2.任意角的三角函数知识点及练习

合集下载

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。

2)终边与角α相同的角可写成α+k·360°(k∈Z)。

3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。

弧度与角度可以互相转换。

2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。

3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。

注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。

和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。

二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。

2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。

高中必修4三角函数第二节任意角的三角函数_学生版

高中必修4三角函数第二节任意角的三角函数_学生版

)
1 A. 2 C. 3 2
1 B.- 2 D.- 3 2 )
1 30.已知 cos(75° +α)= ,则 cos(105° -α)-sin(15° -α)的值为( 3 1 A. 3 2 C. 3 1 B.- 3 2 D.- 3
)
17.已知角 θ 的终边过点(4,-3),则 cos(π-θ)=( 4 A. 5 3 C. 5 4 B.- 5 3 D.- 5
)
18.设 A、B、C 是一个三角形的三个内角,则在①sin(A+B)-sinC;②cos(A+B)+cosC; π ③tan(A+B)+tanC;④cot(A+B)-cotC(C≠ ),这四个式子中值为常数的有( 2 A.1 个 B.2 个 C.3 个 D.4 个 )
1 27.已知 tan(π+α)=- ,求下列各式的值. 2 (1) -α - α- + +α ; -α
(2)sin(α-7π)·cos(α+5π).
28.求值:asin810° -btan(-765° )-(a-b)tan1 035° -2acos360° .
π 29.已知 2sin(x+ )=1,则 cos(x+π)=( 2
22.以下命题正确的是(
)
A.α、β 都是第一象限角,若 cosα>cosβ,则 sinα>sinβ B.α、β 都是第二象限角,若 sinα>sinβ,则 tanα>tanβ C.α、β 都是第三象限角,若 cosα>cosβ,则 sinα>sinβ D.α、β 都是第四象限角,若 sinα>sinβ,则 tanα>tanβ
11.下列三角函数判断错误的是( A.sin165° >0 C.tan170° >0
) B.cos280° >0 D.tan310° <0 )

任意角的三角函数练习题

任意角的三角函数练习题

任意角的三角函数练习题三角函数是数学中的重要概念,它对于几何图形的研究以及各种物理问题的分析起着重要作用。

本文将通过一系列任意角的三角函数练习题,帮助读者更好地理解和掌握三角函数的概念和性质。

一、简介三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等,它们是以一个角作为自变量,并返回该角对应的三角比值。

在欧几里得平面几何中,我们可以将一个角定义为一个圆心角,其顶点在圆上,其两边是圆弧的一部分。

根据这个定义,我们可以在图形上绘制并计算三角函数的值。

二、正弦函数练习题1. 计算正弦函数在特定角度下的值:a) sin(30°)b) sin(45°)c) sin(60°)d) sin(90°)e) sin(180°)解答:a) sin(30°) = 0.5b) sin(45°) = 0.707c) sin(60°) = 0.866d) sin(90°) = 1e) sin(180°) = 02. 根据已知的正弦值求解角度:a) sin(x) = 0.5b) sin(x) = 0.866c) sin(x) = 1解答:a) x = 30°或150°b) x = 60°或120°c) x = 90°或270°三、余弦函数练习题1. 计算余弦函数在特定角度下的值:a) cos(0°)b) cos(30°)c) cos(45°)d) cos(60°)解答:a) cos(0°) = 1b) cos(30°) = 0.866c) cos(45°) = 0.707d) cos(60°) = 0.5e) cos(90°) = 02. 根据已知的余弦值求解角度:a) cos(x) = 0.5b) cos(x) = 0.707c) cos(x) = 1解答:a) x = 60°或300°b) x = 45°或315°c) x = 0°或360°四、正切函数练习题1. 计算正切函数在特定角度下的值:a) tan(0°)c) tan(60°)d) tan(90°)解答:a) tan(0°) = 0b) tan(45°) = 1c) tan(60°) = 1.732d) tan(90°) = 无定义2. 根据已知的正切值求解角度:a) tan(x) = 0b) tan(x) = 1c) tan(x) = 1.732解答:a) x = 0°或180°b) x = 45°或225°c) x = 60°或240°五、其他三角函数练习题1. 求解三角函数的关系:a) cos^2(x) + sin^2(x) = ?b) 1 + tan^2(x) = ?解答:a) cos^2(x) + sin^2(x) = 1b) 1 + tan^2(x) = sec^2(x)2. 求解三角函数的和差公式:a) sin(x + y) = ?b) cos(x - y) = ?解答:a) sin(x + y) = sin(x)cos(y) + cos(x)sin(y)b) cos(x - y) = cos(x)cos(y) + sin(x)sin(y)结论:通过以上一系列任意角的三角函数练习题,我们巩固了对于正弦函数、余弦函数、正切函数等常见三角函数的认识和理解。

任意角的三角函数练习题

任意角的三角函数练习题

任意角的三角函数(一)三角函数的定义角α的终边上一点P (a ,b ),它与原点的距离r =22b a +>0,则(1)r b 叫做三角形的正弦,即sin α=r b; (2) r a 叫做三角形的余弦,即cos α=r a;(3) a b 叫做三角形的正切,即tan α=.ab1.已知角α的终边和单位圆的交点为P ,则P 的坐标为( )A .(sinα,cos α)B .(cosα,sin α)C .(sinα,tan α)D .(tanα,sin α) 2.已知角α的终边过点P,则sinα=______,cos α=_________,tanα=________3.角α的终边上有一点P (-3a ,4a ),a ∈R ,且a ≠0,则2sinα+cos α=____.4.点P是角α终边上的一点,且,则b 的值是________.5.已知角α的终边经过点P (x ,3-)(x >0).且cos α=2x,则tan α________. (二)三角函数值符号的判断.1.若45πα=,则点P (cosα,sin α)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知0tan cos <⋅θθ,那么角θ是( )A .第一或第二象限B .第二或第三象限C .第三或第四象限D .第一或第四象限 3.函数xxx x x x y tan tan cos cos sin sin ++=的值域是 . 4.sin2·cos3·tan4的符号是( )A .小于0B .大于0C .等于0D .不确定(三)三角函数求值.(1)5cos1803sin902tan 06sin 270-+- ;(2)cos sin tan sin cos 364344ππππππ-+-+.(3)5sin902cos0cos180-++ .(4)213cos tan tan sin cos 24332ππππ-+-+π.同角三角函数基本关系式公式:1cos sin 22=+αα ; αααcos sin tan =1.若α是第四象限角,125tan -=α,则αsin 等于( ) A .51 B .51- C .135 D .135- 2.化简 160sin 12-的结果是 .3.下列三个式子:① 100cos 100sin 12=-;② ααπαsin )2tan(cos =+; ③αααααtan 2sin 1sin 1sin 1sin 1=+---+正确是有 个4.已知55sin =α,则=-αα44cos sin . 5.已知1312sin =α,且παπ-<<-23,则=αtan . 6.已知2cos sin =-αα,),0(πα∈,则=αtan .7.=---10sin 110sin 10cos 10sin 212.8.ααααsin 1cos cos 1cos 1-=+-成立的α的范围是 .9.已知53sin +-=m m θ,524cos +-=m m θ,其中πθπ<<2,则=θtan . 10.化简下列各式:(1)若α为第三象限角,化简αααα22cos 1sin 2sin 1cos -+-;(2)()ααααtan 1cos tan 11sin 22++⎪⎭⎫ ⎝⎛+11.已知]2,0[πθ∈,而θsin ,θcos 是方程012=++-k kx x 的两个实数根,求k 和θ的值.诱导公式口诀:奇变偶不变,符号看象限.将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变 1、sin1560°的值为( ) A 、21-B 、23-C 、21D 、232、若(),2,53cos παππα<≤=+则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 54-3、sin34π·cos625π·tan45π的值是( )A .-43B .43C .-43D .43 4、)2cos()2sin(21++-ππ ( ) A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25、已知()21sin -=+πα,则()πα7cos 1+的值为 ( ) A .332 B . -2 C . 332- D . 332± 6、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π ( ) A 、21-B 、21C 、23-D 、23 7、若a =αtan ,则()()απαπ+--3cos 5sin = ____ ____.8、已知x x f 3cos )(cos =,则)30(sinf 的值为 。

《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习

《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习

《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习一、任意角的三角函数【知识梳理】1.设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0y x xα=≠.2.三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3.三角函数线:sin α=MP ,cos α=OM ,tan α=AT .4.同角三角函数的基本关系式:(平方关系式)()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;(商数关系式)()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.【典型例题】1.三角函数的定义:例1、已知sinαtanα≥0,则α的取值集合为.例2、角α的终边上有一点P(m,5),且)0(,13cos ≠=m m α,则sinα+cosα=______.例3、已知角θ的终边在直线y =33x 上,则sin θ=;θtan =例4、设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是.例5、求43π角的正弦、余弦和正切值.例6、已知角α的终边经过点P(4,-3),求2sin α+cos α的值;2.三角函数线例1、sin(-1770°)·cos1500°+cos(-690°)·sin780°+tan405°=.例2、化简:ππππ37sin 3149cos 21613tan 3325cos 342222222m n n m --+=.例3、求下列三角函数值:(1)sin(-1080°)(2)tan 13π3(3)cos780°3、三角函数的基本关系一、选择题1、已知A 是三角形的一个内角,sin A +cos A =23,则这个三角形是()A.锐角三角形B.钝角三角形C.不等腰直角三角形D.等腰直角三角形2、若θθcos ,sin 是方程0242=++m mx x 的两根,则m 的值为A.51+B.51-C.51±D.51--3、已知sinαcosα=18,则cosα-sinα的值等于()A.±34B.±23C.23D.-234、已知θ是第三象限角,且95cos sin 44=+θθ,则=θθcos sin ()A.32B.32-C.31D.31-二、填空题1、若15tan =α,则=αcos ;=αsin .2、若3tan =α,则αααα3333cos 2sin cos 2sin -+的值为________________.3、已知2cos sin cos sin =-+αααα,则ααcos sin 的值为.4、已知524cos ,53sin +-=+-=m m m m θθ,则m=_________;=αtan .三、解答题1、已知51sin =α,求ααtan ,cos 的值.2、已知22cos sin =+αα,求αα22cos 1sin 1+的值.3、已知51cos sin =+ββ,且πβ<<0.(1)求ββcos sin 、ββcos sin -的值;(2)求βsin 、βcos 、βtan 的值.二、三角函数诱导公式:【基础知识】1、三角函数诱导公式(2k πα+)的本质是:奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).2、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正余弦互换,符号看象限.3、诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2k π+α,02απ≤<;(2)转化为锐角三角函数。

《任意角的三角函数》知识点总结及典型例题

《任意角的三角函数》知识点总结及典型例题

任意角的三角函数模块一、角的概念及其推广要点一、角的相关概念 (1)角的概念角可以看成是由平面内一条射线(起始边)绕着端点旋转到一个新的位置(终边)所形成的图形。

(2)角的分类⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角要点二、终边相同角 (1)终边相同角的定义设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{},360|Z k k S ∈︒⋅+==αββ。

集合S 的每一个元素都与α的终边相等,当0=k 时,对应元素为α。

(2)注意①相等的角终边一定相同,但终边相同的角不一定相等;终边相同的角有无数个,它们相差︒360的整数倍。

②角的集合表示形式是不唯一的。

要点三、象限角与轴线角(1)象限角定义:角α顶点与原点重合,角的始边与x 轴非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为: 第二象限角的集合为:第四象限角的集合为:终边落在x 轴正半轴上角的集合: 终边落在x 轴负半轴上角的集合: 终边在x 轴上的角的集合为: 终边落在y 轴正半轴上角的集合: 终边落在y 轴负半轴上角的集合: 终边在y 轴上的角的集合为: 终边落在坐标轴上角的集合:(2)注意:终边落在同一条直线上的角相差︒180的整数倍,终边落在同一条射线上的角相差︒360的整数倍。

