脱硝工艺介绍(SNCR)
sncr脱硝原理及工艺
sncr脱硝原理及工艺
脱硝是指将燃烧过程中产生的氮氧化物(NOx)转化为较为无害的氮气(N2)或氨(NH3)的过程。
脱硝在工业生产中非
常重要,尤其是对于电力、钢铁、化工等行业而言。
Sncr是
一种常用的脱硝工艺,下面将介绍其原理和工艺过程。
1. Sncr脱硝原理:
Sncr脱硝主要利用氨水或尿素溶液与燃烧过程中的NOx发生
化学反应,将其转化为氮气或氨。
这种反应在高温下进行,需要满足适当的反应温度和氨水的投加量。
2. Sncr脱硝工艺过程:
(1)烟气进入SNCR反应器:燃烧产生的烟气进入SNCR反
应器中,反应器中设置有适当的喷射装置,用于喷射氨水或尿素溶液。
(2)氨水或尿素喷射:通过喷射装置,将氨水或尿素溶液喷
射到烟气中。
喷射后的氨水或尿素溶液与烟气中的NOx发生
反应,将其转化为氮气或氨。
(3)反应温度控制:Sncr脱硝反应需要在一定的温度范围内
进行,通常为800°C-1100°C。
通过调节喷射装置和燃烧设备,控制烟气的温度在适宜的范围内。
(4)反应产物处理:脱硝反应后的烟气中生成的氮气或氨进
入气体处理系统进行进一步处理,以确保排放的气体符合环保要求。
Sncr脱硝工艺具有脱硝效率高、操作简单、设备布局灵活等
优点,广泛应用于不同工业领域。
但同时也存在氨逃逸、不适
用于高浓度NOx气体等问题,因此在实际应用中需要综合考虑各种因素,选择合适的脱硝工艺。
sncr脱硝原理及工艺
sncr脱硝原理及工艺
sncr脱硝技术可以有效减轻大气中的氮氧化物污染,是大气污染控制技术的重要技术之一。
sncr脱硝技术实质上是一种燃烧控制技术,可以通过调节燃料与空气的混合比率,并加入富氧剂,提高燃烧温度来减少烟气中的氮氧化物,如NOX、SOx等。
sncr脱硝技术具有一定的烟气浓度条件,它在一定程度上增加了这些气体的燃烧温度,从而减少了气体中氮氧化物的含量。
1. 预燃阶段:在较高温度条件下,控制预燃或助燃气体,增加富氧剂,燃烧分解消耗氮氧化物。
2. 余氧燃烧:燃烧室的温度达到稳定值后,为了维持燃烧室的持续稳定燃烧,需要适时或连续加入富氧剂,使氮氧化物转化率达到最大。
3. 对称燃烧:通过调节燃料与空气的混合比率,恒定滞燃混合比以及改善燃烧均匀性,提高燃烧温度,使燃烧室保持一定温度和合理的火焰模型,以达到脱硝的目的。
1. 容易操作:烟囱限制气体排放浓度的调节非常容易;
2. 低成本: sncr技术的实施成本低,投资费用更少;
3. 良好的排放效果:可以有效降低燃烧过程中氮氧化物的排放;
4. 功率浓度容量: sncr技术能够满足不同功率浓度和容量的变数要求。
工艺方法——SNCR脱硝技术
工艺方法——SNCR脱硝技术工艺简介选择性非催化还原(Selective Non-Catalytic Reduction,简称SNCR)脱硝是一种成熟的NOx控制处理技术,系统相对简单,脱硝效率能达到50%。
1、脱硝机理SNCR脱硝技术是把炉膛作为反应器,在没有催化剂的条件下,将还原剂氨水(质量浓度20%-25%)或尿素经稀释后通过雾化喷射单元喷入热风炉或隧道窑内合适的温度区域(850℃-1050℃),雾化后的还原剂将NOx(NO、NO2等混合物)还原,生成氮气和水,从而达到脱除NOx的目的。
还原NOx的主要化学反应为:4NO+4NH3+O2→4N2+6H2O2NO2+4NH3+O2→3N2+6H2O上述反应中第一个反应是主要的、占主导地位,因为烟气中几乎95%的NOx以NO的形式存在,在没有催化剂存在的情况下,这个反应只在很狭窄的温度窗口(850℃-1050℃)进行,表现出选择性,此时的反应就是SNCR的温度范围。
2、系统构成通常使用氨水、尿素作为还原剂,氨水的反应更直接,有着较高的NOx去除率、较低的氨逃逸和较高的化学反应效率;尿素反应更复杂,有着较高的氨逃逸率和较高的CO生成量。
根据这两种还原剂的理化性质,综合考虑其运输、储存环境以及设备投资、占用场地、运行成本、安全管理及风险费用等因素,该企业采用氨水做还原剂。
SNCR脱硝系统主要由氨水接收与储存系统、水输送与混合系统、计量分配与喷射系统、压缩空气系统、PLC自动控制系统、安全防护系统等组成,这些系统采用撬装一体化设备生产,形成模块化、标准化,从而提高系统集成和设备可靠性,减少现场加工制作,缩短工期,降低成本。
(1)氨水接收与储存系统外购的还原剂运输至厂区后,通过管道连接到预留接口,然后开启入口阀,完全打开后,启动卸氨泵,延时30s后,开启泵的出口阀将槽罐车内的氨水输送至氨水储罐中。
根据氨水储罐的液位反馈,到达一定液位或者罐车的氨水输送完成时,关闭卸氨泵的出口阀,然后停止卸氨泵,再关闭入口阀。
SNCR脱硝工艺——氨水
3)加压计量系统
