3.1人口增长模型
数学建模-人口增长模型
数函合拟 据数始原
。万百 8668. 333 � ) 0102 ( x 为数口人的年 0102 测预以可们我而从
84981 � t 753. 12 � t 810600. 0 � ) t( x
2
数口人
� 84981 � c , 753. 12� � b�810600.0 � a 得解 � �2 件附见� 程编 baltaM 用们我
录附
。年 4002 , 社 版出 育教等 高� 京北 ,]M[)版三 第( 模建 学数 .俊叶 ,星金 谢 ,源启姜 ]2[ 。年 2002 ,社 版出育教等高:京北 ,]M[用应与计设序程 BALTAM .颖张 ,平昭陈 ,国卫刘 ]1[
献文考参
。越优为更型模 长增数指比测预的来未对�确准更果结�的合适很是测预数口人的来未对型模次 以所�合吻的常非据数的期后是别特�好果效合拟�上线曲合拟在都上本基�律 规长增的口人映反地观客更型模长增滞阻出看以可 。好很得合拟据数口人的区地 该对型模的们我出看以可们我 4 图从 。图果效合拟的型模长增滞阻是 4 图 图果效合拟的型模长增滞阻 4 图
) 0 0 8 1� t ( r �
� 27 � � �1 e�1 � m � x 01 �
m
x
� ) t( x
2 . 7 � ) 0081( x � � � m � td � � x � � � 1 x� � 0r � xd � � x �
ቤተ መጻሕፍቲ ባይዱ
�得解
�到得以可� 2. 7 � ) 0081( x 件条始初用利并�中程方的型模长增数指进代式上把
值数函的点知未在 p 式项多计估 %
)1x,p(lavylop = 1y ;0102=1x
;no dirg ;no xob ;)2,'数函合拟','据数始原'(dnegel ;)'数口人'(lebaly ;)'份年'(lebalx 例图上加形图给 % 来起连次依点据数的义定)ny,x(把 % )ny,nx(tolp 值数函的 p 式项多计估 % ;)nx,p(lavylop = ny 标坐横的新义定 % ;0102:5:0081 = nx p 数系回返�合拟式项多 % )2,y,x(tifylop = p
人口增长模型例题
人口增长模型例题1.某地区初始人口为1000人,年增长率为2%,求10年后的人口数量。
2.一个城市的人口初始为5000,按照每年1.5%的速度增长,5年后人口是多少?3.若某村庄人口起始为800,人口增长率为3%,8年后人口达到多少?4.有一个小镇,最初人口是2000,年增长率为2.5%,计算12年后的人口。
5.某国人口初始为10000,年增长比例为1.8%,求15年后人口数量。
6.一片区域初始人口600,每年人口增长4%,3年后人口为多少?7.一个岛屿的初始人口为1200,人口以每年2.2%的速度增长,10年后人口是多少?8.某社区人口开始为900,年增长率为3.5%,7年后人口达到多少?9.若某部落人口起始为550,人口增长率为2.8%,9年后人口为多少?10.有一个聚居地,最初人口是1500,年增长率为2.3%,计算11年后的人口。
11.某地区人口初始为3000,年增长比例为1.9%,求20年后人口数量。
12.一个小县城初始人口800,每年人口增长3.2%,4年后人口为多少?13.一个地区的初始人口为1800,人口以每年2.6%的速度增长,13年后人口是多少?14.某城镇人口开始为1100,年增长率为3.8%,6年后人口达到多少?15.若某村落人口起始为700,人口增长率为2.1%,14年后人口为多少?16.有一个村落最初人口是1300,年增长率为2.7%,计算16年后的人口。
17.某省人口初始为50000,年增长比例为1.2%,求25年后人口数量。
18.一个区域初始人口1000,每年人口增长3.6%,5年后人口为多少?19.一个国家的初始人口为2500,人口以每年2.4%的速度增长,18年后人口是多少?20.某城市区人口开始为1600,年增长率为3.3%,9年后人口达到多少?21.若某县人口起始为1400,人口增长率为2.9%,17年后人口为多少?22.有一个城市最初人口是3500,年增长率为1.7%,计算22年后的人口。
(完整版)数学建模logistic人口增长模型
Logistic 人口发展模型一、题目描述建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。
分析那个时间段数据预测的效果好?并结合中国实情分析原因。
表1 各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。
阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。
若将r 表示为x 的函数)(x r 。
则它应是减函数。
于是有:0)0(,)(x x x x r dt dx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2) 设自然资源和环境条件所能容纳的最大人口数量mx ,当mx x =时人口不再增长,即增长率)(=m x r ,代入(2)式得m x rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解得:rt mme x x x t x --+=)1(1)(0(5)三、模型求解用Matlab 求解,程序如下: t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2; a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm 和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。
人口增长模型
