初中数学找规律题解与总结[]
初中数学规律题汇总(全数有解析)
初中数学规律题汇总“有比较才有辨别”。
通过比较,能够发觉事物的相同点和不同点,更易找到事物的转变规律。
找规律的题目,通常依照必然的顺序给出一系列量,要求咱们依照这些已知的量找出一样规律。
揭露的规律,常常包括着事物的序列号。
因此,把变量和序列号放在一路加以比较,就比较容易发觉其中的隐秘。
初中数学考试中,常常显现数列的找规律题,本文就此类题的解题方式进行探讨:一、大体方式——看增幅(一)如增幅相等(实为等差数列):对每一个数和它的前一个数进行比较,如增幅相等,那么第n个数能够表示为:a1+(n-1)b,其中a为数列的第一名数,b为增幅,(n-1)b为第一名数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,因此,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,可是增幅以一样幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅别离为3、五、7、9,说明增幅以一样幅度增加。
此种数列第n位的数也有一种通用求法。
大体思路是:一、求出数列的第n-1位到第n位的增幅;二、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法尽管较烦,可是此类题的通用解法,固然此题也可用其它技术,或用分析观看的方式求出,方式就简单的多了。
(三)增幅不相等,可是增幅同比增加,即增幅为等比数列,如:二、3、五、9,17增幅为一、二、4、8.(四)增幅不相等,且增幅也不以一样幅度增加(即增幅的增幅也不相等)。
此类题可能没有通用解法,只用分析观看的方式,可是,此类题包括第二类的题,如用分析观观点,也有一些技术。
二、大体技术(一)标出序列号:找规律的题目,通常依照必然的顺序给出一系列量,要求咱们依照这些已知的量找出一样规律。
找出的规律,通常包序列号。
因此,把变量和序列号放在一路加以比较,就比较容易发觉其中的隐秘。
初中数学找规律题讲解与总结
初中数学找规律题讲解与总结1、新课引入小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
2、合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?★注意引导学生概括“探索规律”的一般步骤:①寻找数量关系;②用代数式表示规律③验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系?⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗?⑶这个关系对任何一个月的日历都成立吗?为什么?⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。
⑸你还能提出那些问题?中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数。
初中的中考数学找规律题型汇总及解析.doc
精品文档中考数学找律型展及解析“有比才有” 。
通比,可以事物的相同点和不同点,更容易找到事物的化律。
找律的目,通常按照一定的序出一系列量,要求我根据些已知的量找出一般律。
揭示的律,常常包含着事物的序列号。
所以,把量和序列号放在一起加以比,就比容易其中的奥秘。
初中数学考中,常出数列的找律,本文就此的解方法行探索:一、基本方法——看增幅(一)如增幅相等(等差数列):每个数和它的前一个数行比,如增幅相等,第n 个数可以表示: a1+(n-1)b ,其中 a 数列的第一位数, b增幅, (n-1)b 第一位数到第 n 位的增幅。
然后再化代数式 a+(n-1)b 。
例: 4、10、 16、22、 28⋯⋯,求第 n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是 6,所以,第 n 位数是: 4+(n-1) 6 =6n- 2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅等差数列)。
如增幅分 3、5、7、9,明增幅以同等幅度增加。
此种数列第 n 位的数也有一种通用求法。
基本思路是: 1、求出数列的第n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的增幅;3、数列的第 1 位数加上增幅即是第n 位数。
此解法然,但是此的通用解法,当然此也可用其它技巧,或用分析察的方法求出,方法就的多了。
(三)增幅不相等,但是增幅同比增加,即增幅等比数列,如:2、3、5、9,17 增幅 1、 2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此大概没有通用解法,只用分析察的方法,但是,此包括第二的,如用分析察法,也有一些技巧。
二、基本技巧(一)出序列号:找律的目,通常按照一定的序出一系列量,要求我根据些已知的量找出一般律。
找出的律,通常包序列号。
所以,把量和序列号放在一起加以比,就比容易其中的奥秘。
例如,察下列各式数: 0,3,8,15,24,⋯⋯。
按此律写出的第100 个数是 100 2 1 ,第 n 个数是 n 2 1。
初中数学规律题总结
初中数学规律题总结 Document number:PBGCG-0857-BTDO-0089-PTT1998初中数学规律题解题基本方法(一)数列的找规律初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n -2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
初中数学数字找规律题技巧汇总.
