除尘器选型计算
静电除尘器的选型计算(精)
静电除尘器的选型计算电除尘器应用成功与否,是与设计、设备质量、加工和安装水平、操作条件、气体和粉尘性质等多种因素相关联的综合结果。
要取得理想的除尘效果,必须了解各有关环节与除尘机理的联系,考虑各种影响因素,正确设计计算。
1、影响电除尘器性能的因素影响电除尘器的性能有诸多因素,可大致归纳为3个方面:烟尘性质、设备状况和操作条件。
这些因素之间的相互联系如图所示,由图可知,各种因素的影响直接关系到电晕电流、粉尘比电阻、除尘器内的粉尘收集和二次飞扬这3个环节。
而最后结果表现为除尘效率的高低。
(1) 烟尘性质的影响粉尘的比电阻,适用于静电除尘器的比电阻为10cm。
比电阻低于10的粉尘,其导电性能强,在电除尘器电场内被收集时,到达沉降极板表面后会快速释放其电荷,而变为与沉淀极同性,然后又相互排斥,重新返回气流、可能在往返跳跃中被气流带出,所以除尘效果差;相反,比电阻高于10以上的粉尘,在到达沉降极以后不易释放其电荷,使粉尘层与极板之间可能形成电场、产生反电晕放电。
对于高比电阻粉尘,可以通过特殊方法进行电除尘器除尘,以达到气体净化,这些方法包括气体调质、采用脉冲供电、改变除尘器本体结构、拉宽电极间距并结合变更电气条件。
(2) 烟气湿度烟气湿度能改变粉尘的比电阻,在同样温度条件下,烟气中所含水分越大,其比电阻越小。
粉尘颗料吸附了水分子,粉尘的导电性增大,由于湿度增大,击穿电压上长,这就允许在更高的电场电压下运行。
击穿电压与空气含湿量行关,随着空气中含湿量的上升,电场击穿电压相应提高,火花放电较难出现,这种作用对电除尘器来说,是有实用价值的,它可使除尘器能够在提高电压的条件下稳定地运行,电场强度的增高会使降尘效果显著改善。
(3) 烟气温度气体温度也能改变粉尘的比电阻,而改变的方向却有几种可能:表面比电阻随温度上升而增加(这只在低温度交接处有一段)过渡区,表而和体积比电阻的共同作用区。
电除尘工作温度可由粉尘比电阻与气体温度关系曲线来选定。
除尘器设备选型11个重要因素和计算公式
除尘器选型的11个重要因素1、处理风量处理风量决定着的规格大小。
一般处理风量都用工况风量。
设计时一定要注意除尘器使用场所及烟气温度,若袋式除尘器的烟气处理温度已经确定,而气体又采取稀释法冷却时,处理风量还要考虑增加稀释的空气量;考虑今后工艺变化,风量设计指值在正常风量基础上要增加5%~10%的保险系数,否则今后一旦工艺调整增加风量,袋式除尘器的过滤速度会提高,从而使设备阻力增大,甚至缩短滤袋使用寿命,也将成为其他故障频率急剧上升的原因,但若保险系数过大,将会增加除尘器的投资和运转费用;过滤风速因袋式除尘器的形式、滤料的种类及特性的不同而有很大差异,处理风量一经确定,即可根据确定的过滤风速来决定所必须的过滤面积。
2、使用温度袋式除尘器的使用温度是设计的重要依据,使用温度与设计温度出现偏差,会酿成严重后果,因为温度受下述两个条件所制约: 一是不同滤料材质所允许的最高承受温度(瞬间允许温度和长期运行温度)有严格限制;二是为防止结露,气体温度必须保持在露点20℃以上。
对高温气体,必须将其冷却至滤料能承受的温度以下,冷却方式有多种,较为典型的有自然风管冷却、强制风冷、水冷等,具体可按不同的工艺及冷却温度、布置尺寸要求等进行设计选型。
3、气体成分除特殊情况外,袋式除尘器所处理的气体,多半是环境空气或炉窑烟气,通常情况下袋式除尘器的设计按处理空气来计算,只有在密度、黏度、质量热容等参数关系到风机动力性能和管道阻力的计算及冷却装置的设计时,才考虑气体的成分。
在许多工况的烟气中多含有水分,随着烟气中水分的增加,袋式除尘器的设备阻力和风机能耗也随之变化。
含尘气体中的含水量,可以通过实测来确定,也可以根据燃烧、冷却的物质平衡进行计算。
烟气中有无腐蚀性气体是决定滤料、除尘器壳体材质及防腐等选择所必须考虑的因素。
另外,若烟气中有有毒气体,一般都是微量的,对装置的性能没有多大影响,但在处理此类含尘烟气时,袋式除尘器必须采用不漏气的结构,而且要经常维护,定期检修,避免有毒气体泄露造成安全事故。
除尘器选型计算讲解
我国环保部门采用的的mg/m3,把它转换成PPM 时,两者转换时 查到下面的公式mg/m3=M/22.4·ppm·[273/(273+T)]*(Ba/101325) 上式中:M----为气体分子量 ppm----测定的体积浓度值 T----温度 Ba----压力袋 除尘计算1、工况风量Q)1(*324.101*15.273)15.273(*K Pat Q Q S ++=Q S —标况气量,m 3/h ,按锅炉烟气工况量的110%计算 t —工况温度,℃ Pa —当地大气压, kPa K —漏风率(3~5%) 2、过滤面积S ,m 2vQS 60=v —过滤速度,m/min即过滤速度SQ v 60=实际过滤速度ps vv ε=εp —粉尘层的平均空隙率,一般为0.8~0.95. 3、滤袋数nDLS n π=D —滤袋直径mm (外滤式110~180mm ,内滤式200~300mm ) L —袋长m (2~10mm )4、进出口参数 进口尺寸:S1136001v QS =V 1—进口风速m/s为了不让粒径大的颗粒积于管道内,使得管道堵塞,在进除尘器之前的管道中采用大风速,一般进气口风速15—25m/s ,根据不同粉尘采用不同风速(除尘器后的排气管道内由于不存在粉尘沉淀问题,气体流速取8~12m/s 。
