实验四 IIR数字滤波器设计
实验四 IIR数字滤波器的设计
电气与信息工程学院数字信号处理实验报告学生姓名班级电子信息工程学号指导教师2019.12实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。
2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
3. 熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率;fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率;T采样周期上机实验内容:(1)fc=0.3KHz,δ=0.8dB,fr=0.2KHz, At=20dB,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。
实验四 IIR数字滤波器设计
实验四IIR数字滤波器的设计与MATLAB实现一、实验目的:1、要求掌握IIR数字滤波器的设计原理、方法、步骤。
2、能够根据滤波器设计指标进行滤波器设计。
3、掌握数字巴特沃斯滤波器和数字切比雪夫滤波器的设计原理和步骤。
二、实验原理:IIR数字滤波器的设计方法:频率变换法、数字域直接设计以及计算机辅助等。
这里只介绍频率变换法。
由模拟低通滤波器到数字低通滤波器的转换,基本设计过程:1、将数字滤波器的设计指标转换为模拟滤波器指标2、设计模拟滤波器G(S)3、将G(S)转换为数字滤波器H(Z)在低通滤波器设计基础上,可以得到数字高通、带通、带阻滤波器的设计流程如下:1、给定数字滤波器的设计要求(高通、带通、带阻)2、转换为模拟(高通、带通、带阻)滤波器的技术指标3、转换为模拟低通滤波器的指标4、设计得到满足3步骤中要求的低通滤波器传递函数5、通过频率转换得到模拟(高通、带通、带阻)滤波器6、变换为数字(高通、带通、带阻)滤波器三、标准数字滤波器设计函数MATLAB提供了一组标准的数字滤波器设计函数,大大简化了滤波器设计过程。
1、butter例题1 设计一个5阶Butterworth数字高通滤波器,阻带截止频率为250Hz ,设采样频率为1KHz.图1 5阶Butterworth数字高通滤波器2、cheby1和cheby2例题2 设计一个7阶chebyshevII型数字低通滤波器,截止频率为3000Hz,Rs=30dB,采样频率为1KHz。
图2 7阶chebyshevII型数字低通滤波器四、冲激响应不变法一般来说,在要求时域冲激响应能模仿模拟滤波器的场合,一般使用该方法。
冲激响应不变法一个重要的特点是频率坐标的变换时线性的,因此如果模拟滤波器的频响带限于折叠频率的话,则通过变换后滤波器的频率响应可不失真的反映原响应与频率的关系。
例题3 设计一个中心频率为500Hz,带宽为600 Hz的数字带通滤波器,采样频率为1K Hz。
实验四IIR数字滤波器设计实验报告
实验四IIR数字滤波器设计实验报告
为了实现信号的滤波处理,IIR(或称为滤波器)数字滤波器是一种常用的信号处理
技术。
本次实验就是探究IIR数字滤波器的设计和分析。
在实验开始前,对于IIR数字滤波器有所了解,它是一种无限级别功能的数字滤波器,其功能强大,可以实现任意自定义系数的滤波器。
在预处理实验中,便首先采用Matlab
工具搭建了IIR数字滤波器的框架,考虑到本次滤波处理内容,本次采用的是Chebyshev
类型的等离子体,其滤波效果要求超过50dB,进一步完善了对于设计工作的要求。
经过Chebyshev Type I等离子体的设计,确定了系统的结构,并设定了15个滤波器,接着从设定的各项参量入手,从而确定系统各项参量,运用梯形图确定根位置,并使用MATLAB中的filter函数进行系统模拟,得到经历处理后系统输出信号与未经处理时对比,结果显示滤波效果达到了相应预期要求。
在实验中,IIR数字滤波器的设计让我深刻体会到了系统滤波的重要性以及十分强大
的功能。
而它的实现,又显示了精确的数字处理技术在信号处理中的重要作用,使得研究
信号处理时,得以有效和准确地对信号进行分辨和滤波处理。
实验四IIR数字滤波器设计及软件实现
实验四IIR数字滤波器设计及软件实现实验四涉及IIR数字滤波器设计及软件实现。
IIR数字滤波器是一种基于IIR(Infinite Impulse Response)的滤波器,采用了反馈结构,具有无限长的脉冲响应。
与FIR(Finite Impulse Response)数字滤波器相比,IIR数字滤波器具有更高的灵活性和更小的计算复杂度。
IIR数字滤波器的设计可以通过以下步骤进行:
1.确定滤波器的类型:低通、高通、带通或带阻。
2.确定滤波器的阶数:滤波器的阶数决定了其频率响应的陡峭程度。
3.设计滤波器的传递函数:传递函数是滤波器的数学模型,可以通过多种方法进行设计,如巴特沃斯、切比雪夫等。
4.将传递函数转换为差分方程:差分方程是IIR数字滤波器的实现形式,可以通过对传递函数进行离散化得到。
5.实现差分方程:差分方程可以通过递归运算的方式实现,使用递归滤波器结构。
IIR数字滤波器的软件实现可以使用各种数学软件或程序语言进行。
常见的软件实现语言包括MATLAB、Python等。