初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a1+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。
第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1#此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(四)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17、….分析:数列2、3、5、9,17…。
七年级数学找规律经典题型
七年级数学找规律经典题型一、数字规律1. 数列规律例1:观察数列1,3,5,7,9,…,求第n个数。
解析:首先观察这个数列,发现相邻两个数的差值都是2。
第1个数是1 = 2×1 1;第2个数是3 = 2×2 1;第3个数是5 = 2×3 1;第4个数是7 = 2×4 1;第5个数是9 = 2×5 1。
所以可以得出第n个数为2n 1。
例2:观察数列2,4,8,16,32,…,求第n个数。
解析:这个数列中,后一个数都是前一个数的2倍。
第1个数是2 = 2^1;第2个数是4 = 2^2;第3个数是8 = 2^3;第4个数是16 = 2^4;第5个数是32 = 2^5。
所以第n个数为2^n。
2. 数字循环规律例:有一组数按照1, 1,1, 1,…的规律排列,求第n个数。
解析:观察这组数字,发现数字是1和 1交替出现。
当n为奇数时,第n个数为1;当n为偶数时,第n个数为 1。
可以用(-1)^(n + 1)来表示,当n = 1时,(-1)^(1+1)=1;当n = 2时,(-1)^(2 + 1)= 1。
二、图形规律1. 图形数量规律例1:用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴棒,…,求搭n个三角形需要多少根火柴棒。
解析:搭1个三角形需要3根火柴棒,即2×1+1;搭2个三角形时,第二个三角形和第一个三角形共用一条边,所以需要3 + 2 = 5根火柴棒,即2×2+1;搭3个三角形时,第三个三角形和前面的三角形共用两条边,所以需要3+2×2 = 7根火柴棒,即2×3 + 1。
所以搭n个三角形需要2n+1根火柴棒。
例2:观察下列图形的点数规律:第1个图形有1个点;第2个图形有1 + 3 = 4个点;第3个图形有1+3 + 5 = 9个点;第4个图形有1+3+5 + 7 = 16个点;求第n个图形的点数。
十道初中数学找规律的题型及解题思路
十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。
图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。
图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。
数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。
图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。
综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。
解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。
•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。
•联想:将题目与以前学过的知识联系起来,寻找解题思路。
•归纳:根据观察和比较的结果,归纳出一般性的规律。
•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。
注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。
•遇到困难时,可以尝试从不同的角度去观察和分析。
初中数学找规律题讲解与总结[1]
1、新课引入小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
2、合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?★注意引导学生概括“探索规律”的一般步骤:①寻找数量关系;②用代数式表示规律③验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系?⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗?⑶这个关系对任何一个月的日历都成立吗?为什么?⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。
⑸你还能提出那些问题?中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
中考的数学找规律题型汇总情况及解析汇报
中考数学找规律题型扩展及解析“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学数字找规律题技巧汇总
初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a1+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。
第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(四)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17、….分析:数列2、3、5、9,17…。
中考数学找规律问题归纳及解析
中考数学找规律问题归纳及解析多练出技巧,巧思出硕果本文是一篇数学题目集,包含了数式问题、定义运算问题和剪纸问题三个部分。
数式问题部分包括了五个题目,需要运用数学知识进行计算和推理。
其中第一个题目需要根据已知条件求解多个未知数,需要进行代数运算;第二个题目需要根据已知数列的规律求解未知项,需要进行数列的推理;第三个题目需要观察一组单项式的规律并推理出第十个单项式,需要进行代数推理;第四个题目需要观察一列数的规律并求解第七个数,需要进行数列的推理;第五个题目需要观察一组按规律排列的多项式并求解第十个式子,需要进行多项式的推理。