该部分主要由氨水加压泵、清水加压泵,混合模块、冲洗模块、循环模 块、测量仪表和相应的管路阀门等组成。 加压泵对氨水和清水进行加压、然后通过混合器混合均匀,输送至喷射 系统。 加压计量系统作为整套系统的重要部分,其上重要设备水泵、电动 阀、流量计和压力变送器均采用优质产品,保证设备正常运行。
3)溶液停留的时间
溶液停留(化学反应)时间:合适的温度范围内反应物在反应器内停留
的总时间。在此时间内,NH3或尿素等还原剂与烟气的混合、水的蒸发、还 原剂的分解和NOx的还原等步骤须全部完成,一般要求时间为0.3~0.5s。而 雾化状态的氨在锅炉的停留时间长短取决于锅炉烟道的尺寸、烟气流经烟道 的速度、溶液雾化状况、雾场与烟气混合的形式等因素。
5)自动控制系统
我公司技术人员,研发的脱硝专用自动控制系统由由控制柜和现场测 量仪表组成,是整个系统的核心。“PLC+触摸屏”的人机对话界面,操作 简单方便。控制系统根据采集的相关信号, 控制、调节各个设备的运行, 实现高效脱硝。 控制系统核心元器件采用ABB、西门子、施耐德等产品,操控简洁方 便,响应迅速,反应灵敏,外围器件采用施耐德电气设备,质量可靠,性能 稳定,安全性高。 控制方式有现场自动控制、现场手动控制、中控自动控制、中控手动控 制,方便各个工况下的操作。系统设有必要的报警,比如液位报警、流量报 警、变频故障报警、压力报警等,保证系统能安全稳定的运行。
1)温度范围
NOx的还原反应发生在一特定的温度范围内(最佳的反应温度区间 850℃~1250℃)。若温度过低,NH3的反应不完全,容易造成NH3逃逸形成 二次污染;而温度过高(1400℃以上),NH3则容易被氧化为NOx。可见温 度过高或过低都会导致还原剂的损失和NOx脱除率下降。
SNCR脱硝技术方案
SNCR脱硝技术方案SNCR(Selective Non-Catalytic Reduction)是一种选择性非催化还原脱硝技术,用于降低燃烧过程中产生的氮氧化物(NOx)的排放。
它是一种相对经济和有效的脱硝方法,广泛应用于燃煤锅炉、电厂和工业烟气排放等领域。
SNCR脱硝技术的基本原理是在燃烧过程中,通过向燃烧室或烟气道喷射一种或多种适当的还原剂,如氨水、尿素溶液等,使其与燃烧产物中的NOx发生反应生成氮气和水。
SNCR脱硝技术的优点在于不需要使用昂贵的催化剂,操作简单、成本低,但其脱硝效率相对较低,通常在30%~70%之间。
1.确定最佳喷射位置:喷射位置的选择是关键的一步。
通常在燃烧室出口、过热器顶部和脱硝催化剂之前是合适的喷射位置。
通过调整喷射位置可以达到最佳脱硝效果。
2.确定还原剂投入量:还原剂的投入量也是决定脱硝效率的重要因素。
适当的投入量可以使还原剂与NOx充分反应,但过量投入可能会产生副产品,如氨逃逸。
投入量可以通过实验室试验和现场测试得出。
3.确定喷射时间:喷射时间的控制也是关键的一步。
通常根据燃烧过程中的NOx生成特征,选择合适的喷射时间。
一般在燃烧室温度较高的区域喷射,确保还原剂与NOx充分接触并发生反应。
4.确定温度和浓度范围:最适宜的还原剂浓度和温度范围取决于燃料种类、燃烧设备类型等因素。
一般来说,在1400℃~1600℃的温度下,5%~12%的氨浓度是有效脱硝的范围。
5.监测和调整:在实际运行中,需要不断监测脱硝效果和排放水平,并根据监测结果进行调整。
可以通过在线氮氧化物分析仪监测排放浓度,并根据结果调整还原剂投入量等参数。
总之,SNCR脱硝技术是一种经济有效的脱硝方法,在工业排放和燃煤锅炉等领域得到广泛应用。
通过合理的喷射位置、还原剂投入量、喷射时间和温度浓度范围的选择,可以实现较低的NOx排放水平。
SNCR技术简介
烟气脱硝SNCR工艺选择性非催化还原SNCR1 、概念:SNCR(Selective NonCatalytic Reduction)——选择性非催化还原法脱硝技术。
这是一种向烟气中喷氨气或尿素等含用NH3基的还原剂在高温范围内,选择性地把烟气中的NO x还原为N2和H2O。
国外已经投入商业运行的比较成熟的烟气脱硝技术, 它建设周期短、投资少、脱硝效率中等, 比较适合于对中小型电厂锅炉的改造, 以降低其NO x排放量。
研究表明,在927~1093 ℃温度范围内,在无催化剂的作用下,氨或尿素等氨基还原剂可选择性地把烟气中的NO x还原为N2和H2O,基本上不与烟气中的氧气作用,据此发展了SNCR 法。
向烟气中喷氨或尿素等含有NH3基的还原剂,在高温(900~1100℃)和没有催化剂的情况下,通过烟道气流中产生的氨自由基与NO X反应,把NO X还原成N2和H2O。
2 、反应原理2.1 NH3作还原剂4NH3+6NO→5N2+6H2O950℃范围内4NH3+5O2→4NO+6H2O2.2 (NH4)2CO作还原剂(NH4)2CO→2NH2+2CONH2+NO→N2+H2OCO+NO→N2+CO23、工艺流程放空锅炉预热器反应器废热锅炉膨胀器4、影响SNCR脱硝因素4.1 还原剂喷入点的选择喷入点必须保证使还原剂进入炉膛内适宜反应的温度区间(900~1100℃)。
