北京2015年初三数学一模试题分类--第29题新定义综合
2015年北京市通州区中考数学一模试卷带解析答案
灯塔落在地面上的影长为 12 米,然后在同一时刻立一根高 2 米的标杆,测得 标杆影长为 0.5 米,那么燃灯塔高度为 米.
14. (3 分)生物学研究表明在 8﹣17 岁期间,男女生身高增长速度规律呈现如 图所示,请你观察此图,回答下列问题:男生身高增长速度的巅峰期是 岁,在 岁时男生女生的身高增长速度是一样的.
四、解答题(每题 5 分,共 25 分)
第 4 页(共 32 页)
22. (5 分)为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排 放设施进行改造.某施工队承担铺设地下排污管道任务共 2200 米,为了减少 施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管 道的长度比原计划多 10%,结果提前两天完成任务.求原计划平均每天铺设 排污管道的长度. 23. (5 分)已知菱形 ABCD 的对角线 AC 与 BD 相交于点 E,点 F 在 BC 的延长 线上, 且 CF=BC, 连接 DF, 点 G 是 DF 中点, 连接 CG. 求证: 四边形 ECGD 是矩形.
2. (3 分)北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨 道交通日均运送乘客达到 1320 万人次.数据 1320 万用科学记数法表示正确 的是( ) B.13.2×102 万 C.1.32×103 万 D.1.32×104 万 )
A.132×101 万
3. (3 分)某几何体的通州区中考一模数学试卷
一、选择题(每题只有一个正确答案,共 10 个小题,每小题 3 分,共 30 分) 1. (3 分)﹣2 的绝对值是( A.±2 B.2 ) C. D.
A.圆柱
B.三棱柱
C.长方体 ) C.2a2+a2=3a4
北京2015年初三数学一模试题分类--第29题新定义综合
北京2015年初三数学一模试题分类—第29题新定义综合1、(海淀)29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--. (1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点,这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围. 2、(西城)29、给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C - 和射线OA 之间的距离为________; (2)如果直线y =x 和双曲线ky x=,那么k = ;(可在图1中进行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M . ①请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE ,OF 组成的图形记为图形W ,抛物线22-=x y 与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.3、(东城)29.定义符号{}min a b ,的含义为:当a b ≥时, {}min a b b =,;当a b <时,{}min a b a =,.如:{}min 122-=-,,{}min 121-=-,.(1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.4、(朝阳)29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ; ②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.5、(丰台)29. 设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离(2)①求点(3,0)M 到直线21y x =+的距离;②如果点(0,)N a 到直线21y x =+的距离为3,那么a 的值(3)如果点(0,)G b 到抛物线2y x =的距离为3,请直接写出b 的值.6、(石景山)29.在平面直角坐标系xOy 中,点A 在直线l 上,以A 为圆心,OA 为半径的圆与y 轴的另一个交点为E .给出如下定义:若线段OE ,⊙A 和直线l 上分别存在点B ,点C 和点D ,使得四边形ABCD 是矩形(点,,,A B C D 顺时针排列),则称矩形ABCD 为直线l 的“理想矩形”.例如,下图中的矩形ABCD 为直线l 的“理想矩形”.(1)若点(1,2)A -,四边形ABCD 为直线1x =-的“理想矩形”,则点D 的坐标为 ;(2)若点(3,4)A ,求直线1y kx =+(0)k ≠的“理想矩形”的面积; (3)若点(1,3)A -,直线l 的“理想矩形”面积的最大值为 ,此时点D 的坐标为.备用图7、(门头沟)29.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.AABBMMOxyy=m准蝶形AMB(1)抛物线212y x的碟宽为 ,抛物线y =ax 2(a >0)的碟宽为 . (2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a = .(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1.① 求抛物线y 2的表达式;② 请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.8、(平谷)29.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”. (1)反比例函数y =x2015是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值; (3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示). 9、(通州)29.如图,在平面直角坐标系中,已知点A (2,3)、B (6,3),连结AB . 若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”. (1)判断点D 719(,)55,是否线段AB 的“邻近点” (填“是”或“否”);(2)若点H (m ,n )在一次函数1-=x y 的图象上,且是线段AB 的“邻近点”,求m 的取值范围.(3)若一次函数y x b =+的图象上至少存在一个邻近点,直接写出b 的取值范围.10、(延庆)29. 对于平面直角坐标系xOy 中的点P 和线段AB ,给出如下定义:在线段AB 外有一点P ,如果在线段AB 上存在两点C 、D ,使得∠CPD =90°,那么就把点P 叫做线段AB 的悬垂点.(1)已知点A (2,0),O (0,0)①若1(1,)2C ,D (1,1),E (1,2),在点C ,D ,E 中,线段AO 的悬垂点是______; ②如果点P (m ,n )在直线1y x =-上,且是线段AO 的悬垂点,求m 的取值范围;(2)如下图是帽形M (半圆与一条直径组成,点M 是半圆的圆心),且圆M 的半径是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.11、(房山)29.【探究】如图1,点()N m,n 是抛物线21114y x =-上的任意一点,l 是过点()02,-且与x 轴平行的直线,过点N 作直线NH ⊥l ,垂足为H .①计算: m=0时,NH= ; m =4时,NO = . ②猜想: m 取任意值时,NO NH (填“>”、“=”或“<”).【定义】我们定义:平面内到一个定点F 和一条直线l (点F 不在直线l 上)距离相等的点的集合叫做抛物线,其中点F 叫做抛物线的“焦点”,直线l 叫做抛物线的“准线”.如图1中的点O 即为抛物线1y 的“焦点”,直线l :2y =-即为抛物线1y 的“准线”.可以发现“焦点”F 在抛物线的对称轴上.【应用】(1)如图2,“焦点”为F (-4,-1)、“准线”为l 的抛物线()221+44y x k =+与y 轴交于点N (0,2),点M 为直线FN 与抛物线的另一交点.MQ ⊥l 于点Q ,直线l 交y 轴于点H .①直接写出抛物线y 2的“准线”l : ; ②计算求值:1MQ +1NH=;(2)如图3,在平面直角坐标系xOy 中,以原点O 为圆心,半径为1的⊙O 与x 轴分别交于A 、B 两点(A 在B 的左侧),直线y =33x +n 与⊙O 只有一个公共点F ,求以F 为“焦点”、x 轴为“准线”的抛物线23y ax bx c =++的表达式.图2图3图112、(怀柔)29. 对某种几何图形给出如下定义: 符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹.例如,平面内到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.(1)如图1,在△ABC 中,AB=AC ,∠BAC=90°,A(0,2),B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE ,且DE ⊥x 轴于点G.则直线DE 的表达式是 .(2)当△ABC 是等边三角形时,在(1①当点B 运动到如图2的位置时,AC ∥x 轴,则C 点的坐标是 . ②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式.③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,则CE 的取值范围是 .13、(燕山)29.在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如点(1,1),(31-,31-),(2-,2-),…,都是和谐点. (1)分别判断函数12+-=x y 和12+=x y 的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数)0(42≠++=a c x ax y 的图象上有且只有一个和谐点(23,23),且当m x ≤≤0时,函数)0(4342≠-++=a c x ax y 的最小值为-3,最大值为1,求m 的取值范围.(3)直线2:+=kx y l 经过和谐点P ,与x 轴交于点D ,与反比例函数xn y G =:的图象交于M ,N 两点(点M 在点N 的左侧),若点P 的横坐标为1,且23<+DN DM ,请直接写出n 的取值范围.。
2015西城初三数学一模答案