这些语言提供了丰富的数字信号处理库和函数,可以方便地实现IIR数字滤波器。
在软件实现中,需要将差分方程转换为计算机程序,然后输入待滤波的数字信号,并输出滤波后的信号。
此外,还可以对滤波器的参数进行调整,以达到满足特定滤波要求的效果。
总结起来,实验四的内容是设计和实现IIR数字滤波器,通过软件工具进行滤波效果的验证。
这是数字信号处理领域中常见的实验任务,可以帮助学生掌握IIR数字滤波器的设计和实现方法。
数字信号处理实验报告四IIR数字滤波器设计及软件实现
数字信号处理实验报告四IIR数字滤波器设计及软件实现实验目的:本实验的目的是了解IIR数字滤波器的设计原理和实现方法,通过MATLAB软件进行数字滤波器设计和信号处理实验。
一、实验原理IIR数字滤波器是一种使用有限数量的输入样本和前一次输出值的滤波器。
它通常由差分方程和差分方程的系数表示。
IIR滤波器的特点是递归结构,故其频率响应是无限长的,也就是说它的频率响应在整个频率范围内都是存在的,而不像FIR滤波器那样只有在截止频率处才有响应。
根据设计要求选择合适的滤波器类型和滤波器结构,然后通过对滤波器的模型进行参数化,设计出满足滤波要求的IIR滤波器。
常见的IIR滤波器设计方法有模拟滤波器设计方法和数字滤波器设计方法。
在本实验中,我们主要使用数字滤波器设计方法,即离散时间滤波器设计方法。
二、实验内容(一)设计IIR数字滤波器的步骤:1.确定滤波器类型:根据滤波要求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
2.确定滤波器的阶数:根据滤波要求确定滤波器的阶数。
阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。
3. 设计滤波器原型:根据滤波要求,设计滤波器的原型。
可以选择Butterworth滤波器、Chebyshev滤波器、Elliptic滤波器等作为原型。
4.选择滤波器结构:根据计算机实现条件和算法复杂度,选择合适的滤波器结构。
常见的滤波器结构有直接形式I、直接形式II、级联形式等。
5.参数化滤波器模型:根据原型滤波器的差分方程,选择合适的参数化方法。
常见的参数化方法有差分方程法、极点/零点法、增益法等。
6.根据参数化的滤波器模型,计算出所有的滤波器系数。
(二)用MATLAB软件实现IIR数字滤波器设计:1.打开MATLAB软件,并创建新的脚本文件。
2. 在脚本文件中,使用MATLAB提供的滤波器设计函数,如butter、cheby1、ellip等,选择合适的滤波器类型进行设计。
实验四 IIR数字滤波器的设计2013-5-1
实验四IIR数字滤波器的设计实验涉及的MATLAB子函数impinvar功能:用脉冲响应不变法实现模拟到数字的滤波器变换。
调用格式:[bd,ad]=impinvar(b,a,Fs);将模拟滤波器系数b、a变换成数字的滤波器系数bd、ad,两者的冲激响应不变。
[bd,ad]=impinvar(b,a);采用Fs的缺省值1Hz。
1.buttord功能:确定巴特沃斯(Butterworth)滤波器的阶数和3 dB截止频率。
调用格式:[n ,wn ]=buttord(wp ,ws ,Rp ,As);计算巴特沃斯数字滤波器的阶数和3 dB 截止频率。
其中,0≤wp(或ws)≤1,其值为1时表示0.5Fs 。
Rp 为通带最大衰减指标,As 为阻带最小衰减指标。
[n ,wn ]=buttord(wp ,ws ,Rp ,As ,‘s ’);计算巴特沃斯模拟滤波器的阶数和3 dB 截止频率。
wp 、ws 可以是实际的频率值或角频率值,wn 将取相同的量纲。
Rp 为通带最大衰减指标,As 为阻带最小衰减指标。
当wp>ws 时,为高通滤波器;当wp 、ws 为二元向量时,为带通或带阻滤波器,此时wn 也为二元向量。
2.cheb1ord功能:确定切比雪夫(Chebyshev)Ⅰ型滤波器的阶数和通带截止频率。
调用格式:[n ,wn ]=cheb1ord(wp ,ws ,Rp ,As);计算切比雪夫Ⅰ型数字滤波器的阶数和通带截止频率。
其中,0≤wp(或ws)≤1,其值为1时表示0.5Fs 。
Rp 为通带最大衰减指标,As 为阻带最小衰减指标。
[n ,wn ]=cheb1ord(wp ,ws ,Rp ,As ,¢s¢);计算切比雪夫Ⅰ型模拟滤波器的阶数和通带截止频率。
wp 、ws 可以是实际的频率值或角频率值,wn 将取相同的量纲。
Rp 为通带最大衰减指标,As 为阻带最小衰减指标。
当wp>ws 时,为高通滤波器;当wp 、ws 为二元向量时,则为带通或带阻滤波器,此时wn 也为二元向量。
试验四IIR数字滤波器设计试验目的掌握用双线性变换法设计
实验四IIR数字滤波器设计一、实验目的(1)掌握用双线性变换法设计IIR数字低通和高通滤波器。
(2)设计低通滤波器对实际心电图信号进行滤波。
(3)设计低通滤波器对含有啸叫噪声的音乐信号进行消噪。
*(4)设计IIR数字低通和高通滤波器对某个DTMF(双音多频)信号进行频带分离。
二、实验环境1.Windows98以上操作系统2.安装MATLAB6.0以上版本三、实验原理1.选频型数字滤波器的种类有低通、高通、带通和带阻滤波器。
2. 从实现方法上,数字滤波器通常分为 IIR 和 FIR 滤波器。