大型除尘系统采用砖或混凝土制管道时,管道内的气速常采用6~8m/s,垂直管道如烟囱出口气速取10~20m/s。
那么进出气口尺寸可由截面积算出,一般截面形状为圆形或方形。
含尘气体在管道内的速度也可采用下述的经验计算方法求得。
(1)在垂直管道内,气速应大于管道内粉尘粒子的悬浮速度,考虑到管道内的气流速度分布的不均匀性和能够带走贴近管壁的尘粒,管道内的气速应为尘粒悬浮速度的1.3~1.7倍。
对于管路比较复杂和管壁粗糙度较大的取上限,反之取下限。
(2)在水平管道内,气速应按照能够吹走沉积在管道底部的尘粒的条件来确定。
袋式除尘器的选型计算
袋式除尘器的选型计算
简介:
选型计算的目标:
1.确定袋式除尘器的处理风量和压差;
2.确定袋式除尘器的过滤面积和袋数。
计算步骤:
1.确定处理风量:
处理风量是指袋式除尘器单位时间内处理的气体体积。
根据工况条件和空气净化要求,可以通过以下公式计算处理风量:
处理风量=工况气体体积流量×处理效率
其中,工况气体体积流量是指工况条件下流经除尘器的气体体积,处理效率是指袋式除尘器的过滤效果。
2.确定压差:
压差是指气体通过袋式除尘器时所产生的阻力。
根据工况条件和压差限制,可以通过以下公式计算压差:
压差=(气体密度×处理风量^2×常数)/(过滤面积×袋数)
其中,常数是与道流性能和过滤袋形状等参数相关的系数。
3.确定过滤面积:
过滤面积是指袋式除尘器中用于过滤粉尘的袋子的总面积。
根据工况条件和过滤效果要求,可以通过以下公式计算过滤面积:
过滤面积=处理风量/过滤速度
其中,过滤速度是指气体通过袋子时的线速度。
4.确定袋数:
袋数是指袋式除尘器中用于过滤粉尘的袋子的数量。
根据工况条件和
袋式除尘器设计的要求,可以通过以下公式计算袋数:
袋数=过滤面积/单个袋子的面积
以上为袋式除尘器选型计算的基本步骤。
在实际应用中,还需考虑袋
式除尘器的材质、结构和操作维护等因素,以确保选型的准确性和稳定性。
同时,在进行选型计算时,还应参考相关国家标准和行业规范的要求,以
保证袋式除尘器的使用安全和环保效果。
总结:。
除尘风机选型计算
除尘风机选型计算一、风机需求烟梗风送除尘点除尘风量为11500m³/h,风送管道设计风速25m/s左右,除尘管道设计风速20m/s左右;烟梗除轻杂除尘风量为5000m³/h,除尘管道设计风速18m/s左右;四个烟梗转接除尘点除尘风量为8000m³/h,每个点除尘为风量为2000m³/h,除尘管道设计风速18m/s左右。
整个烟梗投料总除尘风量为24500m³/h。
二、风机选型计算1、方案一风机选型计算1.1设备选型目前方案设计为烟梗风送除尘采用一台除尘器,设备选型为JH2-12C,处理风量为8000-12000m³/h。
烟梗除轻杂除尘及四个烟梗转接除尘点共用一台除尘器,设备选型为JH2-18C,处理风量为13500-16500m³/h。
1.2风机选型计算1.2.1烟梗风送除尘风机选型计算1.2.1.1参数计算由除尘方案布局图可知:烟梗风送除尘压损包括:除尘器、落料器箱、风送管道、除尘管道及吸口及其他压损及组成。
主机设备除尘器(除尘器)压损P1=1500Pa根据我们公司落料器参数,落料器设备阻力P2=1200Pa吸口及其他压损P3=500Pa除尘管道压力损失△P:气体在圆管内流动时,在直线管段产生摩擦阻力;在阀门、三通、弯头、变径等出产生局部阻力,这两种阻力导致气体压力损耗。
因此管道的压力损失为管道的直线管段摩擦阻力和局部阻力之和。
即:式中:△P---管道压力损失,Pa;△P1---直线管段摩擦阻力,Pa;△P2---管道局部,Pa。
a直线管段摩擦阻力计算公式:式中:△P1---直线管段摩擦阻力,Pa;λ---管道摩擦阻力系数,参考常用管道摩擦阻力系数表可查;--直线管段长度,m;d---管道内径,m;ρ---空气密度,Kg/m³;v---管道内流速,m/s;g---重力加速度,m/s²;b局部阻力计算公式:式中:△P2---局部阻力,Pa;ζ---局部阻力系数,参考管道附件局部阻力系数表可查;管道压损需要根据压损最大的一路直管进行计算,根据方案图:根据上述公式计算各段管道压损经过计算管道系统压损合计△P=2670Pa。
布袋除尘器的选型计算