北京市西城区2015年初三一模试卷数学试卷参考答案及评分标准 2015. 4一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17()011π2008()6tan302--+-︒=3362132⨯-++………………………………………………………… 4分 =32332-+=3.…………………………………………………………………………………… 5分 18.证明:如图1.∵ ∠EAC =∠DAB ,∴ 11EAC DAB ∠+∠=∠+∠.即 ∠BAC =∠DAE . …………………… 1分 在△ABC 和△ADE 中,,,,C E BAC DAE AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩………………………3分∴ △ABC ≌△ADE .…………………………………………………………… 4分 ∴ BC = DE .…………………………………………………………………… 5分 19.解:()2035148.x x x -≤⎧⎪⎨+>-⎪⎩,由①,得2x ≥. (2)分由②,得 15348x x +>-.移项,合并,得 1111x >-.系数化1,得 1x >-. ………………………………………………………… 4分 所以原不等式组的解集为2x ≥.…………………………………………………5分20.解: 223312111a a a a a a a ++÷-++++=()()2331111a a a a a a ++÷-+++……………………………………………………………2分 ()()2311311a a a a a a ++=⋅-+++ =111+-+a a a …………………………………………………………………………3分 =11a a -+.………………………………………………………………………………4分 当2=a 时,原式=311212=+-.………………………………………………………5分 21.解:设普通列车的平均速度为x 千米/时.…………………………………………… 1分 则高铁的平均速度是2.5x 千米/时.依题意,得40052032.5x x+=.…………………………………………………… 2分 解得 120=x .……………………………………………………………………3分 经检验,120=x 是原方程的解,且符合题意.……………………………… 4分 所以 30052=x ..答:高铁的平均速度是300千米/时.………………………………………………… 5分 22.(1)证明: []22(1)4(2)m m m ∆=--++ 2248448m m m m =-+++284m =+.……………………………………………………………………1分∵ 28m ≥0,∴ 284m +>0.………………………………………………………………2分∴ 方程总有两个不相等的实数根. ……………………………………… 3分(2)解:∵ 2x =-是此方程的一个根,∴ 2(2)2(2)(1)(2)0m m m --⨯---+=.整理得 220m m -=.解得 10m =,22m =.……………………………………………………… 5分四、解答题(本题共20分,每小题5分)23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .…………………………………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒.∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O . ∵ DA 平分∠BDE ,∴ ∠ADE=∠1.又∵ ADE BAD ∠=∠, ∴ ∠1=∠BAD .∴ AB= BD .………………………………3分 ∴ABDE 是菱形. ∵ AB=5,AD=6,∴ BD=AB=5,AD BE ⊥,132OA AD ==.在Rt △OAB 中,4OB =.∵ 1122ABD S AD OB BD AF =⋅=⋅V , ∴ 645AF ⨯=.解得 4.8AF =. …………………………4分 ∵ BD 垂直平分AC ,∴ 29.6AC AF ==.……………………5分 注:其他解法相应给分. 24.解:(1)补全扇形图如图3所示.…………………1分 (2)2号线,52<x ≤72 ,22.2.(各1分)………………………………………… 4分 (3)30.……………………………………… 5分 25.解:(1)依题意,补全图形如图4.……………… 1分 (2)BAD ∠.…………………………………… 2分 证明:如图5,连接BC ,CD .∵ 直线l 与直线MA 关于直线MD 对称, ∴ 12∠=∠.………………………3分 ∵ AB 为⊙O 的直径,∴ 90ACB ∠=︒,即BC MA ⊥. 又∵ BE l ⊥,∵ cos 1MC MB =⋅∠,cos 2ME MB =⋅∠∴ MC=ME . 又∵ C ,E 两点分别在直线MA 与直线l 可得C ,E 两点关于直线MD 对称.∴ 3BED ∠=∠. ………………… 4分 又∵ 3BAD ∠=∠,∴ BAD BED ∠=∠. ……………… 5分26.解:45. …………………………………………………1分画图见图6. ………………………………………3分 45.………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第2527.解:(1)∵ 二次函数21y x bx c =++的图象1C 经过(1,0)-,∴10,3.b c c -+=⎧⎨=-⎩ ………………………………1分解得2,3.b c =-⎧⎨=-⎩ (2)分∴ 抛物线1C 的函数表达式为3221--=x x y . …………………………………… 3分 (2)∵ 22123=(1)4y x x x =----,∴ 抛物线1C 的顶点为(1,4)- ∴ 平移后抛物线2C 的顶点为(0,0),它对应的函数表达式为22y x =.… 5分 (3)a ≥1-(见图7).………………………………………………………………7分28.解:(1)90,12.……………………………………………………………………… 2分 (2)结论:90AHB ∠=︒,AF BE =. 证明:如图8,连接AD .∵ AB =AC ,∠BAC =60°, ∴ △ABC 是等边三角形. ∵ D 为BC 的中点, ∴ AD ⊥BC . ∴ ∠1+∠2=90°.又∵ DE ⊥AC ,∴ ∠DEC =90°. ∴ ∠2+∠C =90°. ∴ ∠1=∠C =60°. 设AB =BC=k (0k >),则124kCE CD ==,DE =. ∵ F 为DE 的中点,∴ 12DF DE ==,AD AB ==. ∴AD BC =,DF CE ∴ =BC AD CE DF .…………………………………………………………3分 又∵ ∠1=∠C ,∴ △ADF ∽△BCE .………………………………………………… 4分∴AF AD BE BC ==,………………………………………………… 5分 ∠3=∠4. 又∵ ∠4+∠5=90°,∠5=∠6, ∴ ∠3+∠6=90°.∴ 90AHB ∠=︒.………………………………………………………6分(3)1tan 9022α︒-().………………………………………………………………7分注:写1cos 2sin αα+或其他答案相应给分.29.解:(1)3.(每空各1分)…………………………………………………… 2分(2)-1.…………………………………………………………………………… 4分(3)①如图9,过点O 分别作射线OE 、OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分). (7)分说明:(画图2分,描述1分)(图形M 也可描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界)) ②34.…………………………………………………………………………8分。
北京市丰台区2015届下学期初中九年级一模考试数学试卷
北京市丰台区2015届下学期初中九年级一模考试数学试卷本试卷共三道大题,29道小题,满分120分。
考试时间120分钟。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的。
1. 长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6700 000米,将6700 000用科学记数法表示应为A . 67×106B. 6.7×106C. 6.7×107D. 0.67×1062. 如图,数轴上有A ,B ,C ,D 四个点,其中表示-2的相反数的点是A. 点AB. 点BC. 点CD. 点D3. 五张完全相同的卡片上,分别写上数字-3,-2,-1,2,3,现从中随机抽取一张,抽到写有负数的卡片的概率是A.51B.52 C.53D.54 4. 在下面的四个几何体中,左视图与主视图不完全相同的几何体是5. 如图,直线AB ∥CD ,BE 平分∠ABC ,交CD 于点D ,∠CDB=30°,那么∠C 的度数为A. 150°B. 130°C. 120°D. 100°6. 如图,A ,B 两点被池塘隔开,在AB 外选一点C ,使点C 能直接到达点A 和点B ,连接AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20m,那么A、B两点的距离是A. 10mB. 20mC. 35mD. 40m7. 某班体育委员统计了全班45名同学一周的体育锻炼时间,并绘制了如图所示的折线统计图,则在体育锻炼时间这组数据中,众数和中位数分别是A. 18,18B. 9,9C. 9,10D. 18,98. 下图是某中学的平面示意图,每个正方形格子的边长为l,如果校门所在位置的坐标为(2,4),小明所在位置的坐标为(-6,-1),那么坐标(3,-2)在示意图中表示的是A. 图书馆B. 教学楼C. 实验楼D. 食堂9. 如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定一点P,使PA+PC=BC,那么符合要求的作图痕迹是10. 如图,矩形ABCD中,AB=2,BC=1,O是AB的中点,动点P从B点开始沿着边BC,CD运动到点D结束,设BP=x,OP=y,则y关于x的函数图象大致为二、填空题(本题共18分,每小题3分)11. 分解因式:2x3-8x=________.12. 如图,在同一平面内,将边长相等的正三角形、正五边形的一边重合,则∠1=_______。
2015年北京初三一模数学试题分类汇编—代数综合
1 Oyx2015初三数学一模题分类——代数综合1.(通州一模27)二次函数2(0)y ax bx c a =++≠的图象与一次函数1y x b =+k 的图象交于)10(,A 、B 两点,(1,0)C 为二次函数图象的顶点.(1)求二次函数2(0)y ax bx c a =++≠的表达式;(2)在所给的平面直角坐标系中画出二次函数2(0)y ax bx c a =++≠的图象和一次函数1y x b =+k 的图象; (3)把(1)中的二次函数2(0)y ax bx c a =++≠的图象平移后得到新的二次函数22(0,)y ax bx c m a m =+++≠为常数的图象,.定义新函数f :“当自变量x 任取一值时,x 对应的函数值分别为1y 或2y ,如果1y ≠2y ,函数f 的函数值等于1y 、2y 中的较小值;如果1y =2y ,函数f 的函数值等于1y (或2y ).” 当新函数f 的图象与x 轴有三个交点时,直接写出m 的取值范围.2.(房山一模27)在平面直角坐标系中,抛物线32++=bx ax y 与x 轴的两个交点分别为A (-3,0), B (1,0),顶点为C .(1) 求抛物线的表达式和顶点坐标;(2) 过点C 作CH ⊥x 轴于点H ,若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.3.(西城一模27)已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位, 得到抛物线2C ,将2C 对应的函数表达式记为22y x mx n =++,求2C 对应的函数表达式;(3)设323y x =+,在(2)的条件下,如果在 2-≤x ≤a 内存在..某一个x 的值,使得2y ≤3y 成立,利用函数图象直接写出a 的取值范围.4.(门头沟毕业考试27)已知:关于x 的一元二次方程-x 2+(m +1)x +(m +2)=0(m >0).(1)求证:该方程有两个不相等的实数根; (2)当抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),求该抛物线的表达式;(3)在(2)的条件下,记抛物线y =-x 2+(m +1)x +(m+2)x2 在第一象限之间的部分为图象G ,如果直线 y =k (x +1)+4与图象G 有公共点,请结合函数的图象,求直线y =k (x +1)+4与y 轴交点的纵坐标t 的取值范围.5.(平谷一模27)已知抛物线y =ax 2+x +c (a ≠0)经过A (1-,0),B (2,0)两点,与y 轴相交于点C ,点D 为该抛物线的顶点.(1)求该抛物线的解析式及点D 的坐标;(2)点E 是该抛物线上一动点,且位于第一象限,当点E 到直线BC 的距离为22时,求点E 的坐标; (3)在(2)的条件下,在x 轴上有一点P ,且∠EAO +∠EPO =∠α,当tanα=2时,求点P 的坐标.6.(东城一模27)在平面直角坐标系xOy 中,抛物线()210y axbx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.7.(海淀一模27)在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.O yxxyO–5–4–3–2–112345–7–6–5–4–3–2–112345673112AC OxyB8.(延庆毕业考试27)二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0),12y x b =-+经过点B ,且与二次函数2y x mx n =-++交于点D .过点D 作DC ⊥x 轴,垂足为点C . (1)求二次函数的表达式;(2)点N 是二次函数图象上一点(点N 在BD 上方),过N 作NP ⊥x 轴,垂足为点P ,交BD 于点M ,求MN 的最大值.9.(燕山毕业27)抛物线c bx x y C ++=2121:与y 轴交于点C (0,3),其对称轴与x 轴交于点A (2,0).(1)求抛物线1C 的解析式;(2)将抛物线1C 适当平移,使平移后的抛物线2C 的顶点为D (0,k ).已知点B (2,2),若抛物线2C 与△OAB 的边界总有两个公共点,请结合函数图象,求k 的取值范围.10.(朝阳一模27)如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).。
