波器,需要经历以下几个主要步骤:2.1 确定设计参数在设计低通滤波器之前,我们首先需要确定设计的参数,例如截止频率、通带衰减和阻带衰减等。

这些参数的选择直接影响到滤波器的性能和功耗。

2.2 选择合适的滤波器结构根据设计参数的要求,我们可以选择合适的滤波器结构来实现。

常见的滤波器结构包括RC滤波器、RL滤波器、多级放大器滤波器和数字滤波器等。

根据实际需求和设计要求,我们选用了多级放大器滤波器结构。

2.3 滤波器参数计算为了满足设计要求,我们需要计算各个滤波器参数,包括电阻、电容和增益等。

通过理论计算和仿真,我们得到了滤波器的参数值,并进行了一系列的优化。

2.4 电路实现与测试在得到滤波器参数后,我们进行了电路的实现与测试。

通过电路实验和测试,我们验证了滤波器的性能和可靠性,并对滤波器进行了必要的调整和优化。

3. 结果与分析经过设计和测试,我们成功设计出了满足要求的低通滤波器。

该滤波器具有良好的低频信号保留能力和高频信号滤除能力,能够很好地满足实际应用的需求。

在设计过程中,我们发现以下几个关键问题:3.1 技术难点在设计过程中,我们遇到了一些技术难点。

其中一个主要难点是如何在保证滤波器性能的前提下,降低功耗和尺寸。

通过不断的优化和改进,我们成功解决了这一问题,得到了满足设计要求的低通滤波器。

3.2 仿真与实验结果通过仿真和实验,我们验证了设计的滤波器的性能。

仿真结果与实验结果基本一致,表明我们的设计是可靠的。

这也为我们今后的研究和应用提供了可靠的依据。

3.3 改进方向尽管我们的设计已经满足了预期要求,但仍有一些改进的空间。

例如,我们可以进一步优化滤波器的频率响应,提高滤波器的抑制能力。

低通滤波器设计实验报告

低通滤波器设计实验报告

低通滤波器设计实验报告 Prepared on 22 November 2020低通滤波器设计 一、设计目的1、学习对二阶有源RC 滤波器电路的设计与分析;2、练习使用软件ORCAD (PISPICE )绘制滤波电路;3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。

二、设计指标1、设计低通滤波器截止频率为W=2*10^5rad/s;2、品质因数Q=1/2;三、设计步骤1、考虑到原件分散性对整个电路灵敏度的影响,我们选择R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题;2、考虑到电容种类比较少,我们先选择电容的值,选择电容C=1nF;3、由给定的Wp 值,求出R 12121C C R R Wp ==RC1=2*10^5 解得:R=5K4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1=K-31 解得:K=3-Q 1=5、根据求出K 值,确定Ra 与Rb 的值Ra=2K=1+RbRa=Rb这里取 Ra=Rb=10K;四、电路仿真1、电路仿真图:2、低通滤波器幅频特性曲线3、低通滤波器相频特性曲线注:改变电容的值:当C1=C2=C=10nF时低通滤波器幅频特性曲线低通滤波器相频特性曲线五、参数分析1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz,而我们指标要求设计截止频率f= Wp/2=存在明显误差;2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性;3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。

4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。

六、设计心得:通过对给定参数指标的地滤波器的仿真设计,一方面学会了在PISPICE 下绘制电路以及对电路的仿真,由于其他各种滤波器都是由低通滤波器变换而来,所以选择最基础的低通滤波器来设计。

绝对经典的低通滤波器设计报告

绝对经典的低通滤波器设计报告

经典无源低通滤波器的设计团队:梦知队团结奋进,求知创新,追求卓越,放飞梦想队员:日期:2010.12.10目录第一章一阶无源RC低通滤波电路的构建 (3)1.1 理论分析 (3)1.2 电路组成 (4)1.3 一阶无源RC低通滤波电路性能测试 (5)1.3.1 正弦信号源仿真和实测 (5)1.3.2 三角信号源仿真和实测 (10)1.3.3 方波信号源仿真和实测 (15)第二章二阶无源LC低通滤波电路的构建 (21)2.1理论分析 (21)2.2 电路组成 (22)2.3 二阶无源LC带通滤波电路性能测试 (23)2.3.1 正弦信号源仿真和实测 (23)2.3.2 三角信号源仿真和实测 (28)2.3.3 方波信号源仿真和实测 (33)第三章结论和误差分析 (39)3.1 结论 (39)3.2 误差分析 (40)第一章一阶无源RC低通滤波电路的构建1.1理论分析滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。

也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。

低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。

图1 RC低通滤波器基本原理图当输入是直流时,输出电压等于输入电压,因为Xc无限大。

当输入频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。

此时的频率为滤波器的特征频率fc。

解出,得:在任何频率下,使用分压公式可得输出电压大小为:因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为:这些计算说明当Xc=R时,输出为输入的70.7%。

按照定义,此时的频率称为特征频率。

1.2电路组成图2-一阶RC电路multisim仿真电路原理图图3-一阶RC实物电路原理图电路参数:C=1.0μF R1=50Ω R2=50Ω R3=20Ω R4=20Ω R5=20Ω1.3一阶无源RC滤波器电路性能测试1.3.1 正弦信号仿真和实测对于一阶无源RC滤波器电路,我们用100Hz、1000Hz、10000Hz三种不同正弦频率信号检测,其仿真和实测电路图如下:图4 f=100Hz 时正弦信号仿真波形图图5 f=100Hz时正弦信号实测波形图表1 f=100Hz时实测结果和仿真数据对比表数据项目输入幅值/V 输出幅值/V 衰减/dB 相位差仿真电路20.000 19.900 -0.0435 0.032π实测电路0.44 0.44 0 0π分析:由图4的仿真波形和图5的实测电路波形和表1中的数据可知,输入频率为100Hz的正弦信号时,该信号能够通过,输入输出波形间有较小相位差和较小衰减。