一、 人口增长模型: 1. 问题下表列出了中国1982—1998年的人口统计数据,取1982年为起始年(t=0),…人口自然增长率14%,以36亿作为我国的人口容纳量,是建立一个较好的数学模型并给出相从图中我们可以看到人口数在1982—1998年是呈增长趋势的,而且我们很容易发现上述图像和我们学过指数函数的图像有很大的相似性,所以我们很自然想到建立指数模型,但是指数模型有个不妥之处就是没有考虑社会因素的,即资源的有限性,也就是人口不可能无限制的增长,所以有必要改进模型,这里我们假设人口增长率随人口增加而呈线性递减,从而建立起比较优越阻滞增长模型 模型一:指数增长模型(马尔萨斯模型)1.假设:人口增长率r 是常数.2.建立模型:记时刻t=0时人口数为0X ,时刻t 的人口为X (t ),由于量大,X (t )可以视为连续、可微函数,t 到t+t ∆时间段人口的增量为:)()()(t rX tt X t t X =∆-∆+于是X (t )满足微分方程:)1()0(0⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==X X rX dt dx3.模型求解:解得微分方程(1)得: X (t )=0X )(0t t r e- (2)表明:t ∞−→−时,t X )0.(>∞−→−r . 4.模型的参数估计要用模型2对人口进行预报,必须对其中的参数r 进行估计,这可以用表1通过Matlab 拟合: 程序:x=[1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 19971998]';X=[ones(17,1),x]Y=[101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124810]';[b,bint,r,rint,stats]=regress(Y,X); %回归分析b,bint,stats%输出这些值rcoplot(r,rint);%画出残差及其置信区间z=b(1)+b(2)*x;plot(x,Y,'k+',x,z,'r'),%预测及作图运行结果:b =1.0e+006 *-2.84470.0015bint =1.0e+006 *-2.9381 -2.75130.0014 0.0015stats =1.0e+005 *0.0000 0.0455 0 1.9800图1各数据点及回归方程的图形 即回归模型为:y=-2844700+1500x从上图可用看出拟和得效果比较好。
数学建模-人口增长模型
数学建模-人口增长模型人口增长模型是一种基于数理统计学方法的计算机模型,用于描绘全球各地的人口增长情况。
人口增长模型能够预测人口数量、年龄分布、死亡率、出生率、移民等方面的变化趋势,为社会规划带来指导性的建议,具有很高的实用价值。
本文将从多个方面来探究人口增长模型。
一、人口增长的三个阶段第一阶段:原始社会阶段,这个时期的人口增长缓慢。
由于食物水平低下和医疗条件落后,死亡率非常高,而出生率仍然很高。
第二阶段:传统社会阶段,人口增长迅速。
由于改进了农业技术、医疗技术以及水、电、煤等基础设施建设的改善,死亡率降低,但出生率仍然很高。
第三阶段:现代社会阶段,人口增长开始放缓。
由于生育规律的改变,人们生育晚、生育次数减少,导致出生率下降。
另一方面,医疗技术和生活水平的提高,使得人们的寿命增加,死亡率下降。
人口增长模型是一种以数学为基础、能够预测人口增长变化趋势的计算机模型。
它解决了传统的统计分析方法难以预测未来人口增长趋势的问题,方便了研究人口增长对于社会经济发展的影响。
目前,常用的人口模型有四种:1.经验模型:该模型主要是针对已有数据进行平衡分析,所以只能反映人口变动的历史趋势,难以预测未来人口变化。
2. 非参数回归模型:它又称为核回归模型,它是一种无参数模型,可以从数据本身中学习出应该如何比较好地去拟合数据,因此预测效果相较于经验模型提高了不少。
3. 参数回归模型:这种模型较为复杂,它基于特定的模型,通过拟合已有的数据,建立一个完整的模型,目的是预测新的数据变化趋势。
4. 知识驱动模型:该模型结合了经验模型和参数回归模型的基本特点,它将专家的知识与历史数据相结合,通过精细化的调整,建立能够反映人口增长趋势的模型。
该模型可广泛应用于国家人口预测、社会福利计划等领域。
人口增长有其基本的规律,这些规律可以帮助我们更好地了解和解决人口问题。
1.现代社会阶段的人口增长趋势是死亡率下降,而出生率下降,且死亡率的下降速度比出生率的下降速度快。
人口增长模型
0
阻滞增长模型(Logistic模型) 阻滞增长模型(Logistic模型) (Logistic模型
由实际数据估计r=0.2557, =392.0886,代入计算: 由实际数据估计r=0.2557, xm=392.08合
结果分析
与19世纪以前欧洲一些地区人口统计数据吻合 世纪以前欧洲一些地区人口统计数据吻合
指数增长 可用于短期人口增长预测 模型的应用 及局限性 不符合19世纪后多数地区人口增长规律 不符合19 19世纪后多数地区人口增长规律
不能预测较长期的人口增长过程
缺陷
r是变量而不是常量
分段模型
300 250 200 150 100 50
5
10
15
20
图3
4段指数模型拟合图 4段指数模型拟合图
返回
阻滞增长模型(Logistic模型) 阻滞增长模型(Logistic模型) (Logistic模型
由数据观察到,人口增长到一定数量后,增长率下降。 由数据观察到,人口增长到一定数量后,增长率下降。 这是资源、环境等因素对人口增长的起到了阻滞作用, 这是资源、环境等因素对人口增长的起到了阻滞作用,这 种阻滞作用随人口数量增加而变大。基于这个假设,我们 种阻滞作用随人口数量增加而变大。基于这个假设, 建立起阻滞增长模型( 模型) 建立起阻滞增长模型(Logistic模型) 。 模型
数学模型
主讲教师: 主讲教师:刘剑
人口的增长模型
1 2 3 4
