初三数学期末抽测试卷及答案
初三数学期末试题及答案
![初三数学期末试题及答案](https://img.taocdn.com/s3/m/ea86dca02dc58bd63186bceb19e8b8f67d1cef04.png)
初三数学期末试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 22/7D. 3.14答案:B2. 一个等腰三角形的两边长分别为4和6,那么它的周长是多少?A. 14B. 16C. 18D. 20答案:C3. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 5x + 6 = 0C. x^2 - 3x + 2 = 0D. x^2 - 2x + 1 = 0答案:A4. 函数y=2x+3的图象与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)答案:B5. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C7. 一个角的补角是120°,那么这个角的度数是?A. 60°B. 120°C. 180°D. 240°答案:A8. 下列哪个图形是中心对称图形?A. 矩形B. 平行四边形C. 等边三角形D. 等腰梯形答案:B9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 一个二次函数y=ax^2+bx+c的顶点坐标是(1, -2),那么a的值是?A. -1B. 1C. 2D. -2答案:B二、填空题(每题4分,共20分)11. 如果一个数的平方是25,那么这个数是_________。
答案:±512. 一个直角三角形的两个锐角的度数之和是_________。
答案:90°13. 函数y=-3x+5与y轴的交点坐标是_________。
答案:(0, 5)14. 一个等差数列的首项是2,公差是3,那么第5项是_________。
答案:1715. 一个扇形的圆心角是60°,半径是4cm,那么它的面积是_________。
2024年最新人教版初三数学(下册)期末试卷及答案(各版本)
![2024年最新人教版初三数学(下册)期末试卷及答案(各版本)](https://img.taocdn.com/s3/m/a8cfd71100f69e3143323968011ca300a7c3f679.png)
2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。
7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。
8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。
9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。
10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。
三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。
12. 已知函数y = 2x 3,求当x = 1时,函数的值。
13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。
四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。
五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。
2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)
![2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)](https://img.taocdn.com/s3/m/82af5ff0a48da0116c175f0e7cd184254b351bfa.png)
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
2024年最新人教版初三数学(上册)期末考卷及答案(各版本)
![2024年最新人教版初三数学(上册)期末考卷及答案(各版本)](https://img.taocdn.com/s3/m/d9f17e5611661ed9ad51f01dc281e53a5902516e.png)
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)
![2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)](https://img.taocdn.com/s3/m/ab58b495c67da26925c52cc58bd63186bceb929b.png)
北师大版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A -12+⎝ ⎛⎭⎪⎫cos B -122=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 2.抛物线y =x 2-3x +2的对称轴是直线( ) A.x =-3 B.x =3 C.x =-32 D.x =323.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线对应的函数表达式为( )A.y =-2(x +1)2+2 B.y =-2(x +1)2-2 C.y =-2(x -1)2+2 D.y =-2(x -1)2-2 4.2cos 45°的值等于( ) A.1 B. 2 C. 3 D.25.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦, ∠ABD =58°,则∠BCD 等于( )A.116°B.32°C.58°D.64°6.如图是某水库大坝横断面示意图,其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A.25 3 mB.25 mC.25 2 mD.5033m7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误..的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-52C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大8.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接C D.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3C.π- 3D.2π3- 39.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG 在AB 上,若BG =2-1,则△ABC 的周长为( )A.4+2 2B.6C.2+2 2D.410.如图,一艘渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20 n mile ,渔船将险情报告给位于A 处的救援船后,沿北偏西80°的方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.10 3 n mile/hB.30 n mile/hC.20 3 n mile/hD.30 3 n mile/h 二、填空题(每题3分,共30分)11.二次函数y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是____________.12.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________.13.抛物线y =2x 2+6x +c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是____________.14.如图,扇形AOB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =________.15.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC =________.16.已知⊙O 的半径为1,点P 与点O 之间的距离为d ,且关于x 的方程x 2-2x +d =0没有实数根,则点P 在__________(填“圆内”“圆上”或“圆外”).17.一个小球在空中的高度h(m )与时间t(s)满足关系式:h =20t -5t 2,那么这个小球所能达到的最大高度为________m .18.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,则CM+DM 的最小值是__________.(19.如图,某公园入口处有三级台阶,每级台阶高为18 cm ,深为30 cm ,为了方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是________cm.20.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x的图象经过正方形AOBC对角线的交点,半径为(4-22)的圆内切于△ABC ,则k 的值为________.三、解答题(21题6分,22~24题每题8分,其余每题10分,共60分) 21.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.22.如图,已知二次函数y =a (x -h)2+3的图象经过O (0,0),A (2,0)两点. (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点.23.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E . (1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.24.如图,在小山的东侧A 庄,有一热气球,由于受西风的影响,以35 m/min 的速度沿着与水平方向成75°角的方向飞行,40 min 时到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30°.又在A 庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高(结果保留根号).25.如图,以△ABC的边BC上一点O为圆心的圆经过A,C两点且与BC边交于点E.点D为下半圆弧的中点,连接AD交线段EO于点F,且AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sin B.26.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.27.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M (1,3)和N (3,5).(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (-2,0),且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.答案一、1.D 2.D 3.C 4.B 5.B 6.A 7.D 8.A9.A 点拨:连接OD ,OE ,易证得四边形ODCE 是正方形,△OEB 是等腰直角三角形,设OE=r ,由OB =2OE =2r ,可得方程:2-1+r =2r ,解此方程,即可求得r ,则△ABC 的周长为4+2 2.10.D 点拨:∵∠CAB =10°+20°=30°,∠CBA =80°-20°=60°,∴∠C =90°.∵AB =20 n mile ,∴AC =AB ·cos 30°=10 3 n mile.∴救援船航行的速度为103÷2060=303(n mile/h).二、11.-3<x <1 12.16513.⎝ ⎛⎭⎪⎫-32,-25214.119° 点拨:在扇形AOB 所在圆的优弧AB 上取一点D ,连接DA ,DB .∵∠AOB =122°,∴∠D =61°. ∵∠ACB +∠D =180°, ∴∠ACB =119°.15.4516.圆外 17.20 18.8 cm 19.210 点拨:过点B 作BD ⊥AC 于点D ,则AD =2×30=60(cm),BD =18×3=54(cm).由斜坡BC 的坡度i =1∶5,得CD =5BD =5×54=270(cm).∴AC =CD -AD =270-60=210(cm).20.4 点拨:设正方形OACB 的边长为a ,则AB =2a .根据直角三角形内切圆半径公式得a +a -2a2=4-22,故a =4.所以对角线交点坐标为(2,2),故k =xy =4.三、21.解:原式=2×12-3×1×22+4×12=1-322+2=3-322.22.解:(1)∵二次函数y =a (x -h )2+3的图象经过O (0,0),A (2,0)两点,∴抛物线的对称轴为直线x =1. (2)点A ′是该函数图象的顶点.理由:如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠AOA ′=60°.又∵A ′B ⊥x 轴,∴OB =12OA ′=1,A ′B =3OB = 3.∴A ′点的坐标为(1,3).∴点A ′是函数y =a (x -1)2+3图象的顶点. 23.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°.∴∠AOD =180°-∠OAD -∠D =40°. ∵AB 是半圆O 的直径,∴∠C =90°. ∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC . ∴AD ︵=CD ︵. ∴∠CAD =12∠AOD =20°.(2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4.设OA =x ,则OE =OD -DE =x -2. 在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5. ∴AB =2OA =10. 24.解:过点A 作AD ⊥BC ,垂足为D .在Rt △ADC 中,∠ACD =75°-30°=45°,AC =35×40=1 400(m). ∴AD =AC ·sin 45°=1 400×22=7002(m). 在Rt △ABD 中,∠B =30°, ∴AB =2AD =1 400 2 m. 过点P 作PE ⊥AB ,垂足为E , 则AE =PE ,BE =PEtan 30°=3PE .∴(3+1)PE =1 400 2. 解得PE =700(6-2)m.答:A 庄与B 庄的距离是1 400 2 m ,山高是700(6-2)m. 25.(1)证明:如图,连接AO ,DO .∵D 为下半圆弧的中点,∴∠EOD =90°. ∵AB =BF ,OA =OD ,∴∠BAF =∠BFA =∠OFD ,∠OAD =∠ADO .∴∠BAF +∠OAD =∠OFD +∠ADO =90°,即∠BAO =90°. ∴OA ⊥AB . ∴AB 是⊙O 的切线.(2)解:在Rt △OFD 中,OF =CF -OC =4-r ,OD =r ,DF =10.∵OF 2+OD 2=DF 2,∴(4-r )2+r 2=(10)2. ∴r 1=3,r 2=1(舍去).∴半径r =3.∴OA =3,OF =CF -OC =4-3=1,BO =BF +FO =AB +1. 在Rt △ABO 中,AB 2+AO 2=BO 2,∴AB 2+32=(AB +1)2.∴AB =4.∴BO =5. ∴sin B =AO BO =35.26.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (x >m )=⎩⎪⎨⎪⎧120x (0<x ≤30),-x 2+150x (30<x ≤m ),(150-m )x (x >m ). (2)由(1)可知,当0<x ≤30或x >m 时,y 都随着x 的增大而增大.当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5 625, ∵-1<0,∴当x ≤75时,y 随着x 的增大而增大.∴为了让收取的总费用随着团队中人数的增加而增加,m 的取值范围为30<m ≤75. 27.解:(1)把M ,N 两点的坐标代入抛物线对应的函数表达式,可得:⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5,解得⎩⎪⎨⎪⎧a =1,b =-3. ∴抛物线对应的函数表达式为y =x 2-3x +5. 令y =0,可得x 2-3x +5=0.∵Δ=(-3)2-4×1×5=9-20=-11<0, ∴该抛物线与x 轴没有交点.(2)∵△AOB 是等腰直角三角形,点A (-2,0),点B 在y 轴上,∴点B 的坐标为(0,2)或(0,-2).可设平移后的抛物线对应的函数表达式为y =x 2+mx +n .①当抛物线过A (-2,0),B (0,2)时,代入可得⎩⎪⎨⎪⎧n =2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =3,n =2.∴平移后的抛物线对应的函数表达式为y =x 2+3x +2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-32,-14,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度,即可获得符合条件的抛物线.②当抛物线过A (-2,0),B (0,-2)时,代入可得⎩⎪⎨⎪⎧n =-2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =1,n =-2. ∴平移后的抛物线对应的函数表达式为y =x 2+x -2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-12,-94,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度,即可获得符合条件的抛物线.北师大版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题。
2024年全新初三数学上册期末试卷及答案(人教版)
![2024年全新初三数学上册期末试卷及答案(人教版)](https://img.taocdn.com/s3/m/6548f0f1dc3383c4bb4cf7ec4afe04a1b071b0db.png)
2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。
7. 下列选项中,哪个不是等腰三角形的性质?________。
8. 若一个正方形的边长为5cm,则其对角线的长度为________。
9. 下列哪个选项是二次函数的一般形式?________。
10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。
答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。
解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。
根据题目,首项a1 = 2,公差d = 5 2 = 3。
所以,该数列的通项公式为an = 2 + (n 1)×3。
12. 一个正方形的边长为5cm,求其对角线的长度。
解答:正方形的对角线长度可以通过勾股定理来求解。
设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。
2024年全新九年级数学上册期末试卷及答案(人教版)
![2024年全新九年级数学上册期末试卷及答案(人教版)](https://img.taocdn.com/s3/m/4017722cf342336c1eb91a37f111f18583d00ccf.png)
2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。
2. 一个正方形的边长是8厘米,它的面积是______平方厘米。
3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。