3.IIR滤波器的设计目的是根据技术指标,找到 H(z)分子/分母系数b,a ;IIR滤波的MATLAB语句为y= filter(b,a,x) ;四、实验内容1.人体心电图信号在测量过程中往往受到工业高频干扰,必须经过低通滤波处理后才能作为判断心脏功能的有用信息。
给出一实际心电图信号采样序列样本x(n), 其中存在高频干扰。
试以x(n)作为输入序列, 滤除其中的干扰成分。
x(n)= {-4, -2, 0, -4, -6, -4, -2, -4, -6, -6,-4, -4, -6, -6, -2, 6, 12, 8, 0, -16, -38,-60, -84, -90, -66, -32, -4, -2, -4, 8, 12, 12, 10, 6, 6, 6, 4, 0, 0, 0, 0, 0, -2, -4, 0, 0, 0,-2, -2, 0, 0, -2, -2, -2, -2, 0} 。
低通滤波器设计指标:ωp=0.2πrad,ωs=0.3πrad,ap=1dB,as=15dB 。
已设计出H(z) (p300)其中A=0.09036 ;B 1=1.2686,C 1=-0.7051 ;B 2=1.0106,C 2=-0.3583;B 3=0.9044,C 3=-0.2155*IIR 滤波的Matlab 语句:y=filter(b,a,x)y (n )161212120.0007378(1)()(1 1.2680.705)(1 1.01060.3583)(10.9040.215)z H z z z z z z z -------+=-+-+-+31()k K H z ==∏1212(12)(),1,2,31k k k A z z H z k B z C z ----++==--b,a----H k(z)分子/分母系数;x---输入信号x(n);y---滤波结果y(n)。
数字信号处理实验四 IIR滤波器设计
实验四 IIR 滤波器设计一、教学目的和任务1.熟悉用双线性变换法设计IIR 数字滤波器的原理和方法; 2.了解用脉冲响应不变法设计IIR 数字滤波器的原理和方法;3.掌握双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点;4.掌握数字滤波器的计算机仿真方法。
二、实验原理介绍IIR 数字滤波器的系统函数为1z -的有理分式:1011()1Nk k N k k b zH z a z -=-==+∑∑设计IIR 滤波器的系统函数,就是要确定()H z 的阶数N 及分子分母多项式的系数k a 和k b ,使其()()j j z e H e H z ωω==满足指定的频率特性。
由于模拟滤波器的设计有许多简单而严谨的设计公式和大量的图表可以利用,因此IIR 滤波器设计的方法之一是:先设计一个合适的模拟滤波器,然后将模拟滤波器通过适当的变换转换成满足给定指标的数字滤波器。
1、Butterworth 模拟低通滤波器幅度平方函数: 221()1a Nc H j Ω=⎛⎫Ω+ ⎪Ω⎝⎭其中,N 为滤波器的阶数,c Ω为通带截止频率。
2.Chebyshev 模拟低通滤波器2221()1()a NcH j C εΩ=Ω+Ω幅度平方函数:3、脉冲响应不变法原理用数字滤波器的单位脉冲响应序列h(n)逼近模拟滤波器的冲激响应()a h t ,让h(n)正好等于()a h t 的采样值,即:()()a h n h nT = 其中,T 为采样间隔。
如果以()a H s 和H(z)分别表示()a h t 的拉氏变换及h(n)的Z 变换,则:12ˆ()()sTa a z e k H z H s H s j k T T π∞==-∞⎛⎫==- ⎪⎝⎭∑4、双线性变换法原理双线性变换法是通过两次映射采用非线性频率压缩的方法,将整个频率轴上的频率范围压缩到 ±π/T 之间,再用sTz e =转换到z 平面上,从而使数字滤波器的频率响应与模拟滤波器的频率响应相似。
实验四IIR数字滤波器的设计数字信号处理DSP
实验四IIR数字滤波器的设计数字信号处理DSP
IIR(Infinite Impulse Response)数字滤波器是一种常用的数字信
号处理技术,用于对信号进行滤波。
其特点是具有无限脉冲响应,通过对
输入信号和滤波器的系数进行运算,可以得到输出信号。
设计一个IIR数字滤波器的步骤如下:
1.确定滤波器的类型:根据滤波器的要求,选择滤波器的类型,如低
通滤波器、高通滤波器、带通滤波器等。
2.确定滤波器的阶数:滤波器的阶数决定了滤波器的复杂度和性能。
一般来说,阶数越高,滤波器的性能越好,但计算复杂度也会增加。
3.确定滤波器的频率响应:根据滤波器的类型和要求,确定滤波器的
频率响应。
可以使用一些滤波器设计工具或者数学模型来计算频率响应。
4.设计滤波器的传递函数:根据所选的滤波器类型和频率响应,设计
滤波器的传递函数。
传递函数描述了滤波器的输入输出关系。
5.将传递函数转换为差分方程:将滤波器的传递函数转换为差分方程,形式为y(n)=b0*x(n)+b1*x(n-1)+...-a1*y(n-1)-a2*y(n-2)-...,其中
y(n)为输出信号,x(n)为输入信号。
6.计算滤波器的系数:根据差分方程,计算滤波器的系数,即b0、
b1、..、a1、a2、..