定义运算问题部分包括两个题目,需要根据已定义的运算法则进行计算和推理。
第一个题目需要求解一个方程,需要进行代数运算;第二个题目需要根据已知数列的定义进行推理,需要进行数列的推理。
剪纸问题部分只有一道题目,需要根据已知的剪纸图案进行推理并回答问题,需要进行几何推理。
练这些数学题目可以帮助我们巩固数学知识,培养数学思维和推理能力。
只有多练,才能巧思出硕果。
1.在边长为1的菱形ABCD中,通过连接对角线AC,按照规律制作菱形ACC1D1,再制作菱形AC1C2D2,使得每个菱形的内角都为60度。
求第n个菱形的边长。
2.按照规律,从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形。
求第n个图案中正三角形的个数。
3.按照规律摆放同样大小的黑色棋子,第100个图案需要多少枚棋子。
4.观察一系列图形,每个图形中最小的三角形都是全等的。
求第n个图形中最小的三角形的个数。
5.在平面直角坐标系中,已知三个点的坐标分别为A1(1,2)、A2(0,0)、A3(-1,1)。
一只电子蛙从原点开始,按照规律跳到以A1、A2、A3为对称中心的对称点,问电子蛙跳了2009次后,落点的坐标是多少?6.观察图案,按照规律在横线上画出合适的图形,缺少的是字母E的对称。
7.分析图中阴影部分的分布规律,按照规律在图中画出其中的阴影部分。
(完整版)七年级找规律经典题汇总带答案
一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n—1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;……由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
初中找规律题型总结
1、二级数列这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。
例1:2 6 12 20 30 ( 42 )(2002年考题)解析:后一个数与前个数的差分别为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应该是12,所以答案应该是B。
例2:20 22 25 30 37 ( ) (2002年考题)解析:后一个数与前一个数的差分别为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应该是11,所以答案应该是C。
例3:2 5 11 20 32 ( 47 ) (2002年考题)解析:后一个数与前一个数的差分别为:3,6,9,12这显然是一个等差数列,因而要选的答案与32的差应该是15,所以答案应该是C。
例4:4 5 7 1l 19 ( 35 ) (2002年考题)解析:后一个数与前一个数的差分别为:1,2,4,8这是一个等比数列,因而要选的答案与19的差应该是16,所以答案应该是C。
例5:3 4 7 16 ( 43 ) (2002年考题)解析:后一个数与前一个数的差分别为:1,3,9这显然也是一个等比数列,因而要选的答案与16的差应该是27,所以答案应该是D。
例6:32 27 23 20 18 ( 17 ) (2002年考题)解析:后一个数与前一个数的差分别为:-5,-4,-3,-2这显然是一个等差数列,因而要选的答案与18的差应该是-1,所以答案应该是D。
例7:1, 4, 8, 13, 16, 20, ( 25 ) (2003年考题)解析:后一个数与前一个数的差分别为:3,4,5,3,4这是一个循环数列,因而要选的答案与20的差应该是5,所以答案应该是B。
例8:1, 3, 7, 15, 31, ( 63 ) (2003年考题)解析:后一个数与前一个数的差分别为:2,4,8,16这显然是一个等比数列,因而要选的答案与31的差应该是32,所以答案应该是C。
初中找规律题型总结
规律探究(1次课)1、二级数列这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。
例1:2 6 12 20 30 ( 42 )(2002年考题)A.38B.42C.48D.56解析:后一个数与前个数的差分别为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应该是12,所以答案应该是B。
例2:20 22 25 30 37 ( ) (2002年考题)A.39B.45C.48D.51解析:后一个数与前一个数的差分别为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应该是11,所以答案应该是C。
例3:2 5 11 20 32 ( 47 ) (2002年考题)A.43B.45C.47D.49解析:后一个数与前一个数的差分别为:3,6,9,12这显然是一个等差数列,因而要选的答案与32的差应该是15,所以答案应该是C。
例4:4 5 7 1l 19 ( 35 ) (2002年考题)A.27B.31C.35D.41解析:后一个数与前一个数的差分别为:1,2,4,8这是一个等比数列,因而要选的答案与19的差应该是16,所以答案应该是C。
例5:3 4 7 16 ( 43 ) (2002年考题)A.23B.27C.39D.43解析:后一个数与前一个数的差分别为:1,3,9这显然也是一个等比数列,因而要选的答案与16的差应该是27,所以答案应该是D。
例6:32 27 23 20 18 ( 17 ) (2002年考题)A.14B.15C.16D.17解析:后一个数与前一个数的差分别为:-5,-4,-3,-2这显然是一个等差数列,因而要选的答案与18的差应该是-1,所以答案应该是D。
例7:1,4,8,13,16,20,( 25 ) (2003年考题)A.20B.25C.27D.28解析:后一个数与前一个数的差分别为:3,4,5,3,4这是一个循环数列,因而要选的答案与20的差应该是5,所以答案应该是B。
初中数学规律题汇总(全部有解析)