4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。
5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。
6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。
7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。
8. 一个正方形的边长是7厘米,它的周长是______厘米。
9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。
10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。
2024年人教版初三数学下册期末考试卷(附答案)
![2024年人教版初三数学下册期末考试卷(附答案)](https://img.taocdn.com/s3/m/213941ca6aec0975f46527d3240c844769eaa08a.png)
2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。
A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。
A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。
A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。
A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。
A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。
()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。
()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。
()4. 两个平行线上的任意一点,到这两条平行线的距离相等。
()5. 一个数的立方根和它的平方根是同一个数。
()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。
()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。
()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。
()4. 下列函数中,是一次函数的是y = 3x + 2。
()5. 一个数的立方根和它的平方根是同一个数。
()四、简答题(每题2分,共10分)1. 简述一次函数的定义。
2. 简述相似三角形的性质。
3. 简述等差数列的定义。
4. 简述平行线的性质。
5. 简述立方根和平方根的区别。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
2023年青岛版初中数学九年级(下)期末综合测试卷及部分答案(共四套)
![2023年青岛版初中数学九年级(下)期末综合测试卷及部分答案(共四套)](https://img.taocdn.com/s3/m/086dfa4e26d3240c844769eae009581b6bd9bd12.png)
青岛版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题1.下列标志图中,既是轴对称图形,又是中心对称图形的是( ).A .B .C .D .2. )A B . C .D .53.新型冠状病毒“CCCCC −19”的平均半径约为50纳米(1纳米=10−9米),这一数据用科学记数法表示,正确的是( )A. 50×10−9米B. 5.0×10−9米C. 5.0×10−8米D. 0.5×10−7米 4.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125° 6.如图,将ABC 先向上平移1个单位,再绕点P 按逆时针方向旋转90︒,得到'A B C '',则点A 的对应点'A 的坐标是( )A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4) 7.如图,矩形ABCD 中,AB =12,点E 是AD 上的一点,AE =6,BE 的垂直平分线交BC 的延长线于点F ,连接EF 交CD 于点G ,若G 是CD 的中点,则BC 的长是( )A .12.5B .12C .10D .10.58.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( ) A . B .C .D .二、填空题9)0132cos 60-+---︒=_________. 10.一组数据6,4,x ,3,2的平均数是5,则这组数据的方差为_________.11.如图,C 为半圆内一点,O 为圆心,直径AB 长为4cm ,∠BOC =60°,∠BCO =90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.12.如图,在平面直角坐标系中,点A (-3,1),以点O 为顶点作等腰直角三角形AOB ,双曲线11k y x=在第一象限内的图象经过点B .设直线AB 的表达式为22y k x b =+,当y 1>y 2时,x 的取值范围是_________.13.如图,在矩形ABCD 中,AB=4,点E ,F 分别在BC ,CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的点B′处,又将△CEF 沿EF 折叠,使点C 落在直线EB′与AD 的交点C′处,DF=_______.14.如图,若△ABC 内一点P 满足∠PAC =∠PCB =∠PBA ,则称点P 为△ABC 的布罗卡尔点,已知△ABC 中,CA =CB ,∠ACB =120°,P 为△ABC的布罗卡尔点,若PA =,则PB+PC=_____.三、解答题15.如图,有一块三角形材料(△ABC ),请你在这块材料上作一个面积最大的圆.16.(1)化简:221631()3969a a a a a +-+÷+--+ (2)解不等式组:2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩17.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成两幅不完整的统计图如图所示,请根据图中提供的信息,解答下列问题:(1)这次共抽取______名学生进行调查;并补全条形图;(2)扇形统计图中“步行”所在扇形的圆心角为______.(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?18.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小丽和小红做摸球游戏,约定游戏规则是:小丽先从袋中任意摸出1个球记下颜色后放回,小红再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小丽赢,否则小红赢.这个游戏规则对双方公平吗?请说明理由.19.某幼儿园准备改善原有滑梯的安全性能,把倾斜角由原来的40°减为35°,已知原滑梯AB的长为5米,为了改造后新滑梯的安全,滑梯前方必须有2米的空地,请问距离原来滑梯B处3米的大树对滑梯的改造有影响吗?(sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,Sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.为了加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机,经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元(2)该市明年计划采购A型、B型一体机1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?21.已知:在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC 交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.22.即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OMNE 为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O 点为原点,OM 所在的直线为x 轴,OE 所在的直线为y 轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD ,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB ,AD ,CD 为三根承重钢支架,A 、D 在抛物线上,B ,C 在地面上,已知钢支架每米50元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?23.小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt △ABC 中,如果∠C =90°,∠A =30°,BC =a =1,AC =b AB =c =2,那么2sin sin a b A B==.通过上网查阅资料,他又知“sin 90°=1”,因此他得到“在含30°角的直角三角形中,存在着sin sin sin a b c A B C==的关系”.这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt △ABC 中,∠C =90°,BC =a ,AC =b ,AB =c ,请判断此时“sin sin sin a b c A B C==”的关系是否成立? 答:______________.(2)完成上述探究后,他又想“对于任意的锐角△ABC ,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC 中,BC =a ,AC =b ,AB =c ,过点C 作CD ⊥AB 于D ,设CD =h , ∵在Rt △ADC 和Rt △BDC 中,∠ADC =∠BDC =90°,∴sinA =______________,sinB =______________. ∴sin a A =_____________,sin b B=____________. ∴sin sin a b A B= 同理,过点A 作AH ⊥BC 于H ,可证sin sin b c B C = ∴sin sin sin a b c A B C== 请将上面的过程补充完整.(3)运用上面结论解答下列问题:①如图4,在△ABC 中,如果∠A =75°,∠B =60°,AB =6,求AC 的长.②在△ABC 中,如果∠B =30°,AB =,AC =2,那么△ABC 内切圆的半径为______. 24.已知,如图,在△ABC 中,AB=AC =10cm ,BC =12cm ,AD ⊥BC 于点D ,直线PM 交BC 于点P ,交AC 于点M ,直线PM 从点C 出发沿CB 方向匀速运动,速度为1cm/s ;运动过程中始终保持PM ⊥BC ,过点P 作PQ ⊥AB ,交AB 于点Q ,交AD 于点N ,连接QM ,设运动时间是t (s)(0<t <6),解答下列问题:(1)当t 为何值时,QM //BC ?(2)设四边形ANPM 的面积为y (cm 2),试求出y 与t 的函数关系式;(3)是否存在某一时刻t ,使四边形ANPM 的面积是△ABC 面积的13?若存在,求出t 的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点M在线段PQ的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.参考答案1.D【分析】根据轴对称和中心对称图形的性质,对各个选项逐个分析,即可得到答案.解:选项A 是中心对称图形,不是轴对称图形,故不正确;选项B 不是中心对称图形,是轴对称图形,故不正确;选项C 既不是轴对称图形,也不是中心对称图形,故不正确;选项D 既是轴对称图形,又是中心对称图形,故正确;故选:D .【点评】本题考查了轴对称和中心对称图形的知识;解题的关键是熟练掌握轴对称和中心对称图形的性质,从而完成求解.2.A【分析】根据绝对值的定义即可解答.解:||=.故选:A .【点评】本题考查了绝对值的定义,负数的绝对值等于它的相反数是解题的关键.3.略4.D【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可. 解:A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意; B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点评】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.5.B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA ,OB ,求得∠AOB =110°,再根据切线的性质以及四边形的内角和定理即可求解.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°−90°−90°−110°=70°.故选B.【点评】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.6.D【分析】根据平移的规律找到A点平移后对应点,然后根据旋转的规律找到旋转后对应点'A,即可得出'A的坐标.解:如图所示:A的坐标为(4,2),向上平移1个单位后为(4,3),再绕点P逆时针旋转90°后对应'A点的坐标为(-1,4).故选:D.【点评】本题考查了根据平移变换和旋转变换作图,熟练掌握平移的规律和旋转的规律是解7.D【分析】利用“ASA ”易证△EDG ≌△FCG ,从而求得DE =CF ,12EG GF EF ==,根据矩形的性质,设BC =x ,则DE =x -6,DG =6,BF =2x -6,根据垂直平分线的性质求得11322EG EF BF x ===-,最后在Rt EDG 中根据勾股定理列方程求出x 即可.解:在矩形ABCD 中,AD =BC ,AB =CD =12,∠D =∠DCF =90°,∵G 为CD 中点,∴DG =CG .又∵∠EGD =∠FGC ,∴()EDG FCG ASA ≌,∴DE =CF ,12EG GF EF ==. 设BC =x ,则6DE AD AE BC AE x =-=-=-,11622DG CG CD AB ====,26BF BC CF BC DE x =+=+=-.又∵BE 的垂直平分线交BC 的延长线于点F , ∴11322EG EF BF x ===-. ∴在Rt EDG 中,222DE E G G D ,即222(3)(6)6x x -=-+, 解得:x =10.5则BC 的长是10.5.故选D .【点评】本题考查全等三角形的判定和性质,矩形的性质,线段垂直平分线的性质及勾股定理,题目难度不大有一定的综合性,掌握相关性质定理正确列出方程是解题关键. 8.C直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.解:由方程组2y ax bxy bx a⎧=+⎨=-⎩得ax2=−a,∵a≠0∴x2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【点评】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.9【分析】根据分母有理化、零指数幂、负整数指数幂以及特殊角的三角函数值进行计算即可求得答案.)0132cos60----︒=1122--=【点评】本题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键. 10.8【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算即可.解:∵数据6、4、x 、3、2平均数为5,∴(6+4+x +3+2)÷5=5,解得:x =10,∴这组数据的方差是15×[(6-5)2+(4-5)2+(10-5)2+(3-5)2+(2-5)2]=8. 故答案为:8.【点评】本题主要考查了方差,解题的关键是掌握算术平均数和方差的定义.11.π【分析】根据旋转和含60︒角的直角三角形的性质,可求出BOB '∠和BO 、DO 的长度,再结合图形=BOB DOD S S S ''-阴影扇形扇形,即可求出阴影部分面积.解:如图可知=BOB DOD S S S ''-阴影扇形扇形,又已知=60∠︒BOC ,B OC ''△是由BOC 绕圆心O 逆时针旋转得到,∴=60B OC ''∠︒,∴=1801806060=60B OC B OC BOC ''∠︒-∠-∠=︒-︒-︒︒,∴6060120BOB B OC BOC ''∠=∠+∠=︒+︒=︒,又∵4AB cm =, ∴4222AB BO cm ===, ∴2122BO DO cm ===, ∴2212024()3603BOB S cm ππ'︒⨯⨯==︒扇形 ,2212011()3603DOD S cm ππ'︒⨯⨯==︒扇形, 24==()33S cm πππ-阴影.故答案为π.【点评】本题考查旋转和含60︒角的直角三角形的性质以及扇形的面积公式.根据题意结合图形可知=BOB DOD S S S ''-阴影扇形扇形是解题关键.12.0<x <1或x <﹣6【分析】过点A 、B 分别作AE ⊥x 轴于E ,BD ⊥x 轴于D ,易证△AEO ≌△ODB ,可得求点B 坐标,再利用待定系数法求出双曲线和直线的解析式,然后联立方程组求出交点的横坐标,根据图象即可确定x 的取值范围.解:如图,过点A 、B 分别作AE ⊥x 轴于E ,BD ⊥x 轴于D ,则∠AEO =∠ODB =90°, ∵A (﹣3,1)∴AE =1,OE =3,∵△AOB 为等腰直角三角形,∴OA =OB ,∠AOB =90°,∴∠AOE +∠BOD =90°,又∠BOD +∠OBD =90°,∴∠AOE =∠OBD ,∴△AEO ≌△ODB (AAS),∴OD =AE =1,BD =OE =3,∴B (1,3),将B (1,3)坐标代入11k y x =中,得:k 1=1×3=3, ∴13y x=, 将A (﹣3,1)、B (1,3)代入直线的表达式22y k x b =+中,得:22313k b k b -+=⎧⎨+=⎩,解得:21252k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴21522y x =+, 由1231522y x y x ⎧=⎪⎪⎨⎪=+⎪⎩解得:1113x y =⎧⎨=⎩,22612x y =-⎧⎪⎨=-⎪⎩, ∴交点C 坐标为(﹣6,12-), 根据图象可知,当y 1>y 2时,双曲线位于直线的上方,∴x 的取值范围为0<x <1或x <﹣6,故答案为:0<x <1或x <﹣6.【点评】本题考查反比例函数和一次函数的交点问题、待定系数法求函数解析式、解一元二次方程、函数与不等式的关系,解答的关键是求得双曲线和直线的交点坐标,会利用数形结合思想求解不等式的解集.13.43【分析】连接CC ',可以得到CC '是∠EC 'D 的平分线,所以CB '=CD ,又AB '=AB ,所以B '是对角线中点,AC =2AB ,所以∠ACB =30°,即可得出答案.解:连接CC '.∵将△ABE 沿AE 折叠,使点B 落在AC 上的点B '处,又将△CEF 沿EF 折叠,使点C 落在EB '与AD 的交点C '处,∴EC=EC',∴∠1=∠ECC'.∵AD∥BC,∴∠DC'C=∠ECC',∴∠1=∠DC'C.在△CC'B'与△CC'D中,∵''901'''D CB CDC CC C C C∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△CC'B'≌△CC'D,∴CB'=CD,∠ACC'=∠DCC'.又∵AB'=AB,∴AB'=CB',∴B'是对角线AC中点,即AC=2AB=8,∴∠ACB=30°,∴∠BAC=60°,∠ACC'=∠DCC'=30°,∴∠DC'C=∠1=60°,∴∠DC'F=∠FC'C=30°,∴C'F=CF=2DF.