高三一轮复习第三节 函数的零点
2025届高中数学一轮复习课件《利用导数研究函数的零点》ppt
高考一轮总复习•数学
第14页
所以 f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞). 综上,当 a≤0 时,函数 f(x)的单调递增区间为(-∞,+∞),无单调递减区间;当 a >0 时,函数 f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞). (2)由(1)知 f′(x)=ex-a. 当 a≤1 时,函数 f(x)在区间(0,1)上单调递增且 f′(x)>0 恒成立,从而 f(x)单调递增. f(0)=0,所以函数 f(x)在区间(0,1)上不存在零点. 当 a≥e 时,函数 f(x)在区间(0,1)上单调递减且 f′(x)=ex-a<0,从而 f(x)单调递减. f(0)=0,所以函数 f(x)在区间(0,1)上不存在零点. 当 1<a<e 时,函数 f(x)在区间(0,ln a)上单调递减,在(ln a,1)上单调递增,
第23页
高考一轮总复习•数学
第24页
∴存在 m∈12,1,使得 f′(m)=0,得 em=m1 ,故 m=-ln m,当 x∈(0,m)时,f′(x)<0, f(x)单调递减,
当 x∈(m,+∞)时,f′(x)>0,f(x)单调递增, ∴f(x)min=f(m)=em-ln m+2sin α=m1 +m+2sin α>2+2sin α≥0, ∴函数 f(x)无零点.
高考一轮总复习•数学
第12页
又 hπ2=π2>0,hπ4=
22·π4-
22·eπ4
=
22π4-eπ4
<0,
由零点存在定理及 h(x)的单调性,得 h(x)在π4,π2上存在一个零点.
综上,h(x)在-π2,0∪0,π2内的零点个数为 2,即 F(x)在-π2,0∪0,π2内的零点
高考数学一轮总复习课件:专题研究 利用导数研究函数的零点
g′(x)=-sinx+(1+1 x)2.
当x∈-1,π2 时,g′(x)单调递减,
由g′(0)=1>0,g′
π 2
=-1+
1 1+π2 2
<0,可得g′(x)在
-1,π2 上有唯一零点,设为α.
当x∈(-1,α)时,g′(x)>0;当x∈α,π2 时,g′(x)<0. 所以g(x)在(-1,α)上单调递增,在α,π2 上单调递减. 故g(x)在-1,π2 上存在唯一极大值点, 即f′(x)在-1,π2 上存在唯一极大值点.
①当 a>1 时,方程 g(x)=a 无解,即 f(x)没有零点; ②当 a=1 时,方程 g(x)=a 有且只有一解,即 f(x)有唯一的 零点; ③当 0<a<1 时,方程 g(x)=a 有两解,即 f(x)有两个零点; ④当 a≤0 时,方程 g(x)=a 有且只有一解,即 f(x)有唯一的 零点. 综上,当 a>1 时,f(x)没有零点; 当 a=1 或 a≤0 时,f(x)有唯一的零点; 当 0<a<1 时,f(x)有两个零点而f
π 2
>0,f(π)=-ln(1+π)<0,所以f(x)在
π2 ,π
上有
唯一零点.
④当x∈(π,+∞)时,ln(x+1)>1,
所以f(x)<0,从而f(x)在(π,+∞)上没有零点.
综上,f(x)有且仅有2个零点.
【答案】 略
状元笔记
证明与零点有关的不等式,函数的零点本身就是一个条 件,即零点对应的函数值为0,证明的思路一般对条件等价转 化,构造合适的新函数,利用导数知识探讨该函数的性质(如单 调性、极值情况等)再结合函数图象来解决.
高考数学总复习(一轮)(人教A)教学课件第二章 函 数第3节 函数的奇偶性、周期性与对称性
(2)如果函数f(x)是偶函数,那么f(x)=f(-x)=f(|x|).
(3)若函数满足f(x)=0或解析式可化简为f(x)=0(x∈D),其中定义
域D是关于原点对称的非空数集,则函数既是奇函数又是偶函数.
(4)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×
偶=偶,奇×偶=奇.
所以函数 f(x)是以 2 为周期的周期函数,f( )=f( -2)=f(- )= .
故选 C.
3.已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=
2x3-3x+1,则f(-3)=-(-54+9+1)=44.
是奇函数,且单调递增,
故原不等式等价于 f(x)- ≤ -f(a-2x),
即(-) ≤-(--) =(2x-a+1)
,
所以 x-1≤2x-a+1,
所以 x+2≥a 在任意的 x∈[2,3]上恒成立,故 a≤4.故选 D.
(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在
定义域为 R,g(-x)=ln( + -x),
而 g(-x)+g(x)=ln( + -x)+ln( + +x)=0,符合题意.故选 ABD.
判断函数的奇偶性,其中包括两个必备条件
(1)定义域关于原点对称,否则为非奇非偶函数.
(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可
5.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+x-1,则函数
高考文科数学一轮复习课件第三章利用导数探究函数零点问题
已知零点个数求参数范围(师生共研) 函数 f(x)=13x3+ax2+bx+c(a,b,c∈R)的导函数的图象如图所示:
(1)求 a,b 的值并写出 f(x)的单调区间; (2)若函数 y=f(x)有三个零点,求 c 的取值范围.
【解】 (1)因为 f(x)=13x3+ax2+bx+c, 所以 f′(x)=x2+2ax+b. 因为 f′(x)=0 的两个根为-1,2, 所以--11+×22==-b,2a, 解得 a=-12,b=-2, 由导函数的图象可知(图略),当-1<x<2 时,f′(x)<0,函数 f(x) 是减少的, 当 x<-1 或 x>2 时,f′(x)>0,函数 f(x) 是增加的, 故函数 f(x)的递增区间为(-∞,-1)和(2,+∞), 递减区间为(-1,2).
解:(1)由题意知,函数 f(x)的定义域为 R, 又 f(0)=1-a=2,得 a=-1, 所以 f(x)=ex-x+1,求导得 f′(x)=ex-1. 易知 f(x)在[-2,0]上是减少的,在(0,1]上是增加的, 所以当 x=0 时,f(x)在[-2,1]上取得最小值 2.
(2)由(1)知 f′(x)=ex+a,由于 ex>0, ①当 a>0 时,f′(x)>0,f(x)在 R 上是增函数, 当 x>1 时,f(x)=ex+a(x-1)>0; 当 x<0 时,取 x=-1a, 则 f-1a<1+a-1a-1=-a<0. 所以函数 f(x)存在零点,不满足题意.
(2)由(1)得 f(x)=13x3-12x2-2x+c, 函数 f(x)在(-∞,-1),(2,+∞)上是增函数,
在(-1,2)上是减函数,
所以函数 f(x)的极大值为 f(-1)=76+c, 极小值为 f(2)=c-130. 而函数 f(x)恰有三个零点,故必有76c-+1c3>0<00,, 解得-76<c<130. 所以使函数 f(x)恰有三个零点的实数 c 的取值范围是-76,130.
高三数学一轮复习专题-函数的零点课件
1 ln x ln2 x
由g(x) 0
当x 0 时,g(x) 0 当x 1 时,g(x) 当x 1 时,g(x) 当x 时,g(x) 作出直线y a 与曲线y g(x)
当 e a 0 时,函数没有零点
得 xe
当a 0 或a e 时,函数只有 1 个零点 当a e 时,函数有 2 个零点
解:题意等价为不等式
h(x) 在(0, ) 上递增
a x ln x x 2 x 0 恒成立 x 1
令g(x) x ln x x 2 x 1
又 h(0.5) 0 h(1) 0 x0 (0.5,1) 使得h(x0) 0
即 x0 ln x0 0
y g(x)
则g(x)
x
2 ln (x 1)2
B.(0, 1) e
C.(e, )
D.(1 , ) e
解:由f (x) 0 变形得2ax ln 2 ln x
kx 1 ln k ln x
如图由直线y 2ax ln 2 与 曲线y ln x有两个交点
得 0 2a 2 e
由ekk22a
解之得2a 2 e
得 2x ln 2 ln x e
ya
x 1
1 1 ln x
h(x) h(1) 0 即g(x) 0
则g(x)
x (x 1)2
(x 0, x 1)
lim g(x) 1
x1
g(x) 在(0,1) (1, ) 递减
令h(x) 1 1 ln x (x 0) x
作出直线y a 和曲线y g(x)
如图知 选BC
例5.已知函数f (x) ln x ax2 (2 a)x 1 满足x 0 ,f (x) 0 恒成立,
解:方程 f (x) 0 变为
函数的零点高三一轮复习公开课
请完成下表,并思考二次函数y=ax2+bx+c (a>0) 的图象与x轴的交点和零点的关系
Δ>0 Δ=0 Δ<0
二次函数
y=ax2+bx
+c (a>0)的 图象 与x轴的交点 (x1,0),(x2,0) 零点 (x1,0) 无交点 无
x1 , x2
x1
结论:函数的零点就是方程f(x)=0的实数根,也 就是函数y=f(x)的图象与x轴的交点的横坐标。
A.(-1,0) C.(1,2) B.(0,1) D.(2,3)
c)
链接高考
例2
问题二:判断函数零点的个数
x2+2x-3,x≤0 函数 f(x)= -2+ln x,x>0 B.1
的零点个数为( )
A.0
C.2
D.3
1、(2012·北京高考)函数 f(x)=x
A.0 C.2
1 2
1 x - 的零点的个数为( 2
若函数y=f(x)在区间(a,b)内有零点,则y=
f(x)在区间[a,b]上的图象是否一定是连续不断
的一条曲线?是否一定满足f(a)·f(b)<0?
【提示】 不一定.如图所示,函数都有零点,但不连续
或不满足f(a)·f(b)<0.
链接高考
问题一:确定函数零点所在的区间
例1、设f(x)=ex+x-4,Hale Waihona Puke 函数f(x)的零点位于区间(B
)
B.1 D.3
链接高考
问题三:函数零点的综合应用
• 例3 若函数f(x)= 2x-a x≤0 • ln x x>0 • 有两个不同的零点,则实数a的取值范围是 ________.