初中数学纪律题拓展研讨“有比较才有辨别”.经由过程比较,可以发明事物的雷同点和不合点,更轻易找到事物的变更纪律.找纪律的标题,平日按照必定的次序给出一系列量,请求我们依据这些已知的量找出一般纪律.揭示的纪律,经常包含着事物的序列号.所以,把变量和序列号放在一路加以比较,就比较轻易发明个中的奥妙.初中数学测验中,经常消失数列的找纪律题,本文就此类题的解题办法进行摸索:一.根本办法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以暗示为:a1+(n-1)b,个中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4.10.16.22.28……,求第n位数.剖析:第二位数起,每位数都比前一位数增长6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以一致幅度增长(即增幅的增幅相等,也即增幅为等差数列).如增幅分离为 3.5.7.9,解释增幅以一致幅度增长.此种数列第n位的数也有一种通用求法.根本思绪是:1.求出数列的第n-1位到第n位的增幅;2.求出第1位到第第n位的总增幅;3.数列的第1位数加上总增幅等于第n位数.此解法固然较烦,但是此类题的通用解法,当然此题也可用其它技能,或用剖析不雅察的办法求出,办法就简略的多了.(三)增幅不相等,但是增幅同比增长,即增幅为等比数列,如:2.3.5.9,17增幅为 1.2.4.8.(四)增幅不相等,且增幅也不以一致幅度增长(即增幅的增幅也不相等).此类题精确没有通用解法,只用剖析不雅察的办法,但是,此类题包含第二类的题,如用剖析不雅察法,也有一些技能.二.根本技能(一)标出序列号:找纪律的标题,平日按照必定的次序给出一系列量,请求我们依据这些已知的量找出一般纪律.找出的纪律,平日包序列号.所以,把变量和序列号放在一路加以比较,就比较轻易发明个中的奥妙.例如,不雅察下列各式数:0,3,8,15,24,…….试按此纪律写出的第100个数是第n个数是解答这一题,可以先找一般纪律,然后应用这个纪律,盘算出第100个数.我们把有关的量放在一路加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….轻易发明,已知数的每一项,都等于它的序列号的平方减 1.是以,第n项第1001(二)公因式法:每位数分成最小公因式相乘,然后再找纪律,看是不是与n,或2n.3n有关.例如:1,9,25,49,(81),(121),的第n,1,2,3,4,5.......,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推.(三)看例题:A:2.9.28.65.....增幅是7.19.37....,增幅的增幅是12.18答案与3有关且是n的3次幂,:2.4.8.16.......增幅是2.4.8.. .....答案与2同时减去第一位数,成为第二位开端的新数列,然后用(一).(二).(三)技能找出每位数与地位的关系.再在找出的纪律上加上第一位数,恢复到本来.例:2.5.10.17.26……,同时减去2后得到新数列:0.3.8.15.24……,序列号:1.2.3.4.5,从次序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n再看原数列是同时减2得到的新数列,2,得到原数列第n有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出纪律,并恢复到本来.例:4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1.4.9.16…,很显然是地位数的平方,得到新数列第n项即原数列是同除以4得到的新数列,所以求出新数列n的公式后再乘以4即则求出第一百个数为(六)同技能(四).(五)一样,有的可对每位数同加.或减.或乘.或除统一数(一般为 1.2.3).当然,同时加.或减的可能性大一些,同时乘.或除的不太罕有.(七)不雅察一下,可否把一个数列的奇数地位与偶数地位离开成为两个数列,再分离找纪律.三.根本步调 1. 先看增幅是否相等,如相等,用根本办法(一)解题.2. 如不相等,分解应用技能(一).(二).(三)找纪律 3. 如不成,就应用技能(四).(五).(六),变换成新数列,然后应用技能(一).(二).(三)找出新数列的纪律 4. 最后,如增幅以一致幅度增长,则用用根本办法(二)解题四.演习题例1:一道初中数学找纪律题0,3,8,15,24,······ 2,5,10,17,26,····· 0,6,16,30,48······(1)第一组有什么纪律?答:从前面的剖析可以看出是地位数的平方减一.(2)第二.三组分离跟第一组有什么关系?答:第一组是地位数平方减一,那么第二组每项对应减去第一组每项,从中可以看出都等于2,解释第二组的每项都比第一组的每项多2,则第二组第n项是:地位数平方减1加2,得地位数平方加1第三组可以看出正好是第一组每项数的2倍,则第三组第n项3)取每组的第7个数,求这三个数的和?答:用上述三组数的第n项公式可以求出,第一组第七个数是7的平方减一得48,第二组第七个数是7的平方加一得50,第三组第七个数是2乘以括号7的平方减一得96,48+50+96=1942.不雅察下面两行数2,4,8,16,32,64, ...(1)5,7,11,19,35,67...(2)依据你发明的纪律,取每行第十个数,求得他们的和.(请求写出最后的盘算成果和具体解题进程.)解:第一组可以看出是第二组可以看出是第一组的每项都加3,即则第一组第十个数是第二组第十个数是得1027,两项相加得2051.3.白诟谇黑诟谇黑黑诟谇黑黑黑诟谇黑黑黑黑黑分列的珠子,前2002个中有几个是黑的?解:从数列中可以看出纪律即:1,1,1,2,1,3,1,4,1,5,…….,每二项中后项减前项为0,1,2,3,4,5……,正好是等差数列,并且数列中偶项地位全体为黑色珠子,是以得出2002除以2得1001,即前2002个中有1001个是黑色的.……用含有N的代数式暗示纪律解:被减数是不包含1的奇数的平方,减数是包含1的奇数的平方,差是8的倍数,奇数项第n个项为2n-1,而被减数恰是比减数多2,则被减数为2n-1+2,得2n+1,则用含有n的代数式暗示为:写出两个持续天然数的平方差为888的等式解:经由过程上述代数式得出,平方差为888即8n=8X111,得出n=111,代入公式:(222+1(222-1五.对于数表 1.先看行的纪律,然后,以列为单位用数列找纪律办法找纪律 2.