∵DF+CF=CD=AB=4,∴DF43=.故答案为:43.【点评】本题考查了矩形的性质、翻折变换的性质和角平分线的判定与性质,解答本题要抓住折叠前后的图形全等的性质,得出CC'是∠EC'D的平分线是解答本题的关键.14.【分析】作CH ⊥AB 于H ,首先证明AB BC ,再证明△PAB ∽△PBC ,可得PA PB AB PB PC BC===即可求出PB 、PC . 解:作CH ⊥AB 于H .∵CA =CB ,CH ⊥AB ,∠ACB =120°,∴AH =BH ,∠ACH =∠BCH =60°,∠CAB =∠CBA =30°,∴AB =2BH =2•BC •cos30°BC ,∵∠PAC =∠PCB =∠PBA ,∴∠PAB =∠PBC ,∴△PAB ∽△PBC ,∴PA PB AB PB PC BC===∴PA∴PB =1,PC∴PB+PC =故答案为. 【点评】本题主要考查相似三角形的判定和性质,等腰三角形的性质,三角函数等,解决本题的关键是要熟练掌握相似三角形的判定和性质,等腰三角形的性质,三角函数.15.作图见解析【分析】分别作∠B 和∠C 的角平分线,它们的交点即为圆心O ,再过O 点作任意一边的垂线,以垂线段长为半径作圆,该圆为三角形的内切圆,即是能在这块材料上作出的面积最大的圆. 解:如图所示,O 为△ABC 的内切圆.尺规作图如下:【点评】此题主要考查的是三角形内切圆的意义及作法, 由于三角形的内心是三角形三个内角平分线的交点,可作△ABC 的任意两角的角平分线,它们的交点即为△ABC 的内切圆的圆心(设圆心为O ),以O 为圆心、O 点到任意一边的距离长为半径作圆,即可得出△ABC 的内切圆,即为能作出的最大圆,解决本题的关键是学生能正确理解三角形的内切圆并掌握其作法.16.(1)63a +;(2)-2<x ≤-1 【分析】(1)按照分式的混合运算顺序进行,先算括号里的加法运算,再算除法运算,最后算减法运算;(2)分别求出每个不等式的解集,再求两个不等式解集的公共部分即得不等式组的解集. 解:(1)2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭236(3)1(3)(3)(3)(3)3a a a a a a a ⎡⎤--=-+⨯⎢⎥+-+-+⎣⎦23(3)1(3)(3)3a a a a a +-=-⨯+-+ 313a a -=-+ 63a =+ ; (2)2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩解第一个不等式得解集:x >-2;解第二个不等式得解集:x ≤-1;故不等式组的解集为:-2<x ≤-1.【点评】本题分别考查了分式的混合运算及解一元一次不等式组,对于分式的混合运算要注意运算顺序不要出错,最后要化成最简分式;对于解一元一次不等式组,在使用不等式的基本性质3时,不等号的方向要改变,切记.17.(1)50;见解析;(2)93.6°;(3)300名【分析】(1)根据频数÷百分比=样本容量求出调查的学生数,根据骑自行车所占的百分比求出骑自行车的人数,补全条形图;(2)用步行人数所占的百分比乘以360°即可得出结论;(3)根据骑自行车上学的学生所占的百分比求出该校骑自行车上学的学生数. 解:(1)1-40%-20%-14%=26%,则m=26%,由统计图可知,乘公交车的学生有20人,占40%,则学生数为:20÷40%=50,骑自行车人数:50×20%=10,条形图如图:(2)360°26%=93.6⨯︒故答案为:93.6°;(3)该校骑自行车上学的学生:1500×20%=300人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.不公平,见解析【分析】先画出树状图,然后求出相应的概率,比较概率是否相等即可做出判断.解:这个游戏不公平,理由为:根据题意,画出树状图如下:一共有9种等可能的结果,其中两人摸到的球的颜色相同的有5种结果,颜色不同的有4种结果,∴P(小丽赢)=59,P(小红赢)=49,∵59≠49,∴这个游戏不公平.【点评】本题考查游戏的公平性、画树状图或列表法求概率,解答的关键是得出相应的概率,概率相等游戏就公平,否则就不公平.19.没有影响,见解析【分析】在Rt ABC 中,利用三角函数求出BC 和AC 长.再在Rt ACD △中,利用三角函数求出CD 长,从而求出BD 长,最后求出D 点到大树的距离和2米作比较即可.解:在Rt ABC 中,40ABC ∠=︒, ∴cos cos 40BC ABC AB ∠=︒=,即0.775BC =;sin sin 40AC ABC AB∠=︒=,即0.645AC =. ∴ 3.85BC =米; 3.2AC =米.在Rt ACD △中,35ADC ∠=︒, ∴tan tan 35AC ADC CD ∠=︒=,即 3.20.7CD=, ∴ 4.57CD ≈米.∴ 4.57 3.850.72BD CD BC =-=-=米.∵30.72 2.282-=>,∴没有影响.【点评】本题考查解直角三角形的实际应用.利用数形结合的思想是解答本题的关键. 20.(1)今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元;(2)该市明年至少需投入1800万元才能完成采购计划.【分析】(1)直接利用今年每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.解:(1)设今年每套A 型一体机的价格为x 万元,每套B 型一体机的价格为y 万元, 由题意可得:0.6500200960y x x y -=⎧⎨+=⎩, 解得: 1.21.8x y =⎧⎨=⎩, 答:今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元;(2)设该市明年购买A 型一体机m 套,则购买B 型一体机(1100m)-套,由题意可得:1.8(1100m) 1.2(125%)m -≥+,解得:m 600≤,设明年需投入W 万元,W 1.2(125%)m 1.8(1100m)=⨯++-0.3m 1980=-+,∵0.30-<,∴W 随m 的增大而减小,∵m 600≤,∴当m 600=时,W 有最小值0.360019801800-⨯+=,故该市明年至少需投入1800万元才能完成采购计划.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用、一次函数的应用,正确找出等量关系是解题关键.21.(1)见解析;(2)当AB =AC 时,四边形ADCF 是正方形,见解析【分析】(1)根据全等三角形的判定解答即可;(2)由全等三角形的性质和菱形的判定四边形ADCF 是菱形,根据正方形的判定解答即可. 解:证明:(1)∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,D 是BC 的中点,∴AE =DE ,BD =CD ,在△AEF 和△DEB 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△DEB (AAS );(2)当AB =AC 时,四边形ADCF 是正方形,理由:由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC , ∴四边形ADCF 是菱形;∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,∴菱形ADCF 是正方形.【点评】此题考查全等三角形的判定,全等三角形的性质以及菱形的判定,正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答.22.(1)()2124042y x x x =-++≤≤;(2)能正常进入;(3)650元 【分析】(1)根据题意可写出E 点,N 点和抛物线顶点坐标.再设该抛物线表达式为2y ax bx c =++,即利用待定系数法可求出该抛物线解析式.(2)令 4.5y =,即求出方程2124 4.52x x -++=的两个根,比较两个根的差的绝对值和3米的大小即可判断.(3)设B 点最标为(t ,0),需要花费W 元,根据题意可知A 点坐标为(t ,21242t t -++),C 点坐标为(4-t ,0),由此即可求出AB 、CD 和AD 的长,即可列出W 和t 的二次函数关系式,最后利用二次函数的顶点式求出其最值即可.解:(1)根据题意可知E (0,4)、N (4,4)、抛物线顶点(2,6).设该抛物线表达式为2y ax bx c =++,∴44164642c a b c a b c =⎧⎪=++⎨⎪=++⎩,解得:1224a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,由图可知自变量x 的取值范围是04x ≤≤. 故该抛物线表达式为2124(04)2y x x x =-++≤≤. (2)对于21242y x x =-++,当 4.5y =时,即2124 4.52x x -++=,解得:12x =22x =-,∵12(2(23x x -=--=>,∴该消防车能正常进入.(3)设B 点最标为(t ,0),需要花费W 元,根据题意可知A 点坐标为(t ,21242t t -++),C 点坐标为(4-t ,0), ∴21242A B AB CD y y t t ==-=-++,442C B AD BC x x t t t ==-=--=-. ∴()50W AB CD AD =++⨯,即221242()(42)5050(162)50W t t t t ⎡⎤=⨯+--++⨯=--⎢⎥⎣⎦+. ∵014t ≤=≤,∴最多需要花费650元.23.(1)成立;(2)h b ;h a ;ab h ; ab h;(3)①;1- 解:解;(1)成立, 理由如下:∵,sin ,sin 1sin a b B cA C c === ∴,,,sin sin sin a b c c c c A B C === ∴sin sin sin a b c A B C== (2)在锐角△ABC 中,BC =a ,AC =b ,AB =c .过点C 作CD ⊥AB 于D .设CD =h ,∵在Rt △ADC 和Rt △BDC 中,∠ADC =∠BDC =90°, ∴sin h A b =,sin h B a=. ∴sin a ab A h =,sin b ab B h=. ∴sin sin a b A B =. 同理,过点A 作AH ⊥BC 于H ,可证sin sin b c B C=.∴sin sin sin a b c A B C==. 故答案为:h b ;h a ;ab h ; ab h; (3)①∵∠A =75°,∠B =60°,∴∠C =45°∴把∠C =45°,∠B =60°,AB =c =6,代入sin sin b c B C=得: 6sin 60sin 45b ︒︒=,∴=,解得:b=,即AC=②∵AB=AC =2,∴tan 30AC AB ===︒ ∴90CAB ∠=︒过△ABC 内切圆的圆心O 作OE ⊥AB ,OG ⊥AC ,OF ⊥BC ,则OG =OE =OF =r ,∵90CAB ∠=︒∴AG =AE =OE =OG =r∴四边形AEOC 是正方形∵AC =2,∴CG =2-r∵AB =∴BE =r连接OC ,OB ,∵OC 为ACB ∠的平分线,∴FCO GCO ∠=∠又90OGC OFC ∠=∠=︒,OC =OC∴GCO FCO ∆≅∆同理可得BEO BFO ∆≅∆∴CF =CG =2-r ,BF =BE =r而22222216BC AC AB =+=+=∴BC =4∴BC =CF +BF =2-r +r =4解得,r 11-24.(1)5417t =;(2)2259212422y t t =-++;(3)不存在,见解析;(4)存在,t =4 解:(1)由题意知,PC =t ,BP =12﹣t ,∵AB=AC ,AD ⊥BC ,AB =AC =10,BC =12,∴BD=DC=6,AD =8,∵QM ∥BC , ∴BQ CMAB AC =,∵AB=AC ,∴BQ=CM ,∵PM ⊥BC ,AD ⊥BC ,∴ PM ∥AD ,∴PC CM CD AC =即610t CM =, ∴CM =53t ,在Rt △ABD 和Rt △PBQ 中,cos ∠B =BQ BD BP AB =,即61210BQ t =-, 解得:BQ =35(12﹣t )= 36355t -, 由BQ=CM 得:36355t -=53t , 解得:5417t =, 故当 5417t =时,QM ∥BC ; (2)∵∠B +∠BAD =90°,∠DPN +∠B =90°,∴∠BAD =∠DPN ,又∠PDN =∠ADB =90°,∴△PDN ∽△ADB , ∴DN PD BD AD =,即668DN t -=, 解得:9324DN t =-, ∴21933927(6)()224822PDN S t t t t =⨯-⨯-=-+, ∵PM ∥AD ,∴△CPM ∽△CDA , ∴PM CP AD CD =即86PM t =, 解得:43PM t =, ∴2142233PCM S t t t =⨯⨯=, ∴ADC PCM PDN y S S S =--=2212392768()23822t t t ⨯⨯---+=2259212422t t -++,即y 与t 的函数关系式为2259212422y t t =-++; (3)假设存在某一时刻t ,使四边形ANPM 的面积是△ABC 面积的13, 则2259212422y t t =-++= 1112832⨯⨯⨯, 整理得:2251081320t t -+=,∵△= 2108425132-⨯⨯=﹣1536<0,∴此方程无解,∴不存在某一时刻t ,使四边形ANPM 的面积是△ABC 面积的13; (4)假设存在某一时刻t ,使点M 在线段PQ 的垂直平分线上,则MP =MQ ,过点M 作ME ⊥PQ 于E ,则PE =12PQ ,∠PEM =90°, 在Rt △ABD 和Rt △PBQ 中,sin ∠B= 81210PQ t =-, 解得:4(12)5PQ t =-, ∵∠BPQ +∠B =90°,∠BPQ +∠MPE =90°,∴∠B =∠MPE ,在Rt △PEM 和Rt △BDA 中,cos ∠B =cos ∠MPE ,即64103PE t =, 解得:45PE t =, 由PE =12PQ 得45t =14(12)25t ⨯-, 解得:t =4,∵0<t <6,∴存在某一时刻t =4时,点M 在线段PQ 的垂直平分线上.青岛版初中数学九年级(下)期末综合测试卷(二)一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出A、B、C、D 四个结论,其中只有一个是正确的,每小题选对得分;不选、错选或选出的标号超过一个的不得分.1.π-7的绝对值是().A.πB.7-πC.7D.π-72.下列数学符号中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为( ).A .13×105 B .1.3×105 C .1.3×106 D .1.3×1074.下面计算错误的是( )A.()36328a 2b a b -=- B.a a =÷-12aC.()2222a -b ab a b ++=-D.()()224a 2b -a 2b a b -=+5.某校学行汉字听写大赛,参赛学生的成绩如下表:对于这组数据,下列说法错误的是( )A. 众数是92B.中位数是92C.平均数是92D. 极差是66.如图,四边形ABCD 的顶点坐标A(-3,6)、B(-1,4)、C(_1,3))、D(-5,3),若四边形ABCD 绕点C 按顺时针方向旋转90°,再向左平移2个单位,得到四边形A'B'C'D',则点A 的对应点A'的坐标是( )A.(4,5)B.(4,3)C. (2,5)D.(0,5)7. 如图,在Rt △ABC 中,∠A=30°,BC=32,以直角边AC 为直径做圆O 交AB 于点D ,则图中阴影部分的面积是( ) A. π234315- B. π232315- C. π61437- D. π61237- 8.如图,直线y =−43x +8与x 轴,y 轴分别交于A ,B 两点,将线段AB 沿x 轴方向向右平移5个单位长度得到线段CD ,与双曲线y =k x(k >0)交于点N ,点M 在线段AB 上,连接MN ,BC ,若四边形BMNC 是菱形,则k 的值为( )A .12B .24C .32D .8二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:10.如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB 的度数为11.某校去年投资2万元购买实验器材,预期今明两年的投资总额为8万元,若该校这两年购买实验器材的投资的年平均增长率为x,则可列方程___________________12.已知菱形ABCD的两条对角线AC、BD的乘积等于菱形的一条边长的平方, 则菱形的一个钝角的大小是_________.13.如图,正五边形ABCDE的边长为10,它的对角线分别交于点A1,B1,C1,D1,E1.则五边形A1B1C1D1E1的边长为.14、如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B= .三、作图题(本题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.已知:线段a,求作:等腰直角三角形的内切圆,使此等腰直角三角形的斜边长等于线段a的长度a结论:四、解答题(本大题共9道小题,满分74分)16.计算(本题满分8分,每小题4分) (1)(3a+2+a −2)÷a 2−2a+1a+2(2)解不等式组{3(x −2)+1≥5x +2,1−x−12<5−2x3,并写出不等式组的最大整数解.17.(本题满分6分)为了回馈顾客,某商场在“五一”期间,对一次购物超过200元的顾客,进行抽奖返券的活动:顾客分别转动甲、乙两个转盘各一次,根据转盘停止时指针对应的文字组合,按表格获得一张对应面值的购物券。
2023年人教版(五四制)初中数学九年级(下)期末综合测试卷及部分答案(3套)
![2023年人教版(五四制)初中数学九年级(下)期末综合测试卷及部分答案(3套)](https://img.taocdn.com/s3/m/b3b78d662a160b4e767f5acfa1c7aa00b42a9d42.png)