适宜的温度区间被称作温度窗口。
4.2 合适的停留时间任何反应都需要时间,所以还原剂必须和NOX在合适的温度区域内有足够的停留时间,这样才能保证烟气中的NOX的还原率。
4.3 适当的NH3/NOX摩尔比根据化学反应方程式NH3/NOX摩尔比应该为1,但实际上都要比1大才能达到较理想的NOX还原率,但摩尔比过大,氨逃逸量加大,同时会增加运行费用。
4.4 还原剂与烟气的充分混合还原剂和烟气的充分混合是保证充分反应的技术条件之一,类同于燃烧反应的湍流度。
sncr脱硝工艺流程
sncr脱硝工艺流程SNCR(Selective Non-Catalytic Reduction)是一种常用的脱硝工艺,通过加入氨水或尿素来与烟气中的氮氧化物(NOx)进行反应,从而将其还原为氮气和水。
下面是SNCR脱硝工艺流程的详细介绍。
1.脱硝剂储存和供给:氨水或尿素作为脱硝剂,需要储存和供给到反应系统中。
储存通常采用专用的储罐,并通过泵站将脱硝剂供给到喷射装置。
2.反应器:反应器是进行脱硝反应的核心组件,通常包括喷射装置和混合区。
脱硝剂通过喷射装置喷射到烟气中,与烟气中的氮氧化物发生反应。
混合区通过搅拌装置等手段,将脱硝剂与烟气充分混合,以提高反应效果。
3.温度和浓度控制:脱硝反应对温度和氨氧比(NH3/NOx)有一定的要求。
通常需要在反应系统中设置温度控制器和氨氧比控制器,以确保反应在最佳条件下进行。
4.排放净化:反应后的烟气中可能还会残留一定量的氨、氮氧化物等物质,需要进行净化处理。
常见的处理方式有湿式脱硝、干式脱硝等。
湿式脱硝通常采用喷雾塔或湿式电除尘器将烟气中的颗粒物、氨和氮氧化物吸收或捕集,通过水洗或吸附剂反应后,排放净化后的烟气。
干式脱硝则通过调节烟气温度和添加吸附剂等方式,将烟气中的污染物吸附或化学转化,最终排放净化后的烟气。
5.控制系统:SNCR脱硝工艺通常需要配备一套完善的控制系统,以监测和控制反应过程中的各个参数,包括温度、压力、流量等。
控制系统可以自动调节脱硝剂供给、喷射装置位置和角度等参数,以实现最佳的脱硝效果。
总之,SNCR脱硝工艺是一种利用氨水或尿素与烟气中的氮氧化物进行反应,将其还原为无害物质的方法。
通过适当的脱硝剂供给、喷射装置设计和控制系统调节,可以实现高效、稳定和可靠的脱硝效果。
为了符合环保要求,通常会将脱硝后的烟气进行进一步的净化处理,以确保排放的烟气符合相关的排放标准。
SNCR脱硝技术简介
SNCR脱硝系统组成:
SNCR(喷氨)系统主要由卸氨系统、罐区、加压泵及其控制系统、混合系统、分配与
调节系统、喷雾系统等组成。
SNCR系统烟气脱硝过程是由下面四个基本过程完成:
接收和储存还原剂;在锅炉合适位置注入稀释后的还原剂;
还原剂的计量输出、与水混合稀释;还原剂与烟气混合进行脱硝反应。
SNCR脱硝工艺流程
如图(二)所示,水泥窑炉SNCR烟气脱硝工艺系统主要包括还原剂储存系统、循环输送模块、稀释计量模块、分配模块、背压模块、还原剂喷射系统和相关的仪表控制系统等。
SNCR脱硝工艺流程图
图(二)典型水泥窑炉SNCR脱硝工艺流程图
SNCR脱硝设备。
脱硝技术介绍(SNCR)
5、选择SNCR需要注意的几个问题
3)由于喷嘴喷射器工作在炉窑内部高温区,为防止喷射器冷却水管路内 部结垢,需采用除盐水作为多喷嘴喷射器冷却水。 4)在SNCR脱硝工艺中,厂用气的耗量也是较大的。喷射雾化、设备冷却 需、管路吹扫都需要厂用气。
如果您需要任何技术层面的帮助,请联系我们! 技术中心:王连宝 电 话:0431-81975260 13604407297
烟气脱硝技术介绍(SNCR)
吉林省路克奔环保设备制造股份有限公司 2012.11.6
主要内容
SNCR 技术简介 一、 一、SNCR SNCR技术简介 二、 SNCR 工艺流程 二、SNCR SNCR工艺流程 SNCR 系统组成 三、 三、SNCR SNCR系统组成 四、 SNCR 的关键技术 四、SNCR SNCR的关键技术 SNCR 需注意的问题 五、选择 、选择SNCR SNCR需注意的问题
氨水
如果泄漏,氨蒸 汽浓度较低。
尿素
没有安全隐患 新技术新潮流
4、SNCR关键技术
NH3/ NOx 摩尔比 适当的 适当的NH3/
4、SNCR关键技术
� 计算流体动力学 Computational Fluid Dynamics (CFD) 用于确定关键工艺参数的有效边界条件 �
� � � 试验还原剂分步策略的有效性 确定锅炉内各点温度场、烟气成份的浓度 选择喷枪的位置及雾化特性
选择合适的温度窗口
从图可以看出: 1.尿素和氨的温度窗口不同,根据不 同的还原剂选择温度窗口。 2.尿素的理想温度窗口是900~1150℃ 3.氨的理想温度窗口是850~1100℃ 4.温度高, 还原剂被氧化成NOx , 烟 气中的NOx 含量不减少反而增加; 温 度低, 反应不充分, 造成还原剂流失, 对下游设备产生不利的影响甚至造成 新的污染。