7.实现滤波器:将计算得到的滤波器系数应用到滤波器的实现中,可
以使用C语言、MATLAB等工具进行实现。
8.评估滤波器性能:根据设计要求和信号特点,评估滤波器的性能,
如频率响应、幅频响应等。
通过上述步骤,可以设计出满足要求的IIR数字滤波器,并用于数字信号处理中。
实验四 IIR数字滤波器设计
实验四 IIR数字滤波器设计一、实验目的1、熟悉用双线性变换法设计IIR数字滤波器的原理与方法;2、熟悉用脉冲响应不变法设计IIR数字滤波器的原理与方法。
二、实验内容1、已知低通滤波器的指标为:通带边缘频率:0.4π,Ap=0.5dB;阻带边缘频率:0.6π,As=50dB;a、采用脉冲响应不变法设计巴特沃斯,T=1.画出幅度响应和数字滤波器的脉冲响应h(n);b、b、采用脉冲响应不变法设计巴特沃斯,T=1.画出幅度响应和数字滤波器的脉冲响应h(n)。
2、用双线性变换法设计低通滤波器,满足技术指标wp=0.2π,Ap=0.25dB;ws=0.4π,As=50dB,并对方波信号进行滤波,画出滤波前后的波形图并进行简要分析3、设计一个数字高通滤波器H(z),它用在结构xa(t)A/D H(z) D/A ya(t)中,满足下列要求:a、采样速率为10kHZ;b、阻带边缘频率为1.5kHZ,衰减为40dB;c、通带边缘频率为2kHZ,衰减为3dB;d、单调的通带和阻带。
4、设计一个带阻滤波器,要求通带上下截止频率为0.8π,0.2π,通带内衰减不大于1dB,阻带起始频率为0.7π,0.4π,阻带内衰减不小于30dB。
设计巴特沃斯带阻滤波器并画出该数字高通滤波器的幅度响应和脉冲响应。
三、实验程序及解释和实验分析及图形1a、clear;close all; %清屏wp=0.4*pi;ws=0.6*pi;Ap=0.5As=50;T=1;Fs=1/T;OmegaP=wp/T;OmegaS=ws/T;[cs,ds]=afd_butt(OmegaP,OmegaS,Ap,As);[b,a]=impinvar(cs,ds,Fs);[h,w]=freqz(b,a);subplot(2,2,1);plot(w/pi,abs(h));title('幅度响应');grid;subplot(2,2,2);plot(w/pi,angle(h));title('相位响应');grid;subplot(2,2,2);plot(w/pi,angle(h));title('相位响应');grid;subplot(2,2,3);plot(w/pi,20*log(abs(h)));title('幅度响应dB');grid;n=[0:1:59];imp=[1;zeros(59,1)];y=filter(b,a,imp);subplot(2,2,4);plot(n,y);title('脉冲响应');grid;分析:因为w=Ωt,w与Ω呈线性关系,所以其相位响应图是线性的,如相位响应图所示;因为其设计的是低通滤波器,所以会把其高频部分滤掉,留下低频,从而不是特别陡峭,如脉冲响应图所示。
IIR数字滤波器设计及软件实现
实验四:IIR数字滤波器设计及软件实现一、实验目的:(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
二、实验原理与方法:设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
三、实验内容及步骤:(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1 三路调幅信号st 的时域波形和幅频特性曲线(2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。
提示:抑制载波单频调幅信号的数学表示式为0001()cos(2)cos(2)[cos(2())cos(2())]2c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,f c 为载波频率,0cos(2)f t π称为单频调制信号,f 0为调制正弦波信号频率,且满足0c f f >。
IIR数字滤波器设计及软件实现
实验四:IIR 数字滤波器设计及软件实现一、实验原理与方法1、设计IIR 数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法,其基本设计过程是:(1)将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;(2)设计过渡模拟滤波器;(3)将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
本实验的数字滤波器的MATLAB 实现是指调用MATLAB 信号处理工具箱函数filter 对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n )。
二、实验内容1、调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st ,该函数还会自动绘图显示st 的时域波形和幅频特性曲线,如图4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图4.1 三路调幅信号st (即s (t ))的时域波形和幅频特性曲线2、要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。
实验结果如图4.2,程序见附录4.2。
提示:抑制载波单频调幅信号的数学表示式为0001()cos(2)cos(2)[cos(2())cos(2())]2c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,fc 为载波频率,0cos(2)f t π称为单频调制信号,f0为调制正弦波信号频率,且满足0c f f >。
由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率fc 对称。
实验四IIR数字滤波器设计及软件实现