低通滤波器设计实验报告

低通滤波器设计实验报告

低通滤波器设计实验报告实验报告:低通滤波器设计实验一、引言二、实验目的1.了解低通滤波器的工作原理;2.学习设计并实现一个基本的低通滤波器;3.掌握滤波器的性能指标及测试方法。

三、实验原理(插入低通滤波器的频率特性图)低通滤波器的频率特性通常由三个主要指标来描述:截止频率、通带增益和阻带抑制。

截止频率是指在该频率上,滤波器输出信号的幅度下降到输入信号幅度的一半。

通带增益是指在截止频率以下,滤波器对信号的放大倍数。

阻带抑制是指在截止频率以上,滤波器对信号的削弱。

根据实验要求,我们将设计一个RC低通滤波器。

RC低通滤波器使用一个电阻-电容(RC)电路来实现滤波功能。

其理论的3dB截止频率可由以下公式计算得出:f_c=1/(2πRC)四、实验步骤1.根据实验要求,选择合适的电阻R和电容C的数值。

推荐选择R为1kΩ,C为1uF;2.连接电阻和电容组成RC低通滤波器电路;3.输入测试信号,通过滤波器;4.测试输出信号,并记录测量值;5.使用示波器观察输入和输出信号的波形,比较滤波效果。

五、实验结果实验中我们选择了电阻值为1kΩ,电容值为1uF的RC低通滤波器进行设计。

通过实验测试,我们在输入方波信号中观察到了明显的滤波效果。

输出信号的高频分量被滤除,输出波形更加平滑。

使用示波器测量了输入和输出信号的幅度并记录如下:(插入输入输出信号的幅度测量表)根据测量结果,我们可以计算出滤波器的截止频率为:(计算结果)。

通过观察示波器上的波形,我们发现输出信号的幅度在截止频率以下保持稳定放大,而在截止频率以上则逐渐衰减。

六、实验总结通过本次实验,我们了解了低通滤波器的基本原理,并设计并实现了一个基本的RC低通滤波器。

通过观察示波器上的波形和测量输出信号的幅度,我们判断滤波器的截止频率和滤波效果。

本次实验的结果表明,RC低通滤波器可以有效滤除输入信号中的高频分量,从而实现对低频信号的保留。

滤波器的截止频率和增益等参数可以通过选择合适的电阻和电容数值来实现。

低通滤波器设计实验报告

低通滤波器设计实验报告

低通滤波器设计实验报告实验报告:低通滤波器设计摘要:本实验旨在设计并实现一个低通滤波器。

首先,通过MATLAB软件进行初步设计和模拟,确定滤波器的传递函数。

然后,使用电路元件进行电路设计,并通过实验验证滤波器的性能。

实验结果表明,所设计的低通滤波器具有良好的滤波特性。

1.引言2.设计过程2.1初步设计首先,使用MATLAB软件进行初步设计和模拟。

根据实验要求,选择一阶巴特沃斯低通滤波器作为目标滤波器。

根据滤波器的截止频率和通带增益,可以计算出滤波器的传递函数。

2.2电路设计根据滤波器的传递函数,在电路设计中选择合适的电路元件进行搭建。

在本实验中,我们选择使用电感器、电容器和电阻器来搭建滤波器电路。

通过计算电路元件的阻抗和传递函数,可以选择合适的元件数值和连接方式。

2.3电路调试搭建完滤波器电路后,进行电路调试。

首先,使用信号发生器产生测试信号,并连接到滤波器输入端。

然后,通过示波器观察滤波器的输出信号,并调整电路参数,使得滤波器输出的信号满足设计要求。

3.实验结果在实验中,我们设计并实现了一个截止频率为1kHz的一阶巴特沃斯低通滤波器。

通过在MATLAB中进行模拟,计算出滤波器的传递函数为:H(s)=1/(s+2π*1000)根据上式,选择合适的电感器、电容器和电阻器进行电路设计和搭建。

最终,我们选择了1mH的电感器、4.7μF的电容器和1kΩ的电阻器。

将它们按照下图连接起来,完成了滤波器的电路设计和搭建。

电压源->电感器(L)->电容器(C)->电阻器(R)->接地在电路调试中,我们使用了1kHz的正弦信号作为测试信号,将其连接到滤波器输入端。

通过示波器观察滤波器的输出信号,并调整电路参数,使得滤波器输出的信号满足设计要求。

实验结果表明,滤波器具有良好的低通滤波特性,能够有效地滤除高于1kHz的信号分量。

4.结论本实验通过设计和实现一个低通滤波器,着重掌握了滤波器的原理和设计方法。

低通滤波器设计实验报告

低通滤波器设计实验报告

低通滤波器设计实验报告低通滤波器设计实验报告引言滤波器是信号处理中常用的工具,它可以通过去除或削弱信号中的某些频率成分,实现信号的滤波和频率选择。

低通滤波器是一种常见的滤波器类型,其作用是通过允许低频信号通过,同时阻止高频信号的传递。

本实验旨在设计和实现一个低通滤波器,并对其性能进行评估。

实验步骤1. 设计滤波器的频率响应首先,我们需要确定滤波器的截止频率。

截止频率是指低通滤波器开始阻止高频信号通过的频率。

根据实际需求,我们选择了一个截止频率为1kHz的低通滤波器。

2. 选择滤波器类型在设计滤波器时,我们需要选择适当的滤波器类型。

常见的低通滤波器类型包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。

根据实验要求,我们选择了巴特沃斯滤波器,因为它具有平坦的频率响应和较小的幅度波动。

3. 计算滤波器参数根据所选的滤波器类型和截止频率,我们可以计算出滤波器的相关参数。

巴特沃斯滤波器的参数包括阶数和截止频率。

阶数决定了滤波器的陡峭程度,而截止频率决定了滤波器的截止特性。

通过计算和调整这些参数,我们可以得到所需的滤波器性能。

4. 搭建电路并测试根据计算得到的滤波器参数,我们搭建了一个RC低通滤波器电路。