SNCR烟气脱硝介绍
SNCR烟气脱硝工艺介绍一、概述SNCR是非催化的炉内烟气脱硝技术,80年代中期在国外开始研发成功,至90年代初成功应用于600MW以上大型燃煤机组。
目前SNCR在超过400余座固定装置上得到应用,是仅次于SCR被广泛应用的脱硝技术。
我公司经过多年的自主研发和工程应用现已广泛用于电力、水泥、玻璃、钢铁、化工等行业。
二、SNCR脱硝原理和工艺流程:1)、SNCR脱硝原理:把含有NHx基的还原剂(如氨水或者尿素等)喷入炉膛温度为800℃~1100℃的区域,该还原剂迅速热分解成NH3和其它副产物,随后NH3与烟气中的NOx进行反应而生成N2。
SNCR的脱硝效率为30~60%左右,但是成本较低,因此往往和低氮燃烧器混合使用,也可以和SCR混合使用,从而降低脱硝费用。
选择性是指还原剂NH3和烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。
主要化学反应如下:4NH3+4NO+O2=4N2+6H2O8NH3+6NO2=7N2+12H2O4NH3+2NO2+O2=3N2+6H2O2)、SNCR工艺流程:还原剂 (氨水或尿素) 用卡车运送,并存放在脱硝系统的还原剂贮存和制备中心;还原剂通过计量、分配及雾化空气雾化、冷却后,喷入炉膛温度为800℃~1100℃的区域,该还原剂迅速热分解成NH3和其它副产物,随后NH3与烟气中的NOx进行反应而生成N2。
三、SNCR脱硝工艺主要组成:SNCR脱硝系统主要包括:还原剂的存贮和制备系统、循环模块、计量模块、分配模块、自动控制系统、还原剂喷射系统。
四、SNCR脱硝工艺特点:1)不需要价格昂贵的催化剂,反应温度高;2)装置投资省,占地小,特别适合于老机组的脱硝改造;3)工艺设备紧凑,运行可靠;4)还原后的氮气放空,无二次污染;5)脱硝效率在30~60%左右;6)可与低氮燃烧和SCR联合使用,具有较强的适应性;7)还原剂的消耗量较大。
SNCR脱硝工艺介绍
SNCR脱硝工艺介绍在当今的工业生产中,环境保护的重要性日益凸显,其中减少氮氧化物(NOx)的排放是一项关键任务。
SNCR 脱硝工艺作为一种有效的脱硝技术,在众多领域得到了广泛应用。
接下来,让我们详细了解一下 SNCR 脱硝工艺。
SNCR 脱硝工艺,全称为选择性非催化还原(Selective NonCatalytic Reduction)脱硝工艺,是一种不需要催化剂的脱硝方法。
其原理主要是将含有氨基的还原剂,如氨水或尿素溶液,喷入到锅炉炉膛或烟道的合适温度区域(通常在 850℃ 1100℃之间),在高温条件下,还原剂迅速热分解成氨气(NH₃),氨气与氮氧化物发生化学反应,将氮氧化物还原为氮气(N₂)和水(H₂O),从而达到脱除氮氧化物的目的。
SNCR 脱硝工艺具有一些显著的优点。
首先,它的系统相对简单,投资成本较低。
与需要昂贵催化剂的 SCR(选择性催化还原)脱硝工艺相比,SNCR 不需要安装和维护催化剂系统,大大降低了设备的初始投资和运行维护成本。
其次,SNCR 脱硝工艺的建设周期短,可以较快地投入运行,满足环保排放标准的要求。
此外,SNCR 工艺对锅炉的运行影响较小,不会对锅炉的正常运行和热效率产生明显的不利影响。
然而,SNCR 脱硝工艺也存在一定的局限性。
其脱硝效率相对较低,一般在 30% 70%之间,难以达到非常高的脱硝要求。
同时,SNCR 工艺对反应温度窗口的要求较为严格,如果温度控制不当,可能会导致还原剂无法充分反应,从而影响脱硝效果。
另外,还原剂的喷射均匀性和穿透性也会对脱硝效果产生重要影响,如果喷射不均匀或穿透不足,可能会导致局部氮氧化物排放超标。
为了实现良好的 SNCR 脱硝效果,需要对多个关键因素进行精确控制。
首先是还原剂的选择和制备。
常用的还原剂有氨水和尿素溶液。
氨水具有反应活性高的优点,但储存和运输存在一定的安全风险。
尿素溶液则相对安全,但反应活性稍低,需要更高的温度条件才能有效分解。
电厂烟气脱硝方案SNCR
电厂烟气脱硝方案SNCRSNCR是选择性非催化还原技术的缩写,是一种常见的电厂烟气脱硝方案。
下面将详细介绍SNCR的原理、应用范围、工艺流程以及优缺点。
1.原理:SNCR通过在烟气中加入适量的氨水、尿素或其他含氮化合物,在高温下与烟气中的NOx反应生成氮气和水,达到脱硝的目的。
该反应是非催化的,反应生成的氮气和水蒸气随烟气一同排出。
2.应用范围:SNCR适用于NOx排放浓度较低(100-300mg/Nm³)的电厂烟气脱硝,尤其是燃煤电厂。
由于SNCR是一种后段脱硝技术,适用于烟气温度高于850℃的情况。
3.工艺流程:SNCR的工艺流程由氨水/尿素投加系统、反应器和混合器组成。
步骤一:氨水/尿素投加系统将氨水/尿素溶液通过喷嘴或喷淋装置加入脱硝区域。