实验四IIR数字滤波器设计及软件实现IIR数字滤波器是一种重要的信号处理工具,常用于音频处理、图像处理、通信系统等领域。
本实验旨在通过软件实现IIR数字滤波器的设计和使用。
实验目标:1.了解IIR数字滤波器的基本原理和结构。
2. 学会使用Matlab等软件工具进行IIR数字滤波器设计和模拟。
实验步骤:1.确定滤波器的要求:包括滤波器的类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的衰减要求等。
2.根据滤波器的要求选择适合的设计方法:常见的设计方法包括脉冲响应、巴特沃斯、切比雪夫、椭圆等。
3. 使用Matlab等软件工具进行滤波器设计:根据选择的设计方法,使用相应的函数或工具箱进行滤波器的设计。
4.评估滤波器性能:通过频率响应曲线、幅频特性、相频特性等评估滤波器的性能,比如阻带衰减、通带波动等。
5.应用滤波器:将设计好的滤波器应用到实际信号中,观察滤波效果。
6.优化滤波器性能(可选):根据实际应用需求,对滤波器的设计进行调整和优化。
实验注意事项:1.在进行滤波器设计时,要根据实际应用需求选择合适的滤波器类型和设计方法。
2.在评估滤波器性能时,要对设计结果进行全面的分析,包括滤波器的频率响应、幅频特性、相频特性等。
3.在实际应用过程中,可以根据实际需求对设计结果进行优化和调整,以达到更好的滤波效果。
参考资料:1.陈志骏等编著,《信号与系统实验指导书》。
2. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Pearson Education India.。
实验四IIR数字滤波器设计及软件实现实验报告
实验四IIR数字滤波器设计及软件实现实验报告一、实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
二、实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
三、实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。
实验四 IIR数字滤波器的设计与滤波
实验四 IIR 数字滤波器的设计与滤波一、巴特沃斯模拟滤波器的设计1. 模拟滤波器的设计参数模拟滤波器的4个重要的通带、阻带参数为:p f 或Omegap :通带截止频率 s f 或Omegas :阻带截至频率p R :通带内波动(dB),即通带内所允许的最大衰减;s R :阻带内最小衰减通过以上参数就可以进行模拟滤波器的设计。
2. 巴特沃斯模拟滤波器设计1) 巴特沃斯滤波器阶数的选择:在已知设计参数p f ,s f ,p R ,s R 之后,可利用“buttord ”命令可求出所需要的滤波器的阶数和3dB 截止频率,其格式为:[N ,Omegac]=buttord[fp ,fs ,Rp ,Rs ,’s ’],其中fp ,fs ,Rp ,Rs 分别为通带截止频率、阻带起始频率、通带内波动、阻带内最小衰减。
返回值N 为滤波器的最低阶数,Wc 为3dB 截止频率。
2) 巴特沃斯滤波器系数计算:由巴特沃斯滤波器的阶数N 以及3dB 截止频率Omegac 可以计算出对应传递函数H(z)的分子分母系数,MATLAB 提供的命令如下:● 巴特沃斯低通滤波器系数计算:[b ,a]=butter(N,Omegac),其中b 为H(z)的分子多项式系数,a 为H(z)的分母多项式系数● 巴特沃斯高通滤波器系数计算:[b ,a]=butter(N,Omegac,’High ’)● 巴特沃斯带通滤波器系数计算:[b ,a]=butter(N ,[Omega1,Omega2]),其中[Omega1,Omega2]为通带截止频率,是2元向量,需要注意的是该函数返回的是2N 阶滤波器系数。
● 巴特沃斯带阻滤波器系数计算:[b ,a]=butter(N ,[Omega1,Omega2],’stop ’),其中[Omega1,Omega2]为通带截止频率,是2元向量,需要注意的是该函数返回的也是2N 阶滤波器系数。
二、巴特沃斯数字滤波器的设计1. 数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:p f :通带截止频率(Hz ) s f :阻带起始频率(Hz )p R :通带内波动(dB ),即通带内所允许的最大衰减; s R :阻带内最小衰减设采样速率(即奈奎斯特速率)为N f ,将上述参数中的频率参数转化为归一化频率参数:p ω:归一化通带截止频率,)2//(N p p f f =ω;s ω:归一化阻带截至频率,)2//(N s s f f =ω通过以上参数就可以进行数字滤波器的设计。
实验四IIR数字滤波器设计及软件实现实验报告
实验四IIR数字滤波器设计及软件实现实验报告
摘要
本报告介绍了有关IIR数字滤波器设计的实验,以及使用MATLAB进
行的软件实施验证实验。
实验结果表明,IIR滤波器的设计和实施过程中,模糊C不做任何处理,也能实现意料之外的良好滤波效果。
1.介绍
本文介绍了实验四的IIR数字滤波器设计与软件实现实验。
在完成本
实验之前,学生完成了实验一,实验二和实验三,分别设计了低通滤波器、带通滤波器和高通滤波器。
在本实验中,学生将总结前三个实验的知识,
设计和实施一个二阶高通滤波器,以及一个四阶带阻滤波器。
2.实验方法
本实验使用了MATLAB编程语言,用于设计和实施IIR滤波器,包括
一个二阶的高通滤波器和一个四阶的带阻滤波器。
首先,选择预定义的滤
波器系统函数,并调整其参数,以实现特定的滤波器性能。
然后,针对调
整好的滤波器,编写MATLAB代码,实施设计的滤波器。
3.实验结果
(1)二阶高通滤波器
二阶高通滤波器的设计参数如下:
参数,值
-----------------,----------
截止频率,0.25Hz
最小插入损耗,0dB 最大衰减率,40dB。
实验四 IIR数字滤波器的设计
实验四 IIR数字滤波器的设计----b1a2bc00-6eaf-11ec-9f14-7cb59b590d7d实验四-iir数字滤波器的设计实验四 IIR数字滤波器的设计1。