看看有没有一个数是上面两数或下面两数的和或差六.数字推理根本类型按数字之间的关系,可将数字推理题分为以下几种类型: 1.和差关系.又分为等差.移动乞降或差两种.(1)等差关系.12,20,30,42,(56) 127,112,97,82,( 67 ) 3,4,7,12,( 19),28 (2)移动乞降或差.从第三项起,每一项都是前两项之和或差.1,2,3,5,(8),13 A.9B.11C.8 D.7选 C.1 +2=3,2+ 3=5,3+ 5=8,5+ 8=13 0,1,1,2,4,7,13,( 24)A.22 B.23 C.24 D.25 选 C.留意此题为前三项之和等于下一项.一般测验中不会反常到要你求前四项之和,所以小我感到这属于移动乞降或差中最难的. 5,3,2,1,1,(0 ) A.-3B.-2 C.0 D.2 选 C.前两项相减得到第三项.2.乘除关系.又分为等比.移动求积或商两种(1)等比,从第二项起,每一项与它前一项的比等于一个常数或一个等差数列.8,12,18,27,(40.5)后项与前项之比为 1.5. 6,6,9,18,45,(135)后项与前项之比为等差数列,分离为1,1.5,2,2.5,3(2)移动求积或商关系.从第三项起,每一项都是前两项之积或商.2,5,10,50,(500)100,50,2,25,(2/25) 3,4,6,12,36,(216) 从第三项起,第三项为前两项之积除以 2 1,7,8,57,(457)第三项为前两项之积加 11,4,9,16,25,(36),49 为地位数的平方. 66,83,102,123,(146) ,看数很大,其实是不难的,66可以看作64+2,83可以看作81+2,102可以看作100+2,123可以看作121+2,以此类推,可以看出是8,9,10,11,12的平方加21,8,27,(81),125 地位数的立方. 3,10,29,(83),127 地位数的立方加 2 0,1,2,9,(730) 后项为前项的立方加1 5.分数数列.症结是把分子和分母看作两个不合的数列,有的还需进行简略的通分,则可得出答案分子为等比即地位数的平方,分母为等差数列,则第n(1/4) 将1/2化为2/4,1/3化为2/6,可得到如下数列:2/3, 2/4, 2/5, 2/6, 2/7,2/8 …….可知下一个为2/9,假如求第n分化后得: 6..质数数列2,3,5,(7),11 质数数列4,6,10,14,22,(26) 每项除以2得到质数数列20,22,25,30,37,(48) 后项与前项相减得质数数列.7..双重数列.又分为三种:(1)每两项为一组,如1,3,3,9,5,15,7,(21) 第一与第二,第三与第四等每两项后项与前项之比为 3 2,5,7,10,9,12,10,(13)每两项中后项减前项之差为 3 1/7,14,1/21,42,1/36,72,1/52,(104 ) 两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,个中一个数列可能无任何纪律,但只要掌控有纪律变更的数列就可得出成果. 22,39,25,38,31,37,40,36,(52) 由两个数列,22,25,31,40,( )和39,38,37,36构成,互相离隔,均为等差. 34,36,35,35,(36),34,37,(33) 由两个数列相隔而成,一个递增,一个递减(3)数列中的数字带小数,个中整数部分为一个数列,小数部分为另一个数列. 2.01, 4.03, 8.04, 16.07,(32.11)整数部分为等比,小数部分为移动乞降数列.双重数列难题也较少.能看出是双重数列,标题一般已经解出.特殊是前两种,当数字的个数超出7个时,为双重数列的可能性相当大.8..组合数列.最罕有的是和差关系与乘除关系组合.和差关系与平方立方关系组合.须要熟习前面的几种关系后,才干较好较快地解决这类题. 1,1,3,7,17,41,( 99 ) A.89 B.99 C.109D.119选 B.此为移动乞降与乘除关系组合.第三项为第二项*2加第一项,即1X2+1=3.3X2+1=7,7X2+3=17,17X2+7=41,则空中应为41X2+17=9965,35,17,3,( 1 ) A.1B.2C.0D.4 选 A.平方关系与和差关系组合,分离为8的平方加1,6的平方减1,4的平方加1,2的平方减1,下一个应为0的平方加1=14,6,10,18,34,( 66 ) A.50B.64C.66D.68 选C.各差关系与等比关系组合.依次相减,得2,4,8,16( ),可推知下一个为32,32 +43 选D.此题看似比较庞杂,是等差与等比组合数列.假如拆离开来可以看出,6=2X3.15=3x5.35=7X5.77=11X7,正好是质数 2 .3,5,7.11数列的后项乘以前项的成果,得出下一个应为13X11=143 2,8,24,64,( 160 ) A.160 B.512C.124D.164 选A.此题较庞杂,幂数列与等差数列组合1次方方,24=3*X2,64=4X2,下一个则为5X2 =160 0,6,24,60,120,( 210 ) A.186 B.210 C.220 D.226 选B.和差与立方关系组合.0=1的3次方-1,6=2的3次方-2,24=3的3次方-3,60=4的3次方-4,120=5的3次方-5.空中应是6的3次方-6=210 1,4,8,14,24,42,(76 ) A.76B .66C.64D.68 选 A.两个等差与一个等比数列组合依次相减,原数列后项减前项得3,4,6,10,18,( 34 ),得到新数列后,再相减,得1,2,4,8,16,( 32 ),此为等比数列,下一个为32,倒推到3,4,6,8,10,34,再倒推至1,4,8,14,24,42,76,可知选A.9..其他数列.2,6,12,20,( 30 ) A.40B.32C.30D.28选C.2=1*2,6=2*3,12=3*4,20=4*5,下一个为5*6=30 1,1,2,6,24,( 120 ) A.48B.96 C.120 D.144 选C.后项=前项X递增数列.1=1*1,2=1*2,6=2*3,24=6*4,下一个为120=24*51,4,8,13,16,20,( 25 ) A.20B.25C.27D.28 选 B.每4项为一反复,后期减前项依次相减得3,4,5.下个反复也为3,4,5,推知得25. 27,16,5,( 0 ),1/7 A.16B.1C.0D.2 选B.