布袋除尘器选型参数计算方法一、处理气体量的计算Qc s as c a t =273m t a Q Q P ⨯⨯3(273+)101.325(1+K)Q :生产过程中产生的气体量 N /h :除尘器内气体的温度 ℃P :环境大气压 KP K:除尘器前漏风系数注:缺乏必要的数据时,可根据生产工艺过程产生的气体量,再加集气罩混进的空气量(约20%~40%)计算。
二、过滤风速的选取V反吹风袋式除尘器的过滤风速在0.6~1.3m/min 之间,脉冲袋式除尘器的过滤风速在1.0~2.0m/min 之间,玻璃纤维袋式除尘器的过滤风速在0.5~0.8m/min。
袋式除尘器过滤风速(m/min)粉尘种类清灰方式自行脱落或手动振动机械振动反吹风脉冲喷吹炭黑、氧化硅(白炭黑)、铝、锌的升华物以及其他在气体中冷凝和化学反应形成的气溶胶、活性炭、由水泥窑排出的水泥0.25~0.40.3~0.50.33~0.600.8~1.2铁及钛合金的升华物、铸造尘、颜料、由水泥磨排出的水泥、炭化炉升华物、石灰、刚玉、塑料、铁的氧化物、焦粉、煤粉0.28~0.450.4~0.650.45~1.00.8~1.6滑石粉、煤、喷砂清理尘、飞灰、陶瓷生产的粉尘、炭黑(二次加工)、氧化铝、高岭土、石灰石、矿尘、铝土矿、水泥(来自冷却器)0.30~0.500.5~1.00.50~1.01.0~2.0实际选型中根据经验、粉尘性质、滤料型号进行选择。
计算方法二:n 12345n 12345=V V C C C C C V C C C C C :标准气布比:清灰方式系数:气体初始含尘浓度的系数:过滤的粉尘粒径分布影响的系数:气体温度系数:气体净化质量要求系数V n :黑色和有色金属升华物质、活性炭取1.2m 3/(m 2·min );焦炭、挥发性渣、金属细粉、金属氧化物等取1.7m 3/(m 2·min );铝氧粉、水泥、煤炭、石灰、矿石灰等取2.0m 3/(m 2·min )。
布袋除尘器选型计算表
120
128
108
117 126
135
144
120
130 140
150
160
132
143 154
165
176
144
156 168
180
192
156
169 182
195
208
168
182 196
210
224
180
195 210
225
240
192
208 224
240
256
17
18
19
136
144 152
花板孔数
脉冲阀数
8
9
10
11
8
64
72
80
88
9
72
81
90
99
10
80
90
100
110
11
88
99
110
121
12
96
108
120
132
13
104
117
130
143
14
112
126
140
154
15
120
135
150
165
16
128
144
160
176
每脉冲阀多少袋数
12
13
14
15
16
96
104 112
长袋低压脉冲布袋除尘器选型计算表
处理风 量
Q(M3/h )
滤袋 规格
Φ (m)
滤袋 长度 L(M)
初设 风速 M/mi
电除尘器地选型计算全参数精
电除尘器的选型计算电除尘器应用成功与否,是与设计、设备质量、加工和安装水平、操作条件、气体和粉尘性质等多种因素相关联的综合效果。
要取得理想的除尘效果,必须了解各有关环节与除尘机理的联系,考虑各种影响因素,正确设计计算。
1.影响除尘器性能的因素影响电除尘器性能有诸多因素,可大致归纳为3个方面:烟尘性质、设备状况和操作条件。
这些因素之间的相互联系如图4-71所示,由图可知,各种因素的影响直接关系到电晕电流、粉尘比电阻、除尘器内的粉尘收集和二次飞扬这3个环节,而最后结果表现为除尘效率的高低。
1)烟尘性质的影响粉尘的比电阻,适用于电除尘器的比电阻为104~1011Ω·㎝。
比电阻低于104Ω·㎝的粉尘,其导电性能强,在电除尘器电场内被收集时,到达沉降极板后会快速释放其电荷,而变为与沉淀极同性,然后又相互排斥,重新返回气流,可能在往返跳跃中被气流带出,所以除尘效果差;相反,比电阻高于1011Ω·㎝以上的粉尘,在到达沉降极以后不易释放其电荷,使粉尘层与电极板之间可能形成电场,产生反电晕放电。
对于高比电阻粉尘,可以通过特殊方法进行电除尘器除尘,以达到气体净化,这些方法包括气体调质、采用脉冲供电、改变除尘器本体结构、拉宽电极间距并结合变更电气条件。
2)烟气湿度烟气湿度能改变粉尘的比电阻,在同样湿度条件下,烟气中所含水分越大,其比电阻越小。
粉尘颗粒吸附了水分子,粉尘的导电性增大,由于湿度增大,击穿电压上长,这就允许在更高的电场电压下运行。
击穿电压与空气含湿量有关,随着空气中含湿量的上升,电场击穿电压相应提高,火花放电较难出现,这种作用对电除尘器来说,是有实用价值的,它可使除尘器能够在提高电压的条件下稳定地运行,电场强度的增高会使降尘效果显著改善。
3)烟气温度气体温度也能改变粉尘的比电阻,而改变的方向却有几种可能:表面比电阻随温度上升而增加(这只在低温度交接处有一段)过渡区,表面和体积比电阻的共同作用区。
电除尘器的选型计算参数精