问题提出 模型构成及求解 结果分析 阻滞增长模型
问题提出
世界人口增长概况
1625 1830 1930 1960 1974 1987 1999 年 人口(亿 10 20 30 40 50 60 人口 亿) 5
人口增长模型的确定
题目:人口增长模型的确定摘要人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。
本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。
通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。
关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测一、问题重述1.1 问题背景1790-1980年间美国每隔10年的人口记录如下表所示。
表1 人口记录表1.2 问题提出我们需要解决以下问题:1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。
3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。
二、问题分析首先,我们运用Matlab 软件绘制出1790到1980年的美国人口数据图,如图1。
1780180018201840186018801900192019401960198050100150200250图1 1790到1980年的美国人口数据图从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。
因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。
三、问题假设为简化问题,我们做出如下假设:(1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响;(2)所给出的数据具有代表性,能够反映普遍情况;(3)一段时间内我国人口死亡率不发生大的波动;(4)在查阅的资料与文献中,所得数据可信;(5)假设人口净增长率为常数。
数学建模 人口增长详解
摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会 政治经济医疗就业等带来了一系列的问题。
因此研究和解决人口问题在我国显得尤为重要。
我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。
你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。
人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。
人口每增加十亿的时间,有一百年缩短为十几年。
我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。
长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。
本文件里两个模型: (1):中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2):中国人口的Logistic 图形,标出中国人口的实际统计数据进行比较。
而且利用MATLAB 图形 ,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。
关键词:指数增长模型 Logistic 模型 MATLAB 软件 人口增长预测1.问题的提出下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。
要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。
(3)利用MA TLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。
《人口增长模型》课件
周期性
人口增长呈现一定的周期 性,受经济、社会和政策 等因素影响。
人口增长的影响因素
自然增长率
出生率和死亡率的变化对 人口增长有直接影响。
迁入率和迁出率
迁入和迁出人口的数量对 地区人口增长有重要影响 。
政策因素
政府政策对生育、移民和 人口控制等方面具有重要 影响。
人口增长模型的分类
指数增长模型
01
通过模型模拟不同的人口政策效果, 为政府制定计划生育、移民政策等提 供科学依据。
分析人口变化原因
模型可以帮助我们了解影响人口增长 的各种因素,如生育率、死亡率、移 民等。
02
人口增长模型的基本概念
人口增长的特性
01
02
03
连续性
人口增长是连续的过程, 随着时间的推移不断变化 。
不确定性
人口增长受到多种因素的 影响,具有不确定性。
假设人口数量与时间 呈线性关系,即人口 数量随时间增长而呈 等比增加。
假设人口增长率是常 数,即不受时间、环 境等因素的影响。
模型建立
指数增长模型的一般形式为 (N(t) = N_0 e^{rt}),其中 (N(t)) 表示在时 间 (t) 的人口数量,(N_0) 表示初始人口数量,(r) 表示人口增长率。
05
阻滞增长模型(Logistic模型 )
模型假设
假设种群增长存在环境最大容 量,即当种群数量达到环境最 大容量时,种群增长速度将减 缓。
假设种群增长受环境阻力影响 ,种群增长率随种群数量增加 而降低。
假设种群增长是连续的过程, 不受时间步长限制。
模型建立
01
(N)((t)):种群数量
02
(K):环境最大容量
人口增长 连续模型
显然,这些数字说明马尔萨斯人口模型对长期的 预测是不正确的. 由上可以看出,马尔萨斯人口增长模型对17001961年的人口总数是对的,但对未来的人口总数预 测不正确,应予以修正.