一般来说,SNCR技术需要根据烟气NOx浓度、温度和氨水/尿素投加量来确定最佳的投加位置。
步骤二:反应器烟气与投加的氨水/尿素在反应器中混合和反应,通常需要在反应器中保持较高的温度和逗留时间,以确保反应充分进行。
步骤三:混合器将反应生成的氮气和水等副产物与烟气充分混合,以减少副产物的排放。
4.优缺点:优点:①相较于SCR技术,SNCR在设备投资和运行维护成本方面更低;②SNCR适用于已存在的电厂,不需要对锅炉和烟气处理系统进行大规模改造。
缺点:①由于SNCR是一种后段脱硝技术,对烟气温度和逗留时间有严格要求,不适用于烟气温度较低的情况;②SNCR的脱硝效率受到烟气氨含量、温度和逗留时间等多个因素的影响,脱硝效果可能不够稳定和可靠。
综上所述,SNCR是一种常见的电厂烟气脱硝方案,具有设备投资和运行成本较低、适用于已存在的电厂等优点。
然而,由于其适用范围受到烟气温度和逗留时间等因素的限制,脱硝效果可能不够稳定和可靠。
因此,在实际应用中,需要综合考虑SNCR的优缺点来选择最合适的烟气脱硝技术方案。
sncr脱硝工艺流程
sncr脱硝工艺流程Sncr脱硝是一种常见的脱硝工艺,它是通过在高温燃烧过程中喷射氨水、尿素溶液或其他含氨溶液,将其与燃烧产生的氮氧化物(NOx)反应生成无毒的氮气和水蒸气,从而实现脱硝的目的。
下面将介绍一下sncr脱硝的工艺流程。
首先,在工业燃烧设备中设置适当的喷射位置和喷射角度,以确保喷射剂能够充分混合并与燃烧产生的NOx反应。
喷射位置一般设置在燃烧炉的尾部或燃烧室的上部。
其次,选择合适的喷射剂,常见的有氨水、尿素溶液等。
喷射剂的选择需要考虑氨的纯度、溶解度、不挥发性等因素。
一般来说,氨水的氨浓度在10%~25%之间,尿素溶液的氮浓度在25%~30%之间较为常用。
然后,根据NOx的生成特点和喷射剂的喷射效果,进行喷射剂的喷射参数优化。
这涉及到喷射剂的喷射速度、喷射时间、空气分布等因素的调整。
通过实验和仿真模拟,优化喷射参数可以提高脱硝效果。
接下来,进行现场实验验证。
在实际工业燃烧设备中,进行sncr脱硝试验,观察脱硝效果并测量各项参数。
根据实验结果,进一步调整喷射参数和喷射剂选择,以获得更好的脱硝效果。
最后,对sncr脱硝过程进行监测和控制。
通过安装氧分析、氨分析、温度和压力监测等设备,实时监测脱硝过程中的各项参数。
根据监测结果,自动或手动调整喷射剂的喷射量和喷射参数,以保持脱硝效果的稳定。
总之,sncr脱硝是一种成熟的脱硝工艺,其工艺流程包括设置喷射位置和角度、选择合适的喷射剂、优化喷射参数、现场实验验证和监测控制。
通过合理的设计和操作,可以实现高效、可靠的脱硝效果,对减少大气污染物排放具有重要意义。
SNCR脱硝工艺介绍PPT课件
五、应用范围
b. 联合技术
SNCR: 20~80%脱硝率, 15~50%还原剂利用率,设计 参数炉型、炉温、燃烧工况,注意NH3 slip
SCR: 最大85~90%脱硝率, ~100%还原剂利用率, 成本高,两种还原剂,注意煤种、炭份、均匀 性,SO2SO3, 温度
2024/10/15
16
Cyanuric Acid (氰尿酸) (HNCO)3
NH3 NH3 + OH NH2 + H2O N2 + H2O NH2 + NO
N2
2024/10/15
NH3 + HNCO
NH2 + CO HNCO + H
HNCO
N2 + O + M N2O + M N2 + HO2 N2O + OH N2 + OH N2O + H
五、应用范围
b. 联合技术
SNCR+SCR: – 形式:a) In-duct SCR;b) standalone SCR – 还原剂: a)用SNCR氨逃逸 ;b)炉内喷尿素或氨 – 问题: 还原剂成本 – 适用场合: SNCR+一层In-duct SCR; 已有SCR+SNCR
2024/10/15
评估过程非常重要,即不能太保守,也不能太大胆
2024/10/15
11
三、SNCR设计
c. 流场模拟 (确定喷枪位置、脱硝率)
计算流体动力学 Computational Fluid Dynamics (CFD)
➢ 确定关键工艺参数的有效边界条件 ➢ 根据测量温度,调整CFD计算结果 ➢ 布置喷枪,确定还原剂复盖面积、反应温度
脱硝工艺介绍
脱硝工艺介绍脱硝工艺(SNCR)是一种常用于降低燃煤电厂、工业锅炉和废气处理中NOx排放的工艺。
脱硝工艺的目的是将NOx转化为N2和水蒸气,以减少对大气的污染。
SNCR脱硝工艺的基本原理是在燃烧过程中向燃烧室内注入氨(NH3)或尿素(NH2CONH2)等还原剂。
这些还原剂在高温下分解产生氨基自由基(NH2)和亚氨基自由基(NH)等活性氮氢物种。
这些活性物种与NOx进行反应,生成N2和水蒸气。
SNCR脱硝工艺与SCR(Selective Catalytic Reduction,选择性催化还原)脱硝工艺不同,它不需要使用催化剂。