电除尘器的选型计算电除尘器应用成功与否,是与设计、设备质量、加工和安装水平、操作条件、气体和粉尘性质等多种因素相关联的综合效果。
要取得理想的除尘效果,必须了解各有关环节与除尘机理的联系,考虑各种影响因素,正确设计计算。
1.影响除尘器性能的因素影响电除尘器性能有诸多因素,可大致归纳为3个方面:烟尘性质、设备状况和操作条件。
这些因素之间的相互联系如图4-71所示,由图可知,各种因素的影响直接关系到电晕电流、粉尘比电阻、除尘器内的粉尘收集和二次飞扬这3个环节,而最后结果表现为除尘效率的高低。
1)烟尘性质的影响粉尘的比电阻,适用于电除尘器的比电阻为104~1011?·㎝。
比电阻低于104?·㎝的粉尘,其导电性能强,在电除尘器电场内被收集时,到达沉降极板后会快速释放其电荷,而变为与沉淀极同性,然后又相互排斥,重新返回气流,可能在往返跳跃中被气流带出,所以除尘效果差;相反,比电阻高于1011?·㎝以上的粉尘,在到达沉降极以后不易释放其电荷,使粉尘层与电极板之间可能形成电场,产生反电晕放电。
对于高比电阻粉尘,可以通过特殊方法进行电除尘器除尘,以达到气体净化,这些方法包括气体调质、采用脉冲供电、改变除尘器本体结构、拉宽电极间距并结合变更电气条件。
2)烟气湿度烟气湿度能改变粉尘的比电阻,在同样湿度条件下,烟气中所含水分越大,其比电阻越小。
粉尘颗粒吸附了水分子,粉尘的导电性增大,由于湿度增大,击穿电压上长,这就允许在更高的电场电压下运行。
击穿电压与空气含湿量有关,随着空气中含湿量的上升,电场击穿电压相应提高,火花放电较难出现,这种作用对电除尘器来说,是有实用价值的,它可使除尘器能够在提高电压的条件下稳定地运行,电场强度的增高会使降尘效果显着改善。
3)烟气温度气体温度也能改变粉尘的比电阻,而改变的方向却有几种可能:表面比电阻随温度上升而增加(这只在低温度交接处有一段)过渡区,表面和体积比电阻的共同作用区。
袋式除尘器的选型计算
袋式除尘器选型计算一、 处理气体量的计算 Qc s as c a t =273m t a Q Q P ⨯⨯3(273+)101.325(1+K )Q :生产过程中产生的气体量 N /h :除尘器内气体的温度 ℃P :环境大气压 KP K :除尘器前漏风系数注:缺乏必要的数据时,可根据生产工艺过程产生的气体量,再加集气罩混进的空气量(约20%~40%)计算。
二、 过滤风速的选取 V反吹风袋式除尘器的过滤风速在0.6~1.3m/min 之间,脉冲袋式除尘器的过滤风速在 1.0~2.0m/min 之间,玻璃纤维袋式除尘器的过滤风速在0.5~0.8m/min 。
袋式除尘器过滤风速 (m/min )实际选型中根据经验、粉尘性质、滤料型号进行选择。
计算方法二:n 12345n 12345=V V C C C C C V C C C C C :标准气布比:清灰方式系数:气体初始含尘浓度的系数:过滤的粉尘粒径分布影响的系数:气体温度系数:气体净化质量要求系数V n :黑色和有色金属升华物质、活性炭取 1.2m 3/(m 2²min );焦炭、挥发性渣、金属细粉、金属氧化物等取1.7m 3/(m 2²min );铝氧粉、水泥、煤炭、石灰、矿石灰等取2.0m 3/(m 2²min )。
C 1:脉冲清灰(织造布)取1.0;脉冲清灰(无纺布)取1.1;反吹加振打清灰取0.7~0.85;反吹风取0.55~0.7。
C 2:如图曲线可以查找C 3:如表所列C 4:如表所示C 5:净化后含尘浓度>30mg/m 3,取1.0;<10mg/m 3取0.95。
三、 过滤面积计算1、有效过滤面积160QS V=2、总过滤面积12S S S =+S 2:滤袋清灰部分的过滤面积 四、 单条滤袋面积(圆形) 34=S DL DL S ππ=-S4:滤袋未能起过滤作用的面积,一般占滤袋面积的5%~10%。
五、 滤袋数量3n=S S 六、 滤袋规格脉冲袋式除尘器滤袋长径比为:12:1~60:1。
旋风除尘器的选型计算
工业通风除尘用旋风除尘器的选择计算摘要:针对工业通风除尘用旋风除尘器应用,介绍了旋风器的结构组成及改进措施,简述了单体使用和多筒多管组合技术注意问题和选择计算方法,文中给出了多种旋风器结构参数和技术参数。
关键字:旋风除尘器多筒多管组合1 引言旋风除尘器(简称旋风器)与其他除尘器相比,具有结构简单、造价便宜、维护管理方便以及适用面宽的特点。
旋风器适用于工业炉窑烟气除尘和工厂通风除尘;工业气力输送系统气固两相分离与物料气力烘干回收。
高性能的旋风器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可以达到95%~98%,对于燃煤炉窑产笺烟尘除尘效率可以达到92%~95%。
旋风器亦可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。
旋风器具有可以适宜和于高温高压含尘气体除尘的特点。
旋风器的类型有切流反转式、轴流反转式、直流式等。