人教版(五四制)初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(共10题,共30分)1.(3分)关于x的方程kx2−6x+9=0有实数根,k的取值范围是( )A.k<1且k≠0B.k<1C.k≤1且k≠0D.k≤12.(3分)如图,△ABC是一张纸片,∠C=90∘,AC=6,BC=8,现将其折叠,使点B与点A重合,折痕为DE,则DE的长为( )A.1.75B.3C.3.75D.43.(3分)如果x,y之间满足的关系是xy=−6,那么y是x的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4.(3分)在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( )A.随着抛掷次数的增加,正面朝上的频率越来越小B.当抛掷的次数很多时,正面朝上的次数一定占总抛掷次数的12C.不同次数的试验,正面朝上的频率可能会不相同D.连续抛掷11次硬币都是正面朝上,则第12次抛掷出现正面朝上的概率小于12 5.(3分)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m,设甲队每天修路x m.依题意,下面所列方程正确的是( )A.120x =100x−10B.120x=100x+10C.120x−10=100xD.120x+10=100x6.(3分)如图,菱形ABCD的边长为13,对角线AC=24,点E,F分别是边CD,BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=( )A.13B.10C.12D.57.(3分)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F,若FB=FE=2,FC=1,则AC的长是( )A.5√22B.3√52C.4√53D.5√238.(3分)如图,已知AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=α,则下列结论中不正确的是( )A.∠BOE=12(180∘−α)B.OF平分∠BODC.∠POE=∠BOF D.∠POB=2∠DOF9.(3分)如图,在△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:① ∠DBE=∠F;② 2∠BEF=∠BAF+∠C;③ ∠F=12(∠BAC−∠C);④ ∠BGH=∠ABE+∠C,其中正确的是( )A.①②④B.①③④C.①②③D.①②③④10.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90∘,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180∘;③DE平分∠ADC;④∠F为定值,其中结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7题,共28分)11.(4分)18和30的最小公倍数是.12.(4分)近似数7.30×104精确到位.13.(4分)小明爸爸把10000元按一年期定期储蓄存入银行,年利率为1.95%,到期后可得本利和为元.14.(4分)如图,在直角坐标系中,⊙A的圆心的坐标为(−2,0),半径为2,点P为x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的直线y=−34最小值是.15.(4分)如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60∘,AB=a,CF=EF,则△ABC的面积为(用含a的代数式表示).16.(4分)三个连续奇数,中间一个为a,则它们的积为.17.(4分)将正方形ABCD的各边按如图延长,从射线AB开始,分别在各射线上标记点A1,A2,A3,⋯,按此规律,点A2019在射线上.三、解答题(共8题,共62分)18.(6分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1) 求甲、乙两种节能灯各进多少只?(2) 全部售完100只节能灯后,该商场获利多少元?19.(6分)解答下列问题.(1) 计算:4sin60∘−√12+(√3−1)0;).(2) 化简(x+1)÷(1+1x20.(7分)计算:(1) 37∘49ʹ+44∘28ʹ.(结果用度、分、秒表示)(2) 108∘18ʹ−56.5∘.(结果用度表示)21.(7分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩根据以上信息,身高x(cm)163171173159161174164166169164解答如下问题:(1) 计算这组数据的三个统计量:平均数、中位数、众数;(2) 请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”是哪几位男生?并说明理由.22.(8分)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.(1) 求证△PBE∽△QAB;(2) 你认为△PBE和△BAE相似吗?如果相似给出证明,若不相似请说明理由.23.(8分)果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:时间t/秒0.50.60.70.80.91⋯高度ℎ/米 4.9×0.25 4.9×0.36 4.9×0.49 4.9×0.64 4.9×0.81 4.9×1⋯(1) 上表反映了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2) 请你按照表中呈现的规律,列出果子落下的高度ℎ(米)与时间t(秒)之间的关系式.(3) 如果果子经过2秒落到地上,请计算这果子开始落下时离底面的高度是多少米?24.(10分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(−3,0),B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.(1) 求抛物线的解析式和顶点C的坐标;(2) 连接AD,CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3) 若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P,C,Q为顶点的三角形与△ACH相似时,求点P的坐标.25.(10分)已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120∘,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120∘后,得到△ABEʹ,连接EEʹ.(1) 如图1,∠AEEʹ=∘;(2) 如图2,如果将直线AE绕点A顺时针旋转30∘后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3) 如图3,在(2)的条件下,如果CE=2,AE=2√7,求ME的长.答案一、选择题(共10题,共30分)1. 【答案】D2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】A6. 【答案】B7. 【答案】B8. 【答案】D9. 【答案】D10. 【答案】C二、填空题(共7题,共28分) 11. 【答案】 9012. 【答案】百13. 【答案】 1019514. 【答案】 4√215. 【答案】√3a 2516. 【答案】 a 3−a17. 【答案】 AB三、解答题(共8题,共62分)18. 【答案】(1) 设商场购进甲种节能灯 x 只,购进乙种节能灯 y 只,根据题意,得{30x +35y =3300,x +y =100.解这个方程组,得{x =40,y =60.答:甲、乙两种节能灯分别购进 40,60 只.(2) 商场获利=40×(40−30)+60×(50−35)=1300(元).答:商场获利1300元.19. 【答案】(1) 原式=4×√32−2√3+1=2√3−2√3+1=1.(2) 原式=(x+1)÷(xx+1x)=(x+1)÷x+1x=(x+1)⋅xx+1=x.20. 【答案】(1) 82∘17ʹ.(2) 51.8∘21. 【答案】(1) 平均数为:163+171+173+159+161+174+164+166+169+16410=166.4(cm);10名同学身高从小到大排列如下:159,161,163,164,164,166,169,171,173,174,中位数:166+1642=165(cm);众数:164(cm).(2) 选平均数作为标准:身高x满足166.4×(1−2%)≤x≤166.4×(1+2%),即163.072≤x≤169.728时为普通身高,此时⑦⑧⑨⑩男生的身高具有“普通身高”.选中位数作为标准:身高x满足165×(1−2%)≤x≤165×(1+2%),即161.7≤x≤168.3时为普通身高,此时①⑦⑧⑩男生的身高具有“普通身高”.选众数作为标准:身高x满足164×(1−2%)≤x≤164×(1+2%),即160.72≤x≤167.28时为普通身高,此时①⑤⑦⑧⑩男生的身高具有“普通身高”.22. 【答案】(1) ∵∠PBE+∠ABQ=90∘,∠PBE+∠PEB=90∘,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90∘,∴△PBE∽△QAB.(2) 相似,理由如下:∵△PBE∽△QAB,∴BEAB =PEBQ,又∵BQ=PB,∴BEAB =PEPB,即BEEP=ABPB,又∵∠ABE=∠BPE=90∘,∴△PBE∽△BAE.23. 【答案】(1) 上表反映了果子成熟从树上落到地面时落下的高度ℎ与经过的时间t的关系;其中时间t是自变量,高度ℎ是因变量.(2) 观察可知,下落t秒时,高度为4.9t2,即ℎ=4.9t2.(3) 当t=2时,ℎ=4.9×22=19.6(m).故果子开始落下时离底面的高度是19.6米.24. 【答案】(1) 把点A,B,D的坐标代入二次函数表达式得:{a+b+c=0,9a−3b+c=0,c=3,解得:{a=−1,b=−2,c=3,则抛物线的表达式为:y=−x2−2x+3 ⋯⋯①,函数的对称轴为:x=−b2a=−1,则点C的坐标为(−1,4);(2) 过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=−3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,将点C的坐标代入上式得:4=−1+n,解得:n=5,则直线CE的表达式为:y=x+5 ⋯⋯②,则点H的坐标为(0,5),联立①②并解得:x=−1或−2(x=1为点C的横坐标),即点E的坐标为(−2,3);在y轴取一点Hʹ,使DH=DHʹ=2,过点 Hʹ 作直线 EʹEʺ∥AD ,则 △ADEʹ,△ADEʺ 与 △ACD 面积相等,同理可得直线 EʹEʺ 的表达式为:y =x +1 ⋯⋯③, 联立 ①③ 并解得:x =−3±√172, 则点 Eʺ,Eʹ 的坐标分别为 (−3+√172,−1+√172),(−3−√172,−1−√172), 点 E 的坐标为:(−2,3) 或 (−3+√172,−1+√172),(−3−√172,−1−√172);(3) 设:点 P 的坐标为 (m,n ),n =−m 2−2m +3,把点 C ,D 的坐标代入一次函数表达式:y =kx +b 得:{4=−k +b,b =3, 解得:{k =−1,b =3,即直线 CD 的表达式为:y =−x +3 ⋯⋯④,直线 AD 的表达式为:y =x +3,直线 CD 和直线 AD 表达式中的 k 值的乘积为 −1, 故 AD ⊥CD ,而直线 PQ ⊥CD ,故直线 PQ 表达式中的 k 值与直线 AD 表达式中的 k 值相同, 同理可得直线 PQ 表达式为:y =x +(n −m ) ⋯⋯⑤, 联立 ④⑤ 并解得:x =3+m−n2, 即点 Q 的坐标为 (3+m−n 2,3−m+n2),则:PQ 2=(m −3+m−n2)2+(n −3−m+n2)=(m+n−3)22=12(m +1)2⋅m 2.同理可得:PC 2=(m +1)2[1+(m +1)2], AH =2,CH =4,则 AC =2√5, 当 △ACH ∽△CPQ 时, PCPQ =ACAH =√52,即:4PC 2=5PQ 2,整理得:3m 2+16m +16=0,解得:m =−4 或 −43, 点 P 的坐标为 (−4,−5) 或 (−43,359);当 △ACH ∽△PCQ 时,同理可得:点 P 的坐标为 (−23,359) 或 (2,−5),故:点 P 的坐标为:(−4,−5) 或 (−43,359) 或 (−23,359) 或 (2,−5).25. 【答案】(2) 当点E在线段CD上时,DE+BF=2ME;∵∠EʹAE=120∘,AE=AEʹ,∴∠AEEʹ=∠AEʹE=30∘.∵∠EAF=30∘,∴AN=EN,∠EʹAF=90∘,∴AN=12NEʹ,EN=12NEʹ.即NEʹ=2EN.∵EM∥AD∥BC,∴△EMN∽△EʹFN,∴MEFEʹ=ENEʹN=12.∵DE=BEʹ,∴DE+BF=BEʹ+BF=FEʹ=2ME.即DE+BF=2ME.当点E在CD的延长线上,0∘<∠EAD<30∘时,BF−DE=2ME;∵△ADE旋转到△ABEʹ,∴ED=BEʹ.EʹF=BF−BEʹ=BF−ED同上可证:△MEN∽△FEʹN,AN=EN=12NEʹ∴EʹFME =EʹNEN=2.即BF−DE=2ME.30∘<∠EAD≤90∘时,DE+BF=2ME;∵EM∥BC,∴△EMN∽△EʹFN,∴EʹFEM =EʹNEN=2.同上可证:AN=EN=12NEʹ,∴EʹF=2EM.∵ED=BEʹ,∴DE+BF=BEʹ+BF=EʹF=2EM.90∘<∠EAD<120∘时,DE−BF=2ME.∵ED=BEʹ,DE−BF=BEʹ−BF=EʹF,EM∥BC,∴△EMN∽△EʹFN,EʹF EM =EʹNEN,AN=EN=12NEʹ,∴EʹF=2EM,DE−BF=2ME.(3) 作AG⊥BC于点G,作DH⊥BC于点H.由AD∥BC,AD=AB=CD,∠BAD=120∘,得∠ABC=∠DCB=60∘,易知四边形AGHD是矩形和两个全等的直角三角形△ABG、△DCH.则GH=AD,BG=CH.∵∠ABEʹ=∠ADC=120∘,∴点Eʹ、B、C在一条直线上.设AD=AB=CD=x,则GH=x,BG=CH=12x,.作EQ⊥BC于Q.在Rt△EQC中,CE=2,∠C=60∘,∴CQ=1,EQ=√3.∴EʹQ=BC−CQ+BEʹ=2x−1+x−2=3x−3.作AP⊥EEʹ于点P.∵△ADE绕点A顺时针旋转120∘后,得到△ABEʹ.∴△AEEʹ是等腰三角形,∠AEʹE=30∘,AEʹ=AE=2√7.∴在Rt△APEʹ中,EʹP=√21.∴EEʹ=2EʹP=2√21.∴在Rt△EQEʹ中,EʹQ=√EʹE2−EQ2=9.∴3x−3=9.∴x=4.∴DE=BEʹ=2,BC=8,BG=2.∴EʹG=4在Rt△EʹAF中,AG⊥BC,∴Rt△AGEʹ∽Rt△FAEʹ.∴AEʹEʹG =EʹFAEʹ∴EʹF=7.∴BF=EʹF−EʹB=5.由(2)知:DE+BF=2ME.∴ME=72人教版(五四制)初中数学九年级(下)期末综合测试卷(二)一、单项选择题:本大题总共8小题,每小题3分,共24分。
大兴区2023~2024学年度第一学期期末检测初三数学试题及答案
![大兴区2023~2024学年度第一学期期末检测初三数学试题及答案](https://img.taocdn.com/s3/m/94a4d82d9a6648d7c1c708a1284ac850ad0204ec.png)
初三数学试卷第1页(共6页)大兴区2023~2024学年度第一学期期末检测初三数学2024.01考生须知1.本试卷共6页,共三道大题,28道小题,满分100分,考试时间120分钟㊂2.在答题卡上准确填写学校名称㊁准考证号,并将条形码贴在指定区域㊂3.题目答案一律填涂或书写在答题卡上,在试卷上作答无效㊂4.在答题卡上,选择题㊁作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答㊂5.考试结束,请将答题卡交回㊂一㊁选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.2023航空航天大兴论坛于11月15日至17日在北京大兴国际机场临空经济区举办,共设置了数字民航 电动航空 商业航天 通航维修 四场专题论坛.若某位航天科研工作者随机选择一个专题论坛参与活动,则他选中 电动航空 的概率是A.1B.12C.14D.182.下列图形中,是中心对称图形而不是轴对称图形的为㊀㊀A.㊀ B.㊀C.㊀D.3.关于一元二次方程x 2-3x -1=0的根的情况,下列说法正确的是A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法判断4.抛物线y =(x -2)2+1的对称轴是A.x =-2B.x =2C.x =-1D.x =15.在平面直角坐标系xOy 中,将抛物线y =3x 2先向右平移4个单位长度,再向上平移1个单位长度,得到的抛物线是A.y =3(x +4)2-1B.y =3(x +4)2+1C.y =3(x -4)2-1D.y =3(x -4)2+1初三数学试卷第2页(共6页)6.若圆的半径为1,则60ʎ的圆心角所对的弧长为A.π2B.πC.π6D.π37.如图,菱形OABC 的顶点A ,B ,C 在☉O 上,过点B 作☉O 的切线交OA 的延长线于点D.若☉O 的半径为2,则BD 的长为A.2 B.22C.23D.48.如图,点A ,B 在☉O 上,且点A ,O ,B 不在同一条直线上,点P 是☉O 上一个动点(点P 不与点A ,B 重合),在点P 运动的过程中,有如下四个结论:①恰好存在一点P ,使得øPAB =90ʎ;②若直线OP 垂直于AB ,则øOAP =øOBP ;③øAPB 的大小始终不变.上述结论中,所有∙∙正确结论的序号是A.①②B.①③C.②③D.①②③二㊁填空题(共16分,每题2分)9.若(a -3)x 2-3x -4=0是关于x 的一元二次方程,则a 的取值范围是.10.若关于x 的一元二次方程x 2-3x +m =0有一个根为1,则m 的值为.11.在平面直角坐标系xOy 中,若点(2,y 1),(4,y 2)在抛物线y =2(x -3)2-4上,则y 1y 2(填 > , = 或 < ).12.如图,四边形ABCD 内接于☉O ,点E 在AD 的延长线上,若øCDE =80ʎ,则øABC 的度数是ʎ.13.如图,әABC 的内切圆☉O 与AB ,BC ,CA 分别相切于点D ,E ,F ,若AD =2,BC =6,则әABC 的周长为.初三数学试卷第3页(共6页)14.写出一个过点(0,1)且当自变量x >0时,函数值y 随x 的增大而增大的二次函数的解析式.15.杭州亚运会的吉祥物 琮琮 宸宸 莲莲 组合名为 江南忆 ,出自唐朝诗人白居易的名句 江南忆,最忆是杭州 ,它融合了杭州的历史人文㊁自然生态和创新基因.吉祥物一开售,就深受大家的喜爱.经统计,某商店吉祥物 江南忆 6月份的销售量为1200件,8月份的销售量为1452件,设吉祥物 江南忆 6月份到8月份销售量的月平均增长率为x ,则可列方程为.16.如图,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a(2,1).给出下面三个结论:①2a -b =0;②a +b +c >1;③关于x 的一元二次方程ax 2+bx +c -m =0(m <1)有两个异号实数根.上述结论中,所有正确结论的序号是.三㊁解答题(共68分,第17-21题每题5分,第22题6分,第23题5分,第24-26题每题6分,第27-28题,每题7分)解答应写出文字说明㊁演算步骤或证明的过程.17.解方程:x 2+8x =9.18.已知a 是方程x 2-2x -1=0的一个根,求代数式(a -1)2+a (a -2)的值.19.已知关于x 的一元二次方程x 2-x +2m -2=0有两个实数根.(1)求m 的取值范围;(2)当m 取最大整数值时,求方程的根.20.已知抛物线y =x 2+bx +c 经过点(1,0),(0,-3).(1)求抛物线的解析式;(2)求该抛物线的顶点坐标.21.如图,在әABC 中,øC =45ʎ,AB =2,☉O 为әABC 的外接圆,求☉O 的半径.22.2023年9月23日至10月8日,第19届亚运会在杭州举行.中国队以201枚金牌㊁111枚银牌㊁71枚铜牌的优异成绩,位居奖牌榜首.为弘扬体育运动精神,某校对八㊁九年级学生进行了杭州亚运会知识竞赛(测试满分为100分,得分x均为不小于80的整数),并从其中分别随机抽取了20名学生的测试成绩,整理㊁描述和分析如下(成绩得分用x表示,共分成四组:A.80ɤx<85;B.85ɤx<90;C.90ɤx<95;D.95ɤxɤ100).a.八年级20名学生的成绩是:80,82,83,83,85,85,86,87,89,90,90,91,94,95,95,95,95,96,99,100.b.九年级20名学生的成绩在C组中的数据是:90,90,91,92,92,93,93,94.c.八㊁九年级抽取的学生竞赛成绩的平均数㊁中位数㊁众数如下:年级平均数中位数众数八年级9090m九年级90n100d.九年级抽取的学生竞赛成绩扇形统计图如下:根据以上信息,解答下列问题:(1)写出表中m,n的值及九年级抽取的学生竞赛成绩在D组的人数;(2)若该校九年级共400人参加了此次知识竞赛活动,估计九年级竞赛成绩不低于90分的人数是;(3)为了进一步弘扬体育运动精神,学校决定组织学生开展亚运精神宣讲活动,准备从九年级抽取的竞赛成绩在D组的学生中,随机选取一名担任宣讲员,另一名担任主持人.若甲㊁乙是抽取的成绩在D组的两名学生,用画树状图或列表的方法,求甲㊁乙两人同时被选上的概率.初三数学试卷第4页(共6页)初三数学试卷第5页(共6页)23.在平面直角坐标系xOy 中,函数y =kx +b (k ʂ0)的图象经过点A (-1,2)和B (1,4).(1)求该函数的解析式;(2)当x >2时,对于x 的每一个值,函数y =12x +n 的值小于函数y =kx +b (k ʂ0)的值且大于5,直接写出n 的值.24.如图,AB 是☉O 的直径,点C 在☉O 上,连接AC ,BC ,过点O 作OD ʅBC 于点D ,过点C作直线CE 交OD 延长线于点E ,使得øE =øB.(1)求证:CE 为☉O 的切线;(2)若DE =6,CE =35,求OD 的长.25.如图1,某公园一个圆形喷水池,在喷水池中心O 处竖直安装一根高度为1.25m 的水管OA ,A 处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分.建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O 的最远水平距离OB 为2.5m,水流竖直高度的最高处位置C 距离喷水池中心O 的水平距离OD 为1m.