要点四、区间角、区域角区间角是介于两个角之间的角的集合,区域角是介于某两角终边之间的角的集合。

区域角是无数个区间角的集合。

注意:锐角都是第一象限角,但第一象限角不都是锐角;小于90°的角不都是锐角,它还包括零角和负角,只有小于90°的正角才是锐角。

考点一、求终边相同的角的集合例1.(1)写出所有与︒-650终边相同的角的集合,并在︒︒360~0范围内,找出与︒-650角终边相同的角。

(2)把︒-2011写成)3600(360︒≤≤︒+⋅ααk 的形式。

任意角的三角函数基本知识点(要)

任意角的三角函数基本知识点(要)

任意角的三角函数知识点一、终边角:与α终边相同的角表示为。

分别写出终边在下列位置时的角α的集合:1.x轴上2.y轴上3.坐标轴上4.第一象限5.第二象限6.第三象限7.第四象限 8.直线y=x上二、弧度制:1、定义:2、公式:|α|=3、换算:①度换弧度:180°=弧度; 1°=弧度②弧度换度:1弧度=度;扇形:弧长L==,面积S==三、任意角的三角函数:①定义:角α终边的终边与单位圆的交点P(x,y),则sinα= cosα= tanα=角α终边上任意一点交点P(x,y),则r= ,则sinα= cosα= tanα=②三角函数线:角的终边与单位圆交于点P,过点P作轴的垂线,垂足为M,则正弦线是余弦线是即sinα= ,cosα= .过点A(1,0)作交于点T即tonα= .③同角三角函数关系式:④三角函数的符号:(1)商数关系:(2)平方关系:⑤诱导公式:2kπ+α与απ—α与απ+α与α)(βα+C )(βα-C)(βα+S )(βα-S )(βα+T )(βα-T⑧二倍角公式: α2Sα2C α2T三角函数的图象与性质答案一、终边角:与α终边相同的角表为k ·360° + α 。

分别写出终边在下列位置时的角α的集合: 1. x 轴上 {},k k Z ααπ=∈2. y 轴上 ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭3. 坐标轴上,2k k Z ααπ⎧⎫=∈⎨⎬⎩⎭4. 第一象限22,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭5. 第二象限22,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭6. 第三象限322,2k k k Z παππαπ⎧⎫++∈⎨⎬⎩⎭7. 第四象限3222,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭8. 第一或第三象限,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭9. 第二或第四象限,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭10. 直线y =x 上,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭11. 直线y =-x 上3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭二、 弧度制:1、定义:弧长等于半径的弧所对的圆心角叫一弧度的角.2、 公式:|α|=lr3、 换算:① 度换弧度:180°=π弧度;1°=180π弧度②弧度换度:1弧度=180π度;扇形: 弧长L =180n rπ= r α, 面积S =2360n r π=12lr三、 任意角的三角函数:①定义:角α终边上任意一点P(x ,y),则r =,六个三角函数的定义依次是sin y r α=、cos x r α=、tan y α=cot x α=sec r α=csc r α= ②三角函数线:角的终边与单位圆交于点P ,过点P 作x 轴的垂线,垂足为M ,则正弦线是MP 余弦线是OM即sin α=MP,cos α= OM.过点A(1,0)作 切线交 角的终边或反向延长线 于点T ,则正切线是AT 。

(完整版)任意角的三角函数练习题集与答案解析详解

(完整版)任意角的三角函数练习题集与答案解析详解

任意角的三角函数一、选择题1.以下四个命题中,正确的是( )A .在定义域内,只有终边相同的角的三角函数值才相等B .{|=k +6π,k ∈Z }≠{|=-k +6π,k ∈Z } C .若是第二象限的角,则sin2<0 D .第四象限的角可表示为{|2k +23<<2k ,k ∈Z }2.若角的终边过点(-3,-2),则( ) A .sin tan >0 B .cos tan >0 C .sin cos >0 D .sin cot >03.角的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin 的值是( ) A .22 B .-22 C .±22 D .14.α是第二象限角,其终边上一点P (x ,5),且cos α=42x ,则sin α的值为( )A .410B .46C .42D .-4105.使lg (cos θ·tan θ)有意义的角θ是( )A .第一象限角B .第二象限角C .第一或第二象限角D .第一、二象限角或终边在y 轴上6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角7. 已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<si nθ},那么E∩F 是区间( )二、填空题1.已知角的终边落在直线y =3x 上,则sin =________. 2.已知P (-3,y )为角的终边上一点,且sin =1313,那么y 的值等于________. 3.已知锐角终边上一点P (1,3),则的弧度数为________.4.(1)sin49πtan 37π_________ 5.三、解答题1.已知角的终边过P (-3,4),求的三角函数值2.已知角的终边经过点P (x ,-3)(x >0).且cos =2x,求sin 、cos 、tan 的值.3.(1)已知角α终边上一点P(3k ,-4k)(k <0),求sinα,cosα,tanα 的值;4. 一个扇形的周长为l,求扇形的半径、圆心角各取何值时,此扇形的面积最大.9 .化简或求值:三角函数的诱导公式一、选择题(本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选择中,只有一项是符合题目要求的.)1、与-463°终边相同的角可表示为( ) A .k·360°+436°(k ∈Z ) B .k·360°+103°(k ∈Z ) C .k·360°+257°(k ∈Z )D .k·360°-257°(k ∈Z )2、下列四个命题中可能成立的一个是( ) A 、21cos 21sin ==αα且 B 、1cos 0sin -==αα且 C 、1cos 1tan -==αα且 D 、α是第二象限时,αααcos tan sia -= 3、若54sin =α,且α是第二象限角,则αtan 的值为( ) A 、34- B 、43 C 、43± D 、34±4、若2cos sin =+αα,则ααcot tan +等于( )A 、1B 、2C 、-1D 、-2 1、 ︒︒+450sin 300tan 的值为( ) A 、31+ B 、31- C 、31-- D 、31+-5、若A 、B 、C 为△ABC 的三个内角,则下列等式成立的是( ) A 、A C B sin )sin(=+ B 、A C B cos )cos(=+ C 、A C B tan )tan(=+ D 、A C B cot )cot(=+6、)2cos()2sin(21++-ππ等于 ( )A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos27、sinαcosα=81,且4π<α<2π,则cosα-sinα的值为( ) A .23B .23-C .43 D .43-8、在△ABC 中,若最大角的正弦值是22,则△ABC 必是( ) A 、等边三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形9、下列不等式中,不成立的是( )A 、︒︒>140sin 130sin B 、︒︒>140cos 130cos C 、︒︒>140tan 130tan D 、︒︒>140cot 130cot10、已知函数2cos)(xx f =,则下列等式成立的是( ) A 、)()2(x f x f =-π B 、)()2(x f x f =+π C 、)()(x f x f -=- D 、)()(x f x f =-11、若θsin 、θcos 是关于x 的方程0242=++m mx x 的两个实根,则m 值为( )A 、⎪⎭⎫⎢⎣⎡-∈0,34mB 、51-=mC 、51±=mD 、51+=m 12、已知()sin()cos()4f x a x b x παπβ=++++(,,,a b αβ为非零实数),(2011)5f =则(2012)f =( )A .1B .3C .5D .不能确定二、填空题(本大题共4个小题,每小题5分,共20分.将答案填在题中横线上)13、化简=+-+βαβαβα222222cos cos sin sin sin sin .14、若0cos 3sin =+αα,则ααααsin 3cos 2sin 2cos -+的值为 .15、=-︒)945cos( .16、=⋅⋅⋅⋅⋅⋅︒︒︒︒89tan 3tan 2tan 1tan .三、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17、求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、 化简:)(cos )tan()2tan()cos()(sin 32πααππααππα--⋅+--+⋅+.19、已知21)sin(=+απ,求απααπcos )tan()2sin(⋅-+-的值.20、已知54sin -=α. 求ααtan cos 和的值 .21、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+22、已知1)sin(=+βα,求证 0tan )2tan(=++ββα。

高中 任意角的三角函数 知识点+例题 全面

高中 任意角的三角函数 知识点+例题 全面

辅导讲义――任意角的三角函数教学内容任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad 进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x. [试一试]1.若α=k ·180°+45°(k ∈Z ),则α是第______象限角.2.已知角α的终边经过点(3,-1),则sin α=________.1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想.[练一练]若sin α<0且tan α>0,则α是第______象限角.考点一角的集合表示及象限角的判定 1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有______个.2.终边在直线y =3x 上的角的集合为________.3.在-720°~0°范围内找出所有与45°终边相同的角为________.4.设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么集合M ,N 的关系是______.[类题通法]1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.考点二 三角函数的定义[典例] (1)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为______. (2)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2=________.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.[针对训练]已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.考点三扇形的弧长及面积公式[典例](1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[类题通法]弧度制应用的关注点(1)弧度制下l=|α|·r,S=12lr,此时α为弧度.在角度制下,弧长l=nπr180,扇形面积S=nπr2360,此时n为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.[针对训练]已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[课堂练通考点]1.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是________.2.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是________.4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.5.已知角α 的终边经过点P (x ,-6),且tan α=-35,则x 的值为________. 6.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=______.第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是______.2.已知cos θ·tan θ<0,那么角θ是第________象限角.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=______. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是________(填写序号).6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .10.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;第Ⅱ组:重点选做题巩固基础和能力提升训练1.满足cos α≤-12的角α的集合为________. 2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.。

必修四任意角的三角函数(附规范标准答案)

必修四任意角的三角函数(附规范标准答案)