工厂通风除尘使用的主要是切流反转式旋风器。
2 旋风器结构2.1 单体基本结构单体基本结构参见图1,含尘气体通过进口起旋器产生旋转气流,粉尘在离心力作用下脱离气流和筒锥体边壁运动,到达壁附近的粉尘在气流的作用下进入收尘灰斗,去除了粉尘的气体汇向轴心区域由排气芯管排出。
图1 旋风器结构示意图2.2 结构改进措施旋风器在长期使用中,为了达到低阻高效性能其结构不断进行改进,改进措施主要有:(1)进气通道由切向进气改为回转通道进气,通过改变含尘气体的浓度分布、减少短路流排尘量。
回转通道在90°左右时阻力较小。
(2)把传统的单进口改为多进口,有效地改进旋转流气流偏心,同时旋风器阻力显著下降。
(3)在筒锥体上加排尘通道,防止到达壁面的粉尘二次返混。
(4)采用锥体下部装有二次分离装置(反射屏或中间小灰斗)防止收尘二次返混。
(5)排气芯管上部加装二次分离器,利用排气强旋转流进行微细粉尘的二次分离,对捕集短路粉尘极为有效。
(6)在筒锥体分离空间加装减阻件降阻,等。
除尘器风机计算公式
除尘器风机计算公式在工业生产中,除尘器是一种常见的设备,用于去除生产过程中产生的粉尘和颗粒物。
而除尘器中的风机则是除尘器正常运行的关键部件之一。
风机的选型和计算对于除尘器的性能和运行稳定性至关重要。
在这篇文章中,我们将介绍除尘器风机计算的公式和相关参数,希望对于工程师和技术人员有所帮助。
首先,我们来看一下除尘器风机计算的基本公式:风机功率计算公式,P = (Q ΔP) / η。
其中,P表示风机的功率(单位,千瓦),Q表示风机的风量(单位,立方米/秒),ΔP表示风机的压力损失(单位,帕斯卡),η表示风机的效率。
风机的风量(Q)可以通过以下公式计算:Q = A V。
其中,A表示风机进出口的面积(单位,平方米),V表示风机的风速(单位,米/秒)。
风机的压力损失(ΔP)可以通过以下公式计算:ΔP = (K ρ V^2) / 2。
其中,K表示风机的阻力系数,ρ表示空气密度(单位,千克/立方米),V表示风机的风速(单位,米/秒)。
风机的效率(η)通常由厂家提供,也可以通过实际测试得到。
通过以上公式,我们可以计算出除尘器风机所需的功率、风量和压力损失。
这些参数对于风机的选型和运行至关重要。
在实际工程中,我们需要根据除尘器的具体情况和工艺要求,结合以上公式进行计算和选择合适的风机。
除了以上公式,除尘器风机计算还需要考虑一些其他因素,比如风机的类型(离心风机、轴流风机等)、风机的安装位置(室内、室外)、风机的噪音和振动等。
这些因素都会对风机的选型和计算产生影响,需要在实际工程中进行综合考虑。
除尘器风机计算是一个复杂的工程问题,需要结合理论计算和实际情况进行综合分析。
在工程实践中,我们需要根据具体情况和要求,合理选择风机类型、计算风机参数,并进行实际测试和调整,以确保风机在除尘器中的正常运行和稳定性。
总之,除尘器风机计算是一个重要而复杂的工程问题,需要工程师和技术人员进行认真分析和计算。
通过合理的风机选型和计算,可以保证除尘器的正常运行和高效除尘,为工业生产提供保障。
(完整版)除尘器选型计算
(完整版)除尘器选型计算我国环保部门采⽤的的mg/m3,把它转换成PPM 时,两者转换时查到下⾯的公式mg/m3=M/22.4·ppm·[273/(273+T)]*(Ba/101325)上式中:M----为⽓体分⼦量 ppm----测定的体积浓度值 T----温度 Ba----压⼒袋除尘计算1、⼯况风量Q)1(*324.101*15.273)15.273(*K Pat Q Q S ++=Q S —标况⽓量,m 3/h ,按锅炉烟⽓⼯况量的110%计算 t —⼯况温度,℃ Pa —当地⼤⽓压, kPa K —漏风率(3~5%)2、过滤⾯积S ,m 2vQS 60=v —过滤速度,m/min即过滤速度SQv60=实际过滤速度psvvε=εp—粉尘层的平均空隙率,⼀般为0.8~0.95.3、滤袋数nDLSnπ=D—滤袋直径mm(外滤式110~180mm,内滤式200~300mm)L—袋长m(2~10mm)4、进出⼝参数进⼝尺⼨:S1136001vQS=V1—进⼝风速m/s为了不让粒径⼤的颗粒积于管道内,使得管道堵塞,在进除尘器之前的管道中采⽤⼤风速,⼀般进⽓⼝风速15—25m/s,根据不同粉尘采⽤不同风速(除尘器后的排⽓管道内由于不存在粉尘沉淀问题,⽓体流速取8~12m/s。
⼤型除尘系统采⽤砖或混凝⼟制管道时,管道内的⽓速常采⽤6~8m/s,垂直管道如烟囱出⼝⽓速取10~20m/s。
那么进出⽓⼝尺⼨可由截⾯积算出,⼀般截⾯形状为圆形或⽅形。
含尘⽓体在管道内的速度也可采⽤下述的经验计算⽅法求得。
(1)在垂直管道内,⽓速应⼤于管道内粉尘粒⼦的悬浮速度,考虑到管道内的⽓流速度分布的不均匀性和能够带⾛贴近管壁的尘粒,管道内的⽓速应为尘粒悬浮速度的1.3~1.7倍。
对于管路⽐较复杂和管壁粗糙度较⼤的取上限,反之取下限。