实验目的(1)掌握脉冲响应不变法和双线性变换法设计iir数字滤波器的具体方法和原理,熟悉双线性变换法和脉冲响应不变法设计低通、带通iir数字滤波器的计算机编程;(2)观察双线性变换法和脉冲响应不变法设计的数字滤波器的频域特性,了解双线性变换法和脉冲响应不变法的特点和区别;(3)熟悉butterworth滤波器、chebyshev滤波器和椭圆滤波器的频率特性。
2.实验原理和方法iir数字滤波器的设计方法可以概括为如图所示,本实验主要掌握iir滤波器的第一种方法,即利用模拟滤波器设计iir数字滤波器,这是iir数字滤波器设计最常用的方法。
利用模拟滤波器设计,需要将模拟域的ha(s)转换为数字域h(z),最常用的转换方法为脉冲响应不变法和双线性变换法。
IIR数字滤波器设计方法由模拟滤波器设计IIR数字滤波器线性设计IIR数字滤波器冲激响应不变量法双线性变换法零极点累积测试法频域近似法时域近似法(1)冲激响应不变量法用数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应ha(t),让h(n)正好等于ha(t)的采样值,即h(n)?医管局(新界)其中t为采样间隔。
如果以ha(s)及h(z)分别表示ha(t)的拉氏变换及h(n)的z变换,则h(z)|z?美国东部时间?1吨??Kha(s?j2?tk)在matlab中,可用函数impinvar实现从模拟滤波器到数字滤波器的脉冲响应不变映射。
(2)双线性变换法s平面与z平面之间满足下列映射关系2秒?21? zt1?Z1.1还是Z?t2t?s?ss平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。
双线性变换不存在频率混叠问题。
在MATLAB中,通过函数双线性可以实现模拟滤波器到数字滤波器的双线性变换映射。
无限冲激响应(IIR)数字滤波器的设计实验报告
数字信号处理实验报告姓名:寇新颖 学号:20100304026 专业:电子信息科学与技术实验四 无限冲激响应(IIR)数字滤波器的设计一、实验目的1.掌握双线性变换法及冲激响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及冲激响应不变法设计低通IIR 数字滤波器的计算机编程。
2.观察双线性变换及冲激响应不变法设计的滤波器的频域特性,了解双线性变换法及冲激响应不变法的特点。
3.熟悉Butterworth 滤波器的频率特性。
二、实验原理1.利用模拟滤波器设计IIR 数字滤波器方法(1)根据所给出的数字滤波器性能指标计算出相应的模拟滤波器的设计指标。
(2)根据得出的滤波器性能指标设计出相应的模拟滤波器的系统函数H(S)。
(3)根据得出的模拟滤波器的系统函数H(S),经某种变换得到对该模拟滤波器相应的数字仿真系统——数字滤波器。
将模拟滤波器转换成数字滤波器的实质是,用一种从s 平面到z 平面的映射函数将Ha(s)转换成H(z)。
对这种映射函数的要求是:(1) 因果稳定的模拟滤波器转换成数字滤波器,仍是因果稳定的。
(2)数字滤波器的频率响应模仿模拟滤波器的频响,s 平面的虚轴映射z 平面的单位圆,相应的频率之间成线性关系。
冲激响应不变法和双线性变换法都满足如上要求。
2.冲激响应不变法用数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应h a (t),让h(n)正好等于h a (t)的采样值,即h(n)=h a (nT),其中T 为采样间隔。
3.双线性变换法s 平面与z 平面之间满足以下映射关系:1111--+-=z z s s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换时一种非线性变换)2/(ωtg =Ω,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
以低通数字滤波器为例,将设计步骤归纳如下:(1)确定数字滤波器的性能指标:通带临界频率f p 、阻带临界频率f s ;通带内的最大衰减A p ;阻带内的最小衰减A s ;(2)确定相应的数字角频率,ωp =2πf p ;ωs =2πf s ;(3)计算经过预畸的相应模拟低通原型的频率,)2/(ωtg =Ω;(4)根据Ωp 和Ωs 计算模拟低通原型滤波器的阶数N ,并求得低通原型的传递函数H a (s);(5)用上面的双线性变换公式代入H a (s),求出所设计的传递函数H(z);(6)分析滤波器特性,检查其指标是否满足要求。
实验四IIR数字滤波器的设计实验报告
实验四IIR数字滤波器的设计实验报告实验四:IIR数字滤波器的设计实验目的:1.了解IIR数字滤波器的基本原理和设计流程;2.学习使用MATLAB进行IIR数字滤波器的设计;3.实际设计一个IIR数字滤波器,并对输入信号进行滤波处理。
实验设备:1.计算机2.MATLAB软件实验原理:IIR数字滤波器是一种非线性滤波器,可以通过差分方程的形式表示。
其特点是具有无穷长的单位脉冲响应,即滤波器对输入信号的响应是无限长的。
IIR数字滤波器的设计一般包括两个方面:滤波器的结构和滤波器的参数。
其中,滤波器的结构包括滤波器的拓扑结构和级联结构,滤波器的参数包括滤波器的截止频率、通带增益、阻带衰减等。
实验步骤:1.确定滤波器的类型(低通滤波器、高通滤波器、带通滤波器等);2.根据滤波器的要求,设计滤波器的截止频率、通带增益、阻带衰减等参数;3.根据滤波器的类型和参数,选择合适的滤波器结构和滤波器参数;4.使用MATLAB软件进行IIR数字滤波器的设计,编写相应的代码;5.载入输入信号,并对输入信号进行滤波处理;6.分析输出信号的频谱特性和时域波形。
实验结果:通过实验,我们成功设计了一个IIR数字滤波器,并对输入信号进行了滤波处理。
实验结果显示,滤波器能够有效地去除输入信号中的高频噪声,得到了更清晰的输出信号。
输出信号的频谱特性和时域波形符合设计要求。
实验结论:IIR数字滤波器是一种常用的数字滤波器,具有较好的滤波效果和较低的计算复杂度。
通过实验,我们深入了解了IIR数字滤波器的设计原理和流程,并成功应用于实际信号处理中。
实验结果表明,IIR数字滤波器能够有效地去除输入信号中的噪声,提取出所需的信号信息。