任意角的三角函数(一)[学习目标] 1.借助单位圆理解任意角的三角函数定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.通过对任意角的三角函数的定义理解终边相同角的同一三角函数值相等.知识点一 三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α, 即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ; (3)y x叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r,cosα=x r ,tan α=yx.思考 角α三角函数值的大小与角α终边上的点P 离原点距离的远近有关吗?答案 角α的三角函数值是比值,是一个实数,这个实数的大小与点P (x ,y )在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关. 知识点二 正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).思考三角函数在各象限的符号由什么决定?答案三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z.题型一三角函数定义的应用例1 已知θ终边上一点P(x,3)(x≠0),且cos θ=1010x,求sin θ,tan θ.解由题意知r=|OP|=x2+9,由三角函数定义得cos θ=xr=xx2+9.又∵cos θ=1010x,∴xx2+9=1010x.∵x≠0,∴x=±1.当x=1时,P(1,3),此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3.跟踪训练1 (1)已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值; (2)已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值.解 (1)r =-4a2+3a2=5|a |.若a >0,则r =5a ,α是第二象限角,则 sin α=y r =3a 5a =35,cos α=x r =-4a5a =-45,tan α=y x =3a-4a =-34,若a <0,则r =-5a ,α是第四象限角,则 sin α=-35,cos α=45,tan α=-34.(2)因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点. 则r =a 2+3a2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32,cos α=a2a =12,tan α=3a a=3.若a <0,则α为第三象限,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3a a=3.题型二 三角函数值符号的判断 例2 判断下列三角函数值的符号: (1)sin 3,cos 4,tan 5; (2)sin(cos θ)(θ为第二象限角). 解 (1)∵π2<3<π<4<3π2<5<2π,∴3,4,5分别在第二、三、四象限, ∴sin 3>0,cos 4<0,tan 5<0. (2)∵θ是第二象限角, ∴-π2<-1<cos θ<0,∴sin(cos θ)<0.跟踪训练2 若sin θ<0且tan θ<0,则θ是第 象限的角. 答案 四解析 ∵sin θ<0,∴θ是第三或第四象限或终边在y 轴的非正半轴上的角,又tan θ<0,∴θ是第四象限的角.题型三 诱导公式一的应用 例3 求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64.(2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.跟踪训练3 求下列各式的值:(1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4; (2)sin 810°+tan 765°-cos 360°.解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32;(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.利用任意角的三角函数的定义求值,忽略对参数的讨论而致错例4 已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值. 错解 令x =24k ,y =7k ,则有r =24k 2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.错因分析 点P (24k,7k )中参数k 只告诉了k ≠0,而没有告诉k 的符号,需分k >0与k <0讨论,而上述解法错在默认为k >0. 正解 当k >0时,令x =24k ,y =7k , 则有r =24k2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724. 当k <0时,令x =24k ,y =7k ,则有r =-25k , ∴sin α=y r =-725,cos α=xr =-2425,tan α=y x =724.1.cos(-11π6)等于( )A.12 B .-12 C.32 D .-32 2.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-2 3.如果角α的终边过点P (2sin 30°,-2cos 30°),则cos α的值等于( ) A.12 B .-12 C .-32 D.324.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α= .5.已知角α的终边经过点P (2,-3),求α的三个函数值.一、选择题1.若sin θcos θ>0,则θ在( ) A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限2.sin(-1 380°)的值为( )A .-12 B.12 C .-32 D.323.设角α终边上一点P (-4a,3a )(a <0),则2sin α+cos α的值为( ) A.25 B.25或-25 C .-25D .与a 有关 4.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π6 6.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .5 二、填空题7.使得lg(cos αtan α)有意义的角α是第 象限角.8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为 . 9.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .10.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域是 .三、解答题11.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.12.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)tan 405°-sin 450°+cos 750°.当堂检测答案1.答案 C解析 cos(-116π)=cos(-2π+π6)=cos π6=32.2.答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2. 3.答案 A解析 ∵2sin 30°=1,-2cos 30°=-3,∴r =2,∴cos α=12.4.答案 -43解析 ∵cos α=332+y 2=35,∴32+y 2=5,∴y 2=16,∵y <0,∴y =-4,∴tan α=-43. 5.解 因为x =2,y =-3, 所以r =22+-32=13.于是sin α=y r=-313=-31313,cos α=x r=213=21313,tan α=y x =-32.课时精练答案一、选择题 1.答案 B 2.答案 D解析 sin(-1 380°)=sin(-360°×4+60°)=sin 60°=32.3.答案 C 解析 ∵a <0,∴r =-4a2+3a 2=5|a |=-5a ,∴cos α=x r =45,sin α=yr =-35,∴2sin α+cos α=-25.4.答案 D解析 ∵tan x <0,∴角x 的终边在第二、四象限, 又sin x -cos x <0,∴角x 的终边在第四象限.故选D. 5.答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限,且tan α=cos 2π3sin 2π3=-33, ∴角α的最小正角为2π-π6=11π6. 6.答案 A解析 ∵r =b 2+16,cos α=-b r =-b b 2+16=-35. ∴b =3.二、填空题7.答案 一或二解析 要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.8.答案 -2<a ≤3解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0,∴-2<a ≤3.9.答案 2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∵|OP |=m 2+n 2=10|m |=-10m =10.∴m =-1,n =-3,∴m -n =2.10.答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0, sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2,故函数y =|sin x |cos x +|cos x |cos x -2|sin x cos x |sin x cos x的值域为{-4,0,2}. 三、解答题11.解 当角α的终边在第一象限时,在角α的终边上取点P (1,2),由r =|OP |=12+22=5, 得sin α=25=255,cos α=15=55,tan α=2; 当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2),由r =|OQ |=-12+-22=5, 得sin α=-25=-255, cos α=-15=-55, tan α=2.12.解 (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0°=a 2+b 2-2ab =(a -b )2.(2)tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32.。

(完整版)三角函数知识点归纳

(完整版)三角函数知识点归纳

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。

(完整版)高中数学三角函数复习专题

(完整版)高中数学三角函数复习专题

高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。

(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。

2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。

(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。

(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。

任意角和弧度制及任意角的三角函数考点及例题讲解

任意角和弧度制及任意角的三角函数考点及例题讲解

任意角和弧度制及任意角的三角函数考纲解读 1.通过角的变换,判断角所在象限;2.常见的角度与弧度之间的转化;3.已知角的终边求正弦、余弦、正切值;4.利用三角函数线求角的大小或角的范围;5.利用扇形面积公式和弧长公式进行相关计算.[基础梳理]1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按逆时针方向旋转形成的角; ②负角:按顺时针方向旋转形成的角;③零角:如果一条射线没有作任何旋转,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2k π,k ∈Z }. 2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角. (2)角α的弧度数公式:|α|=lr .(3)角度与弧度的换算:360°=2π rad,1°=π180 rad,1 rad =(180π)°≈57°18′.(4)扇形的弧长及面积公式: 弧长公式:l =α·r . 面积公式:S =12l ·r =12α·r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫作角α的正弦线、余弦线和正切线.4.终边相同的角的三角函数 sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α(其中k ∈Z ),即终边相同的角的同一三角函数的值相等.[三基自测]1.单位圆中,200°的圆心角所对的弧长为( ) A .10π B .9π C.9π10 D.10π9答案:D2.若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C3.弧长为3π、圆心角为34π的扇形半径为________.答案:44.(必修4·4.1例题改编)α终边上一点P (-3,4).则sin α=________,cos α=________,tan α=________.答案:45 -35 -435.(2017·高考全国卷Ⅰ改编)若α的终边过点(3,4),则cos ⎝⎛⎭⎫α-π4=__________. 答案:7210[考点例题]考点一 终边相同的角及象限角|易错突破高考总复习·数学(理)第三章 三角函数、解三角形[例1] (1)若角α满足α=2k π3+π6(k∈Z ),则α的终边一定在( )A .第一象限或第二象限或第三象限B .第一象限或第二象限或第四象限C .第一象限或第二象限或x 轴非正半轴上D .第一象限或第二象限或y 轴非正半轴上(2)已知sin α>0,cos α<0,则12α所在的象限是( )A .第一象限B .第三象限C .第一或第三象限D .第二或第四象限(3)下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )[解析] (1)由α=2k π3+π6,k ∈Z ,当k =0时,α=π6,终边在第一象限.当k =1时,α=2π3+π6=5π6,终边在第二象限.当k =-1时,α=-2π3+π6=-π2,终边在y 轴的非正半轴上,故选D.(2)因为sin α>0,cos α<0,所以α为第二象限角,即π2+2k π<α<π+2k π,k ∈Z ,则π4+k π<12α<π2+k π,k ∈Z .当k 为偶数时,12α为第一象限角;当k 为奇数时,12α为第三象限角,故选C.(3)由定义知终边相同的角中不能同时出现角度和弧度,应为π4+2k π或k ·360°+45°(k ∈Z ).[答案] (1)D (2)C (3)C [易错提醒][纠错训练]1.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为:β=45°+k ×360°(k ∈Z ), 则令-720°<45°+k ×360°<0°, 得-765°<k ×360°<-45°, 解得-765360<k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°2.终边在直线y =3x 上的角的集合为__________. 解析:在坐标系中画出直线y =3x , 可以发现它与x 轴正半轴的夹角是π3,终边在直线y =3x 上的角的集合为 ⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z .答案:⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z考点二 扇形弧长、面积公式的应用|方法突破[例2] (1)(2018·合肥模拟)《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?( )A .120B .240C .360D .480(2)(2018·太原模拟)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1D .2 sin 1[解析] (1)由题意可得:S =12×8×30=120(平方步).(2)如图:∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =AC sin ∠AOC =1sin 1,即r =1sin 1,从而弧AB 的长为l =α·r =2sin 1.[答案] (1)A (2)C [方法提升][母题变式]将本例(1)改为已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8D .1解析:设半径为r ,圆心角的弧度数为θ, 由S =12θr 2,得8=12×θ×4,∴θ=4.答案:A考点三 三角函数的定义|模型突破角度1 用三角函数的定义求值[例3] (1)(2018·大同模拟)已知角α的终边经过点P (-x ,-6),且cos α=-513,则x的值为________.(2)已知角α的终边在直线y =-3x 上,则10sin α+3cos α的值为________. [解析] (1)∵cos α=-x(-x )2+(-6)2=-x x 2+36=-513,∴⎩⎪⎨⎪⎧x >0,x 2x 2+36=25169,解得x =52.(2)设α终边上任一点为P (k ,-3k ), 则r =k 2+(-3k )2=10|k |. 当k >0时,r =10k , ∴sin α=-3k 10k =-310,1cos α=10kk=10, ∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k=-10, ∴10sin α+3cos α=310-310=0.[答案] (1)52 (2)0[模型解法]角度2 三角函数值符号的判断[例4] (1)(2018·怀化模拟)sin 2·cos 3·tan 4的值( ) A .小于0 B .大于0 C .等于0D .不存在(2)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] (1)∵π2<2<3<π<4<32π.∴sin 2>0,cos 3<0,tan 4>0. ∴sin 2·cos 3·tan 4<0.(2)由题意可得⎩⎪⎨⎪⎧ cos α<0,tan α<0,则⎩⎪⎨⎪⎧sin α>0,cos α<0,所以角α的终边在第二象限,故选B.[答案] (1)A (2)B [模型解法]角度3 利用三角函数线比较大小,解不等式[例5] (1)(2018·石家庄模拟)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α[解析] 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.[答案] C (2)y =sin x -32的定义域为________. [解析] ∵sin x ≥32,作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .[答案] ⎩⎨⎧⎭⎬⎫x |2k π+π3≤x ≤2k π+2π3,k ∈Z[模型解法]形如sin α≥a 或sin α≤a ()a ∈[-1,1]的解,其关键点为: (1)作出sin α=a 的函数线;(2)根据不等式,确定α的转动方向; (3)写出α的区域.[高考类题](2014·高考大纲全国卷)设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b解析:∵b =cos 55°=sin 35°>sin 33°=a ,∴b >a . 又∵c =tan 35°=sin 35°cos 35°>sin 35°=cos 55°=b ,∴c >b .∴c >b >a .故选C. 答案:C[真题感悟]1.[考点一、二] (2014·高考新课标全国卷Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案:C2.[考点二、三](2017·高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=__________.解析:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=13(k ∈Z ).1答案:3。

第1节 任意角和弧度制及任意角的三角函数(经典练习及答案详解)

第1节 任意角和弧度制及任意角的三角函数(经典练习及答案详解)