(2)在⽔平管道内,⽓速应按照能够吹⾛沉积在管道底部的尘粒的条件来确定。
(3)倾斜管道内的⽓速,介于垂直管道和⽔平管道之间,倾斜⾓⼤者取⼩值,倾斜⾓⼩者取⼤值。
除尘器选型参数
除尘器的选型依据为:处理风量(Q)指除尘设备在单位时间内所能净化气体的体积量。
单位为每小时立方米(m/h)或每小时标立方米(Nm/h)。
根据风量设计或选择袋式除尘器时,一般不能使除尘器在超过规定风量的情况下运行,否则,滤袋容易堵塞,寿命缩短,压力损失大幅度上升,除尘效率也要降低;但也不能将风量选的过大,否则增加设备投资和占地面积,而且浪费资源,不节能。
使用温度(℃)对于袋式除尘器来说,其使用温度取决于两个因素,第一是滤料的最高承受温度,第二是气体温度必须在露点温度以上。
由于玻纤滤料的大量选用,其最高使用温度可达280℃,对高于这一温度的气体必须采取降温措施,对低于露点温度的气体必须采取提温措施。
对袋式除尘器来说,使用温度与除尘效率关系并不明显,这一点不同于电除尘,对电除尘器来说,温度的变化会影响到粉尘的比电阻等影响除尘效率。
入口含尘浓度(g/m³)这是由扬尘点的工艺所决定的,在设计或选择袋式除尘器时,它是仅次于处理风量的又一个重要因素。
以g/m或g/Nm来表示。
对于袋式除尘器来说,入口含尘浓度将直接影响下列因素:⑴压力损失和清灰周期。
入口浓度增大,同一过滤面积上积灰速度快,压力损失随之增加,结果是不得不增加清灰次数。
⑵滤袋和箱体的磨损。
在粉尘具有强磨蚀性的情况下,其磨损量可以认为与含尘浓度成正比。
⑶预收尘有无必要。
预收尘就是在除尘器入口处前再增加一级除尘设备,也称前级除尘。
⑷排灰装置的排灰能力。
排灰装置的排灰能力应以能排出全部收下的粉尘为准,粉尘量等于入口含尘浓度乘以处理风量。
⑸操作方式。
袋式除尘器分为正压和负压两种操作方式,为减少风机磨损,入口浓度大的不宜采用正压操作方式。
出口含尘浓度(g/m³)出口含尘浓度指除尘器的排放浓度,表示方法同入口含尘浓度,出口含尘浓度的大小应以当地环保要求或用户的要求为准,袋式除尘器的排放浓度一般都能达到50mg/Nm以下。
250立竖窑废气量计算(除尘器风机选型)
目录摘要 (1)引言 (2)一除尘器能力计算 (5)1、现状 (5)2、原始设计参数 (5)3、过滤面积 (5)4、除尘器处理能力范围 (6)二石灰窑废气产量计算 (7)1、已知技术参数 (7)2、理论废气量 (7)3、实际废气量 (8)三除尘风机能力 (9)1、现有风机能力 (9)2、风机的选择 (10)3、核算 (10)4、压力损失计算 (11)四清灰强度计算 (13)五除尘器耗气量 (15)六结论 (16)参考文献 (17)除尘器的风机是脉冲袋式除尘器的主要部件,也是确定粉尘捕捉能力的一个重要指标,它们的选型必须与废气产量和扬尘点粉尘的扩散量匹配。
选型过大,导致布袋的过滤风速增大,使布袋的寿命缩短,除尘效率降低等问题;选型过小,无法将排放的废气收集完全,造成大气污染。
同时,风量太低的话,除尘管道内的风速也就达不到要求,容易使管道内的粉尘沉积于管道中,使管道堵塞。
合理的选择除尘器的风机,才能确保除尘器的稳定运行,使除尘效果达到最佳状态,最大限度的净化空气,保护职工的身心健康,为职工提供一个安全、舒适的工作环境。
关键词:废气布袋除尘器风机选型近几年,伴随着改革开放的深化和经济全球化脚步的加快,我国的经济发展取得了举世瞩目的成就。
然而,在我国经济飞速发展,国民生产总值一年比一年高的情况下,我国的自然资源消耗量也在飞速的增加。
同时,因为巨大的矿物能源的消耗,使得我国环境污染日益严重。
这主要表现为温室效应、臭氧层破环、酸雨和粉尘污染。
而这些大气污染就是人类生产生活造成的,大气污染对人们的身心健康有着严重的危害。
企业的生产与发展离不开能源的消耗,而能源的消耗又将伴随着环境的污染,环境治理已经是每个企业不可避免的任务。
然而作为以赢利为目的的企业,特别是资源密集型企业,他们很多都采取被动甚至不作为的态度来应对国家的环境保护政策,盲目发展经济,不惜以牺牲环境为代价来达到盈利的目的。
但是,经调查发现,环境保护和企业发展的博弈中,“鱼和熊掌是可以兼得”的,我们即能保护环境,又能不因为保护环境而对企业盈利水平产生负面作用,甚至还能帮助企业取得更多的经济效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国环保部门采用的的mg/m3,把它转换成PPM 时,两者转换时 查到下面的公式mg/m3=M/22.4·ppm ·[273/(273+T)]*(Ba/101325) 上式中:M----为气体分子量 ppm----测定的体积浓度值 T----温度 Ba----压力袋 除尘计算1、工况风量Q)1(*324.101*15.273)15.273(*K Pat Q Q S ++=Q S —标况气量,m 3/h ,按锅炉烟气工况量的110%计算 t —工况温度,℃ Pa —当地大气压, kPa K —漏风率(3~5%) 2、过滤面积S ,m 2vQS 60=v —过滤速度,m/min即过滤速度SQ v 60=实际过滤速度ps vv ε=εp —粉尘层的平均空隙率,一般为0.8~0.95. 