该电路由一个电阻和一个电容组成,通过调整它们的数值可以实现不同的截止频率。

我们将输入信号连接到滤波器电路的输入端,然后将输出信号连接到示波器上进行观测。

实验结果经过实验测试,我们得到了滤波器的频率响应曲线。

在截止频率1kHz附近,滤波器的传递函数呈现出较小的幅度衰减和相位延迟。

随着频率的增加,滤波器的幅度衰减逐渐增加,相位延迟也逐渐增大。

这表明滤波器能够有效地滤除高频信号,保留低频信号。

讨论与分析在设计滤波器时,我们需要权衡滤波器的性能和复杂度。

较高的阶数可以实现更陡峭的滤波特性,但也会增加电路的复杂度和成本。

因此,我们需要根据实际需求选择适当的阶数和截止频率。

此外,滤波器的频率响应还受到电阻和电容的误差以及元件的非线性等因素的影响。

2024绝对的低通滤波器设计报告

2024绝对的低通滤波器设计报告

2024绝对的低通滤波器设计报告一、引言滤波器是信号处理中的重要部分,它用于对信号进行频率选择,将不需要的频率成分滤除,从而得到所需的信号。

在这篇报告中,我们将介绍2024年设计的一种绝对的低通滤波器。

二、设计原理低通滤波器的作用是只允许低频信号通过,滤除高频信号。

设计绝对的低通滤波器的关键是在截止频率以下能产生最小幅值误差。

在2024年,我们利用了数字滤波器设计的技术来实现这一目标。

在数字滤波器的设计中,我们首先将连续时间信号转换为离散时间信号,然后通过数字滤波器对其进行处理。

绝对的低通滤波器设计中,我们选择了一种叫做有限脉冲响应(FIR)滤波器的设计方法。

FIR滤波器的特点是其冲激响应是有限长度的,而且能够提供线性相位响应。

这些特性使得FIR滤波器非常适合绝对低通滤波器的设计。

三、设计步骤1.确定截止频率:根据设计要求,我们选择了一个合适数值作为截止频率。

在本次项目中,我们设计的低通滤波器的截止频率为1000Hz。

2.计算滤波器的长度:FIR滤波器的长度会影响滤波器的性能,包括截止频率下的幅值误差等。

为了得到绝对的低通滤波器,我们需要选择一个适当的滤波器长度。

经过实验和计算,我们得到了一个长度为64的滤波器。

3.设计滤波器的冲激响应:根据滤波器的长度和截止频率,我们使用数学方法设计了一个68点的冲激响应。

4.将冲激响应转换为滤波器的传递函数:利用傅里叶变换的性质,我们将冲激响应转换为频域的传递函数。

5.实现滤波器:将传递函数导入到一些软件或硬件平台,通过编程或硬件电路的方式,将低通滤波器实现。

四、结果与讨论通过上述设计步骤,我们成功地设计了一种绝对的低通滤波器。

下面是我们对滤波器性能进行的实验和测试。

1.幅值响应:我们输入了一个包含多个频率成分的信号,然后使用设计的滤波器进行滤波。

经过滤波后,我们测得滤波器在截止频率以下的频率范围内具有最小幅值误差。

这表明我们的滤波器设计达到了预期效果。

2.相位响应:通过测量滤波器对不同频率信号的相位延迟,我们发现滤波器具有线性相位响应,这对于一些应用而言非常重要。

绝对经典的低通滤波器设计报告

绝对经典的低通滤波器设计报告

绝对经典的低通滤波器设计报告
深入
一、滤波器介绍
滤波器是一种用于过滤噪声或频率信号的电子设备。

它通过阻止特定
频率信号的通道,使得频率信号可以进行操作。

滤波器的主要目的是删减
或抑制特定频率的信号,或者抑制其他频率信号在其中一特定范围内的扰动。

典型的滤波器有很多种,包括低通滤波器(LPF),高通滤波器(HPF),带通滤波器(BPF),选通通滤波器(BTL),全通滤波器(APF),陷波滤波器(notch)以及滞回滤波器(LF)。

低通滤波器(LPF)是一种特殊的滤波器,它的主要功能是抑制高于通带的频率信号。

二、低通滤波器的基本原理
低通滤波器(LPF)是一种用于抑制高频分量的滤波器。

它有幅度和
相位两个特性,可以根据具体的应用需要,分别进行调整。

低通滤波器的
设计原理是,通过利用反馈,抑制那些高频分量,使之的波形更加满足应
用要求。

低通滤波器是一种特殊的滤波器,它的主要原理是将信号分割成更高
频和更低频两个部分,然后对高频分量进行衰减,使之满足特定要求。

FIR低通滤波器设计报告

FIR低通滤波器设计报告

FIR 低通滤波器设计报告信息工程 信息与通信工程 2111203024 xxx1. 设计内容本设计是基于FPGA 的一个FIR 低通滤波器设计,要求使用Verilog 语言编写滤波器模块,通过编译和综合,并通过Matlab 和modelsim 联合仿真验证设计结果。

2. 设计原理FIR 滤波器响应(简称FIR )系统的单位脉冲响应()h n 为有限长序列,系统函数()H z 在有限z 平面上不存在极点,其运算结构中不存在反馈支路,即没有环路。

如果()h n 的长度为N ,则它的系统函数和差分方程一般具有如下形式:10()()N n n H z h n z --==∑10()()()N m y n h m x n m -==-∑根据差分方程直接画出FIR 滤波器的结构,称为直接型结构。

如图所示:图2.1 FIR 滤波器直接结构FIR 滤波器的特点:单位脉冲响应序列为有限个;可快速实现;可得到线性相位;滤波器阶数较高。

对线性时不变系统保持线性相位的条件是:单位脉冲响应为偶对称或奇对称。

即:为设计线性滤波器,应保证h(n)为对称的。

1)若N 为偶数,其线性相位FIR 滤波器的对称结构流图:图2.2 若N为偶数线性相位FIR滤波器的对称结构流图图中:“ +1 ”对应偶对称情况,“ -1 ”对应奇对称情况。