(1)求喷出水流的竖直高度y (m)与距离水池中心O 的水平距离x (m)之间的关系式,并求水流最大竖直高度CD 的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若水管OA 的高度增加0.64m 时,则水流离喷水池中心O 的最远水平距离为m.初三数学试卷第6页(共6页)26.在平面直角坐标系xOy 中,点(2,m )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为x =t.(1)当m =c 时,求t 的值;(2)点(-1,y 1),(3,y 2)在抛物线上,若c <m ,请比较y 1,y 2的大小,并说明理由.27.在әABC 中,øBAC =90ʎ,AB =AC ,点P 为BA 的延长线上一点,线段PC 顺时针旋转90ʎ得到线段PD ,连接BD.(1)依题意补全图形;(2)求证:øACP =øDPB ;(3)用等式表示线段BC ,BP ,BD 之间的数量关系,并证明.28.如图,在平面直角坐标系xOy 中,已知点M (0,t ),N (0,t +2),对于坐标平面内的一点P ,给出如下定义:若øMPN =30ʎ,则称点P 为线段MN 的 亲近点 .(1)当t =0时,①在点A (23,0),B (3,2),C (-23,2),D (-1,-3)中,线段MN 的 亲近点 的是;②点P 在直线y =1上,若点P 为线段MN 的 亲近点,则点P 的坐标为;(2)若直线y =-3x -3上总存在线段MN 的 亲近点 ,则t 的取值范围是.大兴区2023~2024学年度第一学期期末检测初三数学参考答案及评分标准一、选择题(共16分,每题2分)二、填空题(共16分,每题2分)三、解答题(共68分,第17-21题每题5分,第22题6分,第23题5分,第24-26题每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明的过程.17. 解: x 2+8x =9.x 2+8x +16=9+16. ··································································· 1分(x +4)2=25. ………………………………………………………………2分x +4=±5. ············································································· 3分 解得x 1=1,x 2=-9. ································································ 5分18. 解: 2(1)(2)a a a −+−=22212a a a a −++− ····························································· 2分 =2241a a −+ ········································································ 3分 ∵a 是方程2210x x −−=的一个根,∴2210a a −−=,∴221a a −=. ······································································· 4分∴原式2221a a =+(-)211=⨯+=3 ·············································································· 5分19. 解:(1)∵方程有两个实数根,0∴∆≥ ················································································· 1分∵Δ=(-1) 2-4×1×(2m -2)188m =−+ 98m =− 980m ∴−≥98m ∴≤ ················································································ 2分(2)98m ≤,m 为最大整数,m ∴=1. ··············································································· 3分∴x 2﹣x =0.解得:x 1=0,x 2=1. ································································ 5分 20.解:(1)∵抛物线2+y x bx c =+经过点(1,0),(0,-3),∴1+03b c c +=⎧⎨=−⎩.··········································································2分解得2-3b c =⎧⎨=⎩.∴22-3y x x =+. ·····································································3分 (2)y =22-3x x +.()21-4x =+∴顶点坐标为(-1,-4). ··························································· 5分21. 解:连接OA ,OB ,············································1分∵∠C =45°,∴∠AOB =2∠C =90°. ··········································2分 在Rt △AOB 中,∵OA 2+OB 2=AB 2, AB =2,OA =OB ,∴2 OA 2=4. ························································4分 ∴ OA 2=2.∴OA (舍负).∴⊙O . ···········································5分 22.解:(1)m =95,n =90.5,九年级抽取的学生竞赛成绩在D 组的人数为4人; ···· 3分 (2)240. ····················································································· 4分 (3)设D 组的另外两名同学为丙,丁.宣讲员 甲 乙 丙 丁主持人 乙 丙 丁 甲 丙 丁 甲 乙 丁 甲 乙 丙由树状图可以看出,所有可能出现的结果共12种,这些结果出现的可能性相等. 甲和乙同时被选上的结果有2种, 所以P (甲乙同时被选上)=21126=. ································································ 6分23. 解:(1)把A (-1,2)和B (1,4)代入y=kx+b(k ≠0)中,24k b ,k b .−+=⎧⎨+=⎩………………………………………………………………1分解得:13k ,b .=⎧⎨=⎩………………………………………………………………2分 所以该函数的解析式为y=x +3. ················································· 3分 (2)n=4 ······················································································· 5分24.(1)证明:连接OC .∵OB=OC , ∴∠B =∠OCB. ∵∠E =∠B ,∴∠E =∠OCB . ·······························································1分 ∵OD ⊥BC , ∴∠E +∠DCE =90°. ∴∠OCB +∠DCE =90°. ∴∠OCE =90°. 即OC ⊥CE.∴CE 是⊙O 的切线.···························································2分 (2)∵OD ⊥BC ,∴∠CDE =90°.在Rt △CDE 中,DE =6 , CE=∴CD3.= …………………………..........................……… 3分 ∵OE ⊥BC , ∴BC =2CD =6.∴DE=BC . ………………………………………………………………4分 ∵AB 是直径, ∴∠ACB =90°. ∴∠CDE=∠ACB. 在△ABC 与△CED 中,B E,BC DE ACB CDE.∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△CED. ……………………………………….………5分 ∴AC=CD=3.∵O 是AB 的中点,D 是BC 的中点,∴1322OD AC ==. ···································································· 6分25.解:(1)由题意,A 点坐标为(0,1.25),B 点坐标为(2.5,0). …………………………1分设抛物线的解析式为y =a (x -1)2+k (a ≠0) …………….………………….… 2分 ∵抛物线经过点A ,点B .∴ ()21250251.a k,a .k.=+⎧⎪⎨=−+⎪⎩解得:1225a ,k ..=−⎧⎨=⎩∴y =-(x -1)2+2.25(0≤x ≤2.5). ……………………………….…………… 3分 ∴x =1时,y =2.25.∴水流喷出的最大高度为2.25 m. ………………………………..……… 4分(2)2.7 ························································································ 6分 26. 解:(1)∵点(2,m )在20y ax bx c(a )=++>上,∴m =4a +2b +c .又∵m =c ,∴4a +2b =0.∴b =-2a . ∴2122b a t a a−=−=−=. …………..………………………………………2分 (2)∵点(2,m )在抛物线2(0)y ax bx c a 上, ∴m =4a +2b +c.∵c < m ,∴m - c>0.∴m -c =4a +2b >0.∴2a +b >0. ············································································ 3分 ∵点(-1,y 1),(3,y 2)在抛物线2(0)yax bx c a 上,∴y 1=a -b+c ,y 2=9a+3b+c,∴y 2-y 1=(9a+3b+c )-( a -b+c )=8a +4b =4(2a+b ). ································ 4分 ∵2a +b >0,∴4(2a +b )>0,∴y 2-y 1>0.∴y 2>y 1. ………………………………………………………………….6分27. (1)解:补全图形如图所示; (1)分(2)证明:∵∠BAC =90°, ∴∠ACP +∠APC =90°.∵以P 为中心,将线段PC 顺时针旋转90°得到线段PD ,∴∠DPC =90°.∴∠APC +∠BPD =90°.∴∠ACP =∠DPB . ···························································· 3分 (3)线段BC ,BP ,BD =BD +BC. ………………4分证明:过点P 作PE ⊥PB 交BC 的延长线于点E .∵PE ⊥PB ,∴∠BPE =90°.∵∠DPC =90°,∴∠1+∠BPC =∠2+∠BPC =90°.∴∠1=∠2. ······································································· 5分 ∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°.∵∠BPE =90°,∴∠PBE =∠PEB =45°.∴PB =PE . ········································································ 6分 在△PBD 与△PEC 中,12.PB PE PD PC =⎧⎪∠=∠⎨⎪=⎩,, ∴△PBD ≌△PEC .∴BD =EC .∵BE ==.BP =BD +BC .····························································· 7分28. 解:(1)① A ,C ; ········································································ 2分②()21,,)21,+; ······················································ 5分 (2)-11 ≤ t ≤ 3. ············································································ 7分。
人教版九年级上册《数学》期末考试卷及答案【可打印】
![人教版九年级上册《数学》期末考试卷及答案【可打印】](https://img.taocdn.com/s3/m/57d82c7c2e60ddccda38376baf1ffc4ffe47e2b8.png)
人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。
()2. 一个正方形的对角线互相垂直且平分。
()3. 一个圆的半径是直径的一半。
()4. 一个长方体的对角线互相垂直。
()5. 一个等腰三角形的底角等于顶角。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。
2. 一个正方形的对角线长是边长的______倍。
3. 一个圆的周长是直径的______倍。
4. 一个长方体的体积是长、宽、高的______。
5. 一个等腰三角形的底边长是腰长的______倍。
四、简答题(每题2分,共10分)1. 简述等边三角形的性质。
2. 简述正方形的性质。
3. 简述圆的性质。
4. 简述长方体的性质。
5. 简述等腰三角形的性质。
五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。
2. 一个正方形的边长为8cm,求其对角线长。
3. 一个圆的直径为14cm,求其周长。
4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。
2024年人教版初三数学上册期末考试卷(附答案)
![2024年人教版初三数学上册期末考试卷(附答案)](https://img.taocdn.com/s3/m/84905d85a48da0116c175f0e7cd184254a351b4e.png)
2024年人教版初三数学上册期末考试卷一、选择题(每题1分,共5分)1. 已知一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是()cm。
A. 18B. 20C. 22D. 242. 下列哪个数不是有理数?()A. 3/4B. 0C. √2D. 2/33. 一个正方形的周长是36cm,那么它的面积是()cm²。
A. 36B. 81C. 144D. 1964. 如果一个圆的半径是4cm,那么它的面积是()cm²。
A. 16πB. 32πC. 64πD. 128π5. 下列哪个图形是中心对称图形?()A. 矩形B. 梯形C. 圆D. 三角形二、判断题(每题1分,共5分)1. 一个数的平方根是唯一的。
()2. 两个全等的三角形一定是相似的。
()3. 一个等腰三角形的底角一定是锐角。
()4. 一个圆的周长等于它的直径的π倍。
()5. 一个平行四边形的对角线互相垂直。
()三、填空题(每题1分,共5分)1. 一个数的立方根是它自己的数叫做______数。
2. 一个等腰三角形的两个底角是______角。
3. 一个圆的半径是5cm,那么它的周长是______cm。
4. 一个正方形的边长是6cm,那么它的周长是______cm。
5. 一个等腰梯形的两个底角是______角。
四、简答题(每题2分,共10分)1. 简述有理数的概念。
2. 简述等腰三角形的性质。
3. 简述圆的性质。
4. 简述平行四边形的性质。
5. 简述等腰梯形的性质。
五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为10cm,腰长为8cm,求这个三角形的周长。
2. 已知一个正方形的周长为36cm,求它的面积。
3. 已知一个圆的半径为5cm,求它的面积。
4. 已知一个平行四边形的底边长为8cm,高为6cm,求它的面积。
5. 已知一个等腰梯形的上底长为8cm,下底长为12cm,高为5cm,求它的面积。
六、分析题(每题5分,共10分)1. 分析有理数和无理数的区别。
2024年最新人教版初三数学(上册)期末试卷及答案(各版本)
![2024年最新人教版初三数学(上册)期末试卷及答案(各版本)](https://img.taocdn.com/s3/m/8c68ea8481eb6294dd88d0d233d4b14e85243e83.png)
2024年最新人教版初三数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 下列哪个图形是正方体?A. 长方体B. 正方体C. 球体D. 圆柱体4. 下列哪个命题是假命题?A. 对顶角相等B. 两直线平行,同旁内角相等C. 两直线平行,内错角相等D. 两直线平行,同旁内角互补5. 下列哪个数是无理数?A. 1/2B. √9C. πD. 0.333二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 任何两个实数的积都是实数。
()3. 0是正数。
()4. 1是质数。
()5. 2是偶数。
()三、填空题5道(每题1分,共5分)1. 两个角的和为180°,这两个角互为__________。
2. 两个角的和为90°,这两个角互为__________。
3. 两个角的和为360°,这两个角互为__________。
4. 两个角的和为270°,这两个角互为__________。
5. 两个角的和为__________°,这两个角互为补角。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明无理数的定义。
3. 请简要说明实数的定义。
4. 请简要说明函数的定义。
5. 请简要说明奇函数的定义。
五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:(3/4 + 1/3) ÷ (5/6 1/2)2. 计算下列表达式的值:(2/3)^2 × (3/4)^33. 计算下列表达式的值:√(27) + √(48) √(75)4. 计算下列表达式的值:log2(64) + log2(16) log2(8)5. 计算下列表达式的值:sin(45°) + cos(45°) tan(45°)六、分析题:2道(每题5分,共10分)1. 请分析并解释勾股定理及其应用。
人教版九年级上册数学期末考试试卷附答案
![人教版九年级上册数学期末考试试卷附答案](https://img.taocdn.com/s3/m/e0c77db4846a561252d380eb6294dd88d1d23d6f.png)