依次为3的3次方,4的2次方,5的1次方,6的0次方,7的-1次方.四.解题办法数字推理题难度较大,但并不是无纪律可循,懂得和控制必定的办法和技能对解答数字推理问题大有帮忙.1.快速扫描已给出的几个数字,细心不雅察和剖析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并敏捷将这种假设延长到下面的数,假如能得到验证,即解释找出纪律,问题即水到渠成;假如假设被否认,立刻转变思虑角度,提出别的一种假设,直到找出纪律为止.2.推导纪律时往往须要简略盘算,为节俭时光,要尽量多用默算,罕用笔算或不必笔算.3.空白项在最后的,从前去后推导纪律;空白项在最前面的,则从后往前查找纪律;空白项在中央的可以双方同时推导.(一)等差数列相邻数之间的差值相等,全部数字序列依次递增或递减.等差数列是数字推理磨练中分列数字的罕有纪律之一.它还包含了几种最根本.最罕有的数字分列方法:天然数数列:1,2,3,4,5,6……偶数数列:2,4,6,8,10,12……奇数数列:1,3,5,7,9,11,13……例题1 :103,81,59,( 37 ),15. A.68B.42 C.37 D.39解析:答案为C.这显然是一个等差数列,前后项的差为22. 例题2:2,5,8,( 11 ). A.10 B.11 C.12 D.13 解析:从题中的前3个数字可以看出这是一个典范的等差数列,即后面的数字与前面数字之间的差等于一个常数.题中第二个数字为5,第一个数字为2,两者的差为3,由不雅察得知第三个.第二个数字也知足此纪律,那么在此基本上对未知的一项进行推理,即8 +3=11,第四项应当是11,即答案为 B. 例题3:123,456,789,( 1122 ).A.1122B.101112C.11112D.100112 解析:答案为A.这题的第一项为123,第二项为456,第三项为789,三项中相邻两项的差都是333,所所以一个等差数列,未知项应当是789 +333=1122.留意,解答数字推理题时,应着眼于探寻数列中各数字间的内涵纪律,而不克不及从数字概况上去找纪律,比方本题从123,456,789这一分列,便选择101112,确定不合错误.例题4:11,17,23,( 29 ),35. A.25 B.27 C.29 D.31 解析:答案为 C.这同样是一个等差数列,前项与后项相差 6. 例题5:12,15,18,( 21 ),24,27. A.20 B.21 C.22 D.23 解析:答案为 B.这是一个典范的等差数列,题中相邻两数之差均为3,未知项即18+ 3=21,或24-3=21,由此可知第四项应当是21.(二)等比数列相邻数之间的比值相等,全部数字序列依次递增或递减.等比数列在数字推理磨练中,也是分列数字的罕有纪律之一. 例题1: 2,1,1/2,( B ). A.0 B.1/4 C.1/8 D.-1 解析:从题中的前3个数字可以看出这是一个典范的等比数列,即后面的数字与前面数字之间的比值等于一个常数.题中第二个数字为1,第一个数字为2,两者的比值为1/2,由不雅察得知第三个.第二个数字也知足此纪律,那么在此基本上对未知的一项进行推理,即(1/2)/2,第四项应当是1/4,即答案为 B.例题2:2,8,32,128,( 512 ). A.256B.342 C.512 D.1024解析:答案为 C.这是一个等比数列,后一项与前一项的比值为 4. 例题3:2,-4,8,-16,( 32 ). A.32 B.64 C.-32D.-64 解析:答案为 A.这仍然是一个等比数列,前后项的比值为-2.(三)平方数列 1.完整平方数列:正序:1,4,9,16,25 逆序:100,81,64,49,36 2.一个数的平方是第二个数. 1)直接得出:2,4,16,( 256 ) 解析:前一个数的平方等于第二个数,答案为256. 2)一个数的平方加减一个数等于第二个数:1,2,5,26,(677) 前一个数的平方加1等于第二个数,答案为677.3.隐含完整平方数列:1)经由过程加减一个常数归成完整平方数列:0,3,8,15,24,( 35 )前一个数加1分离得到1,4,9,16,25,分离为1,2,3,4,5的平方,答案35 2)相隔加减,得到一个平方数列:例:65,35,17,( 3 ),1 A.15 B.13 C.9 D.3 解析:不难感到到隐含一个平方数列.进一步思虑发明纪律是:65等于8的平方加1,35等于6的平方减1,17等于4的平方加1,再不雅察时发明:奇地位数时都是加1,偶地位数时都是减1,所以下一个数应当是2的平方减1等于3,答案是 D. 例:1,4,16,49,121,( 169解析:从数字中可以看出1的平方,2的平方,4的平方,7的平方,11的平方,正好是1,2,4,7,11.....,可以看出后项减前项正好是1,2,3,4,5,.......,从中可以看出应为11+5=16,16的平方是256,所以选A. 例:2,3,10,15,26,( 35 ).(2005年考题) A.29 B.32 C.35 D.37 解析:看数列为2=1的平方+1,3=2的平方减1,10=3的平方加1,15=4的平方减1,26=5的平方加1,再不雅察时发明:地位不偶时都是加1,地位数偶时都是减1,因而下一个数应当是6的平方减1=35,前n案是 C.35.(四)立方数列立方数列与平方数列相似. 例题1: 1,8,27,64,( 125 ) 解析:数列中前四项为1,2,3,4的立方,显然答案为5的立方,为125.例题2:0,7,26,63 ,( 124 ) 解析:前四项分离为1,2,3,4的立方减1,答案为5的立方减1,为124.例3:-2,-8,0,64,( ).(2006年考题) A.64 B.128 C.156 D250 解析:从数列中可以看出,-2,-8,0,64都是某一个数的立方关系,-2=(1-3)×(2-3)(3-3)(4-3)前n是以最后一项因该为(5-250 选D 例4:0,9,26,65,124,( 239 )(2007年考题) 解析:前五项分离为1,2,3,4,5的立方加1或者减1,纪律为地位数是偶数的加1,则奇数减1.即:前n项答案为239. 在近几年的测验中,也消失了n次幂的情势例5:1,32,81,64,25,( 6 ),1.(2006年考题) A.5 B.6 C.10 D.12解析:逐项拆解轻易发明则答案已经很显著了,6的1次幂,即6 选B.(五).