2024届高考一轮复习数学教案(新人教B版):函数的零点与方程的解
§2.11函数的零点与方程的解考试要求 1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称α为函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的,并且f(a)f(b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间(a,b)中至少有一个零点,即∃x0∈(a,b),f(x0)=0. 2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.常用结论1.若连续不断的函数f(x)是定义域上的单调函数,则f(x)至多有一个零点.2.连续不断的函数,其相邻两个零点之间的所有函数值保持同号.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)用二分法求函数零点的近似值适合于变号零点.(√)教材改编题1.观察下列函数的图象,判断能用二分法求其零点的是()答案A解析由图象可知,B ,D 选项中函数无零点,A ,C 选项中函数有零点,C 选项中函数零点两侧函数值符号相同,A 选项中函数零点两侧函数值符号相反,故A 选项中函数零点可以用二分法求近似值,C 选项不能用二分法求零点.2.函数y =3x -ln x 的零点所在区间是()A .(3,4)B .(2,3)C .(1,2)D .(0,1)答案B解析因为函数的定义域为(0,+∞),且函数y =3x在(0,+∞)上单调递减;y =-ln x 在(0,+∞)上单调递减,所以函数y =3x -ln x 为定义在(0,+∞)上的连续减函数,又当x =2时,y =32-ln 2>0;当x =3时,y =1-ln 3<0,两函数值异号,所以函数y =3x -ln x 的零点所在区间是(2,3).3.函数f (x )=e x +3x 的零点个数是()A .0B .1C .2D .3答案B解析由f ′(x )=e x +3>0,所以f (x )在R 上单调递增,又f (-1)=1e-3<0,f (0)=1>0,因此函数f (x )有且只有一个零点.题型一函数零点所在区间的判定例1(1)函数f (x )=ln x +2x -6的零点所在的区间是()A .(1,2)B .(2,3)C .(3,4)D .(4,5)答案B解析由题意得,f (x )=ln x +2x -6,在定义域内单调递增,f (2)=ln 2+4-6=ln 2-2<0,f (3)=ln 3+6-6=ln 3>0,则f (2)f (3)<0,∴零点在区间(2,3)上.延伸探究用二分法求函数f (x )=ln x +2x -6在区间(2,3)内的零点近似值,至少经过________次二分后精确度达到0.1()A .2B .3C .4D .5答案C解析∵开区间(2,3)的长度等于1,每经过一次操作,区间长度变为原来的一半,经过n 次操作后,区间长度变为12n ,故有12n ≤0.1,解得n ≥4,∴至少需要操作4次.(2)(2023·蚌埠模拟)已知x 1+12x=0,x 2+log 2x 2=0,33x --log 2x 3=0,则()A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 2<x 3<x 1答案A解析设函数f (x )=x +2x ,易知f (x )在R 上单调递增,f (-1)=-12,f (0)=1,即f (-1)f (0)<0,由函数零点存在定理可知,-1<x 1<0.设函数g (x )=x +log 2x ,易知g (x )在(0,+∞)上单调递增,=-12,g (1)=1,即(1)<0,由函数零点存在定理可知,12<x 2<1,设函数h (x )-log 2x ,易知h (x )在(0,+∞)上单调递减,h (1)=13,h (x 3)=0,因为h (1)>h (x 3),由函数单调性可知,x 3>1,即-1<x 1<0<x 2<1<x 3.思维升华确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.跟踪训练1(1)(多选)函数f (x )=e x -x -2在下列哪个区间内必有零点()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案AD解析f (-2)=1e 2>0,f (-1)=1e-1<0,f (0)=-1<0,f (1)=e -3<0,f (2)=e 2-4>0,因为f (-2)·f (-1)<0,f (1)·f (2)<0,所以f (x )在(-2,-1)和(1,2)内存在零点.(2)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间()A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案A解析函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点.题型二函数零点个数的判定例2(1)若函数f (x )=|x |,则函数y =f (x )-12log |x |的零点个数是()A .5B .4C .3D .2答案D解析在同一平面直角坐标系中作出f(x)=|x|,g(x)=12log|x|的图象如图所示,则y=f(x)-12log|x|的零点个数,即f(x)与g(x)图象的交点个数,由图可知选D.(2)已知在R上的函数f(x)满足对于任意实数x都有f(2+x)=f(2-x),f(7+x)=f(7-x),且在区间[0,7]上只有x=1和x=3两个零点,则f(x)=0在区间[0,2023]上根的个数为() A.404B.405C.406D.203答案C解析因为f(2+x)=f(2-x),f(x)关于直线x=2对称且f(5+x)=f(-x-1);因为f(7+x)=f(7-x),故可得f(5+x)=f(-x+9);故可得f(-x-1)=f(-x+9),则f(x)=f(x+10),故f(x)是以10为周期的函数.又f(x)在区间[0,7]上只有x=1和x=3两个零点,根据函数对称性可知,f(x)在一个周期[0,10]内也只有两个零点,又区间[0,2023]内包含202个周期,故f(x)在[0,2020]上的零点个数为202×2=404,又f(x)在(2020,2023]上的零点个数与在(0,3]上的零点个数相同,有2个.故f(x)在[0,2023]上有406个零点,即f(x)=0在区间[0,2023]上有406个根.思维升华求解函数零点个数的基本方法(1)直接法:令f(x)=0,方程有多少个解,则f(x)有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2(1)(2022·泉州模拟)设定义域为R的函数f(x)x|,x>0,x2-2x,x≤0,则关于x的函数y=2f2(x)-3f(x)+1的零点的个数为() A.3B.7C.5D.6答案B解析根据题意,令2f2(x)-3f(x)+1=0,得f (x )=1或f (x )=12.作出f (x )的简图如图所示,由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为7.(2)函数f (x )=36-x 2·cos x 的零点个数为______.答案6解析令36-x 2≥0,解得-6≤x ≤6,∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0,由36-x 2=0得x =±6,由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 的取值为-3π2,-π2,π2,3π2.故f (x )共有6个零点.题型三函数零点的应用命题点1根据零点个数求参数例3(2023·黄冈模拟)函数f (x )-x 2,x ≤2,3(x -1),x >2,g (x )=kx -3k ,若函数f (x )与g (x )的图象有三个交点,则实数k 的取值范围为()A .(22-6,0)B .(23-6,0)C .(-2,0)D .(25-6,0)答案D解析作出函数f (x )-x 2,x ≤2,3(x -1),x >2的图象,如图所示,设与y =4-x 2相切的直线为l ,且切点为P (x 0,4-x 20),因为y ′=-2x ,所以切线的斜率为k =-2x 0,则切线方程为y -4+x 20=-2x 0(x -x 0),因为g (x )=kx -3k 过定点(3,0),且在切线l 上,代入切线方程求得x 0=3-5或x 0=3+5(舍去),所以切线的斜率为k =25-6,因为函数f (x )与g (x )的图象有三个交点,由图象知,实数k 的取值范围为(25-6,0).命题点2根据函数零点的范围求参数例4(2023·北京模拟)已知函数f (x )=3x -1+axx .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是()A.-∞,43 B.0,43C .(-∞,0) D.43,+∞答案B解析由f (x )=3x -1+ax x=0,可得a =3x -1x ,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时,g (x )=3x -1x <g (-1)=3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)因此实数a 思维升华根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.跟踪训练3(1)函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .0<a <3B .1<a <3C .1<a <2D .a ≥2答案A解析因为函数y =2x ,y =-2x 在(0,+∞)上单调递增,所以函数f (x )=2x -2x-a 在(0,+∞)上单调递增,由函数f (x )=2x -2x -a 的一个零点在区间(1,2)内得,f (1)×f (2)=(2-2-a )(4-1-a )=(-a )×(3-a )<0,解得0<a <3.(2)(2023·唐山模拟)已知函数f (x )x >0,2x ,x ≤0,若g (x )=f (x )-a 有3个零点,则实数a的取值范围为()A .(-1,0)1C.0{-1}答案B解析设h (x )=ln xx(x >0),则h ′(x )=1-ln xx 2,令h ′(x )>0,得0<x <e ,令h ′(x )<0,得x >e ,所以函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.所以h (x )max =h (e)=1e.因为函数g (x )=f (x )-a 有3个零点,所以方程f (x )=a 有3个解.作出函数y =f (x )和y =a 的图象如图所示,所以a 1课时精练1.(2022·焦作模拟)设函数f (x )=2x +x3的零点为x 0,则x 0所在的区间是()A .(-4,-2)B .(-2,-1)C .(1,2)D .(2,4)答案B解析易知f (x )在R 上单调递增且连续,f (-2)=14-23,f (-1)=12-13>0,所以x 0∈(-2,-1).2.用二分法研究函数f (x )=x 5+8x 3-1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,则其中一个零点所在区间和第二次应计算的函数值分别为()A .(0,0.5),f (0.125)B .(0,0.5),f (0.375)C .(0.5,1),f (0.75)D .(0,0.5),f (0.25)答案D解析因为f (0)f (0.5)<0,由函数零点存在定理知,零点x 0∈(0,0.5),根据二分法,第二次应计算f f (0.25).3.函数f (x )2-2x -3,x ≤0,2x -3x +4,x >0的零点个数为()A .1B .2C .3D .4答案C解析当x ≤0时,令f (x )=x 2-2x -3=0,得x =-1(x =3舍去),当x >0时,令f (x )=0,得log 2x =3x -4,作出y =log 2x 与y =3x -4的图象,如图所示,由图可知,y =log 2x 与y =3x -4有两个交点,所以当x >0时,f (x )=0有两个零点,综上,f (x )有3个零点.4.已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则实数m 的取值范围为()-53,(0,+∞)-∞,-53∪(0,+∞)D.-53,答案D解析由于函数y =log 2(x +1),y =m -1x在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,1)<0,3)≥0,<0,+53≥0,解得-53≤m <0.因此,实数m 的取值范围是-53,5.已知函数f (x )-x ,x <0,+|x -1|,x ≥0,若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围是()A .(1,2]B .(1,2)C .(0,1)D .[1,+∞)答案A 解析因为函数g (x )=f (x )-m 有三个零点,所以函数f (x )的图象与直线y =m 有三个不同的交点,作出函数f (x )的图象,如图所示,由图可知,1<m ≤2,即m 的取值范围是(1,2].6.已知函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点分别为x 1,x 2,x 3,则()A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 1<x 2答案C 解析函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点,即为y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的交点的横坐标,作出y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的图象,如图所示.