第1节 任意角和弧度制及任意角的三角函数知识梳理1.角的概念的推广(1)定义:角可以看成一条射线绕着它的端点旋转所形成的图形. (2)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角W.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1 rad. (2)公式3.任意角的三角函数 (1)定义(2)定义的推广设P(x,y)是角α终边上异于原点的任一点,它到原点的距离为r(r>0),那么sin α=yr;cos α=xr,tan α=yx(x≠0).1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制必须一致,不可混用.3.象限角4.轴线角诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.( ) (4)若α为第一象限角,则sin α+cos α>1.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)锐角的取值范围是⎝ ⎛⎭⎪⎫0,π2.(2)第一象限角不一定是锐角.2.已知角θ的终边过点P (-12,m ),cos θ=-1213,则m 的值为( ) A.-5 B.5C.±5D.±8答案 C解析 由三角函数的定义可知cos θ=-12(-12)2+m2=-1213,解得m =±5. 3.在-720°~0°范围内,所有与角α=45°终边相同的角β构成的集合为________. 答案 {-675°,-315°}解析 所有与角α终边相同的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ),得-765°≤k ×360°<-45°(k ∈Z ). 解得k =-2或k =-1,∴β=-675°或β=-315°.4.(2020·全国Ⅱ卷)若α为第四象限角,则( ) A.cos 2α>0 B.cos 2α<0 C.sin 2α>0D.sin 2α<0答案 D解析 ∵α是第四象限角,∴sin α<0,cos α>0,∴sin 2α=2sin αcos α<0,故选D. 5.(多选题)(2021·武汉调研)下列说法正确的是( ) A.时钟经过两个小时,时针转过的角度是60° B.钝角大于锐角C.三角形的内角必是第一或第二象限角D.若α是第二象限角,则α2是第一或第三象限角 答案 BD解析 对于A ,时钟经过两个小时,时针转过的角是-60°,故错误; 对于B ,钝角一定大于锐角,显然正确;对于C ,若三角形的内角为90°,则是终边在y 轴正半轴上的角,故错误; 对于D ,∵角α的终边在第二象限, ∴2k π+π2<α<2k π+π,k ∈Z , ∴k π+π4<α2<k π+π2,k ∈Z .当k =2n ,n ∈Z 时,2n π+π4<α2<2n π+π2,n ∈Z ,得α2是第一象限角;当k =2n +1,n ∈Z 时,(2n +1)π+π4<α2<(2n +1)π+π2,n ∈Z ,得α2是第三象限角,故正确.6.(2021·菏泽质检)密位广泛用于航海和军事,我国采取的“密位制”是6 000密位制,即将一个圆周分成6 000等份,每一等份是一个密位,那么60密位等于________rad. 答案 π50解析 ∵周角为2π rad , ∴1密位=2π6 000=π3 000(rad), ∴60密位=π3 000·60=π50(rad).考点一 角的概念及其表示1.下列与角9π4的终边相同的角的表达式中正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z ) C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )答案 C解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,排除A 、B ,易知D 错误,C 正确.2.(多选题)(2021·海南调研)已知α为第三象限角,则α2的终边所在的象限可能是( ) A.第一象限 B.第二象限 C.第三象限D.第四象限答案 BD解析 ∵α为第三象限角, ∴π+2k π<α<3π2+2k π,k ∈Z , ∴π2+k π<α2<3π4+k π,k ∈Z ,当k =2m ,m ∈Z 时,π2+2m π<α2<3π4+2m π,m ∈Z ,此时α2在第二象限, 当k =2m +1,m ∈Z 时,3π2+2m π<α2<7π4+2m π,m ∈Z , 此时α2在第四象限.综上,α2的终边在第二或第四象限.3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________________. 答案⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3解析 终边在直线y =3x 上的角α的集合为⎩⎨⎧⎭⎬⎫α|α=π3+k π,又由α∈[-2π,2π),即-2π≤π3+k π<2π,k ∈Z , 解得k =-2,-1,0,1,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.感悟升华 1.确定nα,αn (n ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出nα或αn 的范围,然后根据n 的可能取值讨论确定nα或αn 的终边所在位置(也可采用等分象限角的方法). 2.利用终边相同的角的集合求适合某些条件的角:先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. 考点二 弧度制及其应用【例1】已知一扇形的圆心角为α,半径为R ,弧长为l ,若α=π3,R =10 cm ,求:(1)扇形的面积;(2)扇形的弧长及该弧所在弓形的面积. 解 (1)由已知得α=π3,R =10, ∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2). (2)l =α·R =π3·10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3 =12×10π3·10-12×102×32=50π-7533(cm 2).感悟升华 应用弧度制解决问题时应注意:(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. 【训练1】 (1)(多选题)(2020·青岛质检)已知扇形的周长是6,面积是2,下列选项可能正确的有( ) A.圆的半径为2 B.圆的半径为1 C.圆心角的弧度数是1 D.圆心角的弧度数是2(2)已知扇形的周长为8 cm ,则该扇形面积的最大值为________cm 2. 答案 (1)ABC (2)4解析 (1)设扇形半径为r ,圆心角弧度数为α,则由题意得⎩⎨⎧2r +αr =6,12αr 2=2,解得⎩⎪⎨⎪⎧r =1,α=4或⎩⎪⎨⎪⎧r =2,α=1,可得圆心角的弧度数是4或1. (2)设扇形半径为r cm ,弧长为l cm , 则2r +l =8,S =12rl =12r ×(8-2r ) =-r 2+4r =-(r -2)2+4, 所以S max =4(cm 2).考点三 三角函数的定义及应用角度1 求三角函数值【例2】已知角α的终边与单位圆的交点为P ⎝ ⎛⎭⎪⎫-12,y ,则sin α·tan α等于( )A.-33 B.±33C.-32D.±32答案 C解析 由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3, 此时sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3, 此时,sin α·tan α=-32. 综上sin α·tan α=-32. 角度2 由三角函数值求参数【例3】已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12 B.-32 C.12D.32答案 C解析 由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,所以m >0,解得m =12.角度3 三角函数值的符号【例4】 (多选题)(2021·重庆调研)已知|cos θ|=cos θ,|tan θ|=-tan θ,则角θ2的终边可能在( ) A.第二、四象限 B.第一、三象限 C.y 轴上D.x 轴上答案 AD解析∵|cos θ|=cos θ,|tan θ|=-tan θ,∴cos θ≥0,tan θ≤0,∴角θ的终边在第四象限或x轴正半轴上,∴角θ2的终边在第二、四象限或x轴上.故选AD.感悟升华 1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.【训练2】(1)若sin θ·cos θ<0,tan θsin θ>0,则角θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上的一点,且sin θ=-31010,则y=________.答案(1)D(2)-3解析(1)由tan θsin θ>0,得1cos θ>0,所以cos θ>0.又sin θ·cos θ<0,所以sin θ<0,所以θ为第四象限角.故选D.(2)因为sin θ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010.解得y =-3.A 级 基础巩固一、选择题1.小明出国旅游,当地时间比北京时间晚一个小时,他需要调整手表的时间,则时针转过的角的弧度数为( ) A.π3 B.π6C.-π3D.-π6答案 B解析 因为当地时间比北京时间晚一个小时,所以时针应该是逆时针方向旋转,故时针转过的角的弧度数为π6.故选B.2.(多选题)(2021·淄博调研)下列四个命题正确的是( ) A.-3π4是第二象限角B.4π3是第三象限角C.-400°是第四象限角D.-315°是第一象限角答案 BCD解析 -3π4是第三象限角,故A 错误;4π3=π+π3,从而4π3是第三象限角,B 正确;-400°=-360°-40°,是第四象限角,从而C 正确;-315°=-360°+45°,是第一象限角,从而D 正确.3.(2020·天津期末)在平面直角坐标系中,若角α以x 轴的非负半轴为始边,且终边过点⎝ ⎛⎭⎪⎫-32,12,则sin α=( )A.-32B.-12C.32D.12答案 D解析 由任意角三角函数的定义得sin α=12⎝ ⎛⎭⎪⎫-322+⎝ ⎛⎭⎪⎫122=12.故选D.4.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A.2B.4C.6D.8答案 C解析 设扇形的半径为r ,弧长为l ,则由扇形面积公式可得2=12|α|r 2=12×4×r 2,解得r =1,l =αr =4,所以所求扇形的周长为2r +l =6.5.若角α的终边在直线y =-x 上,则角α的取值集合为( )A.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·2π-π4,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·2π+3π4,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·π-3π4,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·π-π4,k ∈Z 答案 D解析 由图知,角α的取值集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2n π+3π4,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2n π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=(2n +1)π-π4,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2n π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k π-π4,k ∈Z . 6.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案 B解析 由θ是第三象限角知,θ2为第二或第四象限角, 又⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,所以cos θ2<0, 综上可知,θ2为第二象限角.7.(2020·长沙模拟)已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B.-12C.32D.-32答案 A解析 由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.8.(多选题)(2021·山东新高考模拟)如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°,质点A 以1 rad/s 的角速度按逆时针方向在单位圆上运动,质点B 以2 rad/s 的角速度按顺时针方向在单位圆上运动,则( )A.经过1 s 后,∠BOA 的弧度数为π3+3B.经过π12 s 后,扇形AOB 的弧长为7π12C.经过π6 s 后,扇形AOB 的面积为π3D.经过5π9 s 后,A ,B 在单位圆上第一次相遇答案 ABD解析 经过1 s 后,质点A 运动1 rad ,质点B 运动2 rad ,此时∠BOA 的弧度数为π3+3,故A 正确;经过π12 s 后,∠AOB =π12+π3+2×π12=7π12,故扇形AOB 的弧长为7π12×1=7π12,故B 正确;经过π6 s 后,∠AOB =π6+π3+2×π6=5π6,故扇形AOB 的面积为S =12×5π6×12=5π12,故C 不正确;设经过t s 后,A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9(s),故D 正确.二、填空题9.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 答案 π3解析 设扇形半径为r ,弧长为l ,则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎨⎧l =π3,r =2. 10.在平面直角坐标系xOy 中,点P 在角2π3的终边上,且|OP |=2,则点P 的坐标为________.答案 (-1,3)解析设点P 的坐标为(x ,y ),由三角函数定义得⎩⎪⎨⎪⎧x =|OP |cos 2π3,y =|OP |sin 2π3,所以⎩⎪⎨⎪⎧x =-1,y =3,所以点P 的坐标为(-1,3).11.(2021·河北九校联考)已知点P (sin 35°,cos 35°)为角α终边上一点,若0°≤α<360°,则α=________.答案 55°解析 由题意知cos α=sin 35°=cos 55°,sin α=cos 35°=sin 55°,P 在第一象限,所以α=55°.12.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=________.答案 55解析 由O ,A ,B 三点共线,从而得到b =2a ,因为cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫1a 2+12-1=23,解得a 2=15, 即|a |=55,所以|a -b |=|a -2a |=|a |=55.B 级 能力提升13.设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N ={x |x =k 4·180°+45°,k ∈Z },那么( )A.M =NB.M ⊆NC.N ⊆MD.M ∩N =∅ 答案 B解析 由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k 4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .14.(2019·北京卷)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β 答案 B解析 如图,设点O 为圆心,连接PO ,OA ,OB ,AB ,在劣弧上取一点C ,则阴影部分面积为△ABP 和弓形ACB 的面积和.因为A ,B 是圆周上的定点,所以弓形ACB 的面积为定值,故当△ABP 的面积最大时,阴影部分的面积最大.又AB 的长为定值,故当点P 为优弧的中点时,点P 到弦AB 的距离最大,此时△ABP 面积最大,即当P 为优弧的中点时,阴影部分面积最大.下面计算当P 为优弧的中点时阴影部分的面积.因为∠APB 为锐角,且∠APB =β,所以∠AOB =2β,∠AOP =∠BOP =180°-β,则阴影部分的面积S =S △AOP +S △BOP +S 扇形OAB =2×12×2×2sin(180°-β)+12×22×2β=4β+4sin β.故选B.15.一扇形的圆心角为2π3,则此扇形的面积与其内切圆的面积的比值为________.答案 7+439解析 设扇形半径为R ,内切圆半径为r .则(R -r )sin π3=r ,即R =⎝⎛⎭⎪⎫1+233r . 又S 扇=12|α|R 2=12×2π3×R 2=π3R 2=7+439πr 2,所以S 扇πr 2=7+439.16.在平面直角坐标系中,劣弧,,,是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段弧上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是________.答案解析 因为tan α<cos α,所以P 所在的圆弧不是,因为tan α<sin α,所以P 所在的圆弧不是,又cos α<sin α,所以P 所在的圆弧不是,所以P 所在的圆弧是.。

任意角的三角函数的定义(29号)

任意角的三角函数的定义(29号)

任意角的三角函数的定义【知识梳理、双基再现】1、设α是一个任意角,它的终边与圆交于点P(x,y),圆半径为r ,那么:=αsin αcos = αtan =2、根据任意角的三角函数定义,先将正弦余弦正切函数在弧度制下的定义域填入下表,再将这三种函数的值在各象限的符号填入括号。