加法数列数列中前两个数的和等于后面第三个数:n1+n2=n3例题1: 1,1,2,3,5,( 8 ).A8 B7 C9 D10 解析:第一项与第二项之和等于第三项,第二项与第三项之和等于第四项,第三项与第四项之和等于第五项,按此纪律 3 +5=8答案为 A. 例题2: 4,5,( 9 ),14,23,37 A 6 B 7 C 8 D 9 解析:与例一雷同答案为 D 例题3: 22,35,56,90,( 145 ) 99年考题 A 162 B 156 C 148 D 145 解析:22 +35-1=56, 35+ 56-1=90 ,56+ 90-1=145,答案为D (六).减法数列前两个数的差等于后面第三个数:n1-n2=n3 例题1:6,3,3,( 0 ),3,-3A 0B 1 C 2 D 3 解析:6-3=3,3-3=0 ,3-0=3 ,0-3=-3答案是A.(提示您别忘了:“空白项在中央,从双方找纪律”)(七).乘法数列 1.前两个数的乘积等于第三个数例题1:1,2,2,4,8,32,( 256 ) 前两个数的乘积等于第三个数,答案是256. 例题2:2,12,36,80,() (2007年考题) A.100 B.125 C.150 D.175 解析:2×1, 3×4 ,4×9,5×16 天然下一项应当为6×25=150 选C,此题还可以变形为:..,以此类推, 2.两数相乘的积呈现纪律:等差,等比,平方等数列. 例题2:3/2, 2/3, 3/4,1/3,3/8 ( A ) (99年海关考题)A 1/6 B 2/9 C 4/3 D 4/9 解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/8 3/8×?=1/16 答案是 A.(八).除法数列与乘法数列相相似,一般也分为如下两种情势: 1.两数相除等于第三数. 2.两数相除的商呈现纪律:次序,等差,等比,平方等.(九).质数数列由质数从小到大的分列:2,3,5,7,11,13,17,19…(十).轮回数列几个数按必定的次序轮回消失的数列.例:3,4,5,3,4,5,3,4,5,3,4 以上数列只是一些经常应用的根本数列,考题中的数列是在以上数列基本之上结构而成的,下面我们重要剖析以下近几年考题中经常消失的几种数列情势.1.二级数列这里所谓的二级数列是指数列中前后两个数的和.差.积或商构成一个我们熟习的某种数列情势.例1:2 6 12 20 30 ( 42 )(2002年考题) A.38B.42 C.48 D.56 解析:后一个数与前个数的差分离为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应当是12,所以答案应当是B.例2:20 22 25 30 37 ( ) (2002年考题) A.39 B.45 C.48 D.51 解析:后一个数与前一个数的差分离为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应当是11,所以答案应当是C. 例3:2 5 11 20 32 ( 47 ) (2002年考题) A.43 B.45 C.47 D.49 解析:后一个数与前一个数的差分离为:3,6,9,12这显然是一个等差数列,因而要选的答案与32的差应当是15,所以答案应当是C.例4:4 5 7 1l 19 ( 35 ) (2002年考题) A.27 B.31 C.35 D.41 解析:后一个数与前一个数的差分离为:1,2,4,8这是一个等比数列,因而要选的答案与19的差应当是16,所以答案应当是 C.例5:3 4 7 16 ( 43 ) (2002年考题)A.23B.27C.39D.43 解析:后一个数与前一个数的差分离为:1,3,9这显然也是一个等比数列,因而要选的答案与16的差应当是27,所以答案应当是 D.例6:32 27 23 20 18( 17 ) (2002年考题) A.14 B.15 C.16 D.17 解析:后一个数与前一个数的差分离为:-5,-4,-3,-2这显然是一个等差数列,因而要选的答案与18的差应当是-1,所以答案应当是D. 例7:1, 4, 8, 13, 16, 20, ( 25 ) (2003年考题) A.20 B.25 C.27 D.28 解析:后一个数与前一个数的差分离为:3,4,5,3,4这是一个轮回数列,因而要选的答案与20的差应当是5,所以答案应当是 B.例8:1, 3, 7, 15, 31, ( 63 ) (2003年考题) A.61B.62 C.63 D.64 解析:后一个数与前一个数的差分离为:2,4,8,16这显然是一个等比数列,因而要选的答案与31的差应当是32,所以答案应当是 C.例9:( 69 ),36,19,10,5,2(2003年考题) A.77 B.69 C.54 D.48 解析:前一个数与后一个数的差分离为:3,5,9,17这个数列中前一个数的2倍减1得后一个数,后面的数应当是17*2-1=33,因而33+36=69答案应当是 B. 例10:1,2,6,15,31,( 56 ) (2003年考题) A.53 B.56 C.62 D.87 解析:后一个数与前一个数的差分离为:1,4,9,16这显然是一个完整平方数列,因而要选的答案与31的差应当是25,所以答案应当是 B. 例11:1,3,18,216,( 5184 ) A.1023 B.1892 C.243 D.5184解析:后一个数与前一个数的比值分离为:3,6,12这显然是一个等比数列,因而要选的答案与216的比值应当是24,所以答案应当是D:216*24=5184. 例12: -2 1 7 16 ( 28 )43 A.25 B.28 C.3l D.35 解析:后一个数与前一个数的差值分离为:3,6,9这显然是一个等差数列,因而要选的答案与16的差值应当是12,所以答案应当是 B. 例13:13 6 10 15 ( ) A.20 B.21 C.30 D.25 解析:相邻两个数的和构成一个完整平方数列,即:1+3=4=2的平方,6+10=16=4的平方,则15+?=36=6的平方呢,答案应当是 B. 例14:102,96,108,84,132,( 36 ) ,(228)(2006年考)解析:后项减前项分离得-6,12,-24,48,是一个等比数列,则48后面的数应为-96,132-96=36,再看-96后面应是96X2=192,192+36=228.。
初中数学数字找规律题技巧汇总.