当n为奇数时,最后一个支路断开。

2)若N为奇数,其线性相位FIR滤波器的对称结构流图:图2.3 N为奇数线性相位FIR滤波器的对称结构流图在本设计中,我们采用线性FIR低通滤波器,所采用的阶数N=8,所以是偶对称的,估采取图2.2的结构,其中“±1“取“+1”。

3.设计思路要在FPGA上实现FIR滤波器,首先要确定滤波器的抽头系数。

其系数的确定,我们可以通过两种办法来实现:第一种就是通过matlab编写FIR滤波器程序,然后直接导出抽头系数“h(n)”,另外一种办法就是使用matlab自带的FDATOOL简便地设计一个FIR滤波器,然后导出系数。

低通滤波器设计范文

低通滤波器设计范文

低通滤波器设计范文1.理想低通滤波器设计方法:理想低通滤波器是一种理论上的滤波器,可以完全传递低于截止频率的信号,而完全阻碍高于截止频率的信号。

它的频率响应是一个矩形函数。

这种滤波器的设计方法包括:-频域设计方法:使用傅立叶变换将输入信号与理想低通滤波器的频率响应相乘,然后再进行反傅立叶变换得到滤波器的时域响应。

这种方法可以得到理论上最佳的低通滤波器设计,但是在实际应用中由于输入信号和滤波器的长度有限,会产生频谱泄漏和振铃等现象。

- 时域设计方法:通过直接设计滤波器的时域冲激响应或单位脉冲响应。

这种方法包括窗函数法、布莱克曼窗法、Cauer窗法等。

2.模拟滤波器设计方法:模拟低通滤波器设计通常使用传统的模拟滤波器结构,如巴特沃斯、切比雪夫和椭圆滤波器等。

这些滤波器结构都有各自的特点和设计要求,可以根据实际需求选择合适的滤波器结构。

3.数字滤波器设计方法:数字低通滤波器设计通常使用数字滤波器结构或算法来实现。

常见的数字滤波器设计方法包括:-FIR(有限脉冲响应)滤波器设计:FIR滤波器是一种线性相位滤波器,可以通过设计其冲激响应来实现低通滤波。

常用的设计方法有窗函数法、最小二乘法等。

-IIR(无限脉冲响应)滤波器设计:IIR滤波器是一种递归滤波器,可以通过设计其差分方程的系数来实现低通滤波。

常用的设计方法有巴特沃斯滤波器设计、切比雪夫滤波器设计等。

在实际应用中,低通滤波器的设计通常需要考虑多个因素,包括滤波器的通带、阻带和过渡带的特性,滤波器的幅频响应、相频响应和群延迟等参数,以及设计的难易程度和实现的复杂度等。

根据不同的应用需求和设计指标,可以选择合适的滤波器设计方法和技术。

需要注意的是,滤波器的设计过程并非一次成功,通常需要进行多次优化和调整,以达到设计要求。

同时,为了验证滤波器的设计效果,还需要进行频率响应测试、时域响应测试和系统性能评估等工作。

因此,低通滤波器的设计是一个相对复杂和繁琐的过程,需要设计者具备相应的理论知识和实践经验。

低通滤波器报告范文

低通滤波器报告范文

低通滤波器报告范文摘要:本报告研究了低通滤波器的原理、应用、设计方法和性能评估等方面。

低通滤波器在信号处理和通信领域中有广泛的应用,可以用于去除高频信号成分、提取基带信号和滤除噪声等。

通过对低通滤波器的分析和实验结果验证,我们可以得出结论:低通滤波器可以有效地实现信号处理的目标,具有良好的性能和稳定性。

1.引言低通滤波器是一种可以允许低频信号通过,而滤除高频信号的电子电路或系统。

在信号处理和通信领域中,低通滤波器广泛应用于音频处理、图像处理、通信系统和雷达系统等。

本节将介绍低通滤波器的基本原理和常见的应用场景。

2.基本原理3.应用场景低通滤波器在音频处理、图像处理、通信系统和雷达系统等领域有广泛的应用。

在音频处理中,低通滤波器可以用于去除高频噪声,提高音频信号的质量;在图像处理中,低通滤波器可以用于图像平滑和边缘检测等;在通信系统中,低通滤波器可以用于信号调制和解调,以及频谱分析等;在雷达系统中,低通滤波器可以用于滤除多径干扰,提高雷达系统的性能等。

本节将详细介绍这些应用场景,并介绍低通滤波器在这些领域中的具体应用方法和效果。

4.设计方法低通滤波器的设计方法主要包括频率响应设计和阻带设计两种。

频率响应设计方法适用于对频率响应有严格要求的应用场景,通过选择合适的滤波器类型和调整滤波器参数来实现所需的频率响应。

阻带设计方法适用于对滤波器的阻带性能有要求的应用场景,通过选择适当的滤波器结构和设计参数来实现所需的阻带性能。

本节将详细介绍这两种设计方法的原理和实现步骤。

5.性能评估低通滤波器的性能评估主要包括频率响应评估和时域响应评估两方面。

频率响应评估通过测量滤波器的幅频响应和相频响应来评估其频率响应特性。

时域响应评估通过测量滤波器的脉冲响应和阶跃响应来评估其时域响应特性。

本节将介绍常用的性能评估方法和评估指标,并利用实验数据对滤波器的性能进行评估。

6.结论本报告对低通滤波器的原理、应用、设计方法和性能评估进行了研究,并通过实验结果验证了低通滤波器的有效性和性能稳定性。

低通滤波器论文报告

低通滤波器论文报告

低通滤波器论文报告低通滤波器是一种常用的信号处理工具,用于滤除输入信号中高频成分,并保留低频成分。

该滤波器在音频、图像和视频处理等领域广泛应用,具有重要意义。

本文将详细介绍低通滤波器的原理、设计及其在实际应用中的效果。

一、低通滤波器的原理根据低通滤波器的特性,可以将其分为无限脉冲响应(IIR)滤波器和有限脉冲响应(FIR)滤波器两种类型。

IIR滤波器利用递归结构实现,具有较高的效率和较小的延迟,但可能会引入稳定性问题。

FIR滤波器则通过非递归结构实现,较容易设计且稳定,但通常需要较大的处理延迟。

二、低通滤波器设计低通滤波器的设计过程主要包括确定截止频率和选择滤波器类型两个步骤。

确定截止频率是滤波器设计的关键,需要根据实际需求和应用场景选择合适的频率。

滤波器类型的选择需要考虑实现复杂度、频率响应特性和设计要求等因素。

常见的低通滤波器类型包括巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器和椭圆(Elliptic)滤波器等。