=y sin α =y cos α =y tan α例1:α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=42x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 例2.函数x x y cos sin -+=的定义域是( ) A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈ D .[2k π,(2k+1)π],Z k ∈例3:若角α的终边落在直线y x 815=上,求ααtan cos 1log 2-【小试身手、轻松过关】(课堂作业)1.已知角α的终边过点P (-1,2),cos α的值为 ( )A .-55B .- 5C .552D .25 2.α是第四象限角,则下列数值中一定是正值的是 ( )A .sin αB .cos αC .tan αD .tan 1α 3.已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( )A .25B .-25C .0D .与α的取值有关 4.设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 .5.若θ是第三象限角,且02cos<θ,则2θ是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角6.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m m α,则sin α+cos α=______. 【基础提高训练】(课后作业) 1.已知点P (ααcos ,tan )在第三象限,则角α在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知sin αtan α≥0,则α的取值集合为 .3.已知角θ的终边在直线y = 33 x 上,则sin θ= ;θtan = . 4.函数|tan |tan cos |cos ||sin |sin x x x x x x y ++=的值域是 ( ) A .{1} B .{1,3} C .{-1} D .{-1,3}5.(1) 已知角α的终边经过点P(4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零),求2sin α+cos α的值.。

高一下册数学必修四第一章 三角函数.知识点及同步练习

高一下册数学必修四第一章 三角函数.知识点及同步练习

巩固练习
1、 在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的
关系一定是 ( )
A.α=-β B.α+β=k·360°(k∈Z) C.α-β=k·360°(k∈Z)
D.以上答案都不对
2、圆内一条弦的长等于半径,这条弦所对的圆心角是
()
A.等于1弧度 B.大于1弧度 C.小于1弧度
D.无法
判断
(2) 角α + k·720 °与角α终边相同,但不能表示与角
α终边相同的所有角. 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 例5.写出终边在上的角的集合S,并把S中适合不等式- 360°≤β<720°的元素β写出来. 思考题:已知α角是第三象限角,则α/2,α/3,α/4各是第 几象限角?
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
11、下列命题是真命题的是( )
Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是
锐角
C.不相等的角终边一定不同
D.=
12、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、
C关系是( )
A.B=A∩C B.B∪C=C
度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确
定的?与圆的半径大小有关吗?
弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一
个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝
对值|α|=
始边 终边 顶点 A O B

任意角的三角函数练习题及答案详解

任意角的三角函数练习题及答案详解

任意角的三角函数练习题及答案详解任意角的三角函数一、选择题1.以下四个命题中,正确的是()A.在定义域内,只有终边相同的角的三角函数值才相等B.{α|α=kπ,k∈Z}≠{β|β=-kπ,k∈Z}C.若α是第二象限的角,则sin2α<0D.第四象限的角可表示为{α|2kπ+π<α<2kπ,k∈Z}2.若角α的终边过点(-3,-2),则()A.sinαtanα>0B.cosαtanα>0C.sinαcosα>0D.sinαcotα>03.角α的终边上有一点P(a,a),a∈R,且a≠0,则sinα的值是()A.√2/2B.-√2/2C.±√2/2D.1/24.α是第二象限角,其终边上一点P(x,5),且cosα=4x,则sinα的值为()sinα=√(1-cos^2α)=√(1-(16x^2/25))=√((9-16x^2)/25)5.使XXX(cosθ·tanθ)有意义的角θ是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一、二象限角或终边在y轴上6.设角α是第二象限角,且|cos2α|=-cos2α,则角2α是()cos2α<0,所以2α是第二或第三象限角,又|cos2α|=-cos2α,所以cos2α=0,即2α=π/2+kπ,k∈Z,所以2α是第二象限角。

7.点P是角α终边上的一点,且tanα=5/12,则b的值是()tanα=y/x=5/12,所以y=5x/12,又a^2+b^2=x^2+y^2,代入得a^2+b^2=x^2+(25/144)x^2,所以b=√(119/144)x。

8.在△ABC中,若最大的一个角的正弦值是1/2,则△ABC是()最大角的正弦值为1/2,所以最大角为π/6,所以△ABC 是等边三角形。

9.若α是第四象限角,则sin(α+π)是()sin(α+π)=sinαcosπ+cosαsinπ=-sinα10.已知sinα=4/5,且α为第二象限角,那么tanα的值等于()cosα=√(1-sin^2α)=3/5,所以tanα=sinα/cosα=4/3.二、填空题12.已知角α的终边落在直线y=3x上,则sinα=3/√10.因为直线y=3x的斜率为3,所以α的终边与x轴夹角为arctan3,所以sinα=sin(arctan3)=3/√10.13.已知P(-3,y)为角α的终边上一点,且sinα=13/√218,那么y的值等于-9/√218.因为sinα=y/√(x^2+y^2)=13/√218,且终边过点(-3,y),所以x=-3,代入得y=-9/√218.14.已知锐角α终边上一点P(1,3),则α的弧度数为arctan(3/1)。

三角函数基础知识复习1

三角函数基础知识复习1

三角函数基础知识复习(一)一、任意角:知识点1、角的概念的推广:1、“旋转”形成角(角包括顶点、始边、终边);2、角的分类:正角、负角、零角(逆时针、顺时针、没有旋转)。

例1、(1)钟表经过10分钟,分针转了______度;(2)若将钟表拨慢10分钟,则时针转了______度,分针转了______度。

知识点2、象限角和轴线角:1、象限角:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角;2、轴线角:如果角的终边在坐标轴上,则这个角叫轴线角,它不属于任何象限。

如:00,900,1800,2700,3600,-900,-1800,-3600,等等。

例2、(1)3700位于第___象限;(2)-1200位于第___象限;(3)2900位于第___象限;(4)-2600位于第____象限;(5)4弧度的角位于第___象限。

例3、A={小于900的角},B={第一象限的角},则A∩B=()A、{锐角}B、{小于900的角}C、{第一象限的角}D、以上都不对例4、已知集合A={α|α=k·900-360,k∈Z},B={β|-1800<β<1800},则A∩B=()A、{-360,540} B、{-1260,1440} C、{-1260,-360,540,1440} D、{-1260,540}知识点3、终边相同的角:所有与α终边相同的角(包括α本身在内)构成一个集合, 这个集合可表示为{β|β=________________________},终边相同的角相差3600的整数倍。

例5、已知角α=450,则在区间[-7200,00]内且与α终边相同的角是____________________。

例6、已知α是第二象限的角,且2α与7α的终边相同,则α=________________________。

例7、用描述法写出下列角的集合:(1)第一象限的角___________________;(2)第二象限的角___________________;(3)第三象限的角___________________;(4)第四象限的角___________________;(5)x轴正半轴上的角________________;(6)x轴负半轴上的角_____________________;(7)x轴上的角_______________;(8) y轴正半轴上的角_________________;(6)y轴负半轴上的角___________________________;(7)y轴上的角________________;(8)坐标轴上的角______________________________。

任意角的三角函数与诱导公式(含答案)

任意角的三角函数与诱导公式(含答案)