二、logistic模型(阻滞增长模型)
由上面分析,马尔萨斯人口模型对1700-1961年 间人口总数的检验是对的,而未来的人口总数预测 又是错的,原因何在?
由此得:Logistic模型 dx r (1 x ) x dt xm x(t ) | x t t0 0
x( t ) ) 体现了对人口增长的阻滞作用. 因子 (1 xm
( 6)
8
解之得:x ( t )
xm xm r ( t t0 ) 1 ( 1)e x0
6
产生上述现象的主要原因是:随着人口的增加, 自然资源,环境条件等因素对人口继续增长的阻滞 作用越来越显著.如果当人口较少时(相对于资源而 言),人口增长率还可以看作常数的话,那么当人口增 加到一定数量后,增长率就会随着人口的继续增加 而逐渐减少,许多国家人口增长的实际情况完全证 实了这一点. 看来为了使人口预报,特别是长期预报更好地符 合实际情况,必须修改指数增长模型关于人口增长率 是常数这个基本假设.
dx r ( t , x( t )) x( t ) dt (1)
我们将逐步深入讨论上面这个模型
3
一,马尔萨斯(malthus)模型(指数增长模型)
英国人口学家马尔萨斯(1766—1834)根据百余 年的人口统计资料,于1798年提出了著名的人口指数 增长模型. 基本假设 人口增长率是常数, 或者说,单位时间内人口的增长量与当时人口成正比. 在(1)式中令 r (t , x(t )) =r(常数) 得 dx(t ) r x( t ) (2) dt x ( t ) t t x0
07年全国数学建模大赛--中国人口增长预测模型1
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):中国人口增长预测模型摘要:在中国的人口增长预测问题中,老龄化进程加速,出生人口性别比的变化,乡村人口城镇化,是影响人口预测的主要因素。
在中短期预测的过程中,由于影响人口的各项主要因素变化范围较小,可以直接根据我们建立的模型进行预测。
老年人的死亡率变化较大,出生的男女百分比得到遏制并逐渐趋于正常的水平。
我们将根据年龄将人口分成两部分,0到60岁的人口的预测,和60岁以后人口的预测。
通过原来的模型对0岁到60岁的中国妇女的人口数预测,进而通过中国男女比例变化与年份的关系来预测出相应的0岁到60岁中国男性数目的总和,得到了中国0到60岁人口总和的预测,根据附件一中的资料预测出相应年份的60岁以上的人口数目总和,这样我们就合理的得到了长期人口数目的预测。
通过预测我们得到:在 2010年人口达到13.8亿人,城镇化率达到46.7% 在2020年人口总数变为:14.7亿人,城镇化率达到53.26% ,2035年人数达到高峰,城镇化率达到56.53%,以后各年直到2050年保持基本稳定的状态。
数学建模 人口增长详解
摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会 政治经济医疗就业等带来了一系列的问题。
因此研究和解决人口问题在我国显得尤为重要。
我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。
你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。
人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。
人口每增加十亿的时间,有一百年缩短为十几年。
我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。
长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。
本文件里两个模型: (1):中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2):中国人口的Logistic 图形,标出中国人口的实际统计数据进行比较。
而且利用MATLAB 图形 ,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。