可知x 2<x 3<x 1.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是()A .1B .2C .4D .6答案ABC 解析由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )x ,x ∈[0,π],sin x ,x ∈ π,2π],在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y=k与y=f(x)的图象交点个数可能为0,1,2,3,4.8.(多选)(2023·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲,就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,下列函数是“不动点”函数的是()A.f(x)=2x+x B.f(x)=x2-x-3C.f(x)=12x+1D.f(x)=|log2x|-1答案BCD解析选项A,若f(x0)=x0,则02x=0,该方程无解,故该函数不是“不动点”函数;选项B,若f(x0)=x0,则x20-2x0-3=0,解得x0=3或x0=-1,故该函数是“不动点”函数;选项C,若f(x0)=x0,则12x+1=x0,可得x20-3x0+1=0,且x0≥1,解得x0=3+52,故该函数是“不动点”函数;选项D,若f(x0)=x0,则|log2x0|-1=x0,即|log2x0|=x0+1,作出y=|log2x|与y=x+1的函数图象,如图,由图可知,方程|log2x|=x+1有实数根x0,即存在x0,使|log2x0|-1=x0,故该函数是“不动点”函数.9.已知指数函数为f(x)=4x,则函数y=f(x)-2x+1的零点为________.答案1解析由f(x)-2x+1=4x-2x+1=0,得2x(2x-2)=0,x=1.10.(2023·苏州质检)函数f (x )满足以下条件:①f (x )的定义域为R ,其图象是一条连续不断的曲线;②∀x ∈R ,f (x )=f (-x );③当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0;④f (x )恰有两个零点,请写出函数f (x )的一个解析式________.答案f (x )=x 2-1(答案不唯一)解析因为∀x ∈R ,f (x )=f (-x ),所以f (x )是偶函数,因为当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0,所以f (x )在(0,+∞)上单调递增,因为f (x )恰有两个零点,所以f (x )图象与x 轴只有2个交点,所以函数f (x )的一个解析式可以为f (x )=x 2-1(答案不唯一).11.已知函数f (x )2x ,x >0,x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.答案(1,+∞)解析方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.如图,在同一直角坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线y =-x +a 在y轴上的截距.由图可知,当a ≤1时,直线y =-x +a 与y =f (x )有两个交点,当a >1时,直线y =-x +a 与y =f (x )只有一个交点.故实数a 的取值范围是(1,+∞).12.已知函数f (x )x -1|,x ≤1,-2)2,x >1,函数y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则123422x x x x ++=________.答案12解析y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4,即方程f (x )=a 有四个不同的解,即y =f (x )的图象与直线y =a 有四个交点.在同一平面直角坐标系中分别作出y =f (x )与y =a的图象,如图所示,由二次函数的对称性可得,x 3+x 4=4.因为1-12x =22x-1,所以12x +22x =2,故123422x x x x ++=12.13.已知函数f (x )=|e x -1|+1,若函数g (x )=f 2(x )+(a -2)f (x )-2a 有三个零点,则实数a 的取值范围是()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案A 解析令t =f (x ),则函数g (t )=t 2+(a -2)t -2a ,由t 2+(a -2)t -2a =0得,t =2或t =-a .f (x )=|e x -1|+1x ,x ≥0,-e x ,x <0,作出函数f (x )的图象,如图所示,由图可知,当t =2时,方程f (x )=|e x -1|+1=2有且仅有一个根,则方程f (x )=|e x -1|+1=-a 必有两个不同的实数根,此时由图可知,1<-a <2,即-2<a <-1.14.已知函数f (x )=x +1x -sin x -1,x ∈[-4π,0)∪(0,4π],则函数f (x )的所有零点之和为________.答案0解析因为函数f (x )=x +1x-sin x -1=1x -sin x ,所以f (x )的对称中心是(0,0),令f (x )=0,得1x=sin x ,在同一平面直角坐标系中作出函数y =1x,y =sin x 的图象,如图所示,由图象知,两个函数图象有8个交点,即函数f (x )有8个零点,由对称性可知,零点之和为0.15.(2023·南昌模拟)定义在R 上的偶函数f (x )满足f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=e x -1,若关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则实数m 的取值范围为()D .(0,e -1)答案B 解析∵f (x )=f (2-x ),∴函数f (x )关于直线x =1对称,又f (x )为定义在R 上的偶函数,∴函数f (x )关于直线x =0对称,作出函数y =f (x )与直线y =m (x +1)的图象,如图所示,要使关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则函数y =f (x )的图象与直线y =m (x +1)有5个交点,m >e -1,m <e -1,即e -16<m <e -14.16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案,4e 2解析由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2ex .令h (x )=x 2ex ,则h ′(x )=2x -x 2e x =x (2-x )e x,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e h (2)=4e2,h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点,只需a ,4e 2.。
高中数学--一轮复习函数零点
目录 CONTENTS
01
零点知识储备
02
题型一------判断零点关系
03
题型二------判断零点个数
04
题型三-----已知零点个数求 取值范围
05
题型四-----已知零点,求取值 范围
06
与导数的综合运用
零点知识储备
01
• 函数零点在高考中主要以选择、填空为主,在导数大题中也 会出现,考查学生
2016
已知存在零点求取 值范围
04
2016
2016
零点与导数结合
05
2016
The end
谢谢大家!
• 一、知识梳理
• 1.函数的零点:
• 使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.
• (1)函数的零点⇔方程的根;
• (2)零点存在理论:在区间[a,b]上连续;f(a)·f(b)<0.
• 2.常见求解方法
• (1)直接解方程,如一元二次方程;
• (2)用二分法求方程的近似解;
• (3)一元二次方程实根分布规律;
4
• (4)用数形结合法将方程的根转化为函数零点.
• 画出y=f(x)图象可用到以下方法:
5
图像变换训练
图像变换训练
判断零点关系
02
B A
C 3 4
• 总结:通过把函数转换为两个熟悉的函数, 通过画图找出交点,代数判断点所在范围或 者零点之间关系。
2016
变式训练
C
B D
C A
2016
变式训练
C
B C D
2016
判断零点个数
03
2016
高三文理科第一轮总复习讲义:10.函数的零点(讲义+习题)
第 1 页 共 4 页【一轮复习】10.函数的零点【知识要点归纳】1.定义:对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点。
2.求零点的方法:【经典例题】例1:已知函数122,09,(),20.x x f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 则()f x 的零点是_____; ()f x 的值域是_____.例2:函数f (x )=2x e x +-的零点所在的一个区间是(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)例3:函数2()2x f x a x =--的一个零点在区间(1,2)内,则实数a 的 取值范围是( )A .(1,3)B .(1,2)C .(0,3)D . (0,2)例4:已知x 是函数f(x)=2x + 11x-的一个零点.若1x ∈(1,0x ), 2x ∈(0x ,+∞),则(A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0(C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>0例5:已知函数213(),2,()24log ,02x x f x x x ⎧+≥⎪=⎨⎪<<⎩,则((2))f f 的值为 ;函数第 2 页 共 4 页()()g x f x k =-恰有两个零点,则实数k 的取值范围是 .例6:已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .例7:已知函数()()()2()f x x a x b a b =--+<,若()αβαβ<,是方程()0f x =的两个根,则实数a b αβ,,,之间的大小关系是( )A.a b αβ<<<B.a b αβ<<< C.a b αβ<<<D.a b αβ<<<例8:已知函数2()()f x x a =-(x-b )(,,a b R a ∈<b)。
2023年高考数学(文科)一轮复习——利用导数研究函数的零点问题
此时函数f(x)在区间(0,1)内没有零点. 综上,实数a的取值范围为(-∞,0).
1234
索引
2.设函数 f(x)=12x2-mln x,g(x)=x2-(m+1)x,m>0. (1)求函数 f(x)的单调区间; 解 函数f(x)的定义域为(0,+∞),
索引
题型二 根据零点个数确定参数范围
例2 (2020·全国Ⅲ卷)已知函数f(x)=x3-kx+k2. (1)讨论f(x)的单调性; 解 (1)f′(x)=3x2-k. 当k=0时,f(x)=x3, 故f(x)在(-∞,+∞)单调递增. 当k<0时,f′(x)=3x2-k>0, 故f(x)在(-∞,+∞)单调递增.
点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫 做隐零点;若x0容易求出,就叫做显零点,而后解答就可继续进行,实际上, 此解法类似于解析几何中“设而不求”的方法.
索引
例 设函数f(x)=ex-ax-2. (1)求f(x)的单调区间; 解 (1)f(x)的定义域为R,f′(x)=ex-a. 当a≤0时,f′(x)>0恒成立, 所以f(x)单调增区间为(-∞,+∞),无单调减区间. 当a>0时,令f′(x)<0,得x<ln a, 令f′(x)>0,得x>ln a, 所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞).
当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;
当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减,
∴x=1是φ(x)唯一的极值点,且是极大值点,因此x=1也是φ(x)的最大值点,
湘教版高考总复习一轮数学精品课件 第四章 解答题专项一 第3课时 利用导数研究函数的零点
f'(x)= +ae -axe =
.
1+
1+
令 g(x)=1+ae-x(1-x2),
则 g'(x)=ae-x(x2-2x-1).
因为 x>-1,a<0,
所以令 g'(x)>0,得 1- 2<x<1+ 2;
令 g'(x)<0,得-1<x<1- 2或 x>1+ 2.
所以 g(x)在区间(-1,1- 2),(1+ 2,+∞)内单调递减,在区间(1- 2,1+ 2)内单调
递减;
当x>2时,h'(x)>0,h(x)单调递增.
所以h(x)min=h(2)=2-ln 2>0,即x>0时,h(x)>0恒成立.
故当0<x<1时,g'(x)<0,g(x)单调递减;
当x>1时,g'(x)>0,g(x)单调递增.
所以g(x)min=g(1)=-e﹐
又由x→0时,g(x)→0,当x→+∞时,g(x)→+∞,
π
0, 2
,
当x∈(0,x0)时,f'(x)<f'(x0)=0,f(x)单调递减;
当x∈(x0,π)时,f'(x)>f'(x0)=0,f(x)单调递增.
又f(0)=0,所以f(x0)<f(0)=0.
又f(π)=πeπ>0,由零点存在定理及f(x)的单调性可知,存在唯一的x1∈(x0,π),
使得f(x1)=0.
可见,f(x)在(0,π]内存在唯一的零点.