相反,SNCR脱硝工艺依赖于燃烧过程中高温下生成的活性氮氢物种与NOx进行快速反应。
SNCR脱硝工艺的关键控制参数包括还原剂的注入位置、注入速率和还原剂与燃烧气体的混合均匀程度。
通常情况下,还原剂的注入位置选择在燃烧室内的NOx生成区域以确保与NOx充分反应。
此外,还原剂的注入速率和燃烧气体的混合均匀程度也会影响脱硝效果。
SNCR脱硝工艺的优点是工艺简单、技术成熟、适用范围广,并且不需要使用昂贵的催化剂。
然而,与SCR脱硝工艺相比,SNCR脱硝工艺的脱硝效率较低,通常在30%到60%之间。
此外,还原剂的选择、注入位置和注入速率等参数需要经过仔细优化,以确保脱硝效果和经济性的平衡。
除了工艺参数的优化,SNCR脱硝工艺的脱硝效果还受到燃料类型、燃烧方式、燃烧温度和燃烧气体氧含量等因素的影响。
例如,当燃料中的挥发分较高时,还原剂的注入位置和速率需进行适当调整。
此外,SNCR 脱硝工艺对于低温脱硝效果较好,适用于低温燃烧过程。
总之,SNCR脱硝工艺是一种常用于降低NOx排放的工艺,能够在不使用催化剂的情况下实现NOx的转化和去除。
该工艺的脱硝效率依赖于还原剂的注入位置、注入速率和与燃烧气体的混合均匀程度,以及燃料类型、燃烧方式、燃烧温度和燃烧气体氧含量等因素。
尽管SNCR脱硝工艺的脱硝效率相对较低,但其简单、成熟和经济的特点使其成为脱硝工艺领域的重要选择。
sncr脱硝原理及工艺
sncr脱硝原理及工艺
环境污染日益严重,NOx排放一直是大气污染的主要原因之一。
因此,脱硝技术在污染控制方面功不可没,越来越多的国家和地区强制要求企业实施脱硝技术。
SNCR技术(Selective Non-Catalytic Reduction),即选择性非催化减少技术,是一种常用的脱硝技术,它可以有效减少NOx排放,改善大气环境。
本文从原理与工艺两方面,对其进行论述。
一、SNCR脱硝原理
SNCR技术属于NOx的低温(低于700℃)降解技术,主要通过以下反应主要有效降解NOx。
NO+NH3→N2+H2O。
这个反应会把NO转化
成N2和H2O,实现SNCR脱硝。
在SNCR脱硝技术中,重要的反应物是NH3,把NH3燃烧成氨气,再加入烟道燃烧产生的高温气流,形成混合气流,混合气流经过烟道内部,温度降低的同时,氨气混入NO、O2和热量的烟道内部,产生
吸收反应,实现NO的脱硝减排。
二、SNCR脱硝工艺
SNCR脱硝工艺主要是将氨气添加至含NO的热气流中,以形成混合气流,混合气流经烟道设备进行床层冷却后,达到烟气温度要求(一般在500℃以下),NOx与氨发生反应,实现脱硝减排。
常用脱硝工艺设备有NOXDUCT干燥剂、调节柜、泵组、氢气分级系统,可以根据实际污染排放特性及设备条件来选择不同的设备组合,以达到降低污染排放的目的。
三、结论
SNCR脱硝技术是一种有效的减少NOx排放的技术,可以有效改善大气环境。
从原理和工艺两个方面,SNCR是一种简单、有效、低成本的污染减排技术,深受企业的欢迎。
脱硝工艺介绍(sncr)
多污染物协同治理
未来SNCR技术将更加注重多污染物协同治理,实现氮氧化物、颗 粒物等多种污染物的联合脱除。
绿色低碳发展
在全球绿色低碳发展的大背景下,SNCR技术将更加注重环保和节能, 推动工业领域的绿色转型。
数据采集与监控
通过传感器和变送器采集 烟道温度、压力、流量等 参数,实时监测系统运行 状态。
故障诊断与处理
控制系统具备故障诊断功 能,能够及时发现并处理 系统故障,确保系统安全 稳定运行。
关键设备选型与性能
03
参数
还原剂喷射装置选型依据
烟气温度
根据烟气温度选择合适的 喷射装置,确保还原剂在 最佳反应温度窗口内喷入。
广泛应用
随着环保要求的日益严格,SNCR技术将在更多领域得到应用, 如电力、钢铁、水泥等行业。
技术成熟
SNCR技术经过多年的研究和实践,已经相对成熟,具有较高的 脱硝效率和稳定性。
成本效益
相对于其他脱硝技术,SNCR技术具有较低的投资成本和运行费 用,更适合中小型企业应用。
未来发展趋势预测
智能化发展
喷嘴堵塞处理
定期清洗喷嘴,使用优质还原 剂,避免杂质和结垢。
管道泄漏处理
定期检查管道连接处,及时紧 固或更换损坏部件,防止泄漏 。
仪表故障处理
定期校验仪表,确保其准确性 和可靠性,及时更换损坏部件 。
原料问题处理
确保还原剂质量稳定,定期检 查和清洗输送系统,保证畅通
无阻。
总结与展望
06
SNCR技术应用前景分析
对下游设备造成腐蚀。
停留时间对脱硝效果影响
sncr脱硝原理及工艺
sncr脱硝原理及工艺SNCR脱硝原理及工艺。
SNCR脱硝技术是一种利用氨水或尿素作为还原剂,通过在高温烟气中喷射还原剂,使NOx在高温下与NH3发生还原反应,从而达到降低NOx排放的目的的一种脱硝技术。
下面将详细介绍SNCR脱硝的原理及工艺。
一、SNCR脱硝原理。
SNCR脱硝技术是通过在燃烧过程中向烟气中喷射氨水或尿素,使还原剂与NOx发生化学反应,生成氮和水,从而实现NOx的脱除。