关键词:指数增长模型 Logistic 模型 MATLAB 软件 人口增长预测1.问题的提出下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。
要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。
(3)利用MA TLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。
人口统计学中的人口增长与衰退模型
人口统计学中的人口增长与衰退模型人口统计学是研究人口变化规律、数量结构和特征的学科。
人口增长与衰退是其中的一个重要方面。
人口增长模型和衰退模型针对的是不同的人口现象,在研究时需要有相应的数据支撑,下面将介绍其基本定义以及一些常见的模型。
一、人口增长模型人口增长是指人口数量随时间的增加,包括自然增长和外部因素的影响。
自然增长是指出生率与死亡率的差异,外部因素则包括移民、战争和疾病等。
人口增长模型主要用来描述人口数量的变化规律,下文将介绍两种常见的模型。
1.1 指数增长模型指数增长模型认为,人口数量增长的速度与当前人口数量成正比,若人口数量为N,增长速度为r,则有:dN/dt = rN其中,dN/dt是人口数量随时间的变化率。
该模型的特点是,随着人口数量的增加,增长速度越来越快,最终可能会造成人口过剩和资源匮乏的问题。
1.2 Logistic增长模型Logistic增长模型是为了避免人口增长过快而提出的模型。
它假设人口数量增长的速度不仅与当前人口数量有关,还与最大承载能力K有关,若人口数量为N,增长速度为r,则有:dN/dt = rN(1-N/K)其中,1-N/K表示剩余生育空间的比例。
随着人口数量的增加,增长速度逐渐减缓,最终趋向于一个稳定的数量。
二、人口衰退模型人口衰退是指人口数量相对稳定或减少的过程,它涉及到出生率、死亡率、迁移率等因素。
人口衰退模型主要用来描述人口数量在长期内的变化趋势,下文将介绍两种常见的模型。
2.1 指数衰退模型指数衰退模型认为,人口数量随时间的减少速度与当前人口数量成正比,若人口数量为N,衰退速度为r,则有:dN/dt = -rN其中,符号“-”表示人口数量减少。
该模型的特点是,随着时间的推移,人口数量减少的速度越来越快,最终可能导致人口不足的问题。
2.2 Logistic衰退模型Logistic衰退模型则是为了避免人口数量减少过快而提出的模型。
它和Logistic增长模型类似,假设人口数量减少的速度不仅与当前人口数量有关,还与最低承载能力K有关,若人口数量为N,衰退速度为r,则有:dN/dt = -rN(N/K-1)其中,N/K-1表示剩余存活空间的比例。
中国人口增长预测模型PPT课件
6
四、符号约定
Nt Bt Dt A j(t)
第t年年初的总人口数; 第t年新生育的婴儿数; 第t年死亡的人数; 第t年第j地区人口占全国总人口的比例;
j ( r , t ) 第t年第j地区r岁人口中的男性比例;
j ( r , t ) 第t年第j地区r岁人口中的女性比例;
b j ( r , t ) 第t年第j地区r岁人口中的妇女的生育率;
d ij ( r , t )
p(r,t)
第t年第j地区r岁人口中的第i种性别的死亡率; 第t年r岁人口占第t年总人口的比例,即人口随年龄的分布密度函数;
h(r,t) 第t年r岁死亡人口占第t年r岁总人口的比例,即死亡率随年龄的分布密
度函数;
f(r,t) 第t年r岁的妇女生育的人口占第t年r岁总人口的比例,即生育率随年龄
的分布密度函数;
F(r,t) 第t年年龄为r的人的生育率;
H(r,t) 第t年年龄时间变化的值;
s(t) 长期预测时f(r)随时间变化的值;
其中
t=1表示2001年,t=2 表示2002年…
由此对中国人口增长的中短期和长期趋势做出预测;特别要指出模型中的优点与 不足之处。
5
三、问题的假设
① 不考虑机械增长率(如国际人口的迁入迁 出) 对我国总人口的影响;
② 年龄在90及以上的,即90 一行的数据 一律按
年龄为90来处理; ③ 调查数据是在全国随机调查所得的数据; ④ 在模型Ⅱ中不考虑出生率、死亡率随时间的变
r=0,1,2,3…90 表示年龄;
i=1,2
表示性别,其中i=1表示男性,i=2表示女性;
j=1,2,3
表示地区,其中j=1表示城市,j=2表示城镇,j=3表