任意角的三角函数与诱导公式(高三)[基础练习]1.设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 2.角α的终边上有一点P (a ,a )(a ≠0),则cos α=( )A.22B .-22C.22或-22D .1 3.若-π2<α<0,则点Q (cos α,sin α)位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.如果点P (sin θcos θ,2cos θ)位于第三象限,那么角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 5.sin600°+tan240°的值是( )A .-32B.32C .-12+3D.12+ 3 6.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( )A.m +1m -1B.m -1m +1C .-1D .1 7.已知α∈⎝⎛⎭⎫-π2,0,cos α=35,则tan ⎝⎛⎭⎫α-π4=( ) A.17B .7 C .-17D .-7 8.已知sin x =2cos x ,则sin x -cos x sin x +cos x=( )A.12B.13C.14D.159.若角θ的终边与168°角的终边相同,则在0°~360°内终边与θ3角的终边相同的角的集合为________.10.已知α是第二象限角且tan α=-12,则cos α=__________.[典型例题]例1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α,tan α的值.练1.已知角α的顶点与直角坐标系的原点重合,始边在x 轴的正半轴上,终边经过点P (1,-2).求cos ⎝⎛⎭⎫2α-π3的值.例2.已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?练2.已知扇形的面积为S ,当扇形的中心角为多少弧度时,扇形的周长最小?并求出此最小值.例3.已知sin θ,cos θ是方程x 2-(3-1)x +m =0的两根.(1)求m 的值;(2)求sin θ1-cos θsin θ+cos θ1-tan θ的值.练3.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ,cos θ,θ∈(0,2π).求:(1)m 的值;(2)方程的两根及此时θ的值.例4.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2.求sin 3π-α+cos α+π5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.练4.已知cos(π+α)=-12,且α是第四象限角,计算:(1) sin(2π-α); (2)sin[α+(2n +1)π]+sin[α-(2n +1)π]sin(α+2n π)·cos(α-2n π)(n ∈Z).(2)任意角的三角函数与诱导公式课后练习1.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动23π弧长到达Q 点,则Q 点的坐标为( ) A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 2.已知点P (sin α-cos α,tan α)在第一象限,则在[0, 2π]内α的取值范围是( )A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π 3.若角α的终边落在直线y =-x 上,则sin α1-sin 2α+1-cos 2αcos α的值等于( )A .0B .2C .-2D .2tan α 4.已知扇形的周长为6cm ,面积是2cm 2,则扇形的圆心角的弧度数是( )A .1B .4C .1或4D .2或45.已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),则α等于( )A .2B .-2C .2-π2D.π2-2 6.若A 、B 、C 为△ABC 的三个内角,且A <B <C ⎝⎛⎭⎫C ≠π2,则下列结论中正确的是( ) A .sin A <sin CB .cos A <cosC C .tan A <tan CD .cot A <cot C7.若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或 3D .0或±38.若1弧度的圆心角所对的弦长等于2,则这圆心角所对的弧长等于( )A .sin 12B.π6C.1sin 12D .2sin 129.如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )10.已知cos ⎝⎛⎭⎫π6-α=33,则cos ⎝⎛⎭⎫56π+α-sin 2⎝⎛⎭⎫α-π6的值是( ) A.2+32B .-2+32 C.2-33 D.-2+3311.若sin α+cos α=tan α⎝⎛⎭⎫0<α<π2,则α的取值范围是( ) A.⎝⎛⎭⎫0,π6B.⎝⎛⎭⎫π6,π4C.⎝⎛⎭⎫π4,π3D.⎝⎛⎭⎫π3,π2 12.若cos α+2sin α=-5,则tan α=()A.12B .2 C .-12D .-2 二、填空题13.已知函数f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f ′n -1(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 010⎝⎛⎭⎫π2的值为________. 14.角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n 等于____. 15.若a =sin(sin2012°),b =sin(cos2012°),c =cos(sin2012°),d =cos(cos2012°),则a 、b 、c 、d 从小到大的顺序是________. 16.阅读下列命题:①若P (a,2a )(a ≠0)为角α终边上一点,则sin α=255;②同时满足sin α=12,cos α=32的角有且只有一个;③设tan α=12且π<α<3π2,则sin α=-55;④设cos(sin θ)·tan(cos θ)>0(θ为象限角),则θ为第一象限角.其中正确命题为________.(将正确命题的序号填在横线上) 三、解答题17.设α∈⎝⎛⎭⎫0,π2,试证明:sin α<α<tan α. 18.已知3π4<α<π,tan α+1tan α=-103.(1)求tan α的值;(2)求5sin 2α2+8sin α2cos α2+11cos 2α2-82sin ⎝⎛⎭⎫α-π4的值.19.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α+1tan α的值.20.设f (x )=cos xcos (30°-x ),求f (1°)+f (2°)+…+f (59°)的值.21.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π,求下列各式的值:(1)sin α-cos α;(2)sin 3⎝⎛⎭⎫π2-α+cos 3⎝⎛⎭⎫π2+α.22.已知tan α是方程x 2+2cos αx +1=0的两个根中较小的根,求α的值.任意角的三角函数与诱导公式(高三)答案[基础练习]1.设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 解析:由已知θ是第三象限角知θ2是第二、四象限角,再由cos θ2≤0可得.答案:B2.角α的终边上有一点P (a ,a )(a ≠0),则cos α=( ) A.22B .-22C.22或-22D .1 解析:∵r =a 2+a 2=2|a |,当a >0时,cos α=a 2a =22; 当a <0时,cos α=a -2a =-22.答案:C3.若-π2<α<0,则点Q (cos α,sin α)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:D解析:由于-π2<α<0,则cos α>0,sin α<0,即该点位于第四象限.4.如果点P (sin θcos θ,2cos θ)位于第三象限,那么角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:B解析:因为点P (sin θcos θ,2cos θ)位于第三象限,所以sin θcos θ<0,2cos θ<0,即⎩⎨⎧sin θ>0cos θ<0,θ为第二象限角.5.sin600°+tan240°的值是( )A .-32B.32C .-12+3D.12+ 3 答案:B解析:sin600°+tan240°=sin240°+tan240°=sin(180°+60°)+tan(180°+60°) =-sin60°+tan60°=-32+3=32. 6.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( )A.m +1m -1B.m -1m +1C .-1 D .1 答案:A解析:sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=sin (-4π+π+α)-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1. 又tan(5π+α)=m , ∴tan α=m ,∴原式=m +1m -1.7.(2010·天津南开区检测)已知α∈⎝⎛⎭⎫-π2,0,cos α=35,则tan ⎝⎛⎭⎫α-π4=( ) A.17B .7 C .-17D .-7 解析:由已知得sin α=-45,则tan α=-43,故tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=-43-11-43=7.答案:B8.已知sin x =2cos x ,则sin x -cos xsin x +cos x=( )A.12B.13C.14D.15解析:∵sin x =2cos x ,∴tan x =2, ∴原式=tan x -1tan x +1=2-12+1=13.答案:B9.若角θ的终边与168°角的终边相同,则在0°~360°内终边与θ3角的终边相同的角的集合为________.解析:由θ=k ·360°+168°(k ∈Z),∴θ3= (k ∈Z).由0°≤θ3<360°,即0°≤<360°∴k =0,1,2.∴θ3=56°或176°或296°.答案:{56°,176°,296°}10.已知α是第二象限角且tan α=-12,则cos α=__________.答案:-255解析:本题考查了同角三角函数关系. ∵tan α=sin αcos α=-12①又sin 2α+cos 2α=1②又α为第二象限角cos α<0,∴cos α=-255.[典型例题]例1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α,tan α的值. 解析:∵P (x ,-2)(x ≠0),∴P 到原点距离r =x 2+2, 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3. 当x =10时,P 点坐标为(10,-2), 由三角函数定义,有sin α=-66,tan α=-55, 当x =-10时,P 点坐标为(-10,-2), ∴sin α=-66,tan α=55. 练1.已知角α的顶点与直角坐标系的原点重合,始边在x 轴的正半轴上,终边经过点P (1,-2).求cos ⎝⎛⎭⎫2α-π3的值.解析:∵P (1,-2)是角α终边上一点,由此求得 r =|OP |=5,∴sin α=-255,cos α=55.∵sin2α=2sin αcos α=-45,cos2α=cos 2α-sin 2α=-35.∴cos ⎝⎛⎭⎫2α-π3=cos2αcos π3+sin2αsin π3 =⎝⎛⎭⎫-35·12+⎝⎛⎭⎫-45·32=-3+4310. 例2.已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?解析:(1)设弧长为l ,弓形面积为S 弓, ∵α=60°=π3rad ,R =10 cm ,∴l =10π3 cm.S 弓=S 扇-S △=12·10π3·10-12·102·sin 60°=50⎝⎛⎭⎫π3-32 (cm 2);所以该扇形的弧长为103π cm ,弓形面积为50⎝⎛⎭⎫π3-32 cm 2.(2)设扇形所在圆的半径为R ,则弧长为C -2R , ∴S 扇=12(C -2R )·R =-R 2+12CR=-⎝⎛⎭⎫R -14C 2+116C 2. 又∵C 2π<R <C 2,∴当R =14C 时,扇形的面积最大.此时圆心角α=C -2R R =2,扇形最大面积为C 216.练2.已知扇形的面积为S ,当扇形的中心角为多少弧度时,扇形的周长最小?并求出此最小值.解析:设l 为扇形的弧长,由S =12l ·r 得l =2S r ,故扇形的周长C =2r +2Sr.即2r 2-C ·r +2S =0.由于r 存在,故方程有解,因此有Δ=C 2-16S ≥0, 即C ≥4S .∴周长C 的最小值为4S .此时,r =C ±Δ2×2=S ,中心角α=2Sr 2=2rad所以当扇形的中心角为2rad 时,扇形的周长最小,最小值为4S .例3.已知sin θ,cos θ是方程x 2-(3-1)x +m =0的两根.(1)求m 的值;(2)求sin θ1-cos θsin θ+cos θ1-tan θ的值.解析:(1)由韦达定理可得⎩⎪⎨⎪⎧sin θ+cos θ=3-1 ①sin θ·cos θ=m ②, 由①得1+2sin θ·cos θ=4-2 3.将②代入得m =32-3,满足Δ=(3-1)2-4m ≥0,故所求m 的值为32- 3.(2)先化简:sin θ1-cos θsin θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ =sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=cos 2θ-sin 2θcos θ-sin θ =cos θ+sin θ=3-1.练3.(2010·改编题)已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ,cos θ,θ∈(0,2π). 求:(1)m 的值;(2)方程的两根及此时θ的值.解析:(1)由根与系数的关系得⎩⎨⎧sin θ+cos θ=3+12①sin θcos θ=m2②由①2得,1+2sin θcos θ=2+32⇒sin θcos θ=34,即m 2=34,∴m =32.(2)当m =32时,原方程为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12,∴⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32,又θ∈(0,2π),∴θ=π3或θ=π6.例4.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2.求sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.解析:∵cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2, ∴-sin α=-2sin ⎝⎛⎭⎫π2-α,∴sin α=2cos α,即tan α=2.∴sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α=sin 3α-cos α5cos ⎝⎛⎭⎫2π+π2-α+3sin ⎝⎛⎭⎫4π-π2-α=sin 3α-cos α5cos ⎝⎛⎭⎫π2-α-3sin ⎝⎛⎭⎫π2+α=sin 3α-cos α5sin α-3cos α=sin 2α·tan α-15tan α-3=2sin 2α-110-3=2sin 2α-17=2sin 2α-(sin 2α+cos 2α)7(sin 2α+cos 2α)=sin 2α-cos 2α7(sin 2α+cos 2α)=tan 2α-17(tan 2α+1)=4-17×(4+1)=335.练4.已知cos(π+α)=-12,且α是第四象限角,计算:(1)sin(2π-α);(2)sin[α+(2n +1)π]+sin[α-(2n +1)π]sin(α+2n π)·cos(α-2n π)(n ∈Z).解析:∵cos(π+α)=-12,∴-cos α=-12,cos α=12,又∵α是第四象限角,∴sin α=-1-cos 2α=-32. (1)sin(2π-α)=sin[2π+(-α)]=sin(-α)=-sin α=32. (2)sin[α+(2n +1)π]+sin[α-(2n +1)π]sin(α+2n π)·cos(α-2n π)=sin(2n π+π+α)+sin(-2n π-π+α)sin(2n π+α)·cos(-2n π+α)=sin(π+α)+sin(-π+α)sin α·cos α=-sin α-sin(π-α)sin α·cos α=-2sin αsin αcos α=-2cos α=-4.任意角的三角函数与诱导公式课后练习1.(2010·模拟精选)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动23π弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32 D.⎝⎛⎭⎫-32,12解析:设Q(x ,y )为角α终边上一点,依题意sin α=y =sin 23π=32,cos α=x =cos 23π=-12,故Q 点的坐标为⎝⎛⎭⎫-12,32. 答案:A2.已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( ) A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2 D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π 解析:由题设有⎩⎪⎨⎪⎧sin α>cos α,tan α>0,又0≤α≤2π,∴α∈⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4. 答案:B3.若角α的终边落在直线y =-x 上,则sin α1-sin 2α+1-cos 2αcos α的值等于( )A .0B .2C .-2D .2tan α 答案:A解析:∵角α的终边在直线y =-x 上, ∴α=k π+3π4 (k ∈Z ),∴sin α与cos α符号相反,∴sin α1-sin 2α+1-cos 2αcos α=sin α|cos α|+|sin α|cos α=0.4.已知扇形的周长为6cm ,面积是2cm 2,则扇形的圆心角的弧度数是( )A .1B .4C .1或4D .2或4 答案:C解析:设扇形圆心角为αrad ,半径为r ,弧长为l .则⎩⎪⎨⎪⎧ l +2r =6,12l ·r =2,∴⎩⎪⎨⎪⎧ r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.∴α=lr=4或α=1.∴选C.5.已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),则α等于( )A .2B .-2C .2-π2D.π2-2答案:C解析:点P 位于第一象限,且tan α=-cot2=-tan ⎝⎛⎭⎫π2-2=tan ⎝⎛⎭⎫2-π2, ∵2-π2∈⎝⎛⎭⎫0,π2,∴α=2-π2. 6.若A 、B 、C 为△ABC 的三个内角,且A <B <C ⎝⎛⎭⎫C ≠π2,则下列结论中正确的是( ) A .sin A <sin C B .cos A <cos C C .tan A <tan C D .cot A <cot C 答案:A解析:解法1:若C 为锐角,由已知A <B <C 及单调性可排除B 、D ;若C 为钝角,则tan A <tan C 不成立,选A.解法2:由三角形中大边对大角及正弦定理可知: A <C ⇔a <c ⇔sin A <sin C ,选A.7.若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或3D .0或±3 答案:D解析:由cos2θ+cos θ=0得2cos 2θ-1+cos θ=0,所以cos θ=-1或12.当cos θ=-1时,有sin θ=0;当cos θ=12时,有sin θ=±32.于是sin2θ+sin θ=sin θ(2cos θ+1)=0或±3.8.若1弧度的圆心角所对的弦长等于2,则这圆心角所对的弧长等于( )A .sin 12B.π6C.1sin 12D .2sin 12答案:C解析:设圆的半径为r .由题意知r ·sin 12=1,∴r =1sin 12,∴弧长l =α·r =1sin 12.9.如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )解析:∠AOP =l ,当0≤l ≤π,d =2sin l2,当π<l ≤2π,d =2·sin ⎝⎛⎭⎫π-l 2=2sin l 2, ∴d =2sin l2,0≤l ≤2π.答案:C10.已知cos ⎝⎛⎭⎫π6-α=33,则cos ⎝⎛⎭⎫56π+α-sin 2⎝⎛⎭⎫α-π6的值是( ) A.2+32B .-2+32 C.2-33 D.-2+33答案: B解析:∵cos ⎝⎛⎭⎫56π+α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-cos ⎝⎛⎭⎫π6-α=-33, 而sin 2⎝⎛⎭⎫α-π6=1-cos 2⎝⎛⎭⎫α-π6=1-13=23, ∴原式=-33-23=-2+33.11.若sin α+cos α=tan α⎝⎛⎭⎫0<α<π2,则α的取值范围是( ) A.⎝⎛⎭⎫0,π6B.⎝⎛⎭⎫π6,π4 C.⎝⎛⎭⎫π4,π3D.⎝⎛⎭⎫π3,π2 答案:C解析:方法一:排除法.在⎝⎛⎭⎫0,π4上,sin α+cos α>1,而tan α在⎝⎛⎭⎫0,π4上小于1,故排除答案A 、B ;因为sin α+cos α≤2,而在⎝⎛⎭⎫π3,π2上tan α>3,sin α+cos α与tan α不可能相等,故排除D.方法二:由sin α+cos α=tan α,0<α<π2,∴tan 2α=1+2sin αcos a =1+sin2α, ∵0<α<π2,∴0<2α<π,∴0<sin2α≤1,∴1<tan 2α≤2, ∵0<α<π2,∴tan α>0,∴1<tan α≤2,而2<3,∴π4<α<π3.12.若cos α+2sin α=-5,则tan α=()A.12B .2 C .-12D .-2 解析:由⎩⎪⎨⎪⎧cos α+2sin α=-5,①sin 2α+cos 2α=1, ②将①代入②得(5sin α+2)2=0,∴sin α=-255,cos α=-55,∴tan α=2.答案:B 二、填空题13.已知函数f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f ′n -1(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 010⎝⎛⎭⎫π2的值为________. 解析:由题知,f 1(x )=sin x +cos x ,f 2(x )=cos x -sin x ,f 3(x )=-sin x -cos x ,f 4(x )=sin x -cos x ,f 5(x )=sin x +cos x ,…,∴{f n (x )}是周期为4的数列,而f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+ f 4⎝⎛⎭⎫π2=0,∴原式=f 2 009⎝⎛⎭⎫π2+f 2 010⎝⎛⎭⎫π2=f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2=1-1=0. 答案:014.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n 等于________.答案:2解析:依题意:⎩⎪⎨⎪⎧n =3m ,m 2+n 2=10.解得:m =1,n =3或m =-1,n =-3,又sin α<0,∴α的终边落在第三象限,∴n <0, ∴m =-1,n =-3,∴m -n =2.15.若a =sin(sin2012°),b =sin(cos2012°),c =cos(sin2012°),d =cos(cos2012°),则a 、b 、c 、d 从小到大的顺序是________.答案:b <a <d <c解析:∵2012°=5×360°+180°+32°, ∴a =sin(-sin32°)=-sin(sin32°)<0, b =sin(-cos32°)=-sin(cos32°)<0, c =cos(-sin32°)=cos(sin32°)>0, d =cos(-cos32°)=cos(cos32°)>0, 又0<sin32°<cos32°<1<π2,∴b <a <d <c .[点评] 本题“麻雀虽小,五脏俱全”考查了终边相同的角、诱导公式、正余弦函数的单调性等,应加强这种难度不大,对基础知识要求掌握熟练的小综合训练. 16.阅读下列命题:①若点P (a,2a )(a ≠0)为角α终边上一点,则sin α=255;②同时满足sin α=12,cos α=32的角有且只有一个;③设tan α=12且π<α<3π2,则sin α=-55;④设cos(sin θ)·tan(cos θ)>0(θ为象限角),则θ为第一象限角. 其中正确命题为________.(将正确命题的序号填在横线上) 解析:①∵P 在角α的终边上,∴x =a ,y =2a ,r =5|a |, ∴sin α=y r =2a 5|a |=±255.∴①不正确.②∵sin α=12>0,cos α=32>0,∴α为第一象限内的角.由终边相同角的三角函数值相等知α可有无数多个, ∴②不正确.③∵tan α=12,∴sin αcos α=12,又sin 2α+cos 2α=1,∴sin 2α=15,又∵π<α<3π2,∴sin α=-55,故③正确. ④∵θ为象限角,∴-1<sin θ<1且sin θ≠0, ∴sin θ作为角应为第一、四象限角, ∴cos(sin θ)>0,又∵cos(sin θ)·tan(cos θ)>0,∴tan(cos θ)>0,∴cos θ作为角应为第一、三象限角. 又∵θ为象限角,∴-1<cos θ<1且cos θ≠0, ∴0<cos θ<1,∴θ为第一、四象限角,∴④不正确. 答案:③ 三、解答题17.设α∈⎝⎛⎭⎫0,π2,试证明:sin α<α<tan α. 证明:如右图,在平面直角坐标系中作单位圆,设角α以x 轴非负半轴为始边,终边与单位圆交于P 点. ∵S △OP A <S 扇形OP A <S △OAT , ∴12|MP |<12α<12|AT |, ∴sin α<α<tan α.18.已知3π4<α<π,tan α+1tan α=-103.(1)求tan α的值;(2)求5sin 2α2+8sin α2cos α2+11cos 2α2-82sin ⎝⎛⎭⎫α-π4的值.解析:(1)∵tan α+1tan α=-103,∴3tan 2α+10tan α+3=0.解得tan α=-13或tan α=-3.∵3π4<α<π,∴-1<tan α<0,∴tan α=-13. (2)∵tan α=-13,∴5sin 2α2+8sin α2cos α2+11cos 2α2-82sin(α-π4)=5⎝⎛⎭⎫sin 2α2+cos 2α2+4sin α+6·1+cos α2-8sin α-cos α=5+4sin α+3+3cos α-8sin α-cos α=4sin α+3cos αsin α-cos α=4tan α+3tan α-1=-54.19.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α+1tan α的值. 解析:∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2), 由三角函数的定义,有sin α=-66,1tan α=-5, ∴sin α+1tan α=-66-5=-65+66;当x =-10时,同样可求得sin α+1tan α=65-66.20.设f (x )=cos xcos (30°-x ),求f (1°)+f (2°)+…+f (59°)的值.解析:f (x )+f (60°-x ) =cos xcos (30°-x )+cos (60°-x )cos (x -30°)=cos x +cos (60°-x )cos (30°-x )=3cos (x -30°)cos (30°-x )= 3.∴f (1°)+f (2°)+…+f (59°)=(f (1°)+f (59°))+(f (2°)+f (58°))+…+(f (29°)+f (31°))+f (30°)=293+32=5932. 21.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π,求下列各式的值:(1)sin α-cos α;(2)sin 3⎝⎛⎭⎫π2-α+cos 3⎝⎛⎭⎫π2+α.[分析](1)化简已知条件sin α+cos α=23,再平方求sin αcos α则可求(sin α-cos α)2,最后得sin α-cos α. (2)化简cos 3α-sin 3α,再因式分解并利用(1)求解.解析:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23, 两边平方,得1+2sin α·cos α=29,故2sin α·cos α=-79.又π2<a <π,∴sin α>0,cos α<0. (1)(sin α-cos α)2=1-2sin α·cos α=1-⎝⎛⎭⎫-79=169,∴sin α-cos α=43. (2)sin 3⎝⎛⎭⎫π2-α+cos 3⎝⎛⎭⎫π2+α=cos 3α-sin 3α =(cos α-sin α)(cos 2α+cos α·sin α+sin 2α) =-43×⎝⎛⎭⎫1-718=-2227. 22.已知tan α是方程x 2+2cos αx +1=0的两个根中较小的根,求α的值.解析:∵tan α是方程x 2+2cos αx +1=0的较小根,∴方程的较大根是1tan α.由根与系数的关系知tan α+1tan α=-2cos α,即1sin αcos α=-2cos α∴sin α=-12.解得α=2k π+7π6,或α=2k π-π6,k ∈Z .当α=2k π+7π6(k ∈Z )时,tan α=33,cot α=3;当α=2k π-π6(k ∈Z )时,tan α=-33,cot α=-3,不合题意.∴α=2k π+7π6,k ∈备选题1.(2010·创新题)对非零实数x ,y ,z ,定义一种运算“⊗”:x ⊗y ∈R ;x ⊗x =1;x ⊗(y ⊗z )=(x ⊗y )z .若f (x )=sin x ⊗cos x ,则f ⎝⎛⎭⎫7π6=( ) A .-1+32 B.-1+32C.34D.33解析:由x ⊗1=x ⊗(x ⊗x )=(x ⊗x )x =x , x =x ⊗1=x ⊗(y ⊗y )=(x ⊗y )y ,得x ⊗y =x y ,所以f (x )=sin x ⊗cos x =tan x , 所以f ⎝⎛⎭⎫7π6=tan 7π6=33. 答案:D3.已知△ABC 中,1tan A =-125,则cos A =( )A.1213B.513C .-513D .-1213解析:∵1tan A =-125,∴tan A =-512,又1tan A =-125<0,∴π2<A <π, ∴cos A =-11+tan 2A =-1213.答案:D3.若sin2θ=14且θ∈⎝⎛⎭⎫π4,π2,则cos θ-sin θ的值是( ) A.32B.34C .-32D .-34[答案] C解析:(cos θ-sin θ)2=1-sin2θ=34,∵π4<θ<π2,∴cos θ<sin θ,∴cos θ-sin θ=-32. 4.已知x 是三角形的内角,sin x +cos x =713,则tan x 的值是( )A .-125B.125C.512D .-512[答案] A解析:因为0<x <π,且sin x +cos x =713,所以π2<x <π.从而可知sin x >0,cos x <0,且|sin x |>|cos x |,∴tan x <0且|tan x |>1,故选A.5.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π+θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=( )A .2B .-2C .0 D.23[答案] B解析:sin ⎝⎛⎭⎫π2+θ-cos (π+θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.6.已知tan2α=-22,且满足π4<α<π2,则2cos 2α2-sin α-12sin (π4+α)的值为( )A.2B .-2C .-3+22D .3-2 2 [答案] C解析:2cos 2α2-sin α-12sin (π4+α)=cos α-sin αsin α+cos α=1-tan αtan α+1.又tan2α=-22=2tan α1-tan 2α⇒22tan 2α-2tan α-22=0.解得tan α=-22或 2.又π4<α<π2,∴tan α= 2.原式=1-22+1=-3+2 2. 5.(2010·江苏徐州调研)cos 10π3=________.解析:cos 10π3=cos 4π3=-cos π3=-12.答案:-126.(2009·山东临沂模拟)已知sin ⎝⎛⎭⎫α+π12=13.则cos ⎝⎛⎭⎫α+7π12的值等于________. 解析:cos ⎝⎛⎭⎫α+7π12=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π12+π2 =-sin ⎝⎛⎭⎫α+π12=-13. 答案:-137.已知sin α+cos α=15,α∈(0,π),则tan α=________. 解析:∵sin α+cos α=15,① ∴1+2sin αcos α=125.∴sin αcos α=-1225<0. 又α∈(0,π),∴α∈⎝⎛⎭⎫π2,π,∴sin α-cos α=(sin α+cos α)2-4sin αcos α= 125+4825=75② ∴由①②得:sin α=45,cos α=-35.∴tan α=-43. 答案:-436.(2010·辽宁丹东检测)已知角α的终边落在直线y =-3x (x <0)上,则|sin α|sin α-|cos α|cos α=________. 解析:∵角α的终边落在直线y =-3x (x <0)上,在角α的终边上取一点P (x 0,-3x 0)(x 0<0),∴-3x 0>0,∴P 在第二象限, ∴|sin α|sin α-|cos α|cos α=sin αsin α--cos αcos α=1+1=2. 答案:27.扇形OAB 的面积是1,它的周长是4,则弦长AB =________.解析:设扇形的半径为r ,弧长为l ,中心角的弧度数为α,则有⎩⎪⎨⎪⎧ 2r +l =4,12lr =1,解得⎩⎪⎨⎪⎧r =1,l =2,由|α|=l r 得|α|=2, ∴弦长AB =2sin 1.答案:2sin 18.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π (k ∈Z ).若f (2011)=5,则f (2012)=________.[答案] -5解析:∵f (2011)=a sin(2011π+α)+b cos(2011π+β)=-a sin α-b cos β=5,∴a sin α+b cos β=-5.∴f (2012)=a sin α+b cos β=-5.二、填空题9.若α=k ·180°+45°,k ∈Z ,则α为第__________象限角.[答案] 一或三解析:当k =2n 时,α=n ·360°+45°,当k =(2n +1)时,α=n ·360°+225°,∴α为第一或第三象限角.10.函数y =sin x +-cos x 的定义域是________.[答案] ⎣⎡⎦⎤π2+2k π,π+2k π(k ∈Z )解析:由题意知⎩⎪⎨⎪⎧ sin x ≥0,-cos x ≥0,即⎩⎪⎨⎪⎧ sin x ≥0,cos x ≤0,∴x 范围为π2+2k π≤x ≤π+2k π(k ∈Z )。