函数的零点问题2023年高考数学一轮复习(新高考地区专用)
3.8函数的零点问题——2023年高考数学一轮复习(新高考地区专用)一、单选题(共16题;共80分)1.(5分)已知函数f(x)= cos2x+cosx,且x∈[0,2π],则f(x)的零点个数为()A.1个B.2个C.3个D.4个2.(5分)已知函数f(x)={x,x≥0−x2,x<0,若方程f(x)=ae x有两个不相等的实数根,则实数a的取值范围为()A.(1e,+∞)B.(0,1e)C.(−∞,−1e)D.(−1e,0)3.(5分)已知函数f(x)为定义在R上的单调函数,且f(f(x)−2x−2x)=10.若函数g(x)={f(x)−2x−a,x≤0,|log2x|−a−1,x>0有3个零点,则a的取值范围为()A.(2,3]B.(−1,3]C.(3,4]D.(−1,4]4.(5分)已知函数f(x)=ax3+bx+1,若f(x)存在零点x0<−1,且满足f′(x0)=f(x0),则()A.1a+3b<0B.ab>0C.3a+b<0D.a+b>15.(5分)已知函数f(x)=sin(ωx+π6)(ω>0)在[0,2π]上有且仅有4个零点,则ω的取值范围是()A.[2312,2912]B.[2312,2912)C.(1130,1124]D.[1130,1124)6.(5分)已知函数f(x)=sin(√ax3+bx+bx⋅π)−1,a≥0在(1,+∞)上有且仅有1个零点,则下列选项中b的可能取值为()A.0B.18C.12D.47.(5分)已知f(x)是定义在[−10,10]上的奇函数,且f(x)=f(4−x),则函数f(x)的零点个数至少为()A.3B.4C.5D.68.(5分)设函数f(x)的定义域为R,则“f(x)是R上的增函数”是“任意a>0,y=f(x+a)−f(x)无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.(5分)已知函数f(x)=x3+bx2+cx的图象如图所示,则x1⋅x2等于()A.2B.43C.23D.1210.(5分)设函数f(x)=|2x−1|,函数g(x)=f(f(x))−log a(x+1),(a>0,a≠1)在[0,1]上有3个不同的零点,则实数a的取值范围为()A.(1,32)B.(1,2)C.(32,2)D.(2,+∞)11.(5分)已知函数f(x)={1−|1−x|,0≤x≤22f(x−2),x>2,当x∈[0,8]时,函数F(x)=f(x)−kx恰有六个零点,则实数k的取值范围是()A.(45,1)B.(23,45)C.[23,45)D.[45,1)12.(5分)已知函数f(x)={10x−m,x≤12xe x−2mx+m,x>12(e是自然对数的底数)在定义域R上有三个零点,则实数m的取值范围是()A.(e,+∞)B.(e,5]C.(e,5)D.[e,5]13.(5分)已知函数f(x)=2ae x−e a x2至多有2个不同的零点,则实数a的最大值为().A.0B.1C.2D.e14.(5分)已知函数f(x)={exlnx,x>0x3−3x,x≤0,若函数y=[f(x)]2−1与y=af(x)的图象恰有6个不同的公共点,则实数a的取值范围是()A.(0,32)B.(0,72)C.(1,72)D.(1,+∞)15.(5分)已知函数f(x)=|log2x|,g(x)={0,0<x≤1|x−2|−0.5,x>1,则方程|f(x)−g(x)|=1的实根个数为()个.A.1B.2C.3D.416.(5分)定义在R上的偶函数f(x)满足f(2−x)=f(x+2),当x∈[0,2]时f(x)=(√e)x,若在区间x∈[0,10]内,函数g(x)=f(x)−(x+1)m有个5零点,则实数m的取值范围是()A.(0,log11e)B.(0,log11e)∪(12,log7e)C.(log11e,12)D.(log11e,12)∪(12,log7e)二、多选题(共2题;共10分)17.(5分)已知函数f(x)=a x−x a(a>1)的定义域为(0,+∞),且f(x)仅有一个零点,则()A.e是f(x)的零点B.f(x)在(1,e)上单调递增C.x=1是f(x)的极大值点D.f(e)是f(x)的最小值18.(5分)已知函数f(x)=2x−cosx的零点为x0,则()A.x<12B.x0>13C.tanx0>√52D.x0−14<sinx0三、填空题(共10题;共65分)19.(10分)设a,b,c∈R,a≠0,若函数y=ax2+bx+c有且仅有一个零点,且2a2+3ab+ 8ac=1,则a+b的最小值为,a+b+ab的最小值为.20.(5分)已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)={(12)x,log16x,0≤x<2x≥2,若关于x的方程[f(x)]2+af(x)+b=0(a,b∈R)有且仅有7个不同实数根,则a+b=21.(10分)已知函数f(x)={e x−ax,x≥0,ax3−2x+1,x<0.当a=0时,f[f(−12)]=,若函数f(x)有3个不同的零点,则a的取值范围是.22.(10分)设a∈R.函数f(x)={2e x−1,x≤0ax2+(a2−2)x−lnx,x>0,若f(f(0))=0,则a=,若f(x)只有一个零点,则a的取值范围是.23.(5分)函数f(x)={x3+2,x≤0x−3+e x,x>0的零点个数为.24.(5分)若函数f(x)={2x−b,x<0,√x,x≥0有且仅有两个零点,则实数b的一个取值为.25.(5分)已知函数f(x)=2|x|+x2+a.①对于任意实数a,f(x)为偶函数;②对于任意实数a,f(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增;③存在实数a,使得f(x)有3个零点;④存在实数a,使得关于x的不等式f(x)≥2022的解集为(−∞,−1]∪[1,+∞).所有正确命题的序号为.26.(5分)已知函数f(x)满足f(x−2)=f(x+2),0≤x<4时,f(x)=√4−(x−2)2,g(x)= f(x)−k n x(n∈N∗,k n>0).若函数g(x)的图像与x轴恰好有2n+1个不同的交点,则k12+k22+⋅⋅⋅+k n2=.27.(5分)已知f(x)是定义在R上的奇函数,其图象关于点(2,0)对称,当x∈[0,2]时,f(x)=−√1−(x−1)2,若方程f(x)−k(x−2)=0的所有根的和为6,则实数k的取值范围是.28.(5分)声音是由于物体的振动产生的能引起听觉的波,其中包含着正弦函数.纯音的数学模型是函数y=Asinϖt.我们听到的声音是由纯音合成的,称为复合音.已知一个复合音的数学模型是函数f(x)=sinx+12sin2x.给出下列四个结论:①f(x)的最小正周期是π;②f(x)在[0,2π]上有3个零点;③f(x)在[0,π2]上是增函数;④f(x)的最大值为3√34.其中所有正确结论的序号是.四、解答题(共8题;共80分)29.(10分)设函数f(x)=−12x 2+(a −1)x +alnx +a2,a >0.(1)(5分)若a =1,求函数f(x)的单调区间和最值; (2)(5分)求函数f(x)的零点个数,并说明理由.30.(10分)已知a >0,设函数f(x)=(2x −a)lnx +x ,f ′(x)是f(x)的导函数.(1)(5分)若a =2,求曲线f(x)在点(1,f(1))处的切线方程;(2)(5分)若f(x)在区间(1,+∞)上存在两个不同的零点x 1,x 2(x 1<x 2), ①求实数a 范围;②证明:x 2f ′(x 2)x 1−1<(a−e)(a−2e)(a−3)2e .注,其中e =2.71828⋅⋅⋅⋅⋅⋅是自然对数的底数.31.(15分)已知函数f(x)=xlnx +a ,(a ∈R).(1)(5分)求函数f(x)的单调区间;(2)(5分)当0<a <1e时,证明:函数f(x)有两个零点;(3)(5分)若函数g(x)=f(x)−ax 2−x 有两个不同的极值点x 1,x 2(其中x 1<x 2),证明:x 1⋅x 22>e 3.32.(10分)已知函数f(x)=e x −xlnx −ax −1(a ∈R)有两个零点.(1)(5分)求a 的取值范围;(2)(5分)设x 1,x 2是f(x)的两个零点,证明:x 1+x 2>2.33.(10分)已知函数f(x)=mlnx −xe x +x .(1)(5分)若m =1,求f(x)的最大值;(2)(5分)若f(x 1)+x 1e x 1+m =0,f(x 2)+x 2e x 2+m =0,其中x 1≠x 2,求实数m 的取值范围.34.(10分)已知函数f(x)=lnx +a x的极小值为1.(1)(5分)求实数a 的值;(2)(5分)设函数g(x)=f(x)−1x +m(1x2−1).①证明:当0<m <12时,∀x ∈(0,m 1−m ),g(x)>0恒成立;②若函数g(x)有两个零点,求实数m 的取值范围.35.(5分)已知函数f(x)=x2⋅lnx.(Ⅰ)求函数y=f(x)−x的最小值;(Ⅱ)若方程f(x)=m(m∈R)有两实数解x1,x2,求证:1x12+1x22>e+11−|x1−x2|.(其中e=2.71828⋯为自然对数的底数).36.(10分)已知函数f(x)=12(a−1)x2+ax−2lnx.(1)(5分)讨论f(x)的单调性;(2)(5分)当a=1时,g(x)=f(√x),若m≤3−4ln2,求证:对于任意k>0,函数ℎ(x)= g(x)−mx−k有唯一零点.答案解析部分1.【答案】C【解析】【解答】由cos2x+cosx=2cos2x+cosx−1=(cosx+1)(2cosx−1)=0,可得cosx=−1或cosx=12,又因为x∈[0,2π],则x=π,或x=π3,或x=5π3,则f(x)的零点个数为3。
2025年新人教版高考数学一轮复习讲义 第三章 §3.7 利用导数研究函数的零点
k ( k,+∞)
0
+
f′(x)与f(x)在区间(0,+∞) f(x)
↘ k1-ln k 2
↗
上随x的变化情况如右表.
1234
所以 f(x)的单调递减区间是(0, k),单调递增区间是( k,+∞). f(x)在 x= k处取得极小值 f( k)=k1-2ln k,无极大值.
1234
ห้องสมุดไป่ตู้
(2)证明:若 f(x)存在零点,则 f(x)在区间(1, e]上仅有一个零点.
题型三 构造函数法研究函数的零点
例3 已知函数f(x)=ex+x+4ln(2-x). (1)求函数f(x)的图象在点(0,f(0))处的切线方程;
f′(x)=ex+1-2-4 x(x<2), 所以 f′(0)=e0+1-2-4 0=0, 又f(0)=e0+0+4ln(2-0)=1+4ln 2, 所以切点坐标为(0,1+4ln 2), 所以函数f(x)的图象在点(0,f(0))处的切线方程为y=1+4ln 2.
2,
所以 hπ4= 82πa-1> 82π×4π2-1=0,
所以 h(x)在区间0,π4,π4,π2内各有一个零点,
即 h(x)在区间0,π2内有且仅有两个零点.
思维升华
利用函数性质研究函数的零点,主要是根据函数的单调性、奇偶性、最 值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过 数形结合的方法确定函数存在零点的条件.