在高温烟气中,NOx与NH3发生催化还原反应,生成氮气和水蒸气。
这种反应是一个温度敏感的反应,需要在适当的温度范围内进行,一般在850℃-1100℃之间。
二、SNCR脱硝工艺。
SNCR脱硝工艺主要包括还原剂喷射系统、烟气混合系统和脱硝效果监测系统。
还原剂喷射系统用于向烟气中喷射氨水或尿素,使其与NOx发生化学反应;烟气混合系统用于确保还原剂与烟气充分混合,提高脱硝效率;脱硝效果监测系统用于监测脱硝效果,保证脱硝效果的稳定和可靠。
三、SNCR脱硝技术的优势。
1. 低成本,SNCR脱硝技术相对于其他脱硝技术来说,投资成本较低,运行成本也相对较低。
2. 适用范围广,SNCR脱硝技术适用于各类锅炉、热电厂和工业炉窑等燃煤、燃油、燃气等各种燃料的燃烧设备。
3. 环保效果好,SNCR脱硝技术能够有效降低NOx排放,符合国家环保要求,对改善大气环境质量具有积极意义。
四、SNCR脱硝技术的发展趋势。
随着环保要求的不断提高,SNCR脱硝技术在我国的应用将会越来越广泛。
未来,随着SNCR脱硝技术的不断创新和完善,其脱硝效率和稳定性将会得到进一步提升,成为燃煤电厂和工业企业NOx排放控制的重要手段。
综上所述,SNCR脱硝技术是一种成本低、适用范围广、环保效果好的脱硝技术,具有良好的发展前景。
希望通过持续的技术创新和工艺改进,进一步提高SNCR脱硝技术的脱硝效率和稳定性,为我国的大气环境保护作出更大的贡献。
水泥窑sncr脱硝工艺原理
水泥窑sncr脱硝工艺原理水泥窑SNCR脱硝工艺原理一、引言环境污染问题日益凸显,大气污染物排放成为人们关注的焦点。
在工业生产过程中,尤其是水泥生产过程中,氮氧化物(NOx)的排放是主要的大气污染源之一。
为了减少NOx排放对环境的影响,水泥窑SNCR脱硝工艺被广泛应用。
二、SNCR脱硝工艺原理SNCR(Selective Non-Catalytic Reduction)脱硝工艺是一种选择性非催化脱硝技术,通过将还原剂注入燃烧系统,与燃烧过程中产生的NOx发生化学反应,将其还原为氮气和水。
1. 反应原理SNCR脱硝工艺的核心是还原剂与NOx之间的反应。
在水泥窑中,燃烧过程中产生的高温烟气中含有NO和NO2两种主要的氮氧化物。
SNCR脱硝工艺通过在烟气中喷入适量的还原剂,如氨水(NH3)或尿素溶液(CO(NH2)2),在高温下与NOx发生反应,生成氮气和水蒸气。
2. 反应机理SNCR脱硝反应过程中涉及多种反应机理。
其中,主要的反应是氨与NOx发生氧化还原反应,生成氮气和水。
此外,反应中还会生成一些副产物,如一氧化氮(NO)、二氧化氮(NO2)和氮氧化合物(N2O)。
这些副产物对脱硝效果有一定的影响,需要在实际应用中加以控制。
三、SNCR脱硝工艺的优势和限制SNCR脱硝工艺具有以下优势:1. 技术成熟,应用广泛。
SNCR脱硝工艺已经在水泥、电力、钢铁等行业得到了广泛应用,并取得了良好的脱硝效果。
2. 投资和运行成本低。
相比其他脱硝技术,SNCR脱硝工艺的设备投资和运行成本较低,适合中小型水泥企业采用。
3. 对水泥窑燃烧系统的适应性好。
SNCR脱硝工艺可以与水泥窑的燃烧系统相结合,不需要新增大型设备,对现有系统改造较小。
然而,SNCR脱硝工艺也存在一些限制:1. 脱硝效率不稳定。
由于SNCR脱硝反应受多种因素影响,如温度、氨浓度、还原剂与NOx的摩尔比等,脱硝效率不稳定,需要在实际操作中进行优化。
2. 副产物的生成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设备安全要求
能耗
有法律规定
低
需要
较高
基本上不需要
高
一般优先选择尿素或氨水溶液,极少选择液氨
二、煤粉锅炉SNCR脱硝系统
SNCR 流场模拟 计算流体动力学 Computational Fluid Dynamics (CFD)
确定关键工艺参数的有效边界条件 试验还原剂分步策略的有效性 确定锅炉内各点温度场、烟气成份的浓度
燃料的影响
影响与SCR相同
受炉膛、尾部烟道内烟气流速及 温度分布的影响
无影响
运行参数影响
与SNCR/SCR相同
二、煤粉锅炉SNCR脱硝系统
4. SNCR的技术原理
反应原理: NOx + 还原剂 → 氮气 + 水 反应温度:850℃~1250℃ 还原剂:氨水、尿素 催化剂:不用催化剂,锅炉炉膛作为反应器,不需要另 外的反应器
脱硝工艺介绍(SNCR)
主要内容
一、烟气脱硝技术简介 二、 煤粉锅炉SNCR脱硝系统 三、SNCR脱硝关键设备 四、典型案例
一、烟气脱硝技术简介
• SCR烟气脱硝技术
– – SCR (Selective Catalytic Reduction) 在催化剂的作用下,利用还原剂将烟气中的氮 氧化物还原为无害的氮气和水。
二、煤粉锅炉SNCR脱硝系统
9. 洛卡环保SNCR脱硝的特点