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案一、选择题1.若一个扇形的面积是2π,半径是23 ,则这个扇形的圆心角为( )A .π6B .π4C .π2D .π3答案:D解析:设扇形的圆心角为θ,因为扇形的面积S =12 θr 2,所以θ=2S r 2 =4π(23)2 =π3 ,故选D.2.三角函数值sin 1,sin 2,sin 3的大小关系是( ) 参考值:1弧度≈57°,2弧度≈115°,3弧度≈172° A .sin 1>sin 2>sin 3 B .sin 2>sin 1>sin 3 C .sin 1>sin 3>sin 2 D .sin 3>sin 2>sin 1 答案:B解析:因为1弧度≈57°,2弧度≈115°,3弧度≈172°,所以sin 1≈sin 57°,sin 2≈sin 115°=sin 65°,sin 3≈sin 172°=sin 8°,因为y =sin x 在0°<x <90°时是增函数,所以sin 8°<sin 57°<sin 65°,即sin 2>sin 1>sin 3,故选B.3.若角θ满足sin θ>0,tan θ<0,则θ2是( )A .第二象限角B .第一象限角C .第一或第三象限角D .第一或第二象限角 答案:C解析:由sin θ>0,tan θ<0,知θ为第二象限角,∴2k π+π2 <θ<2k π+π(k ∈Z ),∴k π+π4<θ2 <k π+π2 (k ∈Z ),∴θ2为第一或第三象限角. 4.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3 x 上,则角α的取值集合是( )A .⎩⎨⎧⎭⎬⎫α|α=2k π-π3,k ∈ZB .⎩⎨⎧⎭⎬⎫α|α=2k π+2π3,k ∈ZC .⎩⎨⎧⎭⎬⎫α|α=k π-2π3,k ∈ZD .⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z答案:D解析:∵y =-3 x 的倾斜角为23π,∴终边在直线y =-3 x 上的角的集合为⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z .5.一个扇形的弧长与面积都是6,则这个扇形的圆心角的弧度数是( ) A .1 B .2 C .3 D .4 答案:C解析:设扇形的圆心角为θ,半径为R ,由题意得⎩⎪⎨⎪⎧θR =6,12θR 2=6,得θ=3.6.已知角α的顶点为坐标原点,始边为x 轴的正半轴.若角α的终边过点P ⎝⎛⎭⎫35,-45 ,则cos α·tan α的值是( )A.-45 B .45C .-35D .35答案:A解析:由三角函数的定义知cos α=35 ,tan α=-4535=-43 ,∴cos αtan α=35 ×⎝⎛⎭⎫-43 =-45. 7.给出下列各函数值:①sin (-1 000°);②cos (-2 200°);③tan (-10);④sin 710πcos πtan 179π;其中符号为负的有( )A .①B .②C .③D .④ 答案:C解析:∵-1 000°=-3×360°+80°,为第一象限角, ∴sin (-1 000°)>0;又-2 200°=-7×360°+320°,为第四象限角, ∴cos (-2 200°)>0;∵-10=-4π+(4π-10),为第二象限角, ∴tan (-10)<0;∵sin 710 π>0,cos π=-1,179 π=2π-π9,为第四象限角, ∴tan 179 π<0,∴sin 710πcos πtan 179π>0.8.已知角θ的终边经过点P (x ,3)(x <0)且cos θ=1010x ,则x =( ) A .-1 B .-13C .-3D .-223答案:A 解析:∵r =x 2+9 ,cos θ=xx 2+9 =1010 x ,又x <0,∴x =-1.9.(多选)下列结论中正确的是( )A .若0<α<π2,则sin α<tan αB .若α是第二象限角,则α2为第一象限角或第三象限角C .若角α的终边过点P (3k ,4k )(k ≠0),则sin α=45D .若扇形的周长为6,半径为2,则其圆心角的大小为1弧度 答案:ABD解析:若0<α<π2 ,则sin α<tan α=sin αcos α,故A 正确;若α是第二象限角,即α∈⎝⎛⎭⎫2k π+π2,2k π+π ,k ∈Z ,则α2 ∈⎝⎛⎭⎫k π+π4,k π+π2 ,k ∈Z ,所以α2为第一象限或第三象限角,故B 正确;若角α的终边过点P (3k ,4k )(k ≠0),则sin α=4k 9k 2+16k 2=4k|5k |,不一定等于45 ,故C 错误;若扇形的周长为6,半径为2,则弧长为6-2×2=2,圆心角的大小为22=1弧度,故D 正确.故选ABD.二、填空题10.已知扇形的圆心角为π6 ,面积为π3,则扇形的弧长等于________.答案:π3解析:设扇形所在圆的半径为r ,则弧长l =π6 r ,又S 扇=12 rl =π12 r 2=π3,得r =2,∴弧长l =π6 ×2=π3.11.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝⎛⎭⎫π2,π ,则sin α=________.答案:-45解析:∵θ∈⎝⎛⎭⎫π2,π ,∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ =-5cos θ,故sin α=-45.12.已知角α的终边经过点P (-8m ,-6sin 30°),且cos α=-45,则m =________.答案:12解析:由题可知P (-8m ,-3),∴cos α=-8m64m 2+9 =-45 ,得m =±12,又cos α=-45 <0,∴-8m <0,∴m =12 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x任意角的三角函数知识点:1. 单位圆:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆称为单位圆.2. 任意角的三角函数的定义如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,则OP 的长r=1,那么: (1) 叫做α的正弦(sine),记做sin α,即 ;(2) 叫做α的余弦(cossine),记做cos α,即 ;(3)yx叫做α的正切(tangent),记做tan α,即tan (0)y x x α=≠.说明: (1)当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan yxα=无意义,除此情况外,对于确定的值α,上述三个值都是唯一确定的实数.(2)当α是锐角时,此定义与初中定义相同;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.(3)正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将这种函数统称为三角函数.1. 确定下列三角函数值的符号(1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π.2. 求下列三角函数值:(1)'sin148010︒; (2)9cos 4π; (3)11tan()6π-.3. 已知角α的终边上一点()P m ,且sin 4α=,求αcos 的值.r yrx y r y==αsin xrx==αcos任意角的三角函数测试卷(A )一、选择题(1)已知角α的终边经过点p(—1,3),则ααcos sin +的值是( )A.213+ B.213- C.231- D.213+-(2)下列命题中,正确命题的个数是( ) (1)终边相同的角的同名三角函数的值相同(2)终边不同的角的同名三角函数的值不等 (3)若0sin >α则α是第一、二象限的角 (4)若α是第二象限的角,且p(x,y)是其终边上一点,则22cos y x x +-=α A.1 B.2 C.3 D.4(3)若0cos sin >θθ,则θ在( ) A.第一、二象限 B.第一、三象限 C.第一、四象限 D.第二、四象限 (4).若),2,0(π∈x 函数x x y tan sin -+=的定义域是( )A.[0,π] B.[0,2π] C.[ππ2,23] D.(],2ππ(5)设角α属于第二象限,且,2cos2cosαα-=,则角2α属于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 (6)已知p(y ,3-)为角β的终边上的一点,且1313sin =β,则y 等于( )A.21± B.21 C.21- D.2± (7)已知α角的正弦线和余弦线是符号相反、长度相等的有向线段,则α的终边在( )A.第一象限角的平分线上B.第四象限角的平分线上C.第二、四象限角的平分线上D.第一、三象限角的平分线上 (8).在[0,2π]上满足21sin ≥x 的x 的取值范围是( ) A.⎥⎦⎤⎢⎣⎡6,0π B.⎥⎦⎤⎢⎣⎡ππ65,6 C.⎥⎦⎤⎢⎣⎡ππ32,6 D.⎥⎦⎤⎢⎣⎡ππ,65二、填空题(9.)=-+)611tan(49cos ππ(10)若角α的终边在直线x y 33=上,则___________cos _________sin ==αα(11)函数x x x y tan cos lg sin +=的定义域为 (12)已知⎪⎭⎫ ⎝⎛∈ππα,2,则=--+-1cos cos 1cos cos sin sin ααααα 三、解答题(13)已知角α的终边经过点()(),3,4o a a a p ≠-求ααcos sin 2+的值。