当x<-2时,g′(x)<0,g(x)单调递减,
因为g(-2)=2-4ln 4<0,
g(-e3+2)=e3-2-4ln e3=e3-14>0,
g(1)=-1<0,g32=-32-4ln 12=ln 2e43=ln 且当x→2时,g(x)→+∞,t(2)=e2,
2024届新高考一轮总复习人教版 第三章 重难突破系列(三) 函数零点问题 课件(31张)
综上可知,当 a<-e12时,函数 g(x)零点的个数为 0, 当-e12<a<0 时,函数 g(x)零点的个数为 2, 当 a>0 或 a=-e12时,函数 g(x)零点个数为 1.··········································12 分 【点拨】 含参数的函数零点个数问题,可转化为方程解的个数问题,若能分离参 数,可将参数分离出来后,用 x 表示参数的函数,作出该函数的图象,根据图象特征求 参数的范围.
所以 f′(x),f(x)的变化情况如表所示:
x
Байду номын сангаас
(-∞,-2)
-2
(-2,+∞)
f′(x)
-
0
+
f(x)
单调递减
-e12
单调递增
所以 f(x)的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞).
技巧点:利用导数研究函数的单调性,数形结合,判断函数的极值
所以当 x=-2 时,f(x)有极小值,极小值为 f(-2)=-e12,f(x)无极大值. ······5 分
易知 f(x)的图象经过特殊点 A(-2,-e12),B(-1,0),C(0,1). x+1
当 x→-∞时,f(x)= e-x →0 且 f(x)<0; 当 x→+∞时,f(x)→+∞,f′(x)→+∞.
根据以上信息,画出大致图象,如图所示. ·········································8 分
技巧点:通过移项,构造两个新函数,将一个函数零点个数问题,转化为两个 函数图象的交点个数问题 易知当 x=-2 时,f(x)取得最小值, 最小值为 f(-2)=-e12.·······································································10 分
第25讲、函数的零点问题(学生版)2025高考数学一轮复习讲义
第25讲函数的零点问题知识梳理1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.2、函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.3、求函数的零点个数时,常用的方法有:一、直接根据零点存在定理判断;二、将()f x 整理变形成()()()f x g x h x =-的形式,通过()(),g x h x 两函数图象的交点确定函数的零点个数;三、结合导数,求函数的单调性,从而判断函数零点个数.4、利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图像;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数研究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数研究.必考题型全归纳题型一:零点问题之一个零点例1.(2024·江苏南京·南京市第十三中学校考模拟预测)已知函数()ln f x x =,()21212g x x x =-+.(1)求函数()()()3x g x f x ϕ=-的单调递减区间;(2)设()()()h x af x g x =-,a R ∈.①求证:函数()y h x =存在零点;②设0a <,若函数()y h x =的一个零点为m .问:是否存在a ,使得当()0,x m ∈时,函数()y h x =有且仅有一个零点,且总有()0h x ≥恒成立?如果存在,试确定a 的个数;如果不存在,请说明理由.例2.(2024·广东·高三校联考阶段练习)已知函数()e sin 1x f x a x =--,()()22cos sin 2e xx a g x a x x ++=-+-+,()f x 在()0,π上有且仅有一个零点0x .(1)求a 的取值范围;(2)证明:若12a <<,则()g x 在(),0π-上有且仅有一个零点1x ,且010x x +<.例3.(2024·全国·高三专题练习)已知函数()1ln e xx f x a x -=+.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0a ≥时,()f x 有且只有一个零点;(3)若()f x 在区间()()0,1,1,+∞各恰有一个零点,求a 的取值范围.变式1.(2024·广东茂名·高三统考阶段练习)已知0a >,函数()e xf x x a =-,()ln g x x x a =-.(1)证明:函数()f x ,()g x 都恰有一个零点;(2)设函数()f x 的零点为1x ,()g x 的零点为2x ,证明12x x a =.题型二:零点问题之二个零点例4.(2024·海南海口·统考模拟预测)已知函数2()e x f x x +=.(1)求()f x 的最小值;(2)设2()()(1)(0)F x f x a x a =++>.(ⅰ)证明:()F x 存在两个零点1x ,2x ;(ⅱ)证明:()F x 的两个零点1x ,2x 满足1220x x ++<.例5.(2024·甘肃天水·高三天水市第一中学校考阶段练习)已知函数2()ln (21)f x x ax a x =+++.(1)讨论函数()f x 的单调性;(2)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,两个零点互为倒数.例6.(2024·四川遂宁·高三射洪中学校考期中)已知函数2()ln (21)f x x ax a x =+++.(1)若函数()f x 在1x =处取得极值,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)讨论函数()f x 的单调性;(3)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,且两个零点互为倒数.变式2.(2024·全国·高三专题练习)已知函数()ln x f x e x a =--.(1)若3a =.证明函数()f x 有且仅有两个零点;(2)若函数()f x 存在两个零点12,x x ,证明:121222x x x x e e e a >++-.变式3.(2024·湖南长沙·高三长沙一中校考阶段练习)已知函数()ln ()f x x ax a R =-∈在其定义域内有两个不同的零点.(1)求a 的取值范围;(2)记两个零点为12,x x ,且12x x <,已知0λ>,若不等式()21ln 1ln 10λ-+->x x 恒成立,求λ的取值范围.变式4.(2024·江苏·高三专题练习)已知函数()4212f x ax x =-,,()0x ∈+∞,()()()g x f x f x '=-.(1)若0a >,求证:(ⅰ)()f x 在()f x '的单调减区间上也单调递减;(ⅱ)()g x 在(0,)+∞上恰有两个零点;(2)若1a >,记()g x 的两个零点为12,x x ,求证:1244x x a <+<+.题型三:零点问题之三个零点例7.(2024·山东·山东省实验中学校联考模拟预测)已知函数()21ln ln 1ex ax f x x a -=---有三个零点.(1)求a 的取值范围;(2)设函数()f x 的三个零点由小到大依次是123,,x x x .证明:13e e x x a >.例8.(2024·广东深圳·校考二模)已知函数1()ln 1x f x a x x -=-+.(1)当1a =时,求()f x 的单调区间;(2)①当102a <<时,试证明函数()f x 恰有三个零点;②记①中的三个零点分别为1x ,2x ,3x ,且123x x x <<,试证明22131(1)(1)x x a x >--.例9.(2024·广西柳州·统考三模)已知()3()1ln f x x ax x =-+.(1)若函数()f x 有三个不同的零点,求实数a 的取值范围;(2)在(1)的前提下,设三个零点分别为123,,x x x 且123x x x <<,当132x x +>时,求实数a 的取值范围.变式5.(2024·贵州遵义·遵义市南白中学校考模拟预测)已知函数()32113f x x ax bx =+++(a ,b ∈R ).(1)若0b =,且()f x 在()0+∞,内有且只有一个零点,求a 的值;(2)若20a b +=,且()f x 有三个不同零点,问是否存在实数a 使得这三个零点成等差数列?若存在,求出a 的值,若不存在,请说明理由.变式6.(2024·浙江·校联考二模)设e 2a <,已知函数()()()22e 22x f x x a x x =---+有3个不同零点.(1)当0a =时,求函数()f x 的最小值:(2)求实数a 的取值范围;(3)设函数()f x 的三个零点分别为1x 、2x 、3x ,且130x x ⋅<,证明:存在唯一的实数a ,使得1x 、2x 、3x 成等差数列.变式7.(2024·山东临沂·高三统考期中)已知函数ln ()xf x x=和()e x ax g x =有相同的最大值.(1)求a ,并说明函数()()()h x f x g x =-在(1,e )上有且仅有一个零点;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.题型四:零点问题之max ,min 问题例10.(2024·湖北黄冈·黄冈中学校考三模)已知函数()()2sin cos ,lnπxf x x x x axg x x =++=.(1)当0a =时,求函数()f x 在[]π,π-上的极值;(2)用{}max ,m n 表示,m n 中的最大值,记函数()()(){}max ,(0)h x f x g x x =>,讨论函数()h x 在()0,∞+上的零点个数.例11.(2024·四川南充·统考三模)已知函数21()sin cos 2f x x x x ax =++,()ln πxg x x =.(1)当0a =时,求函数()f x 在[,]-ππ上的极值;(2)用max{,}m n 表示m ,n 中的最大值,记函数()max{(),()}(0)h x f x g x x =>,讨论函数()h x 在(0,)+∞上的零点个数.例12.(2024·四川南充·统考三模)已知函数()2e 2x ax x f x x =+-,()ln g x x =其中e 为自然对数的底数.(1)当1a =时,求函数()f x 的极值;(2)用{}max ,m n 表示m ,n 中的最大值,记函数()()(){}max ,(0)h x f x g x x =>,当0a ≥时,讨论函数()h x 在()0,∞+上的零点个数.变式8.(2024·广东·高三专题练习)已知函数()ln f x x =-,31()4g x x ax =-+,R a ∈.(1)若函数()g x 存在极值点0x ,且()()10g x g x =,其中10x x ≠,求证:1020x x +=;(2)用min{,}m n 表示m ,n 中的最小值,记函数()min{()h x f x =,()}(0)g x x >,若函数()h x 有且仅有三个不同的零点,求实数a 的取值范围.变式9.(2024·全国·高三专题练习)已知函数2()e (R)x f x ax a =-∈,()1g x x =-.(1)若直线()y g x =与曲线()y f x =相切,求a 的值;(2)用{}min ,m n 表示m ,n 中的最小值,讨论函数()min{(),()}h x f x g x =的零点个数.变式10.(2024·山西朔州·高三怀仁市第一中学校校考期末)已知函数()()31,1ln 4f x x axg x x x =++=--.(1)若过点()1,0可作()f x 的两条切线,求a 的值.(2)用{}min ,m n 表示,m n 中的最小值,设函数()()(){}min ,(01)h x f x g x x =<<,讨论()h x 零点的个数.题型五:零点问题之同构法例13.已知函数1()()2(0)x axf x x ln ax a e -=+-->,若函数()f x 在区间(0,)+∞内存在零点,求实数a 的取值范围例14.已知2()12a f x xlnx x =++.(1)若函数()()cos sin 1g x f x x x x xlnx =+---在(0,]2π上有1个零点,求实数a 的取值范围.(2)若关于x 的方程2()12x a a xe f x x ax -=-+-有两个不同的实数解,求a 的取值范围.例15.已知函数()(1)1x f x ae ln x lna =-++-.(1)若1a =,求函数()f x 的极值;(2)若函数()f x 有且仅有两个零点,求a 的取值范围.题型六:零点问题之零点差问题例16.已知关于x 的函数()y f x =,()y g x =与()(h x kx b k =+,)b R ∈在区间D 上恒有()()()f x h x g x .(1)若2()2f x x x =+,2()2g x x x =-+,(,)D =-∞+∞,求()h x 的表达式;(2)若2()1f x x x =-+,()g x klnx =,()h x kx k =-,(0,)D =+∞,求k 的取值范围;(3)若42()2f x x x =-,2()48g x x =-,342()4()32(0||h x t t x t t t =--+<,[D m =,][n ⊂,,求证:n m -例17.已知函数32()(3)x f x x x ax b e -=+++.(1)如3a b ==-,求()f x 的单调区间;(2)若()f x 在(,)α-∞,(2,)β单调增加,在(,2)α,(,)β+∞单调减少,证明:6βα->.例18.已知函数221()2x f x ae x ax =--,a R ∈.(1)当1a =时,求函数2()()g x f x x =+的单调区间;(2)当4401a e <<-,时,函数()f x 有两个极值点1x ,212()x x x <,证明:212x x ->.题型七:零点问题之三角函数例19.(2024·山东·山东省实验中学校考一模)已知函数()()sin ln 1f x a x x =-+.(1)若对(]1,0x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln2n k k =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,试判断方程()1eln 10x m x +--+=实数根的个数,并说明理由.例20.(2024·全国·高三专题练习)设函数()πsin2x f x x =-.(1)证明:当[]0,1x ∈时,()0f x ≤;(2)记()()ln g x f x a x =-,若()g x 有且仅有2个零点,求a 的值.例21.(2024·广东深圳·红岭中学校考模拟预测)已知1()sin (1)1f x a x x x x =-+>-+,且0为()f x 的一个极值点.(1)求实数a 的值;(2)证明:①函数()f x 在区间(1,)-+∞上存在唯一零点;②22111sin 121n k n k =-<<+∑,其中*N n ∈且2n ≥.变式11.(2024·山东济南·济南市历城第二中学校考二模)已知()sin n f x x =,()ln e x g x x m =+(n 为正整数,m R ∈).(1)当1n =时,设函数()()212h x x f x =--,()0,πx ∈,证明:()h x 有且仅有1个零点;(2)当2n =时,证明:()()()e 12x f x g x x m '+<+-.题型八:零点问题之取点技巧例22.已知函数()[2(1)]2(x x f x e e a ax e =-++为自然对数的底数,且1)a .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.例23.已知函数2()(1)()x f x xe a x a R =++∈.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.例24.已知函数211()(()22x f x x e a x =-++.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.变式12.已知函数1()()(1)2x x f x e a e a x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围。
人教版高考总复习一轮数学精品课件 第四章函数与导数中的综合问题-第3课时 利用导数研究函数的零点问题
方程 = ℎ 没有实根.