入乎其内“反称点”,出乎其外“圆外圆”--2015年北京市中考卷第29题解析与链接
入乎其内“反称点”,出乎其外“圆外圆”--2015年北京市中考卷第29题解析与链接宋体河【期刊名称】《中学数学》【年(卷),期】2015(000)016【总页数】2页(P48-49)【作者】宋体河【作者单位】江苏省江阴市华士实验中学【正文语种】中文北京市中考卷常常因为试题的新颖而倍受关注,特别是近几年来全卷最后一题(也称压轴题)都是以一道新定义考题来把关,更是引发很多同行命题研究的兴趣,也成为备考师生全力应对的热点题型,同时还带动了北京市各区七、八年级期末考试把关题的命题导向.本文就来关注2015年北京市中考卷第29题的思路突破与命题立意,与同行研讨.考题1(2015年北京市中考卷第29题)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,图1为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点关于⊙O的反称点是否存在?若存在,求其坐标.②点P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为1,直线与x轴、y轴分别交于点A、B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.思路突破:(1)①解决该小题的关键是计算这三个点到圆心O的距离,根据反称点的定义,如果该距离大于圆的直径2时,则不存在反称点,如果不大于直径2,则都有反称点;据此,可以发现点M(2,1)到圆心O的距离是>2,则它关于⊙O的反称点是不存在;而到圆心O的距离是到圆心O的距离是2,都有反称点,分别是②由点P在直线y=-x+2上,容易构造图2分析,根据①中得出的结论,点P到圆心O(原点)的距离不大于2,可以直观发现在直线y=-x+2上,只有当0≤x≤2时,对应着的点P符合要求,再结合题目限制的反称点P′不在x轴上,则需要舍去坐标轴上两个点,即x≠0,x≠2,即点P的横坐标的取值范围为0<x<2.如果说上述思路还略显晦涩的话,我们还可以将问题进一步直观化,即再作出一个半径为2的⊙O,如图3,这个大圆“圈住”直线y=-x+2的那一段则是符合条件的点P所在位置.(2)首先由直线易得它与坐标轴的交点分别为,如图4,受到上一问的启示,也画出两个同心圆(同心圆⊙C),半径分别为1,2;容易得出当圆心C的坐标为(2,0)时,大圆C(虚线圆)跟直线AB相切,此时切点P就是符合要求的一个点P,随着圆心C沿x轴向右移动到点(8,0)时,大圆C(虚线圆)与线段AB恰好交于点A,也就是在此移动过程中,大圆C(虚线圆)与线段AB都有交点,即圆心C的横坐标的取值范围为2≤x≤8.考题2(2013年北京市中考卷第25题)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点(1)当⊙O的半径为1时.①在点D、E、F中,⊙O的关联点是_________;②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O的关联点,求m的取值范围.(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.揭示结构:由于不少期刊已对该题多有探讨,我们不准备详细阐述思路,通过图形直观的方法揭示问题结构:所谓“关联点”,可以用图5形象地展现出来.考题3(2015年江苏无锡卷第26题)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m-5,2).(1)是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.揭示结构:由“∠OPA=90°”获得启示,如图6,构造出辅助圆与直线y=2交于两点,而这两点就是后续问题求解的关键.其实到各地中考卷中检索,还能发现很多需要构造辅助圆的考题,我们关心的不是多多益善,而是透过这些考题获得怎样的教学思考.1.解题教学要引导学生“回到概念去解题”解题教学在目前初中数学课堂中占有很大比重,往往影响着数学教学质量的提升和品质的追求.与过分追求题型教学、技巧教学、熟能生巧相比,引导学生“回到概念去解题”值得倡导,这一方面是倡导解题教学要重视概念的复习与深刻理解,另一方面也是践行“数学,根本上是玩概念的”(李邦河院士语).从上面三道考题来看,辅助圆的出现使得解法直观、简明、好懂,是一种居高临下的解法!可是,如何想到的?对于“考题1”来说,虽然“圆外圆”出现在图3中,启发了思路而且带动了后续问题更直观的理解,然而根本上还是在第(1)问中解读新概念,得出“关键是计算这三个点到圆心O的距离,根据反称点的定义,如果该距离大于圆的直径2时,则不存在反称点,如果不大于直径2,则都有反称点”.2.解题教学要重视反思回顾环节解后回顾反思是很多数学大师、数学教育专家学者提倡的好习惯,因为在反思回顾环节可以加深对问题本质的认识,特别是重视问题深层结构的揭示.比如“考题2”与“考题3”的解后回顾环节,如果缺少对辅助圆出现的反思,就难以让学生从问题深层结构的高度认识和理解考题.罗增儒教授曾指出:“解题教学缺少解后反思,‘如人无手,入宝山而空返’.”以上我们关于各个考题求解思路之后,辅助圆的价值、意义的追问都可以在解题教学中对学生进行启发,可以引导学生及时记录、整理,根据我们的教学实践,对于解题能力的提升是有积极意义的.【相关文献】1.袁亚良,江海人.一次市级说题比赛的成果展示与思考[J].中学数学教学参考(中),2014(5).2.肖维松.回到概念:解题教学的一种取向——以2014年江苏泰州卷第25题教学为例[J].中学数学教学参考(中),2014(7).3.耿华东.数形互助来破题,探索发现是导向——2014年北京卷压轴题解析与思考[J].中学数学(下),2014(8).4.【德】菲利克斯·克莱因,箸.高观点下的初等数学(第一卷)[M].舒湘芹,陈义章,杨钦樑,译.齐民友,审.上海:复旦大学出版社,2008.5.章建跃.中学数学课改的十个论题[J].中学数学教学参考(上),2010(3~5).H。
2015西城初三一模数学试卷及答案概要.
北京市西城区2015年初三一模试卷数学2015. 41.13的相反数是A .13B .13- C .3 D .3- 2.据市烟花办相关负责人介绍,2015年除夕零时至正月十五24时,全市共销售烟花爆竹约196000箱,同比下降了32%.将196 000用科学记数法表示应为A .51.9610⨯B .41.9610⨯C .419.610⨯D .60.19610⨯ 3.下列运算正确的是A .336a b ab +=B .32a a a -= C .236()a a = D .632a a a ÷=4.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A .1B .12C .13D .146.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB是⊙O的直径,弦CD丄AB,如果∠BOC=70°,那么∠BAD等于A.20°B.30°C.35°D.70°8.在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为A.12yx=B.12yx=-C.15yx=D.15yx=-9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是A.6,4 B.6,6C.4,4 D.4,610.如图,过半径为6的⊙O上一点A作⊙O的切线l,P为⊙O上的一个动点,作PH⊥l于点H,连接P A.如果P A=x,AH=y,那么下列图象中,能大致表示y与x的函数关系的是二、填空题(本题共18分,每小题3分)11.如果分式15x-有意义,那么x的取值范围是.12.半径为4cm,圆心角为60°的扇形的面积为cm2.13.分解因式:2123m -= .14.如图,△ABC 中,AB =AC ,点D ,E 在BC 边上,当 时, △ABD ≌△ACE .(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC 与地面垂直,以O为横板AB 的中点..,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化 呢?一位同学做了如下研究:他先设AB=2 m ,OC=0.5 m ,通过计算得到此时的h 1,再将横板AB换成横板A ′B ′,O 为横板A ′B ′的中点,且A ′B ′=3m ,此时B ′点的最大高度为h 2,由此得 到h 1与h 2的大小关系是:h 1 h 2(填“>”、“=”或“<”).可进一步得出,h 随横板的长度的变化而 (填“不变”或“改变”).16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,点4A 表示的数是 ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .三、解答题(本题共30分,每小题5分)17()011π2008()6tan302--+-︒.18.如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .19.解不等式组 203(51)48x x x -≤⎧⎨+>-⎩20.先化简,再求值:223312111a a a a a a a ++÷-++++,其中2a =.21.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比 乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时.22.已知关于x 的一元二次方程0)2()1(22=+---m m x m x . (1)求证:此方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求实数m 的值.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘 坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题: (1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是 ,调价后里程x (千米)在 范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到 万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出 元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25.如图,AB 为⊙O 的直径,M 为⊙O 外一点,连接MA 与⊙O 交于点C ,连接MB 并延长交⊙O 于点D ,经过点M 的直线l 与MA 所在直线关于直线MD 对称.作BE ⊥l 于点E ,连接AD ,DE .(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED 相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=, CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位,得到抛物线2C ,将2C 对应的函数表达式记为22y x mx n =++,求2C 对应的函数表达式;(3)设323y x =+,在(2)的条件下,如果在2x a -≤≤内存在..某一个x 的值,使得23y y ≤成立,利用函数图象直接写出a 的取值范围.28.△ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AH B ∠= ︒,AFBE= ; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论; (3)如果BAC α∠=,那么AFBE= .