巴特沃斯滤波器是一种等波纹滤波器,具有平坦的频率响应特性,但在过渡带存在较大幅度的衰减。

切比雪夫滤波器可以根据设计要求实现更好的频率响应特性,但在过渡带幅度抖动较大。

椭圆滤波器是一种逼近设计方法,可以在过渡带和阻带同时实现较好的性能,但通常会引入群延迟和设计复杂度。

三、低通滤波器的实际应用低通滤波器在音频、图像和视频处理中有广泛应用。

以音频处理为例,低通滤波器可以用于去除录音中的噪声和杂音,提高音质和音频的纯净度。

在图像处理中,低通滤波器可以用于平滑图像的噪声和细节,提高图像的质量和清晰度。

在视频处理中,低通滤波器可以用于处理视频的运动模糊和相机抖动等问题,改善视频的观看效果和稳定性。

另外,低通滤波器还广泛应用于通信系统、雷达系统和生物医学信号处理等领域。

在通信系统中,低通滤波器可以用于抑制信号中的噪声和干扰,提高通信质量和可靠性。

在雷达系统中,低通滤波器可以用于提取目标并抑制杂波干扰,提高雷达的探测性能。

低通滤波器课设报告

低通滤波器课设报告

低通滤波器课设报告一、引言二、设计原理1.低通滤波器的基本原理2.数字低通滤波器的设计基于数字信号处理的低通滤波器设计主要包括滤波器阶数、截止频率和滤波器类型的选择。

我们选择了一个二阶巴特沃斯滤波器作为我们的设计方案。

巴特沃斯滤波器具有频率响应平坦、相移小等特点,适用于对信号频率限制要求较高的场景。

三、系统设计和实现1.系统概述我们的低通滤波器系统采用了FIR滤波器结构,即有限脉冲响应滤波器。

采用FIR滤波器可以实现较好的抗混叠性能和线性相位响应。

2.系统设计流程系统设计流程包括滤波器参数选择、滤波器结构设计、滤波器系数计算以及滤波器性能评估。

我们通过MATLAB软件进行了系统设计和模拟验证。

3.系统实现我们使用MATLAB软件的DSP工具箱进行了滤波器设计和测试。

首先,我们选择了二阶巴特沃斯滤波器的类型,并设置了合适的截止频率和通带以及阻带的衰减比。

然后,利用MATLAB的FIR1函数计算出滤波器的系数。

最后,我们通过输入不同频率的信号来测试滤波器的性能。

四、实验结果和分析1.滤波器频率响应测试我们首先输入了一个频率为1kHz的正弦信号,并记录了滤波器的输出结果。

然后,我们通过FFT变换将信号频谱进行分析,并绘制出滤波器的频率响应曲线。

结果显示,在截止频率以下,滤波器的增益逐渐降低;而在截止频率以上,滤波器的增益基本为0,实现了对高频信号的滤除。

2.滤波器相位响应测试我们进一步测试了滤波器的相位响应。

通过将信号经过滤波器后,记录滤波器的输出信号和输入信号之间的相位差,并绘制出相位响应曲线。

结果显示,滤波器具有较小的相移,适用于对相位要求较高的应用。

3.滤波器性能评估我们对滤波器的性能进行了评估。

通过输入不同频率和幅度的信号,并测量滤波器的输出信号的频率和幅度响应,评估滤波器的失真程度和频率特性。

结果显示,滤波器具有良好的频率特性和信号失真程度。

五、总结与展望通过本次低通滤波器课设,我们设计并实现了一个基于数字信号处理的低通滤波器。

绝对经典的低通滤波器设计报告

绝对经典的低通滤波器设计报告

绝对经典的低通滤波器设计报告一、引言低通滤波器是一种常用的信号处理技术,它可以让低频信号通过滤波器,同时阻止高频信号的传递。

本报告旨在介绍低通滤波器的设计原理、方法和步骤,并通过实例展示设计过程。

二、设计原理低通滤波器的设计原理基于频率响应曲线。

其频率响应曲线在低频时增益较高,在高频时增益较低。

一般情况下,低通滤波器的传递函数采用巴特沃斯、切比雪夫、椭圆等形式。

具体设计时需要确定滤波器的截止频率和阶数。

三、设计步骤1.确定截止频率:根据实际需求和信号特征,确定所需的截止频率。

截止频率定义了滤波器在传递低频信号时的边界。

2.确定滤波器阶数:滤波器的阶数决定了频率响应曲线的陡峭程度。

一般来说,阶数越高,曲线越陡。

根据实际需求和对滤波器性能的要求,选择适当的阶数。

3.选择滤波器类型:根据所选的阶数和截止频率,选择合适的滤波器类型。

常用的滤波器类型有巴特沃斯、切比雪夫和椭圆滤波器。

4.设计滤波器:根据所选的滤波器类型,设计滤波器的传递函数。

传递函数可以通过数学推导和滤波器设计工具进行计算。

5.实现滤波器:将传递函数转换为滤波器的电路结构。

根据滤波器的阶数和类型,选择适当的电路结构和元件。

四、实例以下是一个设计低通滤波器的实例,以说明上述设计步骤。

1.设计需求:设计一个低通滤波器,截止频率为1kHz,阶数为4,滤波器类型为巴特沃斯。

2.确定截止频率和阶数:根据设计需求,截止频率为1kHz,阶数为43.选择滤波器类型:由于是巴特沃斯滤波器,需要确定传递函数的形式。

根据巴特沃斯滤波器的特点,传递函数形式为:H(s) = 1 / (1 + (s/wc)^2n),其中wc为截止频率,n为阶数。

4.设计滤波器:根据传递函数的形式,计算得到传递函数为:H(s)=1/(1+(s/628)^8)5.实现滤波器:将传递函数转换为电路结构。

根据滤波器的阶数和类型,选择适当的电路结构和元件。

在本例中,可以选择多级二阶滤波器的级联结构。

低通滤波器设计报告

低通滤波器设计报告

课程设计(论文)说明书题目:有源低通滤波器院(系):专业:学生姓名:学号:指导教师:职称:2011年月日摘要低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。