综上,当 ≤ 1时,方程 = − ln 仅有一个实根;当 > 1时,
1
时,
2
若 ∈ −∞, ln 2 ,则′ > 0, 单调递增,若 ∈ ln 2, 0 ,则′ < 0, 单
1
2
调递减,若 ∈ 0, +∞ ,则′ > 0, 单调递增;当 = 时,′ ≥ 0, 在
上单调递增;当 >
1
时,若
2
∈ −∞, 0 ,则′ > 0, 单调递增,若
0 = 0,此时 仅有1个零点.②当 = −4时,若 ∈ −1,0 ,设
=
3
+1
+ cos
π
2
+ ,则′ =
−3
+1 2
π
2
− sin
π
2
π
2
< −3 − sin
π
2
< 0,所以′
在 −1,0 上单调递减,所以′ > ′ 0 = 4 + > 0,所以 在 −1,0 上单调递增;
使得′ 1 = 0,所以在 −1, 1 上,′ > 0, 单调递增,在
1 , 0 上,′ < 0, 单调递减,所以 1 > 0 = 0,当 ∈ −1,0 时,
= 3ln + 1
3
2
π
+ sin
高考文科数学专题复习《函数的零点PPT 课件
-10
1
(1,0)
一个零点 x=1
-12
-2
x2-2x+3=0 无实数根 y=x2-2x+3
4 -14
-24
-16
没有 交点
没有 零点
-15
-10
-5
-18 1
-6
结 论:函数的零点就是方程f(x)-2=-200的实数根,也就是函数y=f(x)的 --48 图象与x轴的交点的横坐标 -6
-10
结论:函数的零点就是方程f(x)=0的
(2)函数y=f(x)在区间(a,b)内有零点
函数y=f(x)在区间(a,b)内有零点
f(a)·f(b)<0 f(a)·f(b)<0。
f(a)·f(b)>0
(3)函数y=f(x)在单调区间(a,b)内有零点 f(a)·f(b)<0
a
a
b
b
a
b
析:
aRa0f (x)2x3判断零点是否[在 1,1]
2
a
x 1 b
a
-2
a b
b
注意:
函数y=f(x)在区间[a,b]上的图象是连续不 断的一条曲线:
(1) f(a)·f(b)<0 函数y=f(x)在区间
(a,b)内有零点;
(2)函数y=f(x)在区间(a,b)内有零点
f(a)·f(b)<0。
2
a
a
-10
b
-5
a
x 1 b
b
-2
(1)f(a)·f(b)<0 函数y=f(x)在区间(a,b)内有零点;
“f(x)在区间D上有不动点”当且仅当“F(x)=f(x)-x在区间D上有零点”
高三一轮复习数学教案:函数的零点复习
问题(3分钟)发散(12分钟)一、考向指南二、问题引领问题1:(1)函数2)(2-=xxf的零点为())0,2.(A)0,2.(±B2.±C2.D(2)函数2)2()(-=xxf的零点是谁?问题2.(1)函数xxxf ln62)(+-=有没有零点?(2)函数xxxf ln62)(+-=有几个零点?(3)是否能求出函数xxxf ln62)(+-=的零点具体是谁?学生倾听、思考零点问题在高考中的表现形式。
学生回答问题1和问题2。
思考、讨论有没有零点、有几个零点、零点是谁等问题的解题方法。
整理零点问题的常考题型,为本节课提供线索。
探究有没有零点、有几个零点、零点是谁等问题的解题方法,形成规律性结论。
收敛综合(10分)结论:(1)方程的根是从数的角度来描述零点,函数图象与X轴交点的横坐标是从形角度来描述的,三者具有等价关系,所以我们在解决具体问题时,常常会对三者进行互化。
(2)需注意,零点存在性定理只能解决变号零点的存在性问题;当零点存在性定理与函数单调性相结合时,可以解决“有几个”的问题。
三、高考真题例1【2014高考福建卷】函数()⎩⎨⎧>+-≤-=,ln62,22xxxxxxf的零点个数 .[)变式1:已知函数,,则方程的实根个数为例2:(2016全国B卷)已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3| 与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(x m,y m),则1=miix=∑()(A)0 (B)m (C) 2m (D) 4m四、含参探究例3:若有两个零点,求实数的取值范围 .变式2:学生尝试求解例1、变式1、例2,探究零点个数问题以及函数图象交点问题的解题方向。
体会函数的零点、方程的根、函数图像交点横坐标之间的等价关系。
创造(13分钟)(2分钟)已知函数,若为函数的唯一极值点,则实数的取值范围为()五、小结与作业1.整理本节课内容2.课时作业学生探究已知零点个数,如何求参数的取值范围。
2020届高三一轮复习专题:函数的零点问题及相关题型
函数的零点问题 (1)函数的零点的概念对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)函数的零点与方程的根的关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)零点存在性定理如果函数y =f (x )满足:⇔在区间[a ,b ]上的图象是连续不断的一条曲线;⇔f (a )·f (b )<0;则函数y =f (x )在(a ,b )上存在零点,即存在c ⇔(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根. 零点区间的判断题型结构特征:判别零点区间1.函数f (x )=e x + x - 2 的零点所在的一个区间是( ) A. (-2,-1) B. (-1,0) C.(0,1) D.(1,2) 【答案】C2.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--两个零点分别位于区间A.(,)a b 和(,)b c 内B.(,)a -∞和(,)a b 内C.(,)b c 和(,)c +∞内D.(,)a -∞和(,)c +∞内 【答案】A零点个数的判断题型结构特征:判别零点在区间上的个数问题 3.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3【答案】B4.函数0.5()2|log |1x f x x =-的零点个数为( )A. 1B. 2C.3D.4 【答案】A5.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点个数是( )A .4B .3C .2D .1 【答案】B6.已知函数f (x )是R 上的偶函数,且满足f (5+x )=f (5-x ),在[0,5]上有且只有f (1)=0,则f (x )在[-2 015,2 015]上的零点个数为( )A .808B .806C .805D .804【答案】C零点存在性确定的参数范围问题题型结构特征:已知零点的个数存在性确定参数范围 7.函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2) 【答案】C8.[2015湖南文14]若函数f (x )=| 2x -2 | - b 有两个零点,则实数b 的取值范围是___ 【答案】0<b<29.已知函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0x 2-3ax +a ,x >0有三个不同的零点,则实数a 的取值范围是____【答案】194≤<a 10已知函数满足,且是偶函数,当时,,若在区间内,函数有三个零点,则实数k 的取值范围是( )A. B .C . D. 【答案】C)(x f )()1(x f x f -=+)(x f ]1,0[∈x 2)(x x f =]3,1[-k kx x f x g --=)()()41,0(]21,0()21,41(]31,41[11.已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,求m 的取值范围.解析:作出f (x )的图象如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,⇔要使方程f (x )=b 有三个不同的根,则4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.12.已知函数.若g (x )存在2个零点,则a 的取值范围是( )A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)【答案】:C解答:⇔存在个零点,即与有两个交点,的图象如下:要使得与有两个交点,则有即,⇔选C.零点分布问题题型结构特征:根据零点的分布区域进行零点相关运算或不等关系的判断13.已知定义域为R 的函数⎪⎩⎪⎨⎧=≠-=)2(,1)2(21)(x x x x f .若关于x 的方程0)()(2=++b x af x f 有三个不同的实根321,,x x x ,求232221x x x ++的值为( )e 0()ln 0x xf x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++()()g x f x x a =++2()y f x =y x a =--)(x f y x a =--)(x f 1a -≤1a ≥-A. 10 B .12 C. 14 D.16 【答案】C二次函数零点区间讨论法题型结构特征:已知二次函数的零点存在区间求参数范围14已知a 是实数,函数,如果函数在区间上有零点,求a 的取值范围【答案】a>1或253--≤a 15已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围; (2)若方程两根均在区间(0,1)内,求m 的取值范围 【答案】(1)(2165--,)(2)),(2121-- 16已知函数22||,2()(2)x 2x x f x x ≤⎧=⎨->⎩,,函数()3(2)g x f x ,则函数y ()()f x g x 的零点的个数为A. 2B. 3C.4D.5 【答案】A17. 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解析:法一:设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,⇔x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0, ⇔-2<a <1.18已知二次函数f (x )=x 2+2bx +c (b ,c ⇔R)满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,则实数b 的取值范围为____()a x ax x f --+=3222()x f y =[]1,1-【答案】⎪⎭⎫⎝⎛75,51 19.已知函数f (x )=x 2+ax +b (a ,b ⇔R)的值域为[0,+∞),若关于x 的不等式f (x )-c <0的解集为(m ,m +6),则实数c 的值为____ 【答案】920.已知二次函数f(x)=x 2-ax +3 - a 的两零点均为正数的实数,则实数a 的取值范围是_____ 【答案】2<a<321.已知函数f (x )=⎩⎪⎨⎪⎧x +3,x >a ,x 2+6x +3,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,3)B .[-3,-1]C .[-3,3)D .[-1,1)【答案】A22.已知函数y =f (x )是定义域为R 的偶函数.当x ≥0时,f (x )=⎩⎨⎧54sin ⎝⎛⎭⎫π2x 0≤x ≤1⎝⎛⎭⎫14x+1x >1,若关于x 的方程5[f (x )]2-(5a +6)f (x )+6a =0(a ⇔R )有且仅有6个不同的实数根,则实数a 的取值范围是( )A .