(用含α的表达式表示)29.给出如下规定:两个图形1G 和2G ,点P 为1G 上任一点,点Q 为2G 上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形1G 和2G 之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C -和射线OA 之间的距离为________;(2)如果直线y x =和双曲线ky x=k = ; (可在图1中进行研究)(3)点E 的坐标为,将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线,OE OF 之间的距离相等的点所组成的图形记为图形M .① 请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示) ② 将射线,OE OF 组成的图形记为图形W ,抛物线22y x =-与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.北京市西城区2015年初三一模试卷数学试卷参考答案及评分标准2015.4一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17()011π2008()6tan302--+-︒=3362132⨯-++………………………………………………………… 4分 =32332-+=3.…………………………………………………………………………………… 5分 18.证明:如图1.∵ ∠EAC =∠DAB ,∴ 11EAC DAB ∠+∠=∠+∠.即 ∠BAC =∠DAE . …………………… 1分 在△ABC 和△ADE 中,,,,C E BAC DAE AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩………………………3分∴ △ABC ≌△ADE .…………………………………………………………… 4分 ∴ BC= DE .…………………………………………………………………… 5分 19.解:()2035148.x xx -≤⎧⎪⎨+>-⎪⎩, 由①,得2x ≥. ………………………………………………………………… 2分由②,得 15348x x +>-移项,合并,得 1111x >-系数化1,得 1x >-. ………………………………………………………… 4分 所以原不等式组的解集为2x ≥.…………………………………………………5分20.解: 223312111a a a a a a a ++÷-++++=()()2331111a a a a a a ++÷-+++……………………………………………………………2分 ()()2311311a a a a a a ++=⋅-+++ =111+-+a a a …………………………………………………………………………3分 =11a a -+.………………………………………………………………………………4分 当2=a 时,原式=311212=+-.………………………………………………………5分 21.解:设普通列车的平均速度为x 千米/时.…………………………………………… 1分 则高铁的平均速度是2.5x 千米/时.依题意,得40052032.5x x+=.…………………………………………………… 2分 解得 120=x .……………………………………………………………………3分 经检验,120=x 是原方程的解,且符合题意.……………………………… 4分 所以 30052=x ..答:高铁的平均速度是300千米/时.………………………………………………… 5分 22.(1)证明: []22(1)4(2)m m m ∆=--++ 2248448m m m m =-+++284m =+.……………………………………………………………………1分∵ 28m ≥0,∴ 284m +>0.………………………………………………………………2分∴ 方程总有两个不相等的实数根. ……………………………………… 3分(2)解:∵ 2x =-是此方程的一个根,∴ 2(2)2(2)(1)(2)0m m m --⨯---+=.整理得 220m m -=.解得 10m =,22m =.……………………………………………………… 5分四、解答题(本题共20分,每小题5分)23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .…………………………………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒.∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O . ∵ DA 平分∠BDE ,∴ ∠ADE=∠1.又∵ ADE BAD ∠=∠, ∴ ∠1=∠BAD .∴ AB= BD .………………………………3分 ∴ABDE 是菱形. ∵ AB=5,AD=6,∴ BD=AB=5,AD BE ⊥,132OA AD ==.在Rt △OAB 中,4OB =.∵ 1122ABD S AD OB BD AF =⋅=⋅V , ∴ 645AF ⨯=.解得 4.8AF =. …………………………4分 ∵ BD 垂直平分AC ,∴ 29.6AC AF ==.……………………5分 注:其他解法相应给分. 24.解:(1)补全扇形图如图3所示.…………………1分 (2)2号线,52<x ≤72 ,22.2.(各1分)………………………………………… 4分 (3)30.……………………………………… 5分 25.解:(1)依题意,补全图形如图4.……………… 1分 (2)BAD ∠.…………………………………… 2分 证明:如图5,连接BC ,CD .∵ 直线l 与直线MA 关于直线MD 对称, ∴ 12∠=∠.………………………3分 ∵ AB 为⊙O 的直径,∴ 90ACB ∠=︒,即BC MA ⊥. 又∵ BE l ⊥,∵ cos 1MC MB =⋅∠,cos 2ME MB =⋅∠∴ MC=ME . 又∵ C ,E 两点分别在直线MA 与直线l 可得C ,E 两点关于直线MD 对称.∴ 3BED ∠=∠. ………………… 4分 又∵ 3BAD ∠=∠,∴ BAD BED ∠=∠. ……………… 5分26.解:45. …………………………………………………1分画图见图6. ………………………………………3分 45.………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.解:(1)∵ 二次函数21y x bx c =++的图象1C 经过(1,0)-,∴10,3.b c c -+=⎧⎨=-⎩………………………………1分 解得2,3.b c =-⎧⎨=-⎩…………………………………2分 ∴ 抛物线1C 的函数表达式为3221--=x x y . …………………………………… 3分(2)∵ 22123=(1)4y x x x =----,∴ 抛物线1C 的顶点为(1,4)- ∴ 平移后抛物线2C 的顶点为(0,0),它对应的函数表达式为22y x =.… 5分(3)a ≥1-(见图7).………………………………………………………………7分28.解:(1)90,12.……………………………………………………………………… 2分 (2)结论:90AHB ∠=︒,AF BE =. 证明:如图8,连接AD .∵ AB =AC ,∠BAC =60°,∴ △ABC 是等边三角形.∵ D 为BC 的中点,∴ AD ⊥BC .∴ ∠1+∠2=90°.又∵ DE ⊥AC ,∴ ∠DEC =90°.∴ ∠2+∠C =90°.∴ ∠1=∠C =60°.设AB =BC=k (0k >), 则124k CE CD ==,DE =. ∵ F 为DE 的中点,∴ 12DF DE ==,AD AB ==. ∴AD BC =,DF CE ∴ =BC AD CE DF .…………………………………………………………3分又∵ ∠1=∠C ,∴ △ADF ∽△BCE .………………………………………………… 4分∴AF AD BE BC ==,………………………………………………… 5分 ∠3=∠4.又∵ ∠4+∠5=90°,∠5=∠6,∴ ∠3+∠6=90°.∴ 90AHB ∠=︒.………………………………………………………6分 (3)1tan 9022α︒-().………………………………………………………………7分 注:写1cos 2sin αα+或其他答案相应给分.29.解:(1)3.(每空各1分)…………………………………………………… 2分(2)-1.…………………………………………………………………………… 4分(3)①如图9,过点O 分别作射线OE 、OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分)………… 7分说明:(画图2分,描述1分)(图形M 也可描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界)) ②34 …………………………………………………………………………8分。
2015年北京通州初三数学一模试题含答案
通州区2015年初三模拟考试数学试卷一、选择题(每题只有一个正确答案,共10个小题,每小题3分,共30分) 1.2-的绝对值是( )A .2±B .2C .12D .12-2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320万人次.数据1320万用科学计数法表示正确的是( )A .113210⨯万 B .213.210⨯万 C .31.3210⨯万 D .41.3210⨯万 3.某几何体的三视图如图所示,这个几何体是( ) A .圆柱 B .三棱柱 C. 长方体D .圆锥4.下列等式一定成立的是( ). A .22a a a ⋅=B .22=÷a aC .22423a a a +=D .()33a a -=-5.如图,点A 、D 在射线AE 上,直线AB ∥CD ,∠CDE =140°, 那么∠A 的度数为( ) A .140° B .60° C .50°D .40° 6.一个多边形的每一个内角均为108°,那么这个多边形是( )A .七边形B .六边形C .五边形D .四边形7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A .85, 90B .85, 87.5C .90, 85D .95, 908.物理某一实验的电路图如图所示,其中K 1,K 2,K 3 为电路开关,L 1 ,L 2为能正常发光的灯泡.任意闭合开关K 1, K 2, K 3中的两个,那么能让两盏灯泡同时..发光的概率为( ) A .31B .32C .21D .619.如图,AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,那么sin ∠ABD 的值是( )A .43 B .34 C .35 D .4510.如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动.如图(1)所示,设S △DPB = y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则△ABA .4B .6C .12D .14二、填空题:(每题3分,共18分)11.分解因式:2a 2-4a +2=________________.12.使得分式321x -有意义的x 的取值范围是 . 13.燃灯佛舍利塔(简称燃灯塔)是通州八景之一,该塔始建于南北朝北周宇文时期,距今已有1300多年历史.燃灯塔距运河300 米,是通州的象征.某同学想利用相似三角形的有关知识来求 燃灯塔的高度.他先测量出燃灯塔落在地面上的影长为12米, 然后在同一时刻立一根高2米的标杆,测得标杆影长为0.5米, 如图(1)A214.生物学研究表明在8—17岁期间,男女生身高增长速度规律呈现如下图所示,请你观察此图,回答下列问题:男生身高增长速度的巅峰期是 岁,在 岁时男生女生的身高增长速度是一样的.15.如图,在扇形OAB 中,∠AOB =110°,半径OA =18,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的长等于 . 16.如图,在平面直角坐标系xOy 中,四边形ABOC 是正方形,点A 的坐标为(1,1).