3、滤袋数nDLS n π=D —滤袋直径mm (外滤式110~180mm ,内滤式200~300mm ) L —袋长m (2~10mm )4、进出口参数 进口尺寸:S1136001v QS =V 1—进口风速m/s为了不让粒径大的颗粒积于管道内,使得管道堵塞,在进除尘器之前的管道中采用大风速,一般进气口风速15—25m/s ,根据不同粉尘采用不同风速(除尘器后的排气管道内由于不存在粉尘沉淀问题,气体流速取8~12m/s 。
大型除尘系统采用砖或混凝土制管道时,管道内的气速常采用6~8m/s,垂直管道如烟囱出口气速取10~20m/s。
那么进出气口尺寸可由截面积算出,一般截面形状为圆形或方形。
含尘气体在管道内的速度也可采用下述的经验计算方法求得。
(1)在垂直管道内,气速应大于管道内粉尘粒子的悬浮速度,考虑到管道内的气流速度分布的不均匀性和能够带走贴近管壁的尘粒,管道内的气速应为尘粒悬浮速度的1.3~1.7倍。
对于管路比较复杂和管壁粗糙度较大的取上限,反之取下限。
(2)在水平管道内,气速应按照能够吹走沉积在管道底部的尘粒的条件来确定。
(3)倾斜管道内的气速,介于垂直管道和水平管道之间,倾斜角大者取小值,倾斜角小者取大值。
m /s5、阻力计算o c g P P P P ∆+∆+∆=∆ PaP ∆g —除尘器结构阻力; P ∆c —洁净滤料阻力; P ∆o —粉尘层阻力;除尘器结构阻力P ∆g 是指设备进、出口及内部流道内挡板等造成的流动阻力。
通常P ∆g=200~500Pa 。
滤料阻力P ∆o60/*0νμξ=∆Poμ—空气的粘度,Pa*s ; ν—过滤风速,m 3/min*m 2;ξ0—滤料阻力系数,m -1 粉尘层阻力P ∆ c60/μνδαc m Pc =∆δc —粉尘层厚度,m ; αm —粉尘层平均比阻,m/kg ; 另外(有粉尘层阻力ΔPc=αm μνα—粉尘层平均比阻,m/kg ;m —粉尘负荷,kg/m 2;μ—气体粘度Pa*s 。
6、气流上升速度在除尘器内部,滤袋低端含尘气体能够上升的实际速度,就是气流上升速度。
气流上升速度的大小对滤袋被过滤的含尘气体磨损及因脉冲清灰而脱离滤袋的粉尘随气流重新返回除尘布袋表面有重要影响。
气流上升速度是除尘器内烟气不应超过的最大速度,达到和超过这个速度,烟气中的颗粒物就会磨坏滤袋或带走粉尘,甚至导致设备运行阻力偏大。
袋式除尘器进行过滤时分为内滤和外滤两种,前者含尘气流由滤袋内部流向外部,后者含尘气流由滤袋外部流向滤袋内部。
内滤式袋式除尘器气流上升速度按下式计算: Vk = Sa •Vc/S式中 Vk———除尘器气流上升速度,m/min;Sa———单条滤袋过滤面积,m2;Vc———过滤速度,m/min;S ———滤袋口的截面积,m2。
外滤式袋式除尘器气流上升速度按下式计算:Vk =Qv/(SA-nS)式中Vk———除尘器气流上升速度,m/min;Qv———滤袋室的处理风量,m3/min;SA———滤袋室袋低处的截面积,m2;n ———滤袋室滤袋数量, 个。
S ———滤袋截面积,m2。
过滤速度和气流上升速度二者在袋式除尘器内各处都应保持在一定范围内。
如果过滤风速选择不当或分室分布不均,会影响滤袋的寿命,同样,气流上升速速选择不当或分室的气流上升速度不均,也会影响滤袋使用寿命。
因此,在设计中不仅要设计合理的因此,在设计中不仅要设计合理的过滤风速及使气流分布均匀的导流技术,而且要按粉尘的粒径、浓度、工况条件设计选择合理的气流上升速度,才能确保延长滤袋使用寿命。
单条滤袋的气体流量为q ,按过滤速度计算:60cDL qυπ=按袋口速度计算:42iD q υπ=两式相等:4602icD DL υπυπ=即:ciD L υυ15=q —单条滤袋气体流量;m 3/s ; D —滤袋直径,m ; L —滤袋长度,m ;υc —滤袋过滤速度,m/min ; υi —滤袋口速度,m/s 。
喷吹口孔径:mm n Cd p 4.9168.5055.022=⨯==φC 为系数,取50%~60%,n 为孔数, d 为脉冲阀出口直径。
喷吹口孔形,喷吹孔应垂直向下,常用孔形有钻孔成型的、带翻边弧形的。
一般每根喷吹管孔最多18个。
喷吹导流管:直径通常为喷吹口2~3倍,长度为Ck 为系数,取0.2~0.25;K 为射流紊流系数,柱形射流K=0.08。