人口增长模型
中国人口增长预测2009-03-09 07:55:36| 分类:数学建模 |字号订阅注:在格式转化过程中部分数据丢失,如需帮助请QQ408322103,本文由时宝雯、汪铁龙、田艳三人在司书红老师的指导下创作,获2007年“高教杯”省特等奖。
摘要中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一,虽然我国已进入低生育率国家行列,但由于人口基数庞大,人口净增长水平仍然居高不下。
近年来中国的人口发展出现了一些新的特点,例如老龄化进程加速,新生儿性别比持续攀高,农村人口城镇化等,这些都影响着中国人口质量的提高与可持续发展战略的实现。
因此,科学准确地预测未来我国人口的发展具有现实意义。
本文从我国实际情况和人口增长新特点出发,分析并参考了相关数据资料,建立了我国人口增长预测的数学模型——基于灰色理论的人口中短期预测模型和人口长期预测的Leslie矩阵模型。
模型一中,除了采用常规GM(1,1)模型和新陈代谢模型预测外,结合2005—2020年人口增长的新特点,通过引进强化算子,自定义了QGM模型,使得预测结果更符合实际。
利用该模型,我们预测出了2010年、2020年人口总量分别约为13.5亿、14.3亿。
模型二中,从考虑女性年净增人口数出发,建立Leslie预测模型,并引入了女婴比,改进Leslie预测模型;预测出女性年净增长人数趋势,并结合市、镇、乡男女比例,得到人口总量年净增长预测值(2005—2050年)。
再根据2004年人口基数,还原出各年人口总量值,并绘出人口发展趋势曲线图,可以看出中国人口在2022年左右进入缓慢增长期,到2034年达到峰值约为14.97亿,之后人口总量呈缓慢下降趋势。
在问题的进一步研究中,在Leslie矩阵基础上给出了预测人口总量的另一种方法,并初步探索了基于宋健人口预测模型和基于BP神经网络的人口预测模型。
同时我们还进行了结果讨论和模型的稳定性分析,并给出了模型的优缺点。
课件5:3.1人口增长模式
人口的自然增长
自然增长率=出生率-死亡率
假如某地某年有20万人,第一年人口自 然增长率为2%,那么,这一年会增加多少 人口?假设其他条件保持不变,10年后,该 地区人口自然增长率若降至1.7%,到那时一 年会增加多少人口?
200000×2%=4000(人) 200000×(1+2%)10×1.7%=4145(人)
人口数量增减的相关计算
3、下表为四个国家的主要人口指标。据表可知
国家
2000~2010年 2009年人口 2010年0~14
人口年均增长率 密度
岁人口比重
中国
0.6
印度
1.4
法国
0.7
美国
0.9
143
19.5
389
30.6
118
18.4
34
20.1
09年出生时 预期寿命
男性 女性 72 75 63 66 78 85 76 81
人口数量增减的相关计算
1、1980年我国执行计划生育政策后
A.人口规模开始下降
B.人口规模持续增加
C.人口增速开始减慢
D.人口规模保持稳定
2、不同生育政策可能对我国未来人口产生的影响是 A.全面放开二孩,人口增长速度将持续增加 B.生育政策不变,人口规模在未来30年持续下降 C.放开单独二孩,人口年龄结构将得到一定程度的改善 D.放开单独二孩,人口出生率在未来30年持续上升
第3 / 最多
第1 第2
死亡率与出生率/%
4
3
2 高出生率 高死亡率
1 低自然增长率
0 原始型
死亡率 出生率
高出生率 低死亡率 高自然增长率
传发统型 展 中 国 家
微分方程讲座-人口增长模型
Malthus模型和Logistic模型的推广
Malthus模型与Logistic模型虽然都是为 了研究种群数量的增长情况而建立的,但它 们也可用来研究其他实际问题,只要这些实 际问题的数学模型有相同的微分方程即可。
r
p
r
p t
(r,
t)
p(r,
t
)
p(r,0) p0 (r), r 0 ~已知函数(人口调查)
p(0,
t
)
f
(t),
t0
~生育率(控制人口手段)
男女性别比
在增大
生育率
生育数
只生一个
育龄区间
晚婚、晚育
人口增长模型的总结
基于一个假设,形成了基础模型Malthus模 型,再通过对现实世界分析,改进模型引进 了阻滞项,从而得到了Logistic模型.