¼1AA 是以点B 为圆心,BA 为半径的圆弧;¼12A A 是以点O 为圆心,1OA 为半径的圆弧,¼23A A 是以点C 为圆心,2CA 为半径的圆弧,¼34A A 是以点A 为圆心,3AA 为半径的圆弧,继续以点B 、O 、C 、A 为圆心按上述做法得到的曲线12345AA A A A A ……称为“正方形的渐开线”,那么点5A 的坐标是 , 点A 的坐标是 .第15题图 第16题图 三、解答题(每题5分,共25分)17.如图,点O 是直线l 上一点,点A 、B 位于直线l 的两侧,且∠AOB =90°,OA =OB ,分别过A 、B 两点作AC ⊥l ,交直线l 于点C ,BD ⊥l ,交直线l 于点D . 求证:AC =OD .18()1201512tan 6012-⎛⎫--︒-- ⎪⎝⎭19.解不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩,并把不等式组的解集在数轴上表示出来.20.已知:2450x x +-=,求代数式22(1)(1)(2)x x x +---的值.21.如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (m ,3),B (-3,n )两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x 的不等式 6x>kx +b四、解答题(每题5分,共25分)22.为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.通州区2013年至2014年三期自行车投放数量统计图(单位:辆) 通州区2013年至2014年三期所投放的 自行车租赁点百分比统计图23.已知菱形ABCD 的对角线AC 与BD 相交于点E ,点F 在BC 的延长线上,且CF=BC ,连接DF ,点G 是DF 中点,连接CG .求证:四边形 ECGD 是矩形.24.为倡导“1公里步行、3公里单车、5公里汽车(地铁、轻轨)”出行模式, 2013年5月环保公共自行车正式“驶入”通州,通州区分三期投放白绿环保公共自行车.第一期投放租赁点以八通线通州北苑、梨园站为中心,共投放21个租赁点。
2015北京中考一模29题答案
1.(海淀)29.(本小题满分8分)解:(1)① ; ……………………………………………………………………1分② 点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数的图象上.,即当时,取最大值2.当时,.5x ∴=. ………………………………………3分 当时,或.2x ∴=-或8x =. ………………………………4分 ,由图象可知,k 的取值范围是.……………………………………………5分 (3),∴顶点坐标为.………………………………………………………………6分 若,的取值范围是或,与题意不符. 若1≥t ,当时,的最小值为,即;当时,的值小于,即. .∴s 关于t 的函数解析式为 211)s t t =+≥ (. ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分2.(西城)29.解:(1)3,13(每空各1分) (2)-1;(3)①如图9,过点O 分别作射线OE,OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,GOH ∠的边及其内容的所有点(图中的阴影部分). 说明:(画图2分,描述1分)(图形M也可3,13,21x x y x x -+⎧=⎨--<⎩≥≤2≤b '∴1x =b '2b '=-23x -=-+5b '=-53x -=-53x -=-+52≤≤b '-58≤≤k 2222()y x tx t t x t t =-++=-+(,)t t 1t <b '≥b m '≤b n '1≥x y t m t =1x <y 2[(1)]t t --+2[(1)]n t t =--+22(1)1s m n t t t t ∴=-=+-+=+以描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界))②343.(东城)29.解:(1)∵20x ≥, ∴2x -1≥-1. ∴2-x -1>2.∴{}2min 2x =--1,-2. ┉┉2分 (2) ∵()2211x x k x k -+=-+-2,∴()2111x k k -+--≥. ∵2min{2,3}3x x k -+-=-,∴13k --≥. ∴2k -≥. ┉┉5分(3) 37m -≤≤. ┉┉8分4.(朝阳)29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分 ∵P (1,2), ∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=, 根据题意,有⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k .∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x .即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P .∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分5.(丰台)29. (1)4;.…….2分(2)①直线21y x =+记为l ,过点M 作MH l ⊥,垂足为点H ,.…….3分 ∵EOF MHE ∆∆∽∴MH MEOF EF =,即71MH=.∴MH =..…….4分.…….6分.…….8分6.(房山)29. 解:【探究】① 1 ; 5 ; ……………2分② = . …………………3分【应用】(1)①3y =-; ……………………4分② 1 .……………………5分(2)如图3,设直线y n =+与x 轴相交于点C由题意可知直线CF 切⊙O 于F ,连接OF . ∴∠OFC =90°∴∠COF=60° 又∵OF =1,∴OC =2 ∴()20C ±,∴“焦点”112F ,⎛ ⎝⎭、212F ⎛- ⎝⎭.………6分∴抛物线3y 的顶点为1122,⎛⎛- ⎝⎭⎝⎭或.①当“焦点”为112F ,⎛ ⎝⎭,顶点为12,⎛ ⎝⎭,()20C , 时,易得直线CF 1:y x =. 过点A 作AM ⊥x 轴,交直线CF 1于点M.∴1MA MF = ∴(1M -在抛物线3y 上.设抛物线2312y a x ⎛⎫=- ⎪⎝⎭,将M 点坐标代入可求得:a =∴22312y x x ⎫=-=⎪⎝⎭7分②当“焦点”为212F ⎛ ⎝⎭,顶点为12⎛- ⎝⎭,()20C -,时,由中心对称性可得:2231+2y x x x ⎫=⎪⎝⎭…………………………8分综上所述:抛物线23y x =或23y x =.7.(平谷)上的“闭函数”.理由如下:12(2)由于二次函数2y x x k =--的图象开口向上,对称轴为1x =,……………………………………………………………………3 ∴二次函数22y x x k =--在闭区间[1,2]内,y 随x 的增大而增大. 当x =1时,y =1, ∴k =2-.当x =2时,y =2, ∴k =2-.即图象过点(1,1)和(2,2)∴当1≤x≤2时,有1≤y≤2,符合闭函数的定义, ∴k =2-.……………………………………………………………………………4 (3)因为一次函数()0y kx b k =+≠是闭区间[],m n 上的“闭函数”,根据一次函数的图象与性质,有:(Ⅰ)当0k >时,即图象过点(m ,m )和(n ,n )mk b mnk b n+=⎧⎨+=⎩,……………………………………………………………………5 解得10k b =⎧⎨=⎩.∴y x =……………………………………………………………………………6 (Ⅱ)当0k <时,即图象过点(m ,n )和(n ,m )mk b n nk b m +=⎧⎨+=⎩,解得1k b m n =-⎧⎨=+⎩∴y x m n =-++,………………………………………………………………7 ∴一次函数的解析式为y x =或y x m n =-++.8.(门头沟)29.(本小题满分8分)解:(1)4,2a ; (2)分 (2)13; (3)分(3)① ∵ F 1的碟宽︰F 2的碟宽=2:1,∴12222:1a a =. ∵ a 1=13,∴ a 2=23 (4)分 又∵ 由题意得F 2的碟顶坐标为(1,1), (5)分 ∴ ()222113y x =-+ (6)分 ② F 1,F 2,...,F n 的碟宽的右端点在一条直线上;........................7分 其解析式为y =-x +5. (8)分9.(延庆)29.(1)线段AO 的悬垂点是C ,D ; (2)以点D 为圆心,以1为半径做圆,设1y x =-与⊙D 交于点B ,C-----------2分与x 轴,y 轴的交点坐标为(1,0),(0,-1) ∴∠ODB=45° ∴DE=BE 在Rt △DBE 中,由勾股定理得:∴11122m m -≤≤+≠ (3)设这条线段的长为a①当2a <时,如图1,凡是⊙D 外的点不满足条件; ②当2a =时,如图2,所有的点均满足条件; ③当2a >时,如图3,所有的点均满足条件; 综上所述:2a ≥10.(通州)29.(1)点D 是线段AB 的“邻近点”; …………………..(2分)(2)∵点H (m ,n )是线段AB 的“邻近点”,点H (m ,n )在直线y =x -1上,∴ n =m -1; ………………………………………..(3分) 直线y =x -1与线段AB 交于(4,3) ① 当m ≥4时,有n =m -1≥3,又AB ∥x 轴,∴ 此时点H (m ,n )到线段AB 的距离是n -3, ∴0≤n -3≤1,∴4 ≤m ≤5,…………………………………..(4分) ② 当m ≤4时,有n =m -1 ∴n ≤3,又AB ∥x 轴, ∴ 此时点H (m ,n )到线段AB 的距离是3-n , ∴0≤3-n ≤1,∴ 3≤m ≤4, ………………………………………..(5分) 综上所述,3≤m ≤5; ………………………………………..(6分) (3)………………………………………..(8分)31b--≤≤+-----------6分 -----------4分-----------3分-----------8分图1图2图311.(怀柔)29. 解:(1)x=2. …………………………1分. (2)①C 点坐标为: )…………………………3分. ②由①C 点坐标为: )再求得其它一个点C1),或(0,-2)等代入表达式y=kx+b,解得b=-2k ⎧⎪⎨=⎪⎩∴直线的表达式是2y =-.………………………5分. 动点C 运动形成直线如图所示. ……………6分.EC ≤<…………………………8分.12.(石景山)29.解:(1)D (2)连结,AO AC ,过点A 作AF y ⊥则5AC AO ==3145EF AE =∠=︒∴=∴∴在Rt AEB ∆AB = ∴在Rt ∆得,BC =∴所求“理想矩形”ABCD 面积为 AB BC ⨯=.……………………………………………………5分(3)“理想矩形”面积的最大值是5. ………………………………6分()()1,23,2D ---或. ………………………………8分。
2015年北京市大兴区中考数学一模试卷带解析答案
的值,其中 x 是不等式组
20. (5 分)已知关于 x 的一元二次方程 x2+4x+m﹣1=0, (1)若方程有两个相等的实数根,则 m= ,方程的根为 ;
(2)请你选取一个合适的整数 m,使得到的方程有两个不相等的实数根,并求 出此时方程的根. 21. (5 分)已知:如图,过△ABC 的顶点 C 作 CD∥AB,交 AB 的中垂线 ED 于 点 D,连结 AD.求证:AC+BC>2AD.
2. (3 分)若 a 为有理数,且|a|=﹣a,那么 a 是( A.正数 B.负数 C.非负数
3. (3 分)一个口袋中有 4 个白球,5 个红球,6 个黄球,每个球除颜色外都相 同,搅匀后随机从袋中摸出一个球,这个球是黄球的概率是( A. 4. (3 分)函数 y= A.x≤2 且 x≠0 B. C. D. ) D.x≠0 )
为
.
三、解答题(本题共 30 分,每小题 5 分) 17. (5 分)如图,直线 a∥b,点 B 在直线上 b 上,且 AB⊥BC,∠1=55°,求 ∠2 的度数.
18. (5 分)计算:
﹣4sin30°+(2015﹣π)0﹣22.
第 4 页(共 31 页)
19 . ( 5 分)先化简,再求代数角坐标系中正方形 EFGH 的顶点 E、H、G 的坐标分 别是(﹣1,2) , (3,2) , (3,﹣2) ,则点 F 的坐标是 .