炉膛温度较高,使用尿素作为还原剂时,脱硝效果更佳。 通过CFD/CFK计算,优化喷枪设计,可以准确确定还原 剂的喷射量,达到较理想的脱硝效率和较低的运行费用。 通过CFD/CKM计算减少对锅炉热效率的影响。 对锅炉内烟气温度进行检测,喷枪多层布置,适合各负 荷条件下的运行。
二、煤粉锅炉SNCR脱硝系统
7. SNCR技术流程图
冷却空气 压缩空气 气化空气 还原剂 喷射器 锅炉 分配模块
静态混合器
计量设备
计量模块
Байду номын сангаас
水
水泵 稀释水输送 控制模块 还原剂供应模块
还原剂储存罐
循环泵
二、煤粉锅炉SNCR脱硝系统
8. SNCR工艺系统组成 还原剂储存、输送系统; 稀释水输送控制系统; 还原剂计量混合系统; 还原剂分配及喷射系统; 控制系统。
3.还原剂计量混合系统
三、SNCR脱硝关键设备
4.还原剂分配及喷射系统
三、SNCR脱硝关键设备
4.还原剂分配及喷射系统
四、典型案例
SNCR烟气脱硝工程
华能莱芜电厂2*300MW燃煤发电机组脱硝示范工程,2012年01月 完成脱硝机组试运并投入运行
SNCR/SCR烟气脱硝工程
大唐灞桥热电厂2*300MW燃煤发电机组脱硝示范工程,2011年12 月完成脱硝机组试运并投入运行
二、煤粉锅炉SNCR脱硝系统
5. SNCR主要技术指标
技术指标 脱硝效率(%) 还原剂选择 氨氮摩尔比 系统压降 氨逃逸率 系统可靠性 SNCR 30~50 尿素 / 氨水 1.2~1.5 无 <10ppm 高
二、煤粉锅炉SNCR脱硝系统
6. SNCR技术关键因素
还原剂选择
NH3/NOx = NSR
设备采用模块化设计,减少安装、维护工作量。
随机组负荷、NOX排放要求自动控制。
二、CFB锅炉SNCR脱硝系统
控制系统(DCS画面)
三、SNCR脱硝关键设备
1.还原剂制备、输送系统
三、SNCR脱硝关键设备
还原剂制备、输送系统
三、SNCR脱硝关键设备
2.稀释水输送控制系统
三、SNCR脱硝关键设备
二、煤粉锅炉SNCR脱硝系统
3.脱硝技术路线选择
项目 脱硝效率 70%~90% SCR SNCR/SCR混合型 40%~80% 前段:850-1250℃ 后段:320-400℃ 5~l0ppm 可使用氨水或尿素 后段加装少量催化剂 炉膛中上部,炉膛出口 会导致但比SCR低 造成积灰和腐蚀较SCR减轻 压力损失相对较SCR低 SNCR 30%~80% ( 煤 粉 炉 30~50%) 850~1250℃ 5~10ppm 以尿素、氨水为主 不使用催化剂 炉膛中上部、炉膛出口、 水平烟道 不会导致 基本不造成积灰或腐蚀 基本没有压力损失
反应温度 NH3逃逸 还原剂 催化剂 还原剂喷射位置 SO2氧化为SO3 对空预器影响 系统压力损失
280~420℃ 3~5ppm 以NH3为主 成份主要为TiO2和V2O5 省煤器与SCR反应器间烟道内 会导致 逃逸氨与 SO3 反应造成积灰和 腐蚀 压力损失700~1000Pa 高灰分、碱金属会使催化剂磨 耗和中毒 受省煤器出口烟气温度的影响
SNCR关键技术
还原剂喷射位置
控制策略
流场模拟
二、煤粉锅炉SNCR脱硝系统
SNCR脱硝还原剂选择
项目 还原剂费用 运输费用 安全性 存储条件 存储方式 制备方法 初投资费用 运行费用 液氨 便宜 便宜 有毒 高压 液态 蒸发 便宜 便宜 氨水 较高 高 有害 常压 液态 蒸发 高 高 尿素 高 便宜 无害 常压,干态 固体/液体 水溶液 高 高
化学动力学模型 Chemical Kinetic Model (CKM)
精确计算每个化学反应时间和温度
二、煤粉锅炉SNCR脱硝系统
SNCR 流场模拟
二、煤粉锅炉SNCR脱硝系统
控制策略 SNCR工艺系统控制 每个机组设置一套SNCR控制系统,可以并入主机DCS; SNCR的控制系统独立运行,采用自动跟踪锅炉负荷、 温度调节控制和喷枪运行逻辑来满足SNCR系统需要; 根据锅炉出口两侧烟气量、NOx浓度不同,分别调整 两侧喷氨量,控制总脱硝效率。
SNCR (Selective Non-Catalytic Reduction) 在无催化剂的作用下,利用还原剂将烟气中的 氮氧化物还原为无害的氮气和水。 以上两种方法的结合。
•
SNCR烟气脱硝技术
– –
•
SNCR/SCR烟气脱硝技术
–
二、煤粉锅炉SNCR脱硝系统
1. NOX排放控制技术措施
煤粉锅炉烟气脱硝SNCR技术
煤粉锅炉烟气脱硝SCR技术
二、煤粉锅炉SNCR脱硝系统
2. 脱硝技术选择原则
1) NOX排放浓度和排放总量必须满足国家和当地环保要求
2) 脱硝工艺技术成熟、设备运行可靠
3) 尽量减少脱硝装置的建设投资 4) 脱硝装置布置合理,并满足现场条件,
5) 还原剂要有稳定、可靠来源
6) 系统设计应考虑对周边居民安全影响,避免事故发生 7) 脱硝系统还原剂、水和能源等消耗指标低、减少运行费用 8) 便于检修和维护