人教版九年级上册数学期末考试试题一、单选题1.用配方法解方程x 2+2x-1=0时,配方结果正确的是()A .()212x +=B .()222x +=C .()213x +=D .()223x +=2.下列二次函数中,其图象的对称轴为x =﹣2的是()A .y =2x 2﹣2B .y =﹣2x 2﹣2C .y =2(x ﹣2)2D .y =(x+2)23.下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.抛物线223y x x =--与x 轴的两个交点间的距离是()A .-1B .-2C .2D .45.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣36.将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为A .110°B .120°C .150°D .160°7.如图,⊙O 的半径为2,点C 是圆上的一个动点,CA ⊥x 轴,CB ⊥y 轴,垂足分别为A 、B ,D 是AB 的中点,如果点C 在圆上运动一周,那么点D 运动过的路程长为()A .4πB .2πC .πD .2π8.如图是二次函数y =ax 2+bx+c (a≠0)图象的一部分,对称轴是直线x =﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c >0;④b ﹣4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,ABCD 为正方形,O 为对角线AC,BD 的交点,则△COD 绕点O 经过下列哪种旋转可以得到△DOA ()A .顺时针旋转90°B .顺时针旋转45°C .逆时针旋转90°D .逆时针旋转45°10.已知二次函数y =ax2+bx+c 的图象与x 轴交于A ,B 两点,对称轴是直线x =﹣1,若点A 的坐标为(1,0),则点B 的坐标是()A .(﹣2,0)B .(0,﹣2)C .(0,﹣3)D .(﹣3,0)二、填空题11.一元二次方程()()320x x --=的根是_____.12.抛物线y =(x+2)2+1的顶点坐标为_____.13.从实数﹣1、﹣2、1中随机选取两个数,积为负数的概率是________.14.如图,△DEC 与△ABC 关于点C 成中心对称,AB =3,AC =1,∠D =90°,则AE 的长是_____.15.已知扇形的圆心角为120°,它所对弧长为20πcm ,则扇形的半径为_____.16.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为___17.已知点P (x 0,m ),Q (1,n )在二次函数y =(x+a )(x ﹣a ﹣1)(a≠0)的图象上,且m <n 下列结论:①该二次函数与x 轴交于点(﹣a ,0)和(a+1,0);②该二次函数的对称轴是x =12;③该二次函数的最小值是(a+2)2;④0<x 0<1.其中正确的是_____.(填写序号)三、解答题18.解方程:2680x x -+=19.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =10cm ,CD =16cm ,求AE 的长.20.已知二次函数2y ax bx =+的图象过点()2,0,()1,6-.(1)求二次函数的关系式;(2)写出它与x 轴的两个交点及顶点坐标.21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?(2)当Rt△ABC的斜边a b和c恰好是这个方程的两个根时,求k的值.23.已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R,求证:AE•AF =2R2.24.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.25.ΔABC为等腰三角形,O为底边BC的中点,腰AB与 O相切于点D.求证:AC是 O的切线.26.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?参考答案1.A【分析】先把常数项移到方程右边,再把方程两边同时加上一次项系数一半的平方,然后把方程左边写成完全平方形式即可.【详解】解:∵x2+2x﹣1=0,∴x2+2x=1,∴x2+2x+1=2,∴(x+1)2=2.故选:A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.2.D【分析】根据二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质逐项分析即可.【详解】A.y=2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;B.y=﹣2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;C.y=2(x﹣2)2的对称轴是x=2,故该选项不正确,不符合题意;;D.y=(x+2)2的对称轴是x=-2,故该选项正确,符合题意;;故选D【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,y=a(x-h)2+k是抛物线的顶点式,其顶点是(h,k),对称轴是x=h.熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.3.B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,也不是中心对称图形,不符合题意.故选B .【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4.D 【分析】求解得到方程的两个根,用较大根减去小根即可.【详解】令y=0,得2230x x --=,解得123,1x x ==-,∴两个交点间的距离是3-(-1)=4,故选D .【点睛】本题考查了抛物线与x 轴的交点,一元二次方程的解法,正确理解题意,找到合理的解题方法是解题的关键.5.A 【分析】根据二次函数平移的规律“上加下减,左加右减”的原则即可得到平移后函数解析式.【详解】解:抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,得到的抛物线解析式为y =2(x ﹣4+4)2﹣1,即y =2x 2﹣1,再向上平移2个单位长度得到的抛物线解析式为y =2x 2﹣1+2,即y =2x 2+1;故选:A .【点睛】本题考查的是二次函数图象平移变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.6.A 【详解】设C′D′与BC 交于点E ,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=110°,∴∠1=∠BED′=110°.故选:A .7.D 【分析】根据题意可知,四边形OACB 是矩形,D 为AB 的中点,连接OC ,可知D 点是矩形的对角线的交点,那么当C 点绕圆O 旋转一周时,D 点也会以OD 长为半径旋转一周,D 点的轨迹是一个以O 为圆心,以OD 长为半径的圆,计算圆的周长即可.【详解】如图,连接OC ,∵CA ⊥x 轴,CB ⊥y 轴,∴四边形OACB 是矩形,∵D 为AB 中点,∴点D 在AC 上,且OD =12OC ,∵⊙O 的半径为2,∴如果点C 在圆上运动一周,那么点D 运动轨迹是一个半径为1圆,∴点D 运动过的路程长为2π•1=2π,故选:D .【点睛】本题考查了动点问题,解决本题的关键是能够判断出D 点的运动轨迹是一个半径为1的圆.8.C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵22ba-=-,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b+c >0,∴③正确,故正确的有②③④⑤.故选:C .【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用9.C 【详解】试题分析:因为四边形ABCD 为正方形,所以∠COD=∠DOA=90°,OC=OD=OA ,则△COD 绕点O 逆时针旋转得到△DOA ,旋转角为∠COD 或∠DOA .故选C .考点:旋转的性质10.D 【分析】利用点B 与点A 关于直线x=-1对称确定B 点坐标.【详解】解:∵二次函数y =ax 2+bx+c 的图象与x 轴交于A ,B 两点,∴点A 与点B 关于直线x =﹣1对称,而对称轴是直线x =﹣1,点A 的坐标为(1,0),∴点B 的坐标是(﹣3,0).故选D .【点睛】本题考查抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.11.123,2==x x 【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y =(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.13.23【详解】从实数-1、-2、1中随机选取两个数共有以下三种等可能情况:①-1,-2;②-1,1;③-2,1;其中乘积为负数的是②、③两种,∴从实数-1,-2,1中随机选取两个数,积为负数的概率是:23.故答案为23.141,3CD AC DE AB ====,再利用勾股定理即可得.【详解】DEC ∆ 与ABC ∆关于点C 成中心对称ABC DEC∴∆≅∆1,3CD AC DE AB ∴====2AD CD AC ∴=+=90D ∠=︒AE ∴===【点睛】本题考查了中心对称图形的性质、勾股定理,熟记中心对称图形的性质是解题关键.15.30cm .【分析】根据扇形弧长公式代入计算即可解决.【详解】根据题意得12020180rππ⨯⨯=,r =30cm ,故答案为30cm .【点睛】本题考查了扇形弧长公式的应用,解决本题的关键是熟练掌握扇形弧长公式.16.0或-1##-1或0【详解】由于没有交待是二次函数,故应分两种情况:当k=0时,函数y 2x 1=-是一次函数,与x 轴仅有一个公共点.当k≠0时,函数2y kx 2x 1=+-是二次函数,若函数与x 轴仅有一个公共点,则2210kx x +-=有两个相等的实数根,即()224k 10∆=-⋅⋅-=,解得:k 1=-,故答案为:0或-1.17.①②④.【分析】(1)根据二次函数的解析式,求出与x 轴的交点坐标,即可判断①;(2)用与x 轴交点的横坐标相加除以2,即可求证结论②;(3)将二次函数交点式转化为顶点式,得到顶点坐标,即可求证③;(4)讨论P 点分别在对称轴的左侧和右侧两种情况,根据函数的增减性,计算x 0的范围即可.【详解】①∵二次函数y =(x+a )(x ﹣a ﹣1),∴当y =0时,x 1=﹣a ,x 2=a+1,即该二次函数与x 轴交于点(﹣a ,0)和(a+1,0).故①结论正确;②对称轴为:12122x x x +==.故②结论正确;③由y =(x+a )(x ﹣a ﹣1)得到:y =(x ﹣12)2﹣(a+12)2,则其最小值是﹣(a+12)2,故③结论错误;④当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得12<x 0<1,综上所述:m <n ,所求x 0的取值范围0<x 0<1.故④结论正确.故答案是:①②④.【点睛】本题考查了二次函数性质的应用,解决本题的关键是熟练掌握二次函数不同形式解析式之间的相互转化,正确理解掌握二次函数的性质.18.x 1=4,x 2=2【分析】原方程运用因式分解法求解即可【详解】解:2680x x -+=(x -4)(x -2)=0x -4=0或x -2=0∴x 1=4,x 2=2【点睛】本题主要考查了解一元二次方程,灵活选用方法是解答本题的关键19.AE =16cm .【分析】根据垂径定理,计算出CE 的长度,再根据勾股定理计算OE 的长度,两者相加即可解决问题.【详解】∵弦CD ⊥AB 于点E ,CD =16cm ,∴CE =12CD =8cm .在Rt △OCE 中,OC =10cm ,CE =8cm ,∴6OE ===(cm ),∴AE =AO+OE =10+6=16(cm ).【点睛】本题考查了圆中计算问题,解决本题的关键是:①熟练掌握垂径定理及其推论,②熟练掌握勾股定理.20.(1)224y x x=-(2)与x 轴的两个交点坐标分别是:()0,0,()2,0;顶点坐标是()1,2-【分析】(1)把点(2,0),(−1,6)代入二次函数y =ax 2+bx ,得出关于a 、b 的二元一次方程组,求得a 、b 即可;(2)将(1)中解析式转化为两点式或顶点式,即可求得抛物线与x 轴的交点坐标和顶点坐标.(1)解:把点()2,0,()1,6-代入二次函数2y ax bx =+,得4206a b a b +=⎧⎨-=⎩,解得24a b =⎧⎨=-⎩,因此二次函数的关系式224y x x =-;(2)解:∵224y x x =-=2x (x−2),∴该抛物线与x 轴的两个交点坐标分别是(0,0),(2,0).∵224y x x =-=2(x−1)2−2,∴二次函数224y x x =-的顶点坐标(1,−2).21.(1)袋子中白球有2个;(2)59.【分析】(1)设袋子中白球有x 个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个,根据题意得:213x x =+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.22.(1)见解析;(2)3【分析】(1)根据根的判别式的符号来证明;(2)根据韦达定理得到b+c=2k+1,bc=4k-3.又在直角△ABC 中,根据勾股定理,得(b+c )2﹣2bc 2,由此可以求得k 的值.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k ﹣3)=4k 2﹣12k+13=(2k ﹣3)2+4,∴无论k 取什么实数值,总有=(2k ﹣3)2+4>0,即△>0,∴无论k 取什么实数值,该方程总有两个不相等的实数根;(2)解:∵两条直角边的长b 和c 恰好是方程x 2﹣(2k+1)x+4k ﹣3=0的两个根,得∴b+c =2k+1,bc =4k ﹣3,又∵在直角△ABC 中,根据勾股定理,得b 2+c 2=a 2,∴(b+c)2﹣2bc2,即(2k+1)2﹣2(4k﹣3)=31,整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=3,当k=﹣2时,b+c=﹣4+1=﹣3<0,不符合题意,舍去,当k=3时,b+c=2×3+1=7,符合题意,故k=3.23.见解析【详解】连接BE,根据圆周角定理可的∠AEB=90,再有AB⊥CD,公共角∠A,即可证得△AOF∽△AEB,根据相似三角形的对应边成比例即得结果.解:如图,连接BE,∵AB为⊙O的直径∴∠AEB=90°∵AB⊥CD∴∠AOF=90°∴∠AOF=∠AEB=90°又∠A=∠A∴△AOF∽△AEB∴AE•AF=AO•AB∵AO=R,AB=2R所以AE•AF=2R2.24.(Ⅰ)a=﹣1,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);2②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.25.见解析.【分析】过点O作OE⊥AC于点E,连结OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【详解】证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是O的半径,∵AC经过O的半径OE的外端点且垂直于OE,∴AC是O的切线。
2023年鲁教版(五四制)数学九年级上册期末考试测试卷及部分答案(共4套)
![2023年鲁教版(五四制)数学九年级上册期末考试测试卷及部分答案(共4套)](https://img.taocdn.com/s3/m/9a1f5e32974bcf84b9d528ea81c758f5f61f292c.png)
2023年鲁教版(五四制)数学九年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )2.在△ABC 中,A ,B 都是锐角,且sin A =32,tan B =3,AB =8,则AB 边上的高为( ) A .4 3 B .8 3 C .16 3 D .24 33.点A (a ,b )是反比例函数y =k x上的一点,且a ,b 是方程x 2-mx +4=0的根,则反比例函数的表达式是( )A .y =1xB .y =-1xC .y =4xD .y =-4x4.二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如下表:下列说法正确的是( )A .抛物线的开口向下B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是直线x =-525.抛物线y =-2(x -3)2-4的顶点坐标为( )A .(-3,4)B .(-3,-4)C .(3,-4)D .(3,4) 6.下列各组投影是平行投影的是( )7.一次函数y =ax +b 和反比例函数y =a -bx在同一直角坐标系中的大致图象是( )8.已知AE ,CF 是锐角三角形ABC 的两条高,AE ∶CF =2 ∶3,则sin ∠BAC ∶sin ∠ACB =( )A .2 ∶3B .3 ∶2C .4 ∶9D .9 ∶49.已知二次函数y =ax 2+2ax -3的部分图象(如图),由图象可知关于x 的一元二次方程ax 2+2ax -3=0的两个根分别是x 1=1.3和x 2等于( ) A .-1.3 B .-2.3 C .0.3 D .-3.310.函数y =x 2+bx +c 与y =x 的图象如图所示,有以下结论:①b 2-4c >0,②b +c +1=0,③(c +1)2>b 2,④当1<x <3时,x 2+(b -1)x +c <0.其中正确的个数为( ) A .4个 B .3个 C .2个 D .1个二、填空题(每题3分,共24分)11.在△ABC 中,∠C =90°,BC =3,tan A =23,则AB =________.12.把抛物线y =x 2-2x +3沿x 轴向右平移2个单位,得到的抛物线的表达式为________. 13.王英同学从A 地沿北偏西60°方向走100 m 到B 地,再从B 地向西南方走到C 地,此时C 地在A 地的正西方向,则王英同学离A 地__________.14.如图:两条宽为A 的纸条,交叉重叠放在一起,且它们的交角为α,则重叠部分的面积(阴影部分)为________.15.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.16.若一次函数y 1=x -2与反比例函数y 2=3x的图象相交于点A ,B ,则当y 1>y 2时,x 的取值范围是________.17.如图,过x 轴负半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y =-6x,y=4x的图象交于B ,A 两点,若点C 是y 轴上任意一点,连接AC ,BC ,则△ABC 的面积是________.18.如图,边长为n 的正方形OABC 的边OA 、OC 分别在x 轴和y 轴的正半轴上,A 1,A 2,A 3,…,A n -1为边OA 的n 等分点,B 1,B 2,B 3,…,B n -1为边CB 的n 等分点,连接A 1B 1,A 2B 2,A 3B 3,…,A n -1B n -1,分别交y =1nx 2(x ≥0)的图象于点C 1,C 2,C 3,…,C n -1.若有B 5C 5=3C 5A 5,则n =________.三、解答题(19题6分,20,21题每题8分,25题14分,其余每题10分,共66分) 19.计算:(-1)2 019+cos 245°-(π-3)0+3·sin60°·tan45°.20.如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE 的高度,已知直立在地面上的竹竿AB 的长为3 m .某一时刻,测得竹竿AB 在阳光下的投影BC 的长为2 m. (1)请你在图中画出此时旗杆DE 在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB 的影长时,同时测得旗杆DE 在阳光下的影长为6 m ,请你计算旗杆DE 的高度.21.如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°.沿山坡向上走到P 处再测得点C 的仰角为45°.已知OA =100 m ,山坡坡度为12⎝⎛⎭⎪⎫即tan ∠PAB =12,且O ,A ,B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留根号)22.如图,在直角坐标系中,已知A (-4,12),B (-1,2)是一次函数y 1=kx +b 与反比例函数y 2=m x(m ≠0,x <0)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D . (1)根据图象直接写出关于x 的不等式kx +b >m x(x <0)的解集; (2)求一次函数和反比例函数的表达式;(3)设P 是第二象限双曲线上AB 之间的一点,连接PA ,PB ,PC ,PD ,若△PCA 和△PDB 的面积相等,求点P 的坐标.23.