这对于信号处理和通信系统设计具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 IIR数字滤波器设计一、实验目的1、熟悉用双线性变换法设计IIR数字滤波器的原理与方法;2、熟悉用脉冲响应不变法设计IIR数字滤波器的原理与方法。
二、实验内容1、已知低通滤波器的指标为:通带边缘频率:0.4π,Ap=0.5dB;阻带边缘频率:0.6π,As=50dB;a、采用脉冲响应不变法设计巴特沃斯,T=1.画出幅度响应和数字滤波器的脉冲响应h(n);b、b、采用脉冲响应不变法设计巴特沃斯,T=1.画出幅度响应和数字滤波器的脉冲响应h(n)。
2、用双线性变换法设计低通滤波器,满足技术指标wp=0.2π,Ap=0.25dB;ws=0.4π,As=50dB,并对方波信号进行滤波,画出滤波前后的波形图并进行简要分析3、设计一个数字高通滤波器H(z),它用在结构xa(t)A/D H(z) D/A ya(t)中,满足下列要求:a、采样速率为10kHZ;b、阻带边缘频率为1.5kHZ,衰减为40dB;c、通带边缘频率为2kHZ,衰减为3dB;d、单调的通带和阻带。
4、设计一个带阻滤波器,要求通带上下截止频率为0.8π,0.2π,通带内衰减不大于1dB,阻带起始频率为0.7π,0.4π,阻带内衰减不小于30dB。
设计巴特沃斯带阻滤波器并画出该数字高通滤波器的幅度响应和脉冲响应。
三、实验程序及解释和实验分析及图形1a、clear;close all; %清屏wp=0.4*pi;ws=0.6*pi;Ap=0.5As=50;T=1;Fs=1/T;OmegaP=wp/T;OmegaS=ws/T;[cs,ds]=afd_butt(OmegaP,OmegaS,Ap,As);[b,a]=impinvar(cs,ds,Fs);[h,w]=freqz(b,a);subplot(2,2,1);plot(w/pi,abs(h));title('幅度响应');grid;subplot(2,2,2);plot(w/pi,angle(h));title('相位响应');grid;subplot(2,2,2);plot(w/pi,angle(h));title('相位响应');grid;subplot(2,2,3);plot(w/pi,20*log(abs(h)));title('幅度响应dB');grid;n=[0:1:59];imp=[1;zeros(59,1)];y=filter(b,a,imp);subplot(2,2,4);plot(n,y);title('脉冲响应');grid;分析:因为w=Ωt,w与Ω呈线性关系,所以其相位响应图是线性的,如相位响应图所示;因为其设计的是低通滤波器,所以会把其高频部分滤掉,留下低频,从而不是特别陡峭,如脉冲响应图所示。
1b、clear;close all;wp=0.4*pi; %通带边缘频率设为0.4*piws=0.6*pi; %阻带边缘频率设为0.6*piAp=0.5; %通带最大衰减为0.5dBAs=50; %阻带最小衰减为50dBT=1; %把周期T设为1Fs=1/T;OmegaP=(2/T)*tan(wp/2); %计算通带截止频率原型OmegaS=(2/T)*tan(ws/2); %计算阻带截止频率原型[cs,ds]=afd_butt(OmegaP,OmegaS,Ap,As);%巴特沃斯原型滤波器计算[b,a]=bilinear(cs,ds,Fs); %双线性不变法变换[h,w]=freqz(b,a); %计算数字滤波器的Z变换频率响应subplot(2,2,1);plot(w/pi,abs(h)); %画幅频响应曲线图title('幅度响应');grid;subplot(2,2,2);plot(w/pi,angle(h)); %画出相频响应曲线图title('相位响应');grid;subplot(2,2,3);plot(w/pi,20*log(abs(h)));%画出取其对数的幅频响应曲线title('幅度响应dB');axis([0,1,-80,5]);grid; %设置坐标轴,加网格线n=[0:1:59]; %设n值imp=[1;zeros(59,1)]; %输入矩形波y=filter(b,a,imp); %对imp进行滤波subplot(2,2,4);plot(n,y); %画出y的图形title('脉冲响应');grid;分析:用双线性变换法实现低通巴特沃斯滤波器时,由Ω=(2/T)tan(w/2),可以知道w与Ω是呈非线性关系的,所以如“相位响应”图所示,呈现的是不是直线,而是曲线。
由于其设计的是低通滤波器,所以把其高频的部分滤掉了,留下低频的部分,从而在变化的时候表现的平缓些,而不是特别的陡峭,如“脉冲响应”图所示,从而实现低通滤波的功能。
2、wp=0.2*pi; %通带边缘频率设为0.2*piws=0.4*pi; %阻带边缘频率设为0.4*piAp=0.25; %通带最大衰减为0.25dBAs=50; %阻带最小衰减为50dB%原型指标的频率逆映射T=1; %把周期T设为1Fs=1/T;OmegaP=(2/T)*tan(wp/2); %计算通带截止频率原型OmegaS=(2/T)*tan(ws/2); %计算阻带截止频率原型N=ceil((log10((10^(Ap/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS))); %确定N值fprintf('\n***Butterworth Filter Order =%2.0f\n',N);OmegaC=OmegaP/((10^(Ap/10)-1)^(1/(2*N)));wn=2*atan((OmegaC*T)/2); %计算截止频率wn=wn/pi;[b,a]=butter(N,wn); %计算截止频率为wn的N阶低通巴特沃斯滤波器[h,w]=freqz(b,a); %计算数字滤波器的Z变换频率响应subplot(2,2,1);plot(w/pi,abs(h)); %画幅频响应曲线图title('幅度响应');grid ;subplot(2,2,3);plot(w/pi,20*log10(abs(h))); %画出取其对数的幅频响应曲线title('幅度响应dB');axis([0,1,-80,5]);grid ; %设置坐标轴,加网格线n=[0:1:59];imp=[1;zeros(59,1)];y=filter(b,a,imp); %对imp进行滤波subplot(2,2,4);plot(n,y); %画出y的图形title('脉冲响应');grid ;n=[0:100];t=0.001*n; %fs=1/t=1000HZx=2*sin(2*pi*400*t)+5*sin(2*pi*50*t);%输入含有两种频率的波形x1=ones(1,101); %输入单位抽样序列x1y1=filter(b,a,x1); %对x1进行滤波figure(2);subplot(2,1,1);plot(n,x1,'p-'); %绘制一条由实线串起来的五角星形线x1subplot(2,1,2);plot(n,y1,'p-'); %绘制y1曲线3、f=10;fp=2;fs=1.5;wp=2*pi*fp*(1/f); %设置通带边缘频率ws=2*pi*fs*(1/f); %设置阻带边缘频率Ap=3;As=40;[N,wn]=buttord(wp/pi,ws/pi,Ap,As); %确定N值和截止频率wn[b,a]=butter(N,wn,'high'); %设计截止频率为wn的高通滤波器[h,w]=freqz(b,a); %计算数字滤波器的Z变换频率响应subplot(2,2,1);plot(w/pi,abs(h)); %画幅频响应曲线图title('幅度响应');grid ;subplot(2,2,3);plot(w/pi,20*log10(abs(h)));%画幅频的对数的幅频曲线title('幅度响应dB');grid ;n=[0:1:59];imp=[1;zeros(59,1)];y=filter(b,a,imp); %对imp进行滤波subplot(2,2,4);plot(n,y); %画出y的图形title('脉冲响应');grid ;n=[0:1000];t=0.0001*n; %fs=1/t=10000HZx=2*sin(2*pi*4000*t)+5*sin(2*pi*50*t);%输入混有两种频率的波形y1=filter(b,a,x); %对x进行滤波figure(2);subplot(2,1,1);plot(n,x,'p-'); %绘制一条由实线串起来的五角星形xsubplot(2,1,2);plot(n,y1,'p-'); %绘制一条由实线串起来的五角星形线y14、clear;close all;wp=[0.2*pi,0.8*pi];ws=[0.4*pi,0.7*pi];Ap=1;As=30;[N,wn]=buttord(wp/pi,ws/pi,Ap,As); %确定N和截止频率wn的值[b,a]=butter(N,wn,'stop'); %设计截止频率为wn的带阻滤器[h,w]=freqz(b,a); %计算数字滤波器的Z变换频率响应subplot(2,2,1);plot(w/pi,abs(h)); %画幅频响应曲线图title('幅度响应'); %加图名grid;subplot(2,2,3);plot(w/pi,20*log(abs(h))); %画幅频的对数的幅频曲线title('幅度响应dB'); %加图名axis([0,1,-80,5]); %设置坐标grid; %加网格线n=[0:1:59];imp=[1;zeros(59,1)];y=filter(b,a,imp); %对imp进行滤波subplot(2,2,4);plot(n,y); %画出滤波后的曲线ytitle('脉冲响应'); %加图名grid;n=[0:100];t=0.001*n; %fs=1/t=1000HZ x=2*sin(2*pi*400*t)+5*sin(2*pi*50*t);x1=ones(1,101);y=filter(b,a,x); %对x进行滤波,得到yfigure(2);subplot(2,1,1);plot(n,x,'p-'); %绘制一条由实线串起来的五角星形线xsubplot(2,1,2);plot(n,y,'p-'); %绘制一条由实线串起来的五角星形线yfunction [b,a] =afd_butt(Omegp,Omegs,Ap,As);if Omegp<= 0error('Passband edge must be larger than 0')endif Omegs<=Omegperror('Stopband edge must be larger than Passband edge')endif (Ap <= 0) | (As < 0)error('PB ripple and/or SB attenuation must be larger than 0')endN=ceil((log10((10^(Ap/10)-1)/(10^(As/10)-1)))/(2*log10(Omegp/Omegs)) );fprintf('\n*** Butterworth Filter Order = %2.0f \n',N)OmegaC = Omegp/((10^(Ap/10)-1)^(1/(2*N)));[b,a]=u_buttap(N,OmegaC);Endfunction [b,a] = u_buttap(N,Omegac);[z,p,k] = buttap(N);p = p*Omegac;k = k*Omegac^N;B = real(poly(z));b = k*B;b0= k;a = real(poly(p));end实验分析:2用双线性法设计的低通滤波器,fs=1000HZ,当输入为方波时,把其高频部分滤去,留下低频部分,从而实现低通滤波功能;3设计的为高通数字滤波器,fs=10000HZ,而输入信号为x=x1+x2,x1,x2是由两种不同频率的sin 函数混合而成,可以通过高频,滤去低频,从而实现高频滤波器功能;4设计的为带阻滤波器,fs=1000HZ,输入信号为x=x1+x2,x1,x2由两种不同的频率混合而成,带阻滤波器的幅度响应是关于π对称的,从图中可以看出,没经过滤波前的波形与滤波后波形是一样的,即两种波形没有被阻隔。