(0,1)⇔⎩⎨⎧⎭⎬⎫54B .[0,1]⇔⎩⎨⎧⎭⎬⎫54C .(0,1]⇔⎩⎨⎧⎭⎬⎫54D.⎝⎛⎦⎤1,54⇔{0} 解析:作出f (x )=⎩⎨⎧54sin ⎝⎛⎭⎫π2x 0≤x ≤1⎝⎛⎭⎫14x+1x >1的大致图象如图所示,又函数y =f (x )是定义域为R 的偶函数,且关于x 的方程5[f (x )]2-(5a +6)f (x )+6a =0(a ⇔R )有且仅有6个不同的实数根,等价于f (x )=65和f (x )=a (a ⇔R )有且仅有6个不同的实数根.由图可知方程f (x )=65有4个不同的实数根,所以必须且只需方程f (x )=a (a ⇔R )有且仅有2个不同的实数根,由图可知0<a ≤1或a =54.故选C.【答案】:C23.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________. 解析:若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则方程2a =|x -a |-1只有一解,即方程|x -a |=2a +1只有一解,故2a +1=0,所以a =-12.【答案】:-1224.函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:问题可转化为y =⎝⎛⎭⎫12|x -1|与y =-2cos πx 在-4≤x ≤6的交点的横坐标的和,因为两个函数图象均关于x =1对称,所以x =1两侧的交点对称,那么两对应交点的横坐标的和为2,分别画出两个函数的图象(图略),易知x =1两侧分别有5个交点,所以所求和为5×2=10. 【答案】:1025.已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为________.解析:由g (x )=2|x |f (x )-2=0得,f (x )=⎝⎛⎭⎫12|x |-1,作出y =f (x ),y =⎝⎛⎭⎫12|x |-1的图象,由图象可知共有2个交点,故函数的零点个数为2.【答案】:226.已知函数f (x )=⎩⎨⎧2x -1x ≥221≤x <2,若方程f (x )=ax +1恰有一个解,则实数a 的取值范围是________.解析:如图,当直线y =ax +1过点B (2,2)时,a =12,满足方程有两个解;当直线y =ax +1与f (x )=2x -1(x ≥2)的图象相切时,a =-1+52,满足方程有两个解;当直线y =ax +1过点A (1,2)时,a =1,满足方程恰有一个解.故实数a 的取值范围为⎝⎛⎭⎫0,12⇔⎝ ⎛⎦⎥⎤-1+52,1.【答案】:⎝⎛⎭⎫0,12⇔⎝ ⎛⎦⎥⎤-1+52,127.对于函数f (x )和g (x ),设α⇔{x |f (x )=0},β⇔{x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则实数a 的取值范围是( )A .[2,4]B .⎣⎡⎦⎤2,73 C.⎣⎡⎦⎤73,3D .[2,3]解析:函数f (x )=e x -1+x -2的零点为x =1,设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则|1-b |≤1,⇔0≤b ≤2.由于g (x )=x 2-ax -a +3的图象过点(-1,4),⇔要使其零点在区间[0,2]上,则g ⎝⎛⎭⎫a 2≤0,即⎝⎛⎭⎫a 22-a ·a 2-a +3≤0,解得a ≥2或a ≤-6(舍去),易知g (0)≥0,即a ≤3,此时2≤a ≤3,满足题意. 【答案】D28.设x 0为函数f (x )=sin πx 的零点,且满足|x 0|+f ⎝⎛⎭⎫x 0+12<33,则这样的零点有( ) A .61个 B .63个 C .65个D .67个解析:依题意,由f (x 0)=sin πx 0=0得,πx 0=k π,k ⇔Z ,即x 0=k ,k ⇔Z .当k 是奇数时,f ⎝⎛⎭⎫x 0+12=sin π⎝⎛⎭⎫k +12=sin ⎝⎛⎭⎫k π+π2=-1,|x 0|+f ⎝⎛⎭⎫x 0+12=|k |-1<33,|k |<34,满足这样条件的奇数k 共有34个;当k 是偶数时,f ⎝⎛⎭⎫x 0+12=sin π⎝⎛⎭⎫k +12=sin ⎝⎛⎭⎫k π+π2=1,|x 0|+f ⎝⎛⎭⎫x 0+12=|k |+1<33,|k |<32,满足这样条件的偶数k 共有31个.综上所述,满足题意的零点共有34+31=65(个),选C. 【答案】C29.设函数f (x )=⎩⎪⎨⎪⎧x ,0≤x <11x +1-1,-1<x <0,设函数g (x )=f (x )-4mx -m ,其中m ≠0.若函数g (x )在区间(-1,1)上有且仅有一个零点,则实数m 的取值范围是( )A .m ≥14或m =-1B .m ≥14C .m ≥15或m =-1D .m ≥15【答案】C30.已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x (e 为自然对数的底数)的零点个数是( )A .0B .1C.2 D.3解析:当x>0时,f(x)=ln x-x+1,f′(x)=1x-1=1-xx,所以x⇔(0,1)时,f′(x)>0,此时f(x)单调递增;x⇔(1,+∞)时,f′(x)<0,此时f(x)单调递减.因此,当x>0时,f(x)max=f(1)=ln 1-1+1=0.根据函数f(x)是定义在R上的奇函数作出函数y=f(x)与y=e x的大致图象,如图,观察到函数y=f(x)与y=e x的图象有两个交点,所以函数g(x)=f(x)-e x(e为自然对数的底数)有2个零点.故选C.【答案】C31.已知函数f(x)=ln x-ax2+x有两个零点,则实数a的取值范围是()A.(-∞,1) B.(0,1)C.⎝⎛⎭⎫-∞,1+ee2 D.⎝⎛⎭⎫0,1+ee2解析:依题意,关于x的方程ax-1=ln xx有两个不等的正根.记g(x)=ln xx,则g′(x)=1-ln xx2,当0<x<e时,g′(x)>0,g(x)在区间(0,e)上单调递增;当x>e时,g′(x)<0,g(x)在区间(e,+∞)上单调递减,且g(e)=1e,当0<x<1时,g(x)<0.设直线y=a1x-1与函数g(x)的图象相切于点(x0,y0),则有⎩⎨⎧a1=1-ln x0x20a1x0-1=ln x0x0,由此解得x0=1,a1=1.在坐标平面内画出直线y=ax-1(该直线过点(0,-1)、斜率为a)与函数g(x)的大致图象,结合图象可知,要使直线y=ax-1与函数g(x)的图象有两个不同的交点,则a的取值范围是(0,1),选B.【答案】B32.已知f′(x)为函数f(x)的导函数,且f(x)=12x2-f(0)x+f′(1)ex-1,g(x)=f(x)-12x2+x,若方程g⎝⎛⎭⎫x2a-x-x=0在(0,+∞)上有且仅有一个根,则实数a 的取值范围是( )A .(-∞,0)⇔{1}B .(-∞,-1]C .(0,1]D .[1,+∞)解析:⇔f (x )=12x 2-f (0)x +f ′(1)e x -1,⇔f (0)=f ′(1)e -1,f ′(x )=x -f (0)+f ′(1)e x -1,⇔f ′(1)=1-f ′(1)e -1+f ′(1)e 1-1,⇔f ′(1)=e ,⇔f (0)=f ′(1)e -1=1,⇔f (x )=12x 2-x +e x ,⇔g (x )=f (x )-12x 2+x =12x 2-x +e x -12x 2+x =e x,⇔g ⎝⎛⎭⎫x 2a -x -x =0,⇔g ⎝⎛⎭⎫x 2a -x =x =g (ln x ),⇔x 2a -x =ln x ,⇔x 2a =x +ln x .当a >0时,只有y =x2a(x >0)和y =x +ln x 的图象相切时,满足题意,作出图象如图所示,由图象可知,a =1,当a <0时,显然满足题意,⇔a =1或a <0,故选A. 【答案】A33.已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则( )A.1e<x 1x 2<1 B .1<x 1x 2<e C .1<x 1x 2<10D .e <x 1x 2<10解析:在同一直角坐标系中画出函数y =e -x 与y =|ln x |的图象(图略),结合图象不难看出,在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1⇔(0,1),x 2⇔(1,+∞),则有e -x 1=|ln x 1|=-ln x 1⇔(e-1,1),e -x 2=|ln x 2|=ln x 2⇔(0,e -1),e -x 2-e -x 1=ln x 2+ln x 1=ln(x 1x 2)⇔(-1,0),于是有e -1<x 1x 2<e 0,即1e <x 1x 2<1,故选A. 【答案】A34.已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设函数f (x )=sgn 1-x +12·f 1(x )+sgn x -1+12·f 2(x ),其中f 1(x )=x 2+1,f 2(x )=-2x +4.若关于x 的方程[f (x )]2-3f (x )+m =0恒好有6个根,则实数m 的取值范围是( )A .(-∞,94)B .(-∞,94]C .[2,94]D .(2,94)解析:⇔若x >1,则f (x )=-1+12·f 1(x )+1+12·f 2(x )=-2x +4.⇔若x =1,则f (x )=0+12·f 1(x )+0+12·f 2(x )=x 2-2x +52=2.⇔若x <1,则f (x )=1+12·f 1(x )+-1+12·f 2(x )=x 2+1.综上,f (x )=⎩⎪⎨⎪⎧x 2+1,x <1,2,x =1,-2x +4,x >1,作出其图象如图所示.若要使方程[f (x )]2-3f (x )+m =0恒好有6个根,令t =f (x ),则关于t 的方程t 2-3t +m =0需有两个不相等的实数根,故Δ=9-4m >0,得m <94.数形结合知1<f (x )<2,所以函数g (t )=t 2-3t +m 在(1,2)上有两个不同的零点,又函数g (t )图象的对称轴为t =32⇔(1,2),所以需⎩⎪⎨⎪⎧g 1>0,g 2>0,即⎩⎪⎨⎪⎧1-3+m >0,22-3×2+m >0,得2<m <94,故选D.【答案】D35.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <0|12x 2-2x +1|,x ≥0.方程[f (x )]2-af (x )+b =0(b ≠0)有6个不同的实数解,则3a +b 的取值范围是( )A .[6,11]B .[3,11]C .(6,11)D .(3,11)解析:首先作出函数f (x )的图象(如图),对于方程[f (x )]2-af (x )+b =0,可令f (x )=t ,那么方程根的个数就是f (x )=t 1与f (x )=t 2的根的个数之和,结合图象可知,要使总共有6个根,需要一个方程有4个根,另一个方程有2个根,从而可知关于t 的方程t 2-at +b =0有2个根,分别位于区间(0,1)与(1,2)内,进一步由根的分布得出约束条件⎩⎪⎨⎪⎧b >01-a +b <04-2a +b >0,画出可行域(图略),计算出目标函数z =3a +b 的取值范围为(3,11).【答案】D36.已知函数f (x )=若关于x 的方程f (x )=k 有两个不等的实数根,则实数k的取值范围是________.