初中数学数字找规律题技巧汇总.-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n 位的总增幅。
然后再简化代数式a1+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。
第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
初中数学规律题总结
初中数学规律题解题基本方法(一)数列的找规律初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、新课引入小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
2、合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒、★注意引导学生概括“探索规律”的一般步骤:①寻找数量关系;②用代数式表示规律③验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面五棱柱呢十棱柱呢n棱柱呢活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法)问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人3张呢n张呢⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
&⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系⑵这个关系对其它这样的方框成立吗你能用代数式表示这个关系吗⑶这个关系对任何一个月的日历都成立吗为什么…⑷你还能发现这样的方框中9个数之间的其他关系吗用代数式表示。
⑸你还能提出那些问题中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是。
?3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5{… 输出 …21 52 103 174 265(…那么,当输入数据是8时,输出的数据是( )A 、618B 、638C 、658D 、6784、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。
6、如下图是用棋子摆成的“上”字::第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上” 字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.(1)(2)(3)第4题8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有个点,第n 个图形中有个点。
)9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”。
10、观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n个点阵相对应的等式_____________________。
11、用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是_______________cm(用含n 的代数式表示)。
】12、如图,都是由边长为1的正方体叠成的图形。
例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律。
则第(5)个图形的表面积个平方单位。
…………①1=12;②1+3=22;#④;⑤;第1次第2次第3次第4次······第7题图⑴ ⑵ ⑶(1) (2) (3)(4)~13、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( ) A 25 B 66 C 91 D 120(14、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,…… 按这样的规律叠放下去,第8个图中小立方体个数是 .15、图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:[(1)(2)(3)图1 图2 图314题(1)按照要求填表:(2)写出当n=10时,s=.16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即10n)时,需要的火柴棒总数为根;-17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n个三角形需要S支火柴棒,那么用n的式子表示S的式子是_______ (n为正整数).18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n个图形中需用黑色瓷砖____ 块.(用含n的代数式表示)19、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为20块时,白色瓷砖为块;当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为块.|17题图20、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:共有1 个小立方体,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个图中,看不见的小立方体有个。
21、下面的图形是由边长为l的正方形按照某种规律排列而组成的.—(1)观察图形,填写下表:图形①②③正方形的个数8,图形的周长18A B C D(2)推测第n 个图形中,正方形的个数为________,周长为______________(都用含n 的代数式表示). 22、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
【23、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求....的是( )24、如下图中的四个正方形的边长均相等,其中阴影部分面积最大的图形是( )!25、如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是( ) A. <1>和<2> B. <2>和<3> C. <2>和<4> D. <1>和<4>26、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;第3次把第2次铺的完全围起来,如图3;…依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块块数为 . (n 为正整数)A D |C B?27、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:、⑴第4个图案中有白色地面砖块;⑵第n个图案中有白色地面砖块。
28、分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.初中数学规律题集锦一、棋牌游戏问题1.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是( )A.第一张B.第二张C.第三张D.第四张¥2.小明背对小亮,让小亮按下列四个步骤操作:第一步 分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步 从左边一堆拿出两张,放入中间一堆; 第三步 从右边一堆拿出一张,放入中间一堆;第四步 左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是 .3.如图(3)所示的象棋盘上,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( ) ;A .(-1,1)B .(-1,2)C .(-2,1)D .(-2,2) 4.图(4)是跳棋盘,其中格点上的黑色点为棋子, 剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为已方一枚棋子,欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步 二、空间想象问题3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图(7),是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的5. 图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。
如此继续作下去,则在得到的第6个图形中,白色的正三角形的个数是……..图3相帅炮程 前 你 #似 锦 图(7)图(1) 图(2) —7.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1、A2B2C2D2、A3B3C3D3……每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有个.]。
11.一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图1中该正方体A、B、C三种状态所显示的数字,可推出“”处的数字是.13. 将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线).续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕.如果对折n次,可以得到条折痕.15.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.26n+B.86n+C.44n+D.8n17.柜台上放着一堆罐头,它们摆放的形状见右图:@第一层有23⨯听罐头,第二层有34⨯听罐头,第三层有45⨯听罐头,……根据这堆罐头排列的规律,第n(n为正整数)层有听罐头(用含n的式子表示).18. 按如下规律摆放三角形:则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________.……~②③第16题图第17题图n=1 n=2n=3……第3个第2个第1个}20. 如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 .21. 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。