p
P(r,t)
方 程
rm ~ 最高年龄
F (0, t) 0, F (rm , t) N (t)
p(r, t) F r
0 F(r0,t) r0
r rm
t,年dr龄]人[r数, r
t r
dt,年龄[r dr1 dr1 dr]人数
,
dt
dr1
死(t, t亡人dt数)内
p(r, t)dr p(r dr1,t dt)dr (r,t) p(r,t)drdt
马尔萨斯模型人口预测图
11
x 10 3.5
马尔萨斯模型人口预测
3
2.5
N/人
2
自然资源限制
人口增长模型
x (0) x (0) (1), x (0) (2), x (0) (3), , x (0) (n)
x
1
x (1), x (2), x (3), , x (n)
(1) (1) (1) (1)
x 1 的紧邻均值生成序列 (2) 确定
Z 1 z (1) (1), z (1) (2), z (1) (3), , z (1) ( n)
指标 维度
a
5维(2006-2010) 0.005776%
c
0.0045
P
1
6维(2005-2010)
0.011580%
0.0103
1
7维(2004-2010)
0.012183%
0.0086
1
8维(2003-2010)
0.025345%
0.0145
1
9维(2002-2010)
0.036936%
0.0170
x(t t ) x(t ) rx(t )t
dx rx dt x(0) x0
令t 0得
求解得 x x0e
rt
阻滞增长模型(Logistic模型)(姜启源)
人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数
则第k+1年按年龄人数分布向量递推公式为:
N (k 1) LN (k )
1 短期预测模型 模型一:灰色GM(1.1)模型,选择最 佳维度来建立模型进行预测 模型二:采用新陈代谢灰色GM(1.1) 建模,并与模型一作对比,最后选择最 佳的5维新陈代谢灰色GM(1.1)来预测人 口数,并对结果进行了验证和分析。
《人口增长模式》 讲义
《人口增长模式》讲义一、人口增长的基本概念要理解人口增长模式,首先得明白一些基本的概念。
人口增长,简单来说,就是指一个地区或国家人口数量的增加。
这一增加既包括人口的自然增长,也就是出生人数减去死亡人数;也包括人口的机械增长,即由于人口迁移导致的人口数量变化。
人口增长率则是衡量人口增长速度的重要指标。
它通常以百分比的形式呈现,表示在一定时期内(通常为一年)人口增长的比例。
二、人口增长模式的类型1、原始型在人类社会发展的早期,人口增长模式主要是原始型。
这一时期,生产力水平极为低下,人们主要依靠采集、狩猎为生,抵御自然灾害和疾病的能力很差。
因此,人口的出生率和死亡率都很高,自然增长率很低,人口增长十分缓慢。
2、传统型随着农业的发展和生产力的逐步提高,人口增长模式进入了传统型阶段。
这时候,人们开始定居,农业生产成为主要的生活方式。
由于食物供应相对稳定,医疗条件也有所改善,死亡率开始下降。
但受传统文化和经济因素的影响,出生率仍然较高,所以自然增长率上升,人口增长速度加快。
3、过渡型工业革命带来了生产力的巨大飞跃,也促使人口增长模式发生转变,进入过渡型。
这一阶段,生产力的发展使得人们的生活水平和医疗条件进一步改善,死亡率继续下降。
同时,随着教育水平的提高、观念的转变以及节育措施的推广,出生率也开始下降,但下降速度相对较慢。
所以,自然增长率呈下降趋势,人口增长速度逐渐放缓。
4、现代型当社会经济发展到较高水平,尤其是在工业化和城市化程度较高的国家和地区,人口增长模式转变为现代型。
此时,人们的生活方式和价值观念发生了很大变化,更加注重个人发展和生活质量。
同时,社会保障体系完善,教育水平普遍提高,使得出生率进一步下降,甚至低于死亡率。
自然增长率很低,有些国家甚至出现了人口负增长。
三、影响人口增长模式转变的因素1、经济因素经济发展水平是影响人口增长模式转变的根本因素。
随着经济的发展,生产力水平提高,人们的生活条件改善,医疗保健水平上升,从而降低了死亡率。
人口指数增长模型
《数学模型》实验报告实验名称:如何预报人口的增长成绩:___________实验日期:2009 年 4 月22 日实验报告日期:2009 年 4 月 26 日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到"地球在变小",人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义.本节介绍几个经典的人口模型.3.3.1模型I:人口指数增长模型(马尔萨斯Malthus,1766--1834)1) 模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2) 模型建立及求解据模型假设,在t到时间内人口数的增长量为,两端除以,得到,即,单位时间人口的增长量与当时的人口数成正比.令,就可以写出下面的微分方程:,如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得,两端积分,并结合初值条件得.显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3) 模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正.图3-24) 模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的.我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的.这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的.人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中.模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.3.3.2模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在——或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1) 模型假设地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2) 模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t) 的减函数,特别是当P(t) 达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令.用代替指数增长模型中的导出如下微分方程模型:(2)这是一个Bernoulli方程的初值问题,其解为.在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic模型).其图形如图3-3所示.图3-33) 模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4) 模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用.不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线.但我们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程——这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗 [FS:PAGE]事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时,我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑.一、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模实例—— 人口增长模型
背景
世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60 中国人口增长概况 年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0 研究人口变化规律 控制人口过快增长
亡.