(14)已知()()()(){,1cos 111<>--=x x x x f x f π求⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛3431f f 的值(15)已知α是第二象限角,求)cos(sin )sin(cos αα⨯的正负符号(16)角α的终边上的点P 与A(a,b)关于x 轴对称(ab o ≠),角β的终边上的点Q 与A 关于直线y=x 对称。

求βαβαβαcsc sec cot tan sec sin ++的值。

任意角的三角函数测试卷(B )一、选择题(1)sin4·tan7的值( )A.大于0B.小于0C.等于0D.不大于0 (2)∆ABC 中,“∠A 为锐角”是“sinA>0”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 (3)若θ是第三象限角,且,3cos 3cos 2θθ-=,则3θ角所在象限是( )A.一B.二C.三D.四 (4)已知βα,都是第二象限角,且,cos cos βα>则( )A.βα<B.βαsin sin >C.βαtan tan >D.βαcot cot <(5)设角α的终边过点()(),08,6≠--a a a p 则ααcos sin -的值是 ( )A.51 B.51- C.51-或57- D.51-或51(6)sin1,cos1,tan1的大小关系是( )A.tan1>sin1>cos1B.tan1>cos1>sin1C.cos1>sin1>tan1D.sin1>cos1>tan1 (7)已知角α的正切线是单位长度的有向线段,那么角α的终边( )A.在x 轴上B.在y 轴上C.在直线y=x 上D.在直线y=x 或y=-x 上 (8)若θ为第一象限角,则能确定为正值的是( ) A.2sin θ B.cos 2θ C.tan 2θ D.coa2θ(9)若角α满足条件:sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限(10)点P 从(1,0)出发,沿单位圆22y x +=1逆时针方向运动π32弧长到达Q 点,则Q 的坐标为 ( ) A.(-21,23) B.(-23,-21) C.(-21,-23) D.(-23,21)(11)若0cos >θ,且02sin <θ,则角θ的终边所在象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限(12)在(0,2π)内,使sinx>cosx 成立的x 的取值范围是 ( )A .(4π,2π)⋃(π,45π) B .(4π,π) C .(4π,45π) D .(4π,π)⋃(45π,23π)二、填空题(13)sin 015cot ,75cos ,75的大小关系是(14)“10·1”假期一游客在东湖的游船上仰看空中以飞艇的仰角为015,又俯看飞艇在湖中的仰映影俯角为045,已知该游客在船上举湖面的高度为5米,则飞艇距湖面的高度为 米(不考虑水的折射,tan 32150-=)(15)已知点P (tan α,cos α)在第三象限,则角α的终边在第 象限。

(16)函数|tan |tan cos |cos ||sin |sin x xx x x x y ++=的值域是 。

三、解答题(17)已知f(x)是定义在(0,3)上的函数,f(x)的图象如图所示,求不等式f(x)·cosx<0的解集。

(18)已知点()αααtan ,cos sin -p 在第一象限,若),2,0[πα∈求α的取值范围。

任意角三角函数A 答案 一、选择题1.B2.A3.B4.D5.C6.B7.C8.B 二、填空题9.63223+ 10.3,2±11.(2k π,2k π+2π)(k ∈Z ) 12.1 三、解答题13.ααcos sin 2+=2·525453=-+--a a a a . 14.⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛3431f f =⎪⎭⎫ ⎝⎛-+2121=015.)cos(sin )sin(cos αα⨯<016.βαβαβαcsc sec cot tan sec sin ++=a a b a b a a b a b b a b b a b22222222)()(+⋅-++⋅-++⋅-+-=0任意角三角函数B 答案 一、选择题1.B2.A3.C4.B5.D6.A7.D8.C9.B 10.A 11.D 12.C 二、填空题13.00075cos 75sin 15cot >> 14.5315.二 16.B 三、解答题17.解集为{x|o<x<1或2π<x<3}18.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛∈45,2,4ππππα。

相关文档
最新文档