如图,直角三角形纸片ACB ,∠ACB =90°,AB =5,AC =3,将其折叠,使点C 落在斜边上的点C ′处,折痕为AD ;再沿DE 折叠,使点B 落在DC ′的延长线上的点B ′处. (1)求∠ADE 的度数; (2)求折痕DE 的长.24.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)求抛物线的表达式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.答案一、1.A 2.A 3.C 4.D 5.C 6.A 7.A 8.B 9.D 10.C 二、11.3132 12.y =(x -3)2+213.(50 3+50)m 14.a 2sin α15.5 点拨:综合左视图和主视图知,这个几何体有两层,底层最少有2+1=3(个)小正方体,第二层有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5(个). 16.x >3或-1<x <0 17.5 18.10三、19.解:原式=-1+⎝ ⎛⎭⎪⎫222-1+3×32×1 =-1+12-1+32=0.20.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求. (2)∵AC ∥DF , ∴∠ACB =∠DFE .又∠ABC =∠DEF =90°, ∴△ABC ∽△DEF . ∴AB DE =BC EF. ∵AB =3 m ,BC =2 m ,EF =6 m ,∴3DE =26. ∴DE =9 m ,即旗杆DE 的高度为9 m.21.解:在Rt △OAC 中,OC =OA ·tan 6 0°=100×3=100 3(m).如图所示,过点P 作PE ⊥O C 于点E ,PF ⊥AB 于点F ,由tan ∠PAB =12,设PF 为x m ,则AF =2x m ,O E =x m ,∴CE =100 3-x =100+2x ,解得x =100(3-1)3.∴电视塔OC 的高度是100 3 m ,此人所在位置P 的铅直高度为100(3-1)3m.22.解:(1)-4<x <-1.(2)∵一次函数y 1=kx +b 的图象过点⎝ ⎛⎭⎪⎫-4,12,(-1,2), ∴⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎪⎨⎪⎧k =12,b =52.∴一次函数的表达式为y 1=12x +52.又∵反比例函数y =m x的图象过点(-1,2), ∴m =-1×2=-2. ∴反比例函数的表达式为y =-2x(x <0).(3)设P (a ,-2a),a <0,由△PCA 和△PDB 的面积相等得12×12×(a +4)=12×|-1|×⎝ ⎛⎭⎪⎫2+2a ,解得a =-2. ∴P 点的坐标是(-2,1).23.解:(1)由折叠的性质知∠ADC =∠ADC ′,∠BDE =∠B ′DE ,∵∠ADC +∠ADC ′+∠BDE +∠B ′DE =180°, ∴∠ADC ′+∠B ′DE =90°, 即∠ADE =90°.(2)∵∠ACB =90°,AB =5,AC =3, ∴BC =4.由折叠的性质知,∠AC ′D =∠ACD =90°,DC =DC ′,AC ′=AC =3,BC ′=AB -AC ′=2.设DC =DC ′=x ,则BD =4-x .∵tan B =AC BC =34,又tan B =DC ′BC ′=x2, ∴x 2=34,∴x =32,即DC =DC ′=32. ∴AD =32+⎝ ⎛⎭⎪⎫322=3 52.∵∠CAD =∠BAD ,∴tan ∠CAD =CD AC =tan ∠BAD =DE AD. ∴323=DE 3 52. ∴DE =3 54.24.解:(1)设该型号自行车的进价为x 元,则标价为1.5x 元,由题意得:1.5x ×0.9×8-8x =(1.5x -100)×7-7x ,解得x =1 000,1.5×1 000=1 500(元).答:该型号自行车的进价为1 000元,标价为1 500元. (2)设该型号自行车降价a 元,利润为w 元,由题意得:w =(51+a20×3)(1 500-1 000-a )=-320(a -80)2+26 460,∵-320<0,∴当a =80时,w 最大为26 460,答:该型号自行车降价80元时,每月获利最大,最大利润是26 460元. 25.解:(1)依题意得:⎩⎪⎨⎪⎧-b2a =-1,a +b +c =0,c =3,解之得⎩⎪⎨⎪⎧a =-1,b =-2,c =3. ∴抛物线的表达式为y =-x 2-2x +3.(2)易知点B 坐标为(-3,0),过点B 、点C 作直线BC ,又知C (0,3),易得直线BC 的表达式为y =x +3,设直线BC 与对称轴x =-1的交点为M ,则此时MA +MC 的值最小. 把x =-1代入y =x +3得y =2. ∴M (-1,2),即当点M 到点A 的距离与到点C 的距离之和最小时,点M 的坐标为(-1,2). (3)设P (-1,t ), 又∵B (-3,0),C (0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若点B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解之得t =-2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解之得t =4; ③若点P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18,解之得t 1=3+172,t 2=3-172. 综上所述,点P 的坐标为(-1,-2)或(-1,4)或(-1,3+172)或(-1,3-172).2023年鲁教版(五四制)数学九年级上册期末考试测试卷(二)一、选择题(本大题共10小题,共30分。
初三数学期末测试题及答案
![初三数学期末测试题及答案](https://img.taocdn.com/s3/m/0ef41cd933d4b14e8524688d.png)
初三数学期末测试题全卷分A 卷和B 卷,A 卷满分86分,B 卷满分34分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
一、选择题(本题共有个小题,每小题4分,共32分)在每小题给出的四个选项中,只有一项是正确的,把正确的序号填在题后的括号内。
1.下列实数中是无理数的是( ) (A )38.0 (B )π (C )4 (D ) 722-2.在平面直角坐标系中,点A (1,-3)在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.下列四组数据中,不能..作为直角三角形的三边长是( ) (A )3,4,6 (B )7,24,25 (C )6,8,10 (D )9,12,15 4.下列各组数值是二元一次方程43=-y x 的解的是( )(A )⎩⎨⎧-==11y x (B )⎩⎨⎧==12y x (C )⎩⎨⎧-=-=21y x (D )⎩⎨⎧-==14y x5.已知一个多边形的内角各为720°,则这个多边形为( )(A )三角形 (B )四边形 (C )五边形 (D )六边形6.如果03)4(2=-+-+y x y x ,那么y x -2的值为( ) (A )-3 (B )3 (C )-1 (D )17.在平面直角坐标系中,已知一次函数b kx y +=下列结论正的是( )(A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k <0, 8.下列说法正确的是( )(A )矩形的对角线互相垂直 (B )等腰梯形的对角线相等(C )有两个角为直角的四边形是矩形 (D )对角线互相垂直的四边形是菱形 二、填空题:(每小题4分,共16分)A B CDc9.如图,在Rt △ABC 中,已知a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果b =2a ,那么ca= 。
初三上册数学期末考试题及答案
![初三上册数学期末考试题及答案](https://img.taocdn.com/s3/m/23ccbae8a1116c175f0e7cd184254b35eefd1a2a.png)
初三上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和4,那么它的周长是A. 7B. 10C. 11D. 14答案:C4. 已知一个数列的前三项为1, 2, 4,那么第四项是A. 8C. 6D. 5答案:A5. 函数y=2x+3的图像经过点A. (0, 3)B. (1, 5)C. (2, 4)D. (3, 9)答案:B6. 一个圆的直径是10厘米,那么它的半径是A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是A. 24立方厘米B. 12立方厘米C. 26立方厘米D. 36立方厘米答案:A8. 一个数的绝对值是5,这个数可能是B. -5C. 5或-5D. 0答案:C9. 一个角的补角是90°,那么这个角是A. 90°B. 45°C. 30°D. 60°答案:B10. 一个数的立方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是____。
答案:±52. 一个数的倒数是2,这个数是____。
答案:1/23. 一个数的相反数是-3,这个数是____。
答案:34. 一个数的绝对值是10,这个数是____。
答案:±105. 一个数的平方根是4,这个数是____。
答案:16三、解答题(共50分)1. 解方程:x² - 5x + 6 = 0(10分)答案:x₁ = 2,x₂ = 32. 已知等腰三角形的两边长分别为5cm和10cm,求第三边的长度。
(10分)答案:第三边的长度为10cm。
人教版九年级上册数学期末考试试卷有答案
![人教版九年级上册数学期末考试试卷有答案](https://img.taocdn.com/s3/m/a7c0b569854769eae009581b6bd97f192279bf28.png)
人教版九年级上册数学期末考试试题一、单选题1.如图所示四个图标中,属于中心对称图形的是()A.B.C.D.2.抛物线y=3(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)3.如果∠A是锐角,且sinA=12,那么∠A的度数是()A.90°B.60°C.45°D.30°4.如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠C的度数()A.90°B.60°C.45°D.30°5.在半径为6的圆中,120°的圆心角所对的弧长是()A.3πB.4πC.6πD.12π6.如图,△ABC中,点D是AB的中点,DE∥BC交AC于点E,下面结论中正确的是A.12AE AC=B.BC=3DEC.S梯形BCDE=4S△ADE D.AD DEBD BC=7.如图,Rt △ABC 中,∠C =90°,BC AC tanA 的值是()AB .1CD .无法确定8.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是()A .4B .0C .2D .39.如图,△ABC 中,AB =AC ,AD 是BC 边上的中线.按下列步骤作图:①分别以点A 、C 为圆心,大于12AC 的长为半径作弧,相交于M 、N 两点;②直线MN 交AD 于点E ;③连接EB .下列结论中错误的是()A .AD ⊥BCB .EA =EBC .∠AEB =2∠ACBD .∠EBD =2∠EBA10.Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 旋转得到△ADE ,且点D 恰好在AC 上,sin ∠DCE 的值是()A .12B .35C D 二、填空题11.在平面直角坐标系中,点P 、点Q 关于原点对称,若点P 的坐标是(2,3),则点Q 的坐标是.12.如图,△ABC 中,D 、E 分别在BA 、CA 延长线上,DE ∥BC ,23AE AC =,DE =1,BC 的长度是_________.13.若点A (2,y1),B y 2)在抛物线y =x 2﹣2x+1上,则用不等号表示y 1、y 2的大小关系是_____.14.如图,抛物线y =﹣x 2+2x+3的对称轴交抛物线于点P ,交x 轴于点Q ,点A 是PQ 右侧的抛物线上的一点,过点P 做PB ⊥PA 交x 轴于点B ,若设点A 的横坐标为t (t >1),线段BQ 的长度为d ,则d 与t 的函数关系式是_____.15.如图,在O 中、三条劣弧AB 、BC 、CD 的长都相等,弦AC 与BD 相交于点E ,弦BA 与CD 的延长线相交于点F ,且40F ∠=︒,则AED ∠的度数为________.16.如图,把△ABC 绕点A 旋转一定角度得到△ADE ,BC 与DE 交于F ,连接CE ,若∠BFD =20°,则∠ACE =_____度.三、解答题17.确定抛物线y=﹣x2+6x+1的开口方向、对称轴和顶点.18.如图,正方形网格中每个小正方形的边长都是1.将△ABC绕点P逆时针旋转90°后得到△A'B'C',其中A和A',B和B',C和C'是对应点.(1)画出△A'B'C';(2)在该网格中建立平面直角坐标系,点P,A坐标分别为P(0,1),A(1,1),直接写出该坐标系下A',B',C'的坐标.19.如图,四边形ABCD内接于⊙O,AB=12cm,AD=5cm,BD为直径,AC平分∠BAD,求BC的长.20.在△ABC和△ADE中,点E在BC上,已知∠B=∠D,∠DAB=∠EAC.(1)求证:△ABC ∽△ADE ;(2)若AC ∥DE ,∠AEC =45°,求∠C 的度数.21.如图,O 上有A ,B ,C 三点,AC 是直径,点D 是 AB 的中点,连接CD 交AB 于点E ,点F 在AB 延长线上且FC FE =.(1)求证:CF 是O 的切线;(2)若6BF =,4sin 5F =,求O 的半径.22.某班计划购买A ,B 两种花苗,根据市场调查整理出表:A 种花苗盆数B 种花苗盆数花费(元)35220410380(1)求A ,B 两种花苗的单价;(2)经过班级学生商讨,决定购买A ,B 两种花苗12盆(A ,B 两种花苗都必须有),同时得到了优惠方式:购买几盆A 种花,A 种花苗每盆就降价几元.请设计花费最少的购买方案.23.如图,Rt △ABC 中,∠C =90°,AB =10,AC =8.点D 是线段AC 上的一点,点E 在射线CB 上且∠CDE =∠B .(1)求BC 的长;(2)若AD =x ,△CDE 的面积与△ABC 重合部分的面积是y ,求y 关于x 的函数解析式,并直接写出自变量x 的取值范围.24.如图,Rt △ABC 中,AB =AC ,∠BAC =90°,△ADE 中,AD =AE ,∠DAE =90°.连接BD 、CE .(1)如图1,点B 在边ED 的延长线上,求∠AEC 的度数;(2)如图2,∠AEC =90°,射线ED 交BC 于点F .①求证:BF =CF ;②若BD =kAD (k >1),求DEDF的值(用含k 的式子表示).25.如图为函数F 1:21(1)22y x =-++的图象,若F 1和F 2的图象关于坐标原点O (0,0)对称,F 1的顶点A 关于点O 的对称点为点B .(1)求F2的解析式;(2)在F1的图象和直线AB围成的封闭图形上,求平行于y轴的线段的长度的最大值;(3)若F=12(1) (1)F x F x <-⎧⎨>-⎩在F的图象上是否存在点C,使∠ABC=45°,若存在,求出点C的坐标;若不存在,请说明理由.参考答案1.A2.C3.D4.C5.B6.A7.C8.B9.D10.C11.(﹣2,﹣3)【详解】解:∵点P 和点Q 关于原点对称,点P 的坐标是(2,3),∴点Q 的坐标是:(﹣2,﹣3).故答案为:(﹣2,﹣3).12.32【详解】解:∵DE ∥BC ,,AED ACB ADE ABC ∴∠=∠∠=∠,∴ADE ABC ,∴AE DEAC BC=,∵23AE AC =,DE =1,∴32BC =,故答案为:32.13.y 1>y 2【详解】解:∵抛物线y=x 2-2x+1,∴抛物线开口向上,对称轴为直线2121x -=-=⨯,∴点A (2,y 1),B y 2)在抛物线y=x 2-2x+1上,且1<2,∴y 1>y 2.故答案为:y 1>y 2.14.44d t =-【详解】如图,过点A 作AC ⊥PQ 于点C∵222314y x x x ++=--+=-()∴P(1,4)∴PQ=4∵PB ⊥PA∴∠BPQ+∠CPA=90°∵AC ⊥PQ∴∠PAC+∠CPA=90°∴∠PAC=∠BPQ ∴△BQP ∽△PCA ∴AQ PC B QPC =∵点A 的横坐标为t (t >1)∴A(t,-t 2+2t +3)∴PC=4-(-t 2+2t +3)=4+t 2-2t -3=t 2-2t+1∵CA=t-1∴24211d t t t =-+-∴4(1)44d t t =-=-故答案为:44d t =-15.70︒【分析】连接BC ,由弧AB 、BC 、CD 的长相等,可得BAC BDC BCA DBC ∠=∠=∠=∠,设ACD ABD x ∠=∠=,在ABC 中,根据三角形内角和定理建立方程,解方程求得x 的值,进而即可求解.【详解】解:连接BC ,弧AB 、BC 、CD 的长相等,BAC BDC BCA DBC ∴∠=∠=∠=∠,设ACD ABD x ∠=∠=,40F ∠=︒ ,40BAC x ∴∠=+︒,40BDC BCA DBC x ∴∠=∠=∠=+︒,在ABC 中,404040180x x x x +︒++++︒+︒=︒,解得15x =︒,4055DBC BCA x ∴∠=∠=+︒=︒,4070AED BEC x x ∴∠=∠=++︒=︒.故答案为:70︒.16.80【分析】由旋转的性质可得∠ACB =∠AED ,AC =AE ,由外角的性质可得∠CAE =∠EFC =∠BFD =20°,由等腰三角形的性质可求解.【详解】解:如图,设AC 与DE 交点为O ,∵△ABC 绕点A 旋转一定角度得到△ADE ,∴∠ACB =∠AED ,AC =AE ,∵∠COE =∠CAE+∠AED =∠ACB+∠EFC ,∴∠CAE =∠EFC =∠BFD =20°,∵AC =AE ,∴∠ACE =∠AEC =80°,故答案为:80.17.开口向下,对称轴x =3,顶点坐标(3,10)【分析】把二次函数化为顶点式,即可得出开口方向、对称轴及顶点坐标.【详解】解:∵y =﹣x 2+6x+1=﹣(x ﹣3)2+10,∴开口向下,对称轴x =3,顶点坐标(3,10).18.(1)见解析(2)图见解析,A'(0,2),B'(-3,4),C'(-3,2)【分析】(1)根据旋转的性质即可画出△A'B'C';(2)根据点P ,A 坐标分别为P (0,1),A (1,1),即可在网格中建立平面直角坐标系,进而写出该坐标系下A',B',C'的坐标.(1)解:如图,△A'B'C'即为所求;(2)解:如图即为所求的平面直角坐标系,A'(0,2),B'(-3,4),C'(-3,2).19.2【分析】根据圆周角定理得到∠BAD=∠BCD=90°,根据勾股定理得到BD==(cm),求得BC=CD,于是得到结论.13【详解】解:解:∵BD为直径,∴∠BAD=∠BCD=90°,∵AB=12,AD=5,∴BD13=,∵AC平分∠BAD,∴∠BAC=∠DAC=45°,∴ BCCD =,∴BC =CD ,∴BC =CD BD ,故BC 的长为2.20.(1)见详解(2)67.5°【分析】(1)根据∠DAB =∠EAC ,得∠DAE =∠BAC ,从而证明结论;(2)根据平行线的性质得∠AED =∠EAC ,利用△ABC ∽△ADE ,得∠AED =∠C ,从而有∠EAC =∠C ,再利用三角形内角和定理可得答案.(1)证明:∵∠EAC =∠DAB ,∴∠BAC =∠DAE ,∵∠B =∠D ,∴△ABC ∽△ADE ;(2)解:∵AC ∥DE ,∴∠AED =∠EAC ,∵△ABC ∽△ADE ,∴∠AED =∠C ,∴∠EAC =∠C ,∵∠AEC =45°,∴∠C =(180°﹣45°)÷2=67.5°,∴∠C 的度数为67.5°.21.(1)证明见解析(2)203【分析】(1)如图,连接BC ,由题意知90ABC ∠=︒, AD BD=,可得90A ACB ∠+∠=︒,ACD BCD ∠=∠,由等边对等角与三角形外角的性质可知ECF CEF A ACD ∠=∠=∠+∠,根据ACF ACD ECF ∠=∠+∠可求90ACF ∠=︒,进而结论得证;(2)由90F BCF ∠+∠=︒,90ACB BCF ∠+∠=︒可得ACB F ∠=∠,4sin sin 5AB ACB F AC ∠===,则45AB AC =,证明ABC ACF ∽△△,则AB AC AC AF =,可得()2446655AC AB AB ⎛⎫=+=⨯+ ⎪⎝⎭,求出满足要求的AC 的值,根据12OC AC =求半径即可.