14. (3 分)在比较:0. 与 1 哪个大时,可以用以下的操作或步骤: ①设 x=0. , ②10x=9+0. , ③10x=9+x,
图象如图所示.根据图象信息,下列说法正确的是(
)
A.乙比甲晚出发 1 小时 B.甲比乙晚到 B 地 3 小时 C.甲的速度是 4 千米/小时 D.乙的速度是 10 千米/小时 8. (3 分)如图所示,△ABC 内接于⊙O,AB=100,∠ACB=45°,则⊙O 的 直径为( )
2015各区北京中考数学一模及答案
北京市西城区2015年初三一模试卷数 学 2015. 4考生须知1.本试卷共6页,共五道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.13的相反数是A.13 B.13- C.3 D.3-2.据市烟花办相关负责人介绍,2015年除夕零时至正月十五24时,全市共销售烟花爆竹约196 000箱,同比下降了32%.将196 000用科学记数法表示应为A.51.9610⨯B.41.9610⨯C.419.610⨯D. 60.19610⨯ 3.下列运算正确的是A. 336a b ab+=B.32a a a -= C.()326a a = D.632a a a ÷=4.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机 抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A. 1B.12 C. 13 D.146.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,如果∠BOC =70°, 那么∠BAD 等于A. 20°B. 30°C. 35°D.70°8.在平面直角坐标系xOy 中,第一象限内的点P 在反比例函数的图象上,如果点P 的纵坐 标是3,OP=5,那么该函数的表达式为A. 12y x=B. 12y x =-C. 15y x= D. 15y x =-9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是 A. 6,4 B. 6,6 C. 4,4D. 4,610.如图,过半径为6的⊙O 上一点A 作⊙O 的切线l ,P 为⊙O 上的一个动点,作PH ⊥l 于点H ,连接P A .如果P A =x ,AH=y , 那么下列图象中,能大致表示y 与x 的函数关系的是二、填空题(本题共18分,每小题3分) 11.如果分式15x -有意义,那么x 的取值范围是 .12.半径为4cm ,圆心角为60°的扇形的面积为 cm 2.13.分解因式:2123m -= .14.如图,△ABC 中,AB =AC ,点D ,E 在BC 边上,当 时, △ABD ≌△ACE .(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC 与地面垂直,以O为横板AB 的中点..,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化 呢?一位同学做了如下研究:他先设AB=2 m ,OC=0.5 m ,通过计算得到此时的h 1,再将横板AB换成横板A ′B ′,O 为横板A ′B ′的中点,且A ′B ′=3m ,此时B ′点的最大高度为h 2,由此得 到h 1与h 2的大小关系是:h 1 h 2(填“>”、“=”或“<”).可进一步得出,h 随横板的长度的变化而 (填“不变”或“改变”).16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,点4A 表示的数是 ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .三、解答题(本题共30分,每小题5分)17()011π2008()6tan302--+-︒.18.如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .19.解不等式组 ()2035148.x x x -≤⎧⎪⎨+>-⎪⎩,20.先化简,再求值:223312111a a a a a a a ++÷-++++,其中2a =.21.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比 乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时. 22.已知关于x 的一元二次方程0)2()1(22=+---m m x m x . (1)求证:此方程总有两个不相等的实数根; (2)若2x =-是此方程的一个根,求实数m 的值.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F , E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC . (1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题:(1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是,调价后里程x(千米)在范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25.如图,AB为⊙O的直径,M为⊙O外一点,连接MA与⊙O交于点C,连接MB并延长交⊙O于点D,经过点M的直线l与MA所在直线关于直线MD对称.作BE⊥l于点E,连接AD,DE.(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=, CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位, 得到抛物线2C ,将2C 对应的函数表达式记为 22y x mx n =++,求2C 对应的函数表达式; (3)设323y x =+,在(2)的条件下,如果在 2-≤x ≤a 内存在..某一个x 的值,使得2y ≤3y 成立,利用函数图象直接写出a 的取值范围.28. △ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AHB ∠= ︒,AFBE= ; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论; (3)如果BAC α∠=,那么AF= .(用含α的表达式表示)29.给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离. 在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C - 和射线OA 之间的距离为________;(2)如果直线y =x 和双曲线ky x=,那么k = ;(可在图1中进 行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M . ① 请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示) ② 将射线OE ,OF 组成的图形记为图形W ,抛物线22-=x y 与图形M 的 公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.北京市西城区2015年初三一模试卷数学试卷参考答案及评分标准 2015. 4一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17. =3.18 ∴ △ABC ≌△ADE .………………………………………………………… 4分 ∴ BC = DE .…………………………………………………………………… 5分 19.2≥.…………………………………………………5分20 =11a a -+.……………………………………………………………………4分 当2=a 时,原式=311212=+-.………………………………………………………5分 21.解:设普通列车的平均速度为x 千米/时.…………………………………………… 1分 则高铁的平均速度是2.5x 千米/时.依题意,得40052032.5x x+=.…………………………………………………… 2分 解得 120=x .……………………………………………………………………3分 经检验,120=x 是原方程的解,且符合题意.……………………………… 4分 所以 30052=x ..答:高铁的平均速度是300千米/时.………………………………………………… 5分22.(1)证明: []22(1)4(2)m m m ∆=--++ 284m =+.………………1分∵ 28m ≥0,∴ 284m +>0.………………………………………………………………2分∴ 方程总有两个不相等的实数根. ……………………………………… 3分(2)解:∵ 2x =-是此方程的一个根,∴ 2(2)2(2)(1)(2)0m m m --⨯---+=.整理得 220m m -=.解得 10m =,22m =.……………………………………………………… 5分四、解答题(本题共20分,每小题5分)23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .……………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒.∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O . ∵ DA 平分∠BDE ,∴ ∠ADE=∠1.又∵ ADE BAD ∠=∠, ∴ ∠1=∠BAD .∴ AB= BD .………………………………3分 ∴ABDE 是菱形. ∵ AB=5,AD=6,∴ BD=AB=5,AD BE ⊥,132OA AD ==.在Rt △OAB 中,4OB =.∵ 1122ABDSAD OB BD AF =⋅=⋅, ∴ 645AF ⨯=.解得 4.8AF =. …………………………4分 ∵ BD 垂直平分AC ,∴ 29.6AC AF ==.……………………5分 注:其他解法相应给分. 24.解:(1)补全扇形图如图3所示.…………………1分 (2)2号线,52<x ≤72 ,22.2.(各1分)………………………………………… 4分 (3)30.……………………………………… 5分 25.解:(1)依题意,补全图形如图4.……………… 1分 (2)BAD ∠.…………………………………… 2分 证明:如图5,连接BC ,CD .∵ 直线l 与直线MA 关于直线MD 对称, ∴ 12∠=∠.………………………3分 ∵ AB 为⊙O 的直径,∴ 90ACB ∠=︒,即BC MA ⊥. 又∵ BE l ⊥,∵ cos 1MC MB =⋅∠,cos 2ME MB =⋅∠,∴MC=ME.又∵C,E两点分别在直线MA与直线l可得C,E两点关于直线MD对称.∴3BED∠=∠.…………………4分又∵3BAD∠=∠,∴BAD BED∠=∠.………………5分26.解:45.…………………………………………………1分画图见图6.………………………………………3分45.…………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第2527.解:(1)∵二次函数21y x bx c=++的图象1C经过(1,0)-,∴抛物线1C的函数表达式为3221--=xxy.(2)∵22123=(1)4y x x x=----,∴抛物线1C的顶点为(1,4)-.……4分∴平移后抛物线2C的顶点为(0,0),它对应的函数表达式为22y x=.…5分(3)a≥1-(见图7).………………………………………………………………7分28.解:(1)90,12.………………………………………………………………………2分(2)结论:90AHB∠=︒,AFBE=.证明:如图8,连接AD.∵AB=AC,∠BAC=60°,∴△ABC是等边三角形.∵D为BC的中点,∴AD⊥BC.∴∠1+∠2=90°.又∵DE⊥AC,∴∠DEC=90°.∴∠2+∠C=90°.∴∠1=∠C=60°.设AB=BC=k(0k>),则124kCE CD==,DE=.∵F为DE的中点,∴ 128DF DE ==,22AD AB ==.∴AD BC =,DF CE = ∴ =BC AD CE DF .…………………………………………………………3分 又∵ ∠1=∠C ,∴ △ADF ∽△BCE .………………………………………………… 4分∴AF AD BE BC ==5分 ∠3=∠4. 又∵ ∠4+∠5=90°,∠5=∠6, ∴ ∠3+∠6=90°.∴ 90AHB ∠=︒.………………………………………………………6分(3)1tan 9022α︒-().………………………………………………………………7分 注:写1cos 2sin αα+或其他答案相应给分.29.解:(1)3(每空各1分)…………………………………………………… 2分(2)-1.…………………………………………………………………………… 4分(3)①如图9,过点O 分别作射线OE 、OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分). (7)分说明:(画图2分,描述1分)(图形M 也可描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界)) ②34.…………………………………………………………………………8分海 淀 区 九 年 级 第 二 学 期 期 中 练 习数 学2015.5下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为2A0BA .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140°ba 216.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CE7.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6B .23C .3D .363S /千米t /分钟OE DCBOABA CEOD10.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,17BD =,则BC 的长为__________. 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:摸球的次数n 100 200 300 400 500 600 摸到白球的次数m 58118189237302359摸到白球的频率nm 0.58 0.59 0.63 0.593 0.604 0.598C BDA ABC D“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点, 理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos60(3.14π)--+--.18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根; (2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为 亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有 万人.FBCAEDC作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).图1 图2 图3请回答:BC+DE的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17. (本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+. ………………………………………………………………5分18. (本小题满分5分) 解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分 243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分20. (本小题满分5分) 证明:∠EBC =∠FCB ,ABE FCD ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD 中, ,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明:0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得x =. ∴1221,x x k k==-. …………………………………………………………4分方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分 四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明:四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F .∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠=. 90DAB ∴∠=.又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图.四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE ==. ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin 4572BH AB =⋅= . …………………………………………4分在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=10BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分(2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分)(1)证明:⊙O与边AB相切于点E,且CE为⊙O的直径.∴CE⊥AB.AB=AC,AD⊥BC,BD DC∴=.………………………………1分又OE=OC,∴OD∥EB.∴OD⊥CE.………………………………2分(2)解:连接EF.CE为⊙O的直径,且点F在⊙O上,∴∠EFC=90°.CE⊥AB,∴∠BEC=90°.∴+BEF FEC FEC ECF∠=∠+∠∠=90°.∴BEF ECF∠=∠.∴tan tanBEF ECF∠=∠.∴BF EFEF FC=.又DF=1,BD=DC=3,∴BF=2,FC=4.∴EF=.………………………………………………… 3分∵∠EFC=90°,∴∠BFE=90°.由勾股定理,得BE==……………………4分EF∥AD,∴21 BE BFEA FD==.∴AE=……………………………………………………5分26. (本小题满分5分)解:BC+DE.……………………………………………………2分解决问题:连接AE,CE,如图.∵四边形ABCD是平行四边形,∴AB // DC .∵四边形ABEF 是矩形, ∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-,∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+.∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为 112y x =+.…………………………3分(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =,xy O –5–4–3–2–112345–7–6–5–4–3–2–11234567FE DABC当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时, 点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GFEDCBA图1图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ……………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………………………………3分 100GEB DEC BEC ∴∠=∠+∠=︒.GFEDCBAGEB CBE ∴∠=∠.50FBC ∠=︒,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分EBG BEC ∴∠=∠.在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3.∵四边形ABCD 是菱形, ∴AD ∥BC .120ADC ∠=︒,60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知,50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒. ……………………………………………3分50FBC ∠=︒, 图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3)AE BG +. …………………………………………………………………7分29.(本小题满分8分)解:(1)①; ……………………………………………………………………1分② 点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的HGFEDCBA图象上.2≤b '∴,即当1x =时,b '取最大值2.当2b '=-时,23x -=-+.5x ∴=. ………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =. ………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分 (3)2222()y x tx t t x t t =-++=-+,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,y 的最小值为t ,即m t =;当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+. 22(1)1s m n t t t t ∴=-=+-+=+.∴s 关于t 的函数解析式为 211)s t t =+≥ ( . ……………………………7分当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分北京市怀柔区2015年高级中等学校招生模拟考试(一)一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.把8000用科学计数法表示是A .28010⨯B .3810⨯C .40.810⨯D .4810⨯ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是 A.点A 与点D B. 点A 与点C C. 点B 与点C D. 点B 与点D3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球. 袋子里各种颜色小球的数量统计如表所示.小华模到褐色小球的概率为 A .101 B .51 C .41D .215. 如图,AD 是∠EAC 的平分线,AD∥BC,∠B=30°,则∠C 为A .30°B .60°C .80°D .120°6.如图,已知⊙O 的半径为10,弦AB 长为16,则点O 到AB 的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的A .平均数B .众数C .中位数D .方差8.如图,已知正方形ABCD 中,G 、P 分别是DC 、BC 上的点,E 、F 分别 是AP 、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时, 下列结论成立的是A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小颜色 红色 橙色 黄色 绿色 蓝色 紫色 褐色 数量 6433225G FE PD CBAxD CB A 123–1–2–3C .线段EF 的长不改变D .线段EF 的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3), 则不等式2x≥ax+4的解集为 A .x≥B. x≤3 C . x ≤D .x ≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分)11.函数y=1x-3中自变量x 的取值范围是_________________. 12.请写出一个过一、三象限的反比例函数的表达式_________________.13.下面有五个图形,与其它图形众不同的是第 个.①②③④⑤xy 图2OPEDCBA图114.如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16,则矩形ABCD 的面积为 .15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米(含)内,每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算.小王家2014年4月30日抄表示数550立方米,5月1日起实施阶梯水价,6月抄表时因用户家中无人未见表,8月12日抄表示数706立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为 立方米. 如果按这样每日用水量计算,小李家今后每年的水费将达到 元(一年按365天计算). 三、解答题(本题共30分,每小题5分)17.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-︒+19.解不等式组:240,3(1) 2.x x x -<⎧⎨+≥+⎩20.已知32a b =,求代数式2243(3)9a ba b a b++-的值.21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.FEDCB A22.已知:关于x的一元二次方程错误!未找到引用源。
北京市西城区2015年初三一模数学试卷参考答案及评分标准
北京市西城区2015年初三一模试卷数学试卷参考答案及评分标准 2015. 4一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17()01112π2008()6tan302--+-︒=3362132⨯-++………………………………………………………… 4分 =32332-+=3.…………………………………………………………………………………… 5分 18.证明:如图1.∵ ∠EAC =∠DAB ,∴ 11EAC DAB ∠+∠=∠+∠.即 ∠BAC =∠DAE . …………………… 1分 在△ABC 和△ADE 中,,,,C E BAC DAE AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩………………………3分∴ △ABC ≌△ADE .…………………………………………………………… 4分 ∴ BC = DE.…………………………………………………………………… 5分 19.解:()2035148.x x x -≤⎧⎪⎨+>-⎪⎩,由①,得2x ≥. ………………………………………………………………… 2分由②,得 15348x x +>-.移项,合并,得 1111x >-.系数化1,得 1x >-. ………………………………………………………… 4分所以原不等式组的解集为2x ≥.…………………………………………………5分20.解: 223312111a a a a a a a ++÷-++++=()()2331111a a a a a a ++÷-+++……………………………………………………………2分 ()()2311311a a a a a a ++=⋅-+++ =111+-+a a a …………………………………………………………………………3分 =11a a -+.………………………………………………………………………………4分 当2=a 时,原式=311212=+-.………………………………………………………5分 21.解:设普通列车的平均速度为x 千米/时.…………………………………………… 1分 则高铁的平均速度是2.5x 千米/时.依题意,得40052032.5x x+=.…………………………………………………… 2分 解得 120=x .……………………………………………………………………3分 经检验,120=x 是原方程的解,且符合题意.……………………………… 4分 所以 30052=x ..答:高铁的平均速度是300千米/时.………………………………………………… 5分 22.(1)证明: []22(1)4(2)m m m ∆=--++ 2248448m m m m =-+++284m =+.……………………………………………………………………1分∵ 28m ≥0,∴ 284m +>0.………………………………………………………………2分∴ 方程总有两个不相等的实数根. ……………………………………… 3分(2)解:∵ 2x =-是此方程的一个根,∴ 2(2)2(2)(1)(2)0m m m --⨯---+=.整理得 220m m -=.解得 10m =,22m =.……………………………………………………… 5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .…………………………………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒. ∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O . ∵ DA 平分∠BDE ,∴ ∠ADE=∠1.又∵ ADE BAD ∠=∠, ∴ ∠1=∠BAD .∴ AB= BD .………………………………3分 ∴ ABDE 是菱形. ∵ AB=5,AD=6,∴ BD=AB=5,AD BE ⊥,132OA AD ==. 在Rt △OAB 中,224OB AB OA -=.∵ 1122ABD S AD OB BD AF =⋅=⋅V , ∴ 645AF ⨯=.解得 4.8AF =. …………………………4分∵ BD 垂直平分AC ,∴ 29.6AC AF ==.……………………5分 注:其他解法相应给分. 24.解:(1)补全扇形图如图3所示.…………………1分 (2)2号线,52<x ≤72 ,22.2.(各1分)………………………………………… 4分 (3)30.……………………………………… 5分 25.解:(1)依题意,补全图形如图4.……………… 1分 (2)BAD ∠.…………………………………… 2分 证明:如图5,连接BC ,CD .∵ 直线l 与直线MA 关于直线MD 对称, ∴ 12∠=∠.………………………3分 ∵ AB 为⊙O 的直径,∴ 90ACB ∠=︒,即BC MA ⊥. 又∵ BE l ⊥,∵ cos 1MC MB =⋅∠,cos 2ME MB =⋅∠, ∴ MC=ME . 又∵ C ,E 两点分别在直线MA 与直线l 上, 可得C ,E 两点关于直线MD 对称.图3∴ 3BED ∠=∠. ………………… 4分 又∵ 3BAD ∠=∠,∴ BAD BED ∠=∠. ……………… 5分26.解:45. …………………………………………………1分画图见图6. ………………………………………3分 45.………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 27.解:(1)∵ 二次函数21y x bx c =++的图象1C 经过(1,0)-,∴10,3.b c c -+=⎧⎨=-⎩ ………………………………1分解得2,3.b c =-⎧⎨=-⎩…………………………………2分∴ 抛物线1C 的函数表达式为3221--=x x y . …………………………………… 3分 (2)∵ 22123=(1)4y x x x =----,∴ 抛物线1C 的顶点为(1,4)- ∴ 平移后抛物线2C 的顶点为(0,0),它对应的函数表达式为22y x =.… 5分 (3)a ≥1-(见图7).………………………………………………………………7分28.解:(1)90,12.……………………………………………………………………… 2分 (2)结论:90AHB ∠=︒,AF BE . 证明:如图8,连接AD .∵ AB =AC ,∠BAC =60°, ∴ △ABC 是等边三角形. ∵ D 为BC 的中点, ∴ AD ⊥BC . ∴ ∠1+∠2=90°.又∵ DE ⊥AC ,∴ ∠DEC =90°. ∴ ∠2+∠C =90°. ∴ ∠1=∠C =60°. 设AB =BC=k (0k >),则124kCE CD ==,DE =. ∵ F 为DE 的中点,∴ 12DF DE ==,AD AB ==.∴AD BC =,DF CE =. ∴ =BC AD CE DF .…………………………………………………………3分 又∵ ∠1=∠C ,∴ △ADF ∽△BCE .………………………………………………… 4分∴AF AD BE BC ==,………………………………………………… 5分 ∠3=∠4. 又∵ ∠4+∠5=90°,∠5=∠6, ∴ ∠3+∠6=90°.∴ 90AHB ∠=︒.………………………………………………………6分(3)1tan 9022α︒-().………………………………………………………………7分注:写1cos 2sin αα+或其他答案相应给分.29.解:(1)313.(每空各1分)…………………………………………………… 2分(2)-1.…………………………………………………………………………… 4分(3)①如图9,过点O 分别作射线OE 、OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分).……………………………………………………………………………… 7分 说明:(画图2分,描述1分)(图形M 也可描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界)) ②34.…………………………………………………………………………8分。