解析:作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ⇔(0,1]. 【答案】(0,1]37.函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是________.解析:当x >0时,令ln x -x 2+2x =0,得ln x =x 2-2x ,作y =ln x 和y =x 2-2x 图象,显然有两个交点. 当x ≤0时,令4x +1=0, ⇔x =-14.综上共有3个零点. 【答案】338.已知函数f (x )=|x -a |-2x +a ,a ⇔R ,若方程f (x )=1有且只有三个不同的实数根,则实数a 的取值范围是________.解析:令g (x )=|x -a |+a ,h (x )=2x +1,作出函数h (x )=2x +1的图象,易知直线y =x 与函数h (x )=2x +1的图象的两交点坐标为(-1,-1)和(2,2),又函数g (x )=|x -a |+a 的图象是由函数y =|x |的图象的顶点在直线y =x 上移动得到的,且当函数h (x )=2x +1的图象和g (x )=|x -a |+a 的图象相切时,切点为(2,1+2),(-2,1-2),切线方程为y =-x +22+1或y =-x -22+1,又两切线与y =x 的交点分别为(1+222,1+222),(1-222,1-222),故a =1±222,结合图象可知a 的取值范围是(-∞,1-222)⇔(1+222,2). 【答案】(-∞,1-222)⇔(1+222,2)39.若方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,则b -2a -1的取值范围是__________.解析:令f (x )=x 2+ax +2b ,⇔方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,⇔⎩⎪⎨⎪⎧f 0>0,f 1<0,f 2>0,⇔⎩⎪⎨⎪⎧b >0,a +2b <-1,a +b >-2.根据约束条件作出可行域(图略),可知14<b -2a -1<1.【答案】⎝⎛⎭⎫14,140.已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14 B .18C .-78D .-38解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ只有一个根,即2x 2-x +1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-78.故选C.【答案】:C41.已知函数f (x )=e |x |+|x |.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析:易知函数f (x )=e |x |+|x |为偶函数,故只需求函数f (x )在(0,+∞)上的图象与直线y =k 有唯一交点时k 的取值范围.当x ⇔(0,+∞)时,f (x )=e x +x ,此时f ′(x )=e x +1>0,所以函数f (x )在(0,+∞)上单调递增,从而当x >0时,f (x )=e x +x >f (0)=1,所以要使函数f (x )在(0,+∞)上的图象与直线y =k 有唯一交点,只需k >1,故所求实数k 的取值范围是(1,+∞). 【答案】(1,+∞)42.已知函数f (x )=-13x 3+ax 2+bx +c 有两个极值点x 1,x 2,若x 1<f (x 1)<x 2,则关于x 方程[f (x )]2-2af (x )-b=0的实数根的个数不可能为( )A .2B .3C .4D .5解析:由题意,得f ′(x )=-x 2+2ax +b .因为x 1,x 2是函数f (x )的两个极值点,所以x 1,x 2是方程-x 2+2ax +b =0的两个实数根,所以由[f (x )]2-2af (x )-b =0,可得f (x )=x 1或f (x )=x 2.由题意,知函数f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增,又x 1<f (x 1)<x 2,依题意作出简图,如图所示,结合图形可知,方程[f (x )]2-2af (x )-b =0的实根个数不可能为5,故选D.【答案】D43.设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0【答案】A44.已知λ⇔R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎪⎨-+<⎪⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是_________.【答案】13λ<≤或4λ>.45.已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 .【答案】46.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A.3B.2C.1D.0 【答案】B()4,8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲函数的零点
1.定义
(1)对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
2.函数零点的判定
如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根,我们把这一结论称为零点存在性定理.
Ps:只能判定出零点存在,不能确定零点的个数。
通关秘籍:f(a)f(b)<0与函数f(x)存在零点的关系
(1)若函数y=f(x)在闭区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,则函数y=f(x)一定有零点。
(2)由函数y=f(x)在闭区间[a,b]上有零点不一定能推出f(a)f(b)<0。
所以f(a)f(b)< 0是在闭区间[a,b]上有零点的充分不必要条件。
(3)若函数f(x)在[a,b]上单调,且f(x)的图象是连续不断的一条曲线,则f(a)f(b)<0⇒函数f(x)在[a,b]上只有一个零点。
3.二次函数f(x)=ax2+bx+c(a>0)的零点分布
研究二次函数零点的分布,一般情况下需要从以下三个方面考虑:
(1)二次函数方程根的判别式;
(2)对应二次函数区间端点函数值的正负;
与区间端点的位置关系。
(3)对应二次函数图象抛物线的对称轴x=−b
2a
4.二分法
(1)定义:对于区间[a,b]上连续不断的,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而得到零点近似值的方法,叫做二分法。
(2)用二分法求函数f(x)零点近似值的步骤:
第一步,确定区间[a,b],验证f(a)f(b)<0,给定精确度ε;
第二步,求区间(a,b)的中点x1;
第三步,计算:
(i)若f(x1)=0,则x1就是函数的零点;
(ii)若f(a)f(x1)<0,则令b=x1(此时零点x0∈(a,x1));
(iii)若f(x1)f(b)<0,则令a=x1(此时零点x0∈(x1,b));
第四步,判断是否达到精确度ε,即若|a−b|<ε,则得到零点近似值a(或b);否则重复第二,三步。
通关秘籍:二分法求函数零点近似值的口诀
定区间,找中点,中值计算两边看;
同号去,异号算,零点落在异号间;
周而复始怎么办?精确度上来判断。
5.判断函数零点所在区间和零点的个数
(1)判断函数零点所在区间的常用方法
①零点存在性定理,使用条件是函数图象是连续的;
②数形结合法:画出函数的图象,用估算确定区间。
(2)判断函数零点个数的常用方法
①解方程法:令f(x)=0,如果有解,则有几个解就有几个零点;
②函数零点存在性定理:利用该定理不仅要求函数图象在[a,b]上的图象是连续的曲线,且f(a)f(b)<0,还必须结合函数的图象和性质(如单调性、奇偶性、周期性、对称性等)才能确定函数有多少个零点;
③数形结合法:转化为两个函数图象的交点个数问题,有几个交点就有几个不同的零点。
6.零点性质的应用
已知函数有零点(方程有根)求参数的值域或取值范围常用的方法和思路:
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法:先讲参数分离,转化为求函数最值问题加以解决;
(3)数形结合法:现将解析式变形,在同一个平面直角坐标系中画出函数的图象,然后数形结合求解。
PS:考试中的零点问题、交点问题、根的问题本质上是同一个问题。
口诀:①绝化正负②交零一体③两难平摊④先定后动
①绝化正负:一般绝对值问题,直接画图象,去绝对值化成正负号;
②交零一体:代表着交点和零点问题本身是一件事;
③两难平摊:通过除法,有的时候把两侧函数的难度进行平均分配; ④先定后动:在画图过程中,我们先画定的,再画动的。
例题1. 已知函数()||f x lnx =,20,01()|4|2,1x g x x x <⎧=⎨-->⎩
,则方程|()()|1f x g x +=实根的个数为 4 .
变式1. 已知函数()||f x lnx =,20,01()1|9|,18
x g x x x <⎧⎪=⎨->⎪⎩.则方程()()10f x g x --=实根的个数为 3 .
例题2. 已知函数32,(),x x a f x x x a ⎧=⎨>⎩
若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 {|0a a <或1}a > .
变式1. 已知函数2()()()
x x a f x x x a ⎧=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是( )
A .0a <
B .0a >且1a ≠
C .1a <
D .1a <且0a ≠
例题3. 已知函数2(43)3,0()(0,1)(1)1,0a
x a x a x f x a a log x x ⎧+-+<⎪=>≠⎨++⎪⎩在R 上单调递减,且关于x 的方程|()|23
x f x =-恰有两个不相等的实数解,则a 的取值范围是 1[3,2)3 .
例题4. 已知函数2||,()24,x x m f x x mx m x m ⎧=⎨-+>⎩
,其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是 (3,)+∞ .
例题5. 设函数2,1()4()(2),1
x a x f x x a x a x ⎧-<=⎨--⎩, ①若1a =,则()f x 的最小值为 1- ; ②若()f x 恰有2个零点,则实数a 的取值范围是 .
例题 6. 已知函数22||,2()(2),2
x x f x x x -⎧=⎨->⎩,函数()(2)g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )
A .7(4,)+∞
B .7(,)4-∞
C .7(0,)4
D .7(4
,2)
例题7. 已知函数2|54|,0()2|2|,0x x x f x x x ⎧++=⎨->⎩
,若函数()||y f x a x =-恰有4个零点,则实数a 的取值范围为 (1,2) .
例题8. 已知当[0x ∈,1]时,函数2(1)y mx =- 的图象与y m =+的图象有且只有一个交点,则正实数m 的取值范围是( )
A .(0,1][23,)+∞
B .(0,1][3,)+∞
C .[23,)+∞
D .(0[3,)+∞。