(1)证明:如图,连接BC ,由题意知90ABC ∠=︒,AD BD =∴90A ACB ∠+∠=︒,ACD BCD ∠=∠,∵FC FE=∴ECF CEF A ACD∠=∠=∠+∠∵ACF ACD ECF∠=∠+∠∴90ACF ACD A ACD BCD A ACD ∠=∠+∠+∠=∠+∠+∠=︒∴AC CF⊥又∵OC 是半径∴CF 是O 的切线.(2)解:∵90F BCF ∠+∠=︒,90ACB BCF ∠+∠=︒∴ACB F∠=∠∴4sin sin 5ABACB F AC ∠===∴45AB AC=∵BAC CAF ∠=∠,ACB F∠=∠∴ABC ACF∽△△∴AB ACAC AF =即ABACAC AB BF=+∴()2446655AC AB AB AC AC ⎛⎫=+=⨯+ ⎪⎝⎭解得0AC =(不合题意,舍去),403AC =∴12023OC AC ==∴O 的半径为203.22.(1)A 种花苗的单价为30元,B 种花苗的单价为26元;(2)购买A 种花苗11盆,购买B 种花苗1盆花费最少.【分析】(1)设A 种花苗的单价为x 元,B 种花苗的单价为y 元,根据“购买A 种花苗3盆,B 种花苗5盆,则需220元;购买A 种花苗4盆,B 种花苗10盆,则需380元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总费用等于购买A ,B 两种花苗费用之和列出函数解析式,再根据函数的性质求最值.(1)解:设A 种花苗的单价为x 元,B 种花苗的单价为y 元,依题意得:35220410380x y x y +=⎧⎨+=⎩,解得:3026x y =⎧⎨=⎩.答:A 种花苗的单价为30元,B 种花苗的单价为26元;(2)设购买两种花的总费用为w 元,购买A 种花苗m 盆,则购买B 种花苗(12-m )盆,根据题意得:w=(30-m )m+26(12-m )=-m 2+4m+312=-(m-2)2+316,∵-1<0,0<m <12(m 为整数),∴当m=11时,w 最小,最小值为235,∴购买A 种花苗11盆,购买B 种花苗1盆花费最少.23.(1)6(2)()226724,072278,832y x x y x x ⎧=-+≤<⎪⎪⎨⎪=-≤≤⎪⎩【分析】(1)根据勾股定理可以直接求得BC 的长;(2)当点E 在线段BC 上时,△CDE 的面积与△ABC 重合部分的面积是△CDE 的面积,根据ABC EDC ∽得到CE 即可求出△CDE 的面积,当点E 在CB 的延长线上时,根据相似三角形的性质求出高OF 关于x 的表达式,即可求得ADO S △,从而得到ABC ADO y S S ∆∆=-,最终得到函数的解析式.(1)解:∵∠C =90°∴222BC AC AB +=,∴6BC ==;(2)解:当点E 在线段BC 上时,12DCE S DC CE=⨯ ∵∠C =90°,∠CDE =∠B ,∴=DEC A ∠∠,∴ABC EDC ∽,∴DCCEBC AC =,∵8,6,8AC BC DC x===-∴()()884863x CE x -==-,∴()()11488223DCE S DC CE x x ⎛⎫=⨯=-- ⎪⎝⎭∴()2283DCE S x =- ,如下图所示,当E 点于B 点重合,即BC=CE=6时,即()4863x -=,得72x =,∴当782x ≤≤时,()2283y x =-;当702x ≤<时,点E 在CB 的延长线上,如下图所示,设AB 交DE 于点O ,过点O 作OF AC ⊥,∵90DFO C ∠=∠= ,FDO CBA ∠=∠,∴FDO CBA ∽,∵90DFO C ∠=∠= ,A A ∠=∠,∴AFO ACB ∽,∴FODF AC BC =,AFFOAC BC=设=OF h ,DF n=∵=AF DF x n x+=+∴8686h nx n h ⎧=⎪⎪⎨+⎪=⎪⎩,6h=8n 即3h=4n6x+6n=8h 解方程组得:127h x =,∴2111262277ADO S AD FO x x x =⨯=⨯= ,22ΔΔ1666824277ABC ADO y S S x x =-=⨯⨯-=-+,∴()226724,072278,832y x x y x x ⎧=-+≤<⎪⎪⎨⎪=-≤≤⎪⎩.24.(1)135︒(2)①答案见解析;②21DE DF k =-【分析】(1)证明△BAD ≌△CAE (SAS ),由全等三角形的性质可得出∠AEC =∠ADB ,由等腰直角三角形的性质可得出答案;(2)①过点B 作BH ⊥BD ,交ED 的延长线于点H ,证明△BFH ≌△CFE (AAS ),由全等三角形的性质可得出BF =CF ;②设AD =x ,由等腰直角三角形的性质及全等三角形的性质可得出DF=2,则可得出答案.(1)解:∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴∠AEC =∠ADB ,∵AD =AE ,∠ADE =90°,∴∠ADE =45°,∴∠ADB =135°,∴∠AEC =135°;(2)解:①证明:过点B 作BH ⊥BD ,交ED 的延长线于点H ,由(1)可知△AEC≌△ADB,∴∠AEC=∠ADB=90°,BD=CE,∵∠DAE=90°,AD=AE,∴∠ADE=∠AED=45°,∴∠BDF=∠CED=45°,∴∠H=45°,∴∠BDH=∠H,∠H=∠CEH,∴BD=BH,∴BH=EC,又∵∠BFH=∠CFE,∴△BFH≌△CFE(AAS),∴BF=CF;②解:设AD=x,∵BD=kAD(k>1),∴BD=kx,∴DE2x,DH22kx,∵△BFH≌△CFE,∴EF=FH,∴DF+EF2,∴DF+DE+DF2kx,∴DF=222kx x,∴21DE DFk =-.25.(1)y 12=x 2﹣x 32-(2)2(3)存在C 点,符合条件的C点坐标为(23-,139)或(7,16)【分析】(1)设F 1与x 轴的交点为C 和D ,求出C 点和D 点坐标,然后求出C 点和D 点关于原点的对称点C'和D',再求出B 点的坐标,最后用待定系数法求出F 2的解析式即可;(2)设AB 上一点M ,过M 作y 轴的平行线MN ,交F 1于点N ,求MN 的最大值即可;(3)分点C 在F 1图象段和在F 2图象段两种情况分别求出C 点的坐标即可.(1)设F 1与x 轴的交点为C 和D,当12-(x+1)2+2=0时,解得x 1=1,x 2=﹣3,∴C (1,0),D (﹣3,0),∴C 点关于原点的对称点C'(﹣1,0),D 点关于原点的对称点D'(3,0),∵A (﹣1,2),∴A 点关于原点的对称点B (1,﹣2),设抛物线F 2的解析式为y =ax 2+bx+c ,代入B 点,C'点,D'点坐标得,09302a b c a b c a b c -+=⎧⎪++=⎨⎪++=-⎩,解得12132 abc⎧=⎪⎪=-⎨⎪⎪=-⎩,∴F2的解析式为y12=x2﹣x32-;(2)设AB上一点M,过M作y轴的平行线MN,交F1于点N,设直线AB的解析式为y=sx,代入A点坐标得s=﹣2∴直线AB的解析式为y=﹣2x,设M(m,﹣2m),则N(m,12-(m+1)2+2),∴MN12=-(m+1)2+2﹣(﹣2m)12=-m2+m3122+=-(m﹣1)2+2,∴当m=1时,MN有最大值为2,即平行于y轴的线段的长度的最大值为2;(3)存在C点,分C点在F1图象段和在F2图象段两种情况:①当C 点在F 1图象段时,作线段AB 的垂直平分线PQ ,且OP =OB =OQ ,∴Q (2,1),P (﹣2,﹣1),连接PB 并延长交F 于点C ,连接BQ 并延长与F 交于点C 1设直线PB 的解析式为y =rx+t ,∴212r t r t -+=-⎧⎨+=-⎩,解得1353r t ⎧=-⎪⎪⎨⎪=-⎪⎩,即直线PB 的解析式为y 13=-x 53-,∴215331(1)22y x y x ⎧=--⎪⎪⎨⎪=-++⎪⎩,解得26161261136113x x y y ⎧⎧+-==⎪⎪⎪⎪⎨⎨---⎪⎪==⎪⎪⎩⎩或(舍去),∴此时C (2613-,61139),②当C 点在F 2图象段时,同理可得直线BQ 的解析式为y =3x ﹣5,∴2351322y x y x x =-⎧⎪⎨=--⎪⎩,解得71162x x y y ==⎧⎧⎨⎨==-⎩⎩或(舍去),∴此时C (7,16),综上,符合条件的C 点坐标为(23-,139)或(7,16).。
人教版初三上册《数学》期末考试卷及答案【可打印】
![人教版初三上册《数学》期末考试卷及答案【可打印】](https://img.taocdn.com/s3/m/f282479a8ad63186bceb19e8b8f67c1cfad6eef6.png)
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。
A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。
()2. 两条平行线上的任意两个点之间的距离相等。
()3. 当两个数的和为0时,它们互为相反数。
()4. 函数y=2x+1的图像是一条直线。
()5. 正比例函数的图像经过原点。
()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。
2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。
3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。
4. 若一组数据的平均数为5,则这组数据的总和是______。
5. 若两个等腰三角形的底边长度相等,则它们一定全等。
()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。
2. 简述等腰三角形的性质。
3. 简述函数图像平移的规律。
4. 简述求解二元一次方程组的方法。
5. 简述众数、中位数、平均数的定义及区别。
五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。
若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
200801初三数学一期末抽测试题一.选择题:(每小题3分,共36分)1.2008的相反数是( ) (A ) -2008 (B)20081(C ) 2008 (D )8002 2.下列计算正确的是( )(A )222(2)2ab a b = (B ) 222()a b a b +=+(C ) 55102a a a += (D )2()1a a a a +÷=+3.下列调查中,比较适合用普查方式的是( )(A )宁波市某灯具厂节能灯的使用寿命 (B)宁波市居民年人均收入 (C) 宁波市今年初中生体育中考的成绩 (D)某一天离开宁波的人口流量 4.方程022=+x x 的根是( )( A ) 2-=x ( B)2,021-==x x (C) 2,021==x x (D) 0=x5.使分式24xx -有意义的x 的取值范围是( )( A ) 2x ≠ ( B) 2x = (C) 0x ≠ (D) 2x ≠- 6.如图,圆O 的半径为6,点A 、B 、C 在圆O 上,且45ACB ∠=︒则弦AB 的长是( )(A) 5 (B) 6 (C) (D) 7.若反比例函数 ky x=过点(-2,6),则 k 的值是( ) ( A ) 3-=k ( B) 12-=k (C) 12=k (D) 4=k 8.一个扇形的圆心角是120°,它的面积是3πcm 2,那么这个扇形的半径是( )cm (B)3cm (C)6cm (D)9cm 9.如果正n 边形的一个内角等于一个外角的2倍,那么n 的值是( ) (A ) 4 (B )5 (C )6 (D ) 710.100张面值为100元的新版人民币叠放在一起厚度达0.9cm,则价值为100万元的面值为100元人民币叠放在一起的厚度相当于( )(A )一支粉笔的长度 (B )教室里一扇门的高度 (C )一层楼房的高度 (D )一张学生课桌的高度11.一张桌子上重叠摆放了若干枚面值为1元的硬币,它的三种视图如下图所示,则这张桌子上共有1元硬币( )俯视图 正视图 左视图 (A )7枚 (B )9枚 (C )10枚 (D )11枚第6题图12.如图,矩形ABCD 中,AB=8,AD=6,将矩形ABCD绕点B 按顺时针方向旋转后得到矩形A BC D '''. 若边A B '交线段CD 于H,且BH DH =, 则DH 的值是( ) (A)74 (B) 823- (C) 254(D) 62 (第12题图)二.填空题:(每小题3分,共21分)13.若直角三角形的一个锐角为50︒,则另一个锐角的度数是________ 14.分解因式:328x x -=__________________________.15.梯形ABCD 中,AB//CD ,且AB=2,中位线MN=3,则CD=_______。
16.据宁波海关提供的统计数据显示,我市对外贸易在去年同期较快增长的基础上,继续呈快速增长态势,2007年1至11月,共实现外贸进出口总额514.3亿美元,用科学记数法表示514.3亿美元是__________美元17.有一列单项式按如下规律排列:2345,2,3,4,5,x x x x x --⋅⋅⋅ 则第10项可以表示成___________18.如图,AB ∥CD ,∠1=23︒,∠2+∠4=450︒,则∠3的度数是___________.(第18题图) 19.一个机器人从O 点出发,向正东方向走3米到A 1点,再向正北方向走6米到达A 2点,再向正西方向走9米到达A 3点,再向正南方向走12米到达A 4点,再向正东方向走15米,达到A 5点。
按如此规律走下去,若机器人走到点A 7时,离起点O 的距离是_____________米.三.解答题(第20、21、22题各6分,第23、24、25题各8分,第26题9分,第27题12分,共63分)20.先化简,再求值2(1)(1)(1)x x x x --+-,其中21x21.解不等式组⎪⎩⎪⎨⎧+<--≤-6291102153x x x x22.如图,是66⨯的正方形网格,每个小正方形的单位长为1.请在下列三个网格图中各画一个三角形,要求同时满足以下三个条件: (1)三角形的顶点在网格点上;(2)三角形是一个腰长为无理数的等腰三角形; (3)三角形的面积为6ABCD132423.已知:如图,四边形ABCD 为正方形,E 、F 分别为CD 、CB 延长线上的点,且DE =BF . (1)判断△AEF 的形状,并说明理由。
(2)若正方形ABCD 的边长为2,EF=62,求线段AE 的长。
24订购数量x (单位:本) 150x ≤≤51100x ≤≤100x >每本售价y (单位:元)151413请根据以上信息回答下列问题:(1)订购50本书和订购53本书相比,哪种订购方式所需总费用更少?(2)该出版社将8所学校的订购情况记录如下:80本,75本,70本,80本,85本,90本,50本,400本。
这本书在以上8所学校中销售量的中位数是多少? (3)请你帮出版社计算一下这本书在以上8所学校中的平均售价。
25.已知:如图,⊙O 的直径AB 与弦CP 互相垂直,垂足为D ,点Q 在PB 的延长线上,且Q ACP ∠=∠ .若⊙O 的半径为2.5,AC=3(1)求证: AB//CQ(2)求证:ACB ∆∽PCQ ∆ (3)求线段CQ 的长度。
(第25题图)第23题图A B CDEF26.根据统计图回答问题:某家庭该年月用电量的统计图20406080100120140用电量(千瓦时)用电量(千瓦时)11010090806080110120907080901月2月3月4月5月6月7月8月9月10月11月12月(1)求这份家庭该年月用电量的极差;(2每户每月用电量(单位:千瓦时) 不超过80千瓦时 超过80千瓦时的部分 电费总价(单位:元/千瓦时)ab已知该户家庭3、4、5月份的电费分别是.求a ,b 的值。
(3)根据(2)中的结果,计算这份家庭该年应交的电费总额。
27.已知:抛物线24y ax bx =++的对称轴为x=-1,且与x 轴相交于点A 、B ,与y 轴相交于点C ,其中点A 的坐标为(-3,0), (1) 求该抛物线的解析式;(2) 若该抛物线的顶点为D ,求△ACD 的面积。
(3) 在抛物线的对称轴上是否存在点P ,使得以A 、B 、C 、P 为顶点的四边形是梯形?若存在,求出所有符合条件的点P 的坐标,若不存在,请说明理由。
(第27题图)BACDy x初三数学抽测试题参考答案及评分意见二.填空题(每小题3分,共21分)三.解答题(第20-22小题各6分,第23-25题各8分,第26题9分,第27题12分,共63分) 20.解:原式2(1)(21)(1)x x x x -----------------4分当21x 时原式22(1)(211)2x -------------6分21.不等式组315210(1)916(2)2x xx x -≤------⎧⎪⎨-<+------⎪⎩ 解:由(1)得5x ≤ 由(2)得2x25x不等式组的解集为----------------------------6分22.画图略(每图2分,共6分) 23. 解:(1)△AEF 是等腰三角形.9090ABCD ABAD ABCADCABF ADE ABADABF ADE BF DEABF ADE AFAEAEF 四边形是正方形,在和中,是等腰三角形.------------4分(2)CB CD BF DE ==,90648CE CF C EF CE CF DE Rt ADE AE AE ∴=∠=︒=∴==∴=∴===----------------,而,在中,答:的长是分第23题图)A BC DEF24.解:(1)订购50本书的费用为50×15=750元;订购53本书的费用为53×14=742元所以订购53本书的总费用更少.-------------------3分 (2)这本书在以上8所学校中销售量的中位数是80本,----------------------------------5分(3)8所学校的总费用为:50×15+(80+75+70+80+85+90)×14+400×13=12670元所以每本书的平均售价为13.6元.-------------------8分 25.(1)Q ACP ∠=∠,()//2ACP ABP Q ABPAB CQ ∠=∠∴∠=∠∴-------------同弧所对的圆周角相等分(2)证明:AB O 是的直径 (第25题图)90//,905ACB AB CQ AB CPPCQ ACBA PACBPCQ ∴∠=︒⊥∴∠=︒=∠∠=∠∴-----------又分(3)53Rt ACB AB AC ==在中,,434 2.454.834,, 6.44.8: 6.4.8BC AB PC CD PD CP ACB PCQ CA CB CQ CPCQCQCQ ∴=⊥⨯∴===∴=∴===-----------直径,即解得答线段的长度为分26.解:(1)这份家庭该年月用电量的极差为120-60=60(千瓦时)---------2分 (2)由题意得602780(9080)43.2a a b =⎧⎨+-=⎩,解得0.450.72a b =⎧⎨=⎩答:a 的值为0.45元/千瓦时,b 的值为0.72元/千瓦时.-----------6分 (3)这份家庭该年应交的电费总额为(10807060)0.45(30201030401010)0.72526.5⨯++⨯+++++++⨯=元.-----9分27. 解:(1)由题意得2413,28934038433ba aa b b x x =--=--+==-∴-+-------⎧⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎩解得4抛物线的解析式为y=-分3(2)248433D y x x =--+点是抛物线的顶点16,3D ∴点的坐标为(-1)设AC 与抛物线对称轴的交点为E1688333181821232346ACD CDE ADESDE ss∴∴=-==+=⨯⨯+⨯⨯=----------------------分(3)设抛物线的对称轴与x 轴的交点为H若PC//AB ,则点P (-1,4)若PB//AC ,则,PHBCOA2288,,,(1,)4333PH BH PH PH P COAO===∴--即解得 若PA//BC ,则,PHACOB32,,8,(1,8)41PH AH PH PH P COBO===∴--即解得1238(1,4),(1,),(1,8)3P P P A B C ∴-----在抛物线对称轴上存在点使得以、、、P 为顶点的四边形是梯形。