理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。

有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。

滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。

根据指标,本次设计选用二阶有源低通滤波器。

关键词:低通滤波器;集成运放UA741;RC网络AbstractLow-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design .Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,目录引言 (3)1 电路原理及设计方案 (3)1.1 滤波器的介绍 (3)1.2 有源滤波器的设计 (3)1.3 设计方案 (5)2 芯片介绍 (6)2.1 运放NE5532 (6)3 multisim7辅助仿真 (7)4 制板及调试 (8)4.1 DXP注意事项 (8)4.2 制作pcb板的流程 (8)4.3 注意事项 (8)4.4 调试 (8)4.5 测试结果和幅频图分析 (9)课设总结 (11)谢辞 (12)参考文献 (13)附录 (14)引言课程设计是理论联系实际的重要实践教学环节,是对学生进行的一次综合性专业设计训练。

绝对经典的低通滤波器设计报告

绝对经典的低通滤波器设计报告

绝对经典的低通滤波器设计报告1.引言低通滤波器是一种常见的信号处理工具,它能够滤除高于一些截止频率的信号成分,而保留低于该频率的信号成分。

在通信、音频处理和图像处理等领域中广泛应用。

本报告旨在介绍一种绝对经典的低通滤波器设计方法,并详细说明设计过程和性能评估。

2.设计目标本次设计的目标是设计一个有限冲激响应(FIR)低通滤波器,用于滤除频率高于截止频率的信号成分。

滤波器要求具有以下性能指标:-截止频率为1kHz-带宽衰减小于0.5dB-阻带衰减大于60dB3.设计方法设计方法采用窗函数法,是一种基于时域的FIR滤波器设计方法。

具体步骤如下:-确定滤波器的参数:截止频率、带宽衰减、阻带衰减等-选择适当的窗函数,常用的窗函数包括矩形窗、汉宁窗、哈密顿窗等-计算滤波器的理想频率响应,根据滤波器类型(低通、高通、带通)确定理想响应曲线-将理想响应曲线与所选窗函数进行卷积得到最终滤波器的冲激响应-对冲激响应进行归一化处理,确保滤波器的幅度响应在合适的范围内4.设计过程本设计选择汉宁窗作为窗函数,并以MATLAB软件进行设计。

设计步骤如下:-确定截止频率为1kHz,根据采样定理,采样频率选择为2kHz,以保证信号中频率不会受到混叠影响。

-根据设计目标,确定带宽衰减小于0.5dB和阻带衰减大于60dB。

-根据汉宁窗的定义,计算窗函数值。

-根据所选窗函数生成滤波器的理想频率响应。

-将窗函数与理想响应进行卷积得到滤波器的冲激响应。

-对滤波器的冲激响应进行归一化处理,使其满足幅度响应要求。

-绘制滤波器的频率响应曲线和幅度响应曲线,进行性能评估。

5.性能评估根据设计要求,使用MATLAB软件绘制滤波器的频率响应和幅度响应曲线,并计算带宽衰减和阻带衰减。

对于带宽衰减,可以计算滤波器在1kHz处的增益,与通过截止频率计算得到的增益进行比较。

对于阻带衰减,可以计算滤波器在1.5kHz以上的频率处的增益,并与设计要求进行比较。

FIR低通滤波器设计报告

FIR低通滤波器设计报告

FIR 低通滤波器设计报告1.FIR 低通滤波器原理1.1 FIR 滤波器简介FIR (Finite Impulse Response)滤波器:有限长单位冲激响应滤波器,是数字信号处理系统中最基本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。

因此,FIR 滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。

IIR 数字滤波器方便简单,但它相位的非线性,要求采用全通网络进行相位校正,且稳定性难以保障。

FIR 滤波器具有很好的线性相位特性,使得它越来越受到广泛的重视。

1.2 FIR 滤波器特点有限长单位冲激响应(FIR )滤波器有以下特点:1 既具有严格的线性相位,又具有任意的幅度;2 FIR 滤波器的单位抽样响应是有限长的,因而滤波器性能稳定; 3只要经过一定的延时,任何非因果有限长序列都能变成因果的有限长序列,因而能用因果系统来实现;4 FIR 滤波器由于单位冲击响应是有限长的,因而可用快速傅里叶变换(FFT)算法来实现过滤信号,可大大提高运算效率。

5 FIR 也有利于对数字信号的处理,便于编程,用于计算的时延也小,这对实时的信号处理很重要。

6 FIR 滤波器比较大的缺点就是阶次相对于IIR 滤波器来说要大很多。

FIR 数字滤波器是一个线性时不变系统(LTI ),N 阶因果有限冲激响应滤波器可以用传输函数H (z )来描述,0()()Nkk H z h k z -==∑在时域中,上述有限冲激响应滤波器的输入输出关系如下:0[][][][][]Nk y n x n h n x k h n k ==*=-∑其中,x[n]和y[n]分别是输入和输出序列。

当冲击响应满足下列条件时, FIR 滤波器具有对称结构,为线性相位滤波器:这种对称性,可使得乘法器数量减半:对n 价滤波器,当n 为偶数时,乘法器的个数为n/2个;当n 为奇数时,乘法器的个数为(n+1)/2个。