模型修改与重建
1.将增长率r表示为人口x的函数r(x),按 前面的分析,r(x)应为x的减函数.假定 其为x的线性函数
r(x)=r-sx
其中r,s>0,这里r相当于x=0时的增长率, 称为固有增长率. 显然,对任意的x>0,r(x)<r.
2.设定自然资源和环境条件等因素 所能容纳的最大人口数量为xm
人口增长数=出生人口数
-死亡人口数
+迁入人口数
-迁出人口数
由假设3,上式后两项忽略. 于是 人口增长数=出生人口数 -死亡人口数 (5.1)
又出生或死亡人口数均依赖于两 个因素: (1)时间间隔△t的长短. (2)时间间隔开始时的人口总数x(t), 且均为正比例关系,即
△t间隔内的出生人数=k1x(t) △t
由此,分析人口总数x(t)的变化规
律:
2
d x x 2x 2 r (1 )(1 ) x 2 dt xm xm
人口总数x(t)的变化规律:
dx/dt
2
0
xm/2xm x源自 x xmxm/2 x0 0 t
x(t)~S形曲线, x增加先快后慢
(1) lim x(t ) xm , 即无论人口初
△t间隔内的死亡人数=k2x(t) △t
其中k1,k2分别为出生率和死亡率.
代入(5.1)式,得到△t间隔 内人口的增量为 x(t+ △t)-x(t)=(k1-k2)x(t)△t
或
1 x(t t ) x(t ) k1 k 2 x(t ) t
令△t→0 ,得
1 dx k1 k 2 x dt
x(t)=3.06×109e0.02(t-1961) (5.3)
当t=2670时,x=4.4×1015, 即达到4400万亿人,这相当于地球上每平 方米至少要容纳8个人.
模型假设
1.时刻t的人口函数是连续可微的.
2.人口的增长率是常数. 3.人口数量的变化是封闭的,即人口数量
的增减只取决于人口中个体的生育和死
按假设k1-k2为常数r,再设初始人口数
为x0,便构成一个初值问题
dx rx , x(0) x0 dt
模型求解
x(t)=x0ert
(5.2)
模型分析、评价与检验
1961年世界人口总数为3.06×109, 在1961—1970年这段时间内,每年平均 的人口增长率为2%,代入(5.2)式,得
t
值如何,人口总数均以xm为极限, 其中x=xm是图形x(t)的水平渐进线.
dx x 时, r (1 ) x 0 dt xm
(2)当0<x<x
,
x(t)是单调增加的.
2 xm d 又由(5.7)式知,当 x 时, 2x 0 ; 2 dt
xm 当 x 2
时,
d 2x 0 2 dt
称为阻滞增长模型或逻辑斯蒂克
(Logistic)人口增长模型.
用可分离变量方程的解法可得其解 为
x(t )
xm xm rt 1 ( 1)e x0
(5.6)
4.模型解的再分析与检验 对(5.6)式求二阶导数可得
d x x 2x 2 r (1 )(1 ) x (5.7) 2 dt xm xm
(也称最大人口容量). r ( s ) xm
故
x r ( x) r (1 ) xm
(5.4)
x r ( x) r (1 ) xm
其中常数 r,xm要根据人口统计
数据确定.
3.将指数模型中r的换为(5.4)式便 得到新模型
x dx r (1 ) x 0 xm (5.5) dt x(0) x 0
问题提出
马尔萨斯(Malthus)人
口增长模型或指数增长模型.
模型假设
1.时刻t的人口函数是连续可微的.
2.人口的增长率是常数. 3.人口数量的变化是封闭的,即人口数量
的增减只取决于人口中个体的生育和死
亡.
模型建立
设t时刻的人口数为x(t),增长率为r (常数).依平衡原理,在时间段△t内, 有
,
xm 即 x 是 x(t) 图形的拐点. 2
人口变化率函数
dx dt
xm 在 x 处取 2
到最大值.
(3)xm要根据人口统计资料以及自
然环境等因素来确定,因而当条件
改变时, xm也将随之改变.
小结 利用平衡原理建立了人口增长模型
按照五步建模法全过程展现了数学
建模的基本步骤