2015年北京市初三数学一模试题分类(几何综合)
2015北京市初三数学一摸试题分类(几何综合)【等比变换】西城一模28.△ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AHB ∠= ︒,AFBE= ; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论; (3)如果BAC α∠=,那么AFBE= .(用含α的表达式表示)丰台一模28.在△ABC 中,CA =CB ,CD 为AB 边的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G. (1)如果∠ACB =90°,①如图1,当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形; ②如图2,当点P 不与点A 重合时,求CFPE的值; (2)如果∠CAB =a ,如图3,请直接写出CFPE的值.(用含a 的式子表示)图1图2图3图1 图2 图3A BC E FQ Q F E C BA P【中点类】延庆一模28. 已知,点P 是△ABC 边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CP 作垂线,垂足分别为E ,F ,Q 为边AB 的中点.(1)如图1,当点P 与点Q 重合时,AE 与BF 的位置关系是 ,QE 与QF的数量关系是 ;(2)如图2,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明;(3)如图3,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.【构造等边三角形,找全等】通州一模28.在菱形ABCD 中,∠ABC =60°,E 是对角线延长线上一点,且CF =AE ,连接BE 、EF .(1)如图1,当E 是线段AC 的中点时,易证BE =EF .(2)如图2,当点E 不是线段AC 的中点,其它条件不变时,请你判断(1)中的结论: .(填“成立”或“不成立”)(3)如图3,当点E 是线段AC 延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【旋转+线段的数量关系】朝阳一模28.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).图1 图2AC东城一模28. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD .(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明; (3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.海淀一模28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.【旋转+中点类】门头沟一模28.在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,DE ⊥BC 于E ,连接CD . (1)如图1,如果∠A =30°,那么DE 与CE 之间的数量关系是 .(2)如图2,在(1)的条件下,P 是线段CB 上一点,连接DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论. (3)如图3,如果∠A =α(0°<α<90°),P 是射线CB 上一动点(不与B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转2α,得到线段DF ,连接BF ,请直接写出DE 、BF 、BP 三者之间的数量关系(不需证明).DBFE DAB E DAB C C CP AE图1 图2 图3【旋转+互补型】平谷28.(1)如图1,在四边形ABCD 中,AB=BC ,∠ABC =80°,∠A +∠C =180°,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转40°,与CD 边交于点N ,请你补全图形,求MN ,AM ,CN 的数量关系;(2)如图2,在菱形ABCD 中,点M 是AD 边上任意一点,把射线BM 绕点B 顺时针旋12ABC ,与CD 边交于点N ,连结MN ,请你补全图形并画出辅助线,直接写出AM ,CN ,MN 的数量关系是 ; (3)如图3,正方形ABCD 的边长是1,点M ,N 分别在AD ,CD 上,若△DMN 的周长为2,则△MBN 的面积最小值为 .图2 图3 图1【旋转+最值】房山一模28.如图1,已知线段BC =2,点B 关于直线AC 的对称点是点D ,点E 为射线CA 上一点,且ED =BD ,连接DE ,BE .(1) 依题意补全图1,并证明:△BDE 为等边三角形;(2) 若∠ACB =45°,点C 关于直线BD 的对称点为点F ,连接FD 、FB .将△CDE 绕点D 顺时针旋转α度(0°<α<360°)得到△''C DE ,点E 的对应点为E ′,点C 的对应点为点C ′. ①如图2,当α=30°时,连接'BC .证明:EF ='BC ;②如图3,点M 为DC 中点,点P 为线段''C E 上的任意一点,试探究:在此旋转过程中,线段PM 长度的取值范围?【旋转+蝴蝶型】燕山一模28.△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,将△AHC 绕点H 逆时针旋转90°后,点C 的对应点为点D ,直线BD 与直线AC 交于点E ,连接EH .(1)如图1,当∠BAC 为锐角时,图1 图2 图3图2图3图1 图2 A B HC EDAB H C②求∠BEH 的度数; (2)当∠BAC 为钝角时,请依题意用实线补全图2,并用等式表示出线段EC ,ED ,EH 之间的数量关系.【平移对称】石景山28.在△ABC 中,90BAC ∠=︒.(1)如图1,直线l 是BC 的垂直平分线,请在图1中画出点A 关于直线l 的对称点'A ,连接'A C ,B A ','AC 与AB 交于点E ;(2)将图1中的直线B A '沿着EC 方向平移,与直线EC 交于点D ,与直线BC 交于点F ,过点F 作直线AB 的垂线,垂足为点H .①如图2,若点D 在线段EC 上,请猜想线段FH ,DF ,AC 之间的数量关系,并证明; ②若点D 在线段EC 的延长线上,直接写出线段FH ,DF ,AC 之间的数量关系.【等边三角形+轴对称】怀柔28.在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD ,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠PAB=30°,求∠ACE 的度数;(3)如图2,若60°<∠PAB <120°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明.ABCPABCP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京2015年初三数学一模试题分类—第29题新定义综合1、(海淀)29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--. (1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点,这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围. 2、(西城)29、给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C - 和射线OA 之间的距离为________; (2)如果直线y =x 和双曲线ky x=,那么k = ;(可在图1中进行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M . ①请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE ,OF 组成的图形记为图形W ,抛物线22-=x y 与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.3、(东城)29.定义符号{}min a b ,的含义为:当a b ≥时, {}min a b b =,;当a b <时,{}min a b a =,.如:{}min 122-=-,,{}min 121-=-,.(1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.4、(朝阳)29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ; ②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.5、(丰台)29. 设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离(2)①求点(3,0)M 到直线21y x =+的距离;②如果点(0,)N a 到直线21y x =+的距离为3,那么a 的值(3)如果点(0,)G b 到抛物线2y x =的距离为3,请直接写出b 的值.6、(石景山)29.在平面直角坐标系xOy 中,点A 在直线l 上,以A 为圆心,OA 为半径的圆与y 轴的另一个交点为E .给出如下定义:若线段OE ,⊙A 和直线l 上分别存在点B ,点C 和点D ,使得四边形ABCD 是矩形(点,,,A B C D 顺时针排列),则称矩形ABCD 为直线l 的“理想矩形”.例如,下图中的矩形ABCD 为直线l 的“理想矩形”.(1)若点(1,2)A -,四边形ABCD 为直线1x =-的“理想矩形”,则点D 的坐标为 ;(2)若点(3,4)A ,求直线1y kx =+(0)k ≠的“理想矩形”的面积; (3)若点(1,3)A -,直线l 的“理想矩形”面积的最大值为 ,此时点D 的坐标为.备用图7、(门头沟)29.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.AABBMMOxyy=m准蝶形AMB(1)抛物线212y x的碟宽为 ,抛物线y =ax 2(a >0)的碟宽为 . (2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a = .(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1.① 求抛物线y 2的表达式;② 请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.8、(平谷)29.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”. (1)反比例函数y =x2015是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值; (3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示). 9、(通州)29.如图,在平面直角坐标系中,已知点A (2,3)、B (6,3),连结AB . 若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”. (1)判断点D 719(,)55,是否线段AB 的“邻近点” (填“是”或“否”);(2)若点H (m ,n )在一次函数1-=x y 的图象上,且是线段AB 的“邻近点”,求m 的取值范围.(3)若一次函数y x b =+的图象上至少存在一个邻近点,直接写出b 的取值范围.10、(延庆)29. 对于平面直角坐标系xOy 中的点P 和线段AB ,给出如下定义:在线段AB 外有一点P ,如果在线段AB 上存在两点C 、D ,使得∠CPD =90°,那么就把点P 叫做线段AB 的悬垂点.(1)已知点A (2,0),O (0,0)①若1(1,)2C ,D (1,1),E (1,2),在点C ,D ,E 中,线段AO 的悬垂点是______; ②如果点P (m ,n )在直线1y x =-上,且是线段AO 的悬垂点,求m 的取值范围;(2)如下图是帽形M (半圆与一条直径组成,点M 是半圆的圆心),且圆M 的半径是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.11、(房山)29.【探究】如图1,点()N m,n 是抛物线21114y x =-上的任意一点,l 是过点()02,-且与x 轴平行的直线,过点N 作直线NH ⊥l ,垂足为H .①计算: m=0时,NH= ; m =4时,NO = . ②猜想: m 取任意值时,NO NH (填“>”、“=”或“<”).【定义】我们定义:平面内到一个定点F 和一条直线l (点F 不在直线l 上)距离相等的点的集合叫做抛物线,其中点F 叫做抛物线的“焦点”,直线l 叫做抛物线的“准线”.如图1中的点O 即为抛物线1y 的“焦点”,直线l :2y =-即为抛物线1y 的“准线”.可以发现“焦点”F 在抛物线的对称轴上.【应用】(1)如图2,“焦点”为F (-4,-1)、“准线”为l 的抛物线()221+44y x k =+与y 轴交于点N (0,2),点M 为直线FN 与抛物线的另一交点.MQ ⊥l 于点Q ,直线l 交y 轴于点H .①直接写出抛物线y 2的“准线”l : ; ②计算求值:1MQ +1NH=;(2)如图3,在平面直角坐标系xOy 中,以原点O 为圆心,半径为1的⊙O 与x 轴分别交于A 、B 两点(A 在B 的左侧),直线y =33x +n 与⊙O 只有一个公共点F ,求以F 为“焦点”、x 轴为“准线”的抛物线23y ax bx c =++的表达式.图2图3图112、(怀柔)29. 对某种几何图形给出如下定义: 符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹.例如,平面内到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.(1)如图1,在△ABC 中,AB=AC ,∠BAC=90°,A(0,2),B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE ,且DE ⊥x 轴于点G.则直线DE 的表达式是 .(2)当△ABC 是等边三角形时,在(1①当点B 运动到如图2的位置时,AC ∥x 轴,则C 点的坐标是 . ②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式.③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,则CE 的取值范围是 .13、(燕山)29.在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如点(1,1),(31-,31-),(2-,2-),…,都是和谐点. (1)分别判断函数12+-=x y 和12+=x y 的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数)0(42≠++=a c x ax y 的图象上有且只有一个和谐点(23,23),且当m x ≤≤0时,函数)0(4342≠-++=a c x ax y 的最小值为-3,最大值为1,求m 的取值范围.(3)直线2:+=kx y l 经过和谐点P ,与x 轴交于点D ,与反比例函数xn y G =:的图象交于M ,N 两点(点M 在点N 的左侧),若点P 的横坐标为1,且23<+DN DM ,请直接写出n 的取值范围.。