低通滤波器报告范文

低通滤波器报告范文

低通滤波器报告范文引言:一、原理:低通滤波器的工作原理基于信号的频域特性。

它通过一个频率截止点(Cut-off frequency)将输入信号分为低频和高频两个部分。

低频部分会在滤波器中通过,而高频部分则被滤除。

频率截止点通常用截止频率(Cutoff frequency)表示,它是低通滤波器滤波特性的重要参数。

二、分类:根据滤波器的实现方式,低通滤波器可以分为模拟滤波器和数字滤波器两种类型。

1.模拟滤波器:模拟低通滤波器是通过模拟电路实现的,它的输入和输出信号都是连续的。

常见的模拟低通滤波器有RC滤波器、RLC滤波器等。

2.数字滤波器:数字低通滤波器是通过数字信号处理算法实现的,它将输入信号转换为离散的数字信号,并对其进行处理。

数字滤波器可以进一步分为FIR滤波器和IIR滤波器两种类型。

三、设计方法:1.模拟滤波器设计:模拟低通滤波器设计通常基于电路理论和频域分析。

对于RC滤波器和RLC滤波器,可以使用理论计算和原理图设计来实现。

2.FIR滤波器设计:FIR滤波器的设计常基于窗函数法、最小二乘法等。

窗函数法通过选择不同形状的窗函数来实现滤波器的设计,最小二乘法则通过最小化滤波器输出与期望响应之间的误差来设计。

3.IIR滤波器设计:IIR滤波器的设计通常基于脉冲响应不变法、双线性变换等。

脉冲响应不变法通过将连续时间滤波器的脉冲响应与离散时间滤波器的响应进行匹配来设计滤波器。

四、应用案例:1.音频处理:2.图像处理:3.通信系统:结论:低通滤波器是一种重要的信号处理设备,具有广泛的应用。

通过研究低通滤波器的原理、分类、设计方法以及应用案例,可以更好地理解和应用低通滤波器。

在实际应用中,根据具体需求选择适合的滤波器类型和设计方法,可以实现更好的滤波效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典无源低通滤波器的设计团队:梦知队团结奋进,求知创新,追求卓越,放飞梦想队员:日期:2010.12.10目录第一章一阶无源RC低通滤波电路的构建 (3)1.1理论分析 (3)1.2电路组成 (4)1.3一阶无源RC低通滤波电路性能测试 (5)1.3.1正弦信号源仿真与实测 (5)1.3.2三角信号源仿真与实测 (10)1.3.3方波信号源仿真与实测 (15)第二章二阶无源LC低通滤波电路的构建 (21)2.1理论分析 (21)2.2电路组成 (22)2.3二阶无源LC带通滤波电路性能测试 (23)2.3.1正弦信号源仿真与实测 (23)2.3.2三角信号源仿真与实测 (28)2.3.3方波信号源仿真与实测 (33)第三章结论与误差分析 (39)3.1结论 (39)3.2误差分析 (40)第一章一阶无源RC低通滤波电路的构建1.1理论分析滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。

也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。

低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。

图1RC低通滤波器基本原理图当输入是直流时,输出电压等于输入电压,因为Xc无限大。

当输入频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。

此时的频率为滤波器的特征频率fc。

解出,得:在任何频率下,应用分压公式可得输出电压大小为:因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为:这些计算说明当Xc=R时,输出为输入的70.7%。

按照定义,此时的频率称为特征频率。

1.2电路组成图2-一阶RC电路multisim仿真电路原理图图3-一阶RC实物电路原理图电路参数:C=1.0μF R1=50ΩR2=50ΩR3=20ΩR4=20ΩR5=20Ω1.3一阶无源RC滤波器电路性能测试1.3.1正弦信号仿真与实测对于一阶无源RC滤波器电路,我们用100Hz、1000Hz、10000Hz三种不同正弦频率信号检测,其仿真与实测电路图如下:图4f=100Hz时正弦信号仿真波形图图5f=100Hz时正弦信号实测波形图表1f=100Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V衰减/dB相位差仿真电路20.00019.900-0.04350.032π实测电路0.440.4400π分析:由图4的仿真波形与图5的实测电路波形和表1中的数据可知,输入频率为100Hz的正弦信号时,该信号能够通过,输入输出波形间有较小相位差和较小衰减。

仿真和实测数据间存在误差,误差值较小,在允许范围内。

图6f=1000Hz时正弦信号仿真波形图图7f=1000Hz时正弦信号实测图表2f=1000Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V衰减/dB相位差仿真电路19.99714.101-3.030.25π实测电路0.380.27-2.970.248π分析:由图6的仿真波形与图7的实测电路波形和表2中的数据可知,输入频率为1000Hz的正弦信号时,该信号能够通过,输入输出波形间有较小相位差和较小衰减。

仿真和实测数据间存在误差,误差值较小,在允许范围内。

图8f=10000Hz时正弦信号仿真图图9f=10000Hz时正弦信号实测图表3f=10000Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V衰减/dB相位差仿真电路19.997 1.979-20.090.47π实测电路0.320.04-18.060.46π分析:由图8的仿真波形与图9的实测电路波形和表3中的数据可知,输入频率为10kHz的正弦信号时,由分压定理可知输入频率较大时只有极少一部分的输入电压通过电路到达输出端。

仿真和实测数据间存在误差,误差值较小,在允许范围内。

综合以上三种不同频率的检测分析:随着输入频率增加,电容电抗减小,由于电阻不变,而电容电抗减小,根据分压定理,电容两端的电压(输出电压)将随之减小。

当输入频率增加到某一值时,电抗远小于电阻,输出电压与输入电压相比可忽略不计。

这时,电路基本上完全阻止了输入信号的输出。

2.2三角信号的仿真与实测对于一阶无源RC滤波器电路,我们用100Hz、1000Hz、10000Hz 三种不同三角频率信号检测,其仿真与实测电路图如下:图10f=100Hz时三角信号仿真波形图图11f=100Hz时三角信号实测波形图表4f=100Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V衰减/dB相位差仿真电路20.00019.113-0.390.095π实测电路0.420.4200π分析:由图10的仿真波形与图11的实测电路波形和表4中的数据可知,输入频率为100Hz的三角信号时,该信号能够通过,输入输出波形间有较小相位差和较小衰减。