清灰需气量计算 单袋工作过风量:q=3.14×D ×L ×V=3.14×0.16×6.4×1.23=3.95m 3/min最小清灰需气量:q min =n ×q ×t1/60=16×3.95×0.1/60=0.105m 3/次 每次脉冲阀工作时间0.1s q ≥C 1C 2C 3C 4n f v f k -1 C 1-粉尘粒度系数,0.5~5 C 2—粉尘含湿量系数,1~3 C 3—过滤速度系数,C 3= v f 0.6 n —滤袋数量 f —单袋过滤面积k —诱导比,2~6 ( 清灰周期t ,min VMc t =M :滤袋粉尘负荷,g/m 2 C :气体含尘质量浓度,g/m 3 V :过滤风速,m/min脉冲阀压缩空气耗量 压缩空气耗量 tnq a ⨯=Q Q :喷吹总耗气量 n :脉冲阀数量 t :喷吹周期a :附加系数,一般取1.2(1.2~1.5) q :每个脉冲阀一次喷吹的耗气量 气包容积设计:脉冲喷吹后气包内压降不超过原来储存压力的30%。
气包最小体积计算:4.22n n min min Q KP RT V =∆∆∆=Δn :脉冲阀喷吹耗气量摩尔数 Q :脉冲阀一次耗气量R :气体常数,8.314J/(mol ·K) ΔP min :气包内最小工作压力 T :气体温度 K :容积系数,<30%气包上配置安全阀、压力表和排气阀。
安全阀采用弹簧微启式安全阀。
7、露点考虑含尘气体中的HCl 、HF 、SO 3等,在与H 2O 共同存在下会形成结露现象,生成酸对除尘器产生腐蚀,其中结露最为严重的是SO 3,它的露点计算如下:32lg 26lg 20186SO O H t s ϕϕ++=露点与H 2O 和SO 3的体积分数有关。
浓硫酸具有强氧化性,其对滤袋腐蚀极为严重,而相对钢材来说,钢材与浓硫酸反应会形成钝化膜,保护钢材,但由于含尘气体的冲刷,设备因种种原因的磨损是在所难免的,我们只有针对各个地反的磨损原因进行相应的改进。
烯酸对钢材腐蚀很严重,故对钢材管道及其他部件采取保温或供热,使其温度高于露点20℃左右,滤袋结露则会发生糊袋现象,且在高温环境下,水分蒸发形成浓酸,特别浓硫酸,它会对滤料进行氧化,破坏滤料纤维,发生破袋现象。
8、喷吹装置喷吹管一般开孔18个以内,开孔孔径为φ8~32mm ,喷吹管距袋口200~400mm 。
(旋风除尘1、处理风量:20*4/*3600D Q p v υπ=υp —除尘器筒体净空截面平均速度,m/s ,υp =2.5~4.0m/s ; D 0—除尘器筒体直径,m 。
2、设备阻力:2*2ρυξi p =∆ξ—阻力系数;υi —除尘器进气口气流速度,m/s ; ρ—含尘气体密度,kg/m 3。
阻力系数可由实验测得,也可由下公式计算:2122130H H D D A +=ξA —除尘器入口的断面积,m 2; D 1—除尘器外圆筒的内径,m ; D 2—除尘器内圆筒的内径,m ; H 1—除尘器圆筒部分高,m ; H 2—除尘器圆锥部分高,m 。
除尘器的压力损失一般控制在500~1500Pa 之间。
常规旋风除尘器内各部分的压力损失对总压力损失所占的比例:入口损失占7%,出口损失占20%,本体内动压损失占30%,灰斗损失占33:,边壁摩擦占10%。
2、除尘效率:])ln()(18exp[11212212r r r r s r d Q v p ---=μϕρηρp —粒子的密度,kg/m 3; Q v —处理风量,m 3/h ; d —粒子的直径,m ; ψ1—旋转角度,rad ;μ—空气的动力黏度,Pa*s ; s —流体旋转螺距,m ; r 1—流体内侧半径,m ; r 2—流体外侧半径,m 。
结构设计1、各种荷载组合参照GB50009建筑结构荷载规范荷载效应组合值如下:∑=++=ni QiK Ci Qi K Q Qi GK G S S S S 21ψγγγγG —永久荷载分项系数;γQi —第i 个可变荷载的分项系数;S GK —按永久荷载标准值G K 计算的荷载效应值;S QiK —按可变荷载标准值Q iK 计算的荷载效应值,其中S QiK 为诸可变荷载效应中起控制作用者; ψCi —可变荷载Q i 的组合值系数; n —参与组合的可变荷载。
2、风荷载kN计算除尘器框架及支架结构时:O Z S Z K W W μμβ=计算侧壁板、加劲肋、小梁及类似部位时:O Z S gZ KW W μμβ=βZ —高度z 处的风振系数(当高度≤30m 时,可近似取1.0); βgZ —高度z 处的风振系数(;μS —风荷载体型系数(可按架空通廊取:迎风面1.0,背风面0.7); μZ —风压高度变化系数( W O —基本风压,kPa 。
3、内力分析 (1)板单板一般为多跨连续板,板中最大弯矩值(M max ):2max )(Lq ag M β+=g —均布永久载荷,Pa ; q —均不可变载荷,Pa ; L —等跨板的计算跨度,m ; α、β—系数() 双向板板中最大弯矩计算:2max paM α=p —双向板上均不载荷; a —双向板短边长,m ; α—系数。
四边固定板挠度:)/(34Et pa βν=E —钢材弹性模量,MPa ; t —钢板厚度,mm ; β—系数。