仿真和实测数据间存在误差,误差值较小,在允许范围内。

图12f=1000Hz时三角信号仿真波形图图13f=1000Hz三角信号实测图表5f=1000Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V衰减/dB相位差仿真电路20.00011.680-4.670.30π实测电路0.380.23-4.360.29π分析:由图12的仿真波形与图13的实测电路波形和表5中的数据可知,输入频率为1000Hz的三角信号时,该信号能够通过,输入输出波形间有较小相位差和较小衰减。

仿真和实测数据间存在误差,误差值较小,在允许范围内。

输入输出波形间有相位差,有衰减。

输出波形出现圆滑曲线由于电容充放电和滤波电路滤掉了一部分谐波造成的。

图14f=10000Hz时三角信号仿真波形图图15f=10000Hz三角信号实测图表6f=10000Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V衰减/dB相位差仿真电路20.000 1.556-22.20.475π实测电路0.320.003-40.560.49π分析:由图14的仿真波形与图15的实测电路波形和表6中的数据可知,输入频率为10kHz的三角信号时,由分压定理可知输入频率较大时只有极少一部分的输入电压通过电路到达输出端。

仿真和实测数据间存在误差,误差值较小,在允许范围内。

根据以上三个电路的分析:随着输入频率增加,电容电抗减小,由于电阻不变,而电容电抗减小,根据分压定理,电容两端的电压(输出电压)将随之减小。

当输入频率增加到某一值时,电抗远小于电阻,输出电压与输入电压相比可忽略不计。

这时,电路基本上完全阻止了输入信号的输出。

3.3方波信号源仿真与实测对于一阶无源RC滤波器电路,我们用100Hz、1000Hz、10000Hz 三种不同方波频率信号检测,其仿真与实测电路图如下:图14f=100Hz时方波信号仿真波形图图15f=100Hz时方波信号实测波形图表7f=10000Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V衰减/dB相位差仿真电路20.00020.0000.000π实测电路0.440.440.000π分析:由图14的仿真波形与图15的实测电路波形和表7中的数据可知,输入频率为100Hz的方波信号时,该信号能够通过,输入输出波形间有较小相位差和较小衰减。

仿真和实测数据间存在误差,误差值较小,在允许范围内。

图16f=1000Hz时方波信号仿真波形图图17f=1000Hz时方波信号实测图表8f=1000Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V衰减/dB相位差仿真电路20.00018.318-0.760.13π实测电路0.400.37-0.6770.124π分析:由图16的仿真波形与图17的实测电路波形和表2.3-2中的数据可知,输入频率为1000Hz的方波信号时,该信号能够通过,输入输出波形间有较小相位差和较小衰减。

仿真和实测数据间存在误差,误差值较小,在允许范围内。

图18f=10000Hz时方波信号仿真波形图图19f=10000Hz时方波信号实测图表9f=10000Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V衰减/dB相位差仿真电路20.000 3.009-16.450.45π实测电路0.340.06-15.060.44π分析:由图18的仿真波形与图19的实测电路波形和表9中的数据可知,输入频率为10kHz的方波信号时,由分压定理可知输入频率较大时只有极少一部分的输入电压通过电路到达输出端。

仿真和实测数据间存在误差,误差值较小,在允许范围内。

对以上三种不同频率的信号分析:方波信号发生畸变,是电容充放电的过程,电容两端的电压不能突变。

随着输入频率增加,电容电抗减小,由于电阻不变,而电容电抗减小,根据分压定理,电容两端的电压(输出电压)将随之减小。

当输入频率增加到某一值时,电抗远小于电阻,输出电压与输入电压相比可忽略不计。

这时,电路基本上完全阻止了输入信号的输出。

第二章二阶无源LC低通滤波器的构建2.1理论分析模拟的一阶滤波器带外衰减是20db/十倍频,而二阶则是40db/十倍频,阶数越高带外衰减越快。

可以粗略地认为阶数越高滤波效果越好,但有时可能需要折中考虑相移,稳定性等因素理想滤波器的特性难以实现,所以设计时我们大多采用按某个函数来设计,由于巴特沃斯型通带内响应最为平坦,衰减特性和相位特性都比较好,所以我们采用巴特沃斯型lc滤波器。

图20LC低通滤波器基本原理图由于LC是二阶滤波器,所以我们不用电路中复杂的数学公式来计算,用归一化的方法来求。

归一化的方法如下:归一化LPF,是指特征阻抗为1Ω,且截止频率为1/(2)Hz的LPF,首先通过改变归一化LPF的原件参数值,得到一个截止频率从归一化截止频率1/(2)Hz变为待设计滤波器所要求截止频率而特征阻抗仍为归一化特征阻抗1Ω的过渡性滤波器;然后再通过改变这个过渡性滤波器的元件值,把归一化特征阻抗变为待设计的所要求的滤波器的特征阻抗的参数值。

M=Hz由于实验室器件的限制,电感最大能达到500uH所以取特征阻抗为2Ω的。

2.2电路组成图21二阶LC电路multisim仿真电路原理图图22实际电路图电路参数:C=100μf C=10uf C=2.2uf L=100ufL=47uf L=10uf L=5.6uf2.3二阶无源LC带通滤波电路性能测试2.3.1正弦信号源仿真与实测对于二阶无源LC滤波器电路,我们用300Hz、1000Hz、10000Hz 三种不同正弦频率信号检测,其仿真与实测电路图如下:图23f=300Hz时正弦信号仿真波形图图24f=300Hz时方波信号实测图表10f=300Hz时实测结果与仿真数据对比表数据项目输入幅值/V输出幅值/V仿真电路20.00033.212实测电路 1.00 1.1对300Hz的正弦信号分析可知:输出比输入幅值大是因为产生了部分谐振,仿真信号不平缓是因为电容的充放电过程。

相关文档
最新文档