LM317制作简易恒压恒流充电器
LM317实用恒压恒流充电器电路
LM317实用恒压恒流充电器电路
恒压恒流充电器电路
一:LM317 简介
LM317是应用最为广泛的电源集成电路之一,它不仅具有固定式三端稳压电路的最简单形式,又具备输出电压可调的特点。
此外,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高等优点。
其主要性能参数如下。
输出电压:1.25-37V DC;
输出电流:5mA-1.5A;
芯片内部具有过热、过流、短路保护电路;
最大输入-输出电压差:40V DC,
最小输入-输出电压差:3V DC;
使用环境温度:-10-+85℃。
二:组成恒压恒流充电器电路
本电路可以充6节镍氢或者镍镉等电池,具有恒压加恒流控制功能。
调试要点:
1:调整R2设置输出电压在电池充满时的最高电压:如6节电池,一般1节电池充满时1.4V左右,1.4V*6=8.4V。
设置输出最高电压就不会使电池过充。
2:调整R3设置输出电流,充电电流不要太大或太小,要适中。
根据三极管导通电压约0.6v计算,充电电流=0.6/4.7=128MA。
3:为了减少LM317的损耗,以及使电路稳定工作,设置输入电压在比输出电压高3V左右,本例输入电压在12V左右。
本电路具有过流保护的充电器电路:
三极管Q1和电阻R3、R4组成限流网络。
从图中可知,电阻R3、R4是三极管Q1的基极—发射极电阻,与充电电池串联在一起。
充电电流经过电阻R3,当电流过大时,R3上的压降超过0.6V,就会使三极管Q1导通。
输出电压降低,输出电流减小,从而达到限流充电的作用。
LM317恒流源
高性能电磁流量计之恒流源的设计
根据法拉利原理,电磁流量计的传感器里必需要有一对磁场,这一对磁场不像发电机一样用一对磁铁产生,而是通过一对线圈(线圈中间有一打铁氧体的磁芯)通电产生,通常我们称之为励磁。
为了使这一对线圈产生一个恒定的磁场,我们必需要使用恒流源。
那么恒流源是如何产生的呢?较早的电磁流量计的恒流源是用 4DH7 恒流管产生的,在维修电磁流量计的工作中,我们经常偶到仪表的恒流源损坏,原因是 4DH7 的质量不够好。
我们有没有更好的解决办法呢?答案是肯定的,下面我就介绍一种恒流源——基于 LM317 的恒流源。
LM317 是一种可调的三端稳压源,设计输出电流可达 1A,输出电压范围为 1.3~37V。
其封装方式有 SOT-223、D-PACK、TO-220 和D2-PACK,如下图:
LM317 的主要特性是:输出可调电压 1.3V~37V;输出电流达 1A;的主要特性是: 1、 2、3、内置短路保护;4、内置高温保护;5、
输出补偿;6、符合 RoHS 标准 7、内置 1.25V 基准电压等。
LM317 的引脚特点如下图所示:
LM317 组成的恒流源结构很简单,只要外部连接一只电阻,就可以设计成你所需要的各种电流,基本电路图如下:
由于 LM317 内部有一 1.25V 的基准电压,所以 V ( OUTPUT-ADJ )=1.25V, I out = Vref 1.25 = R1 + R 2 R1 + R 2 磁场强度 B = k?
0 NI (k 为比率系数、μ0 为真空磁导率、N 为线圈匝数、I 为流过线圈的电流大小)。
由以上条件,电磁流量计的传感器的磁场强度就可以近似的计算了。
自制简单实用的充电器
自制简单实用的充电器现在充电电池的应用越来越广泛,如手机,应急灯,随身听,照相机,玩具等。
这些产品一般只配有一个充电器。
而且它们输出电压不相等或者插口不同,不能相互代换。
如果充电器被烧坏则很难买到同型号产品。
作者经过多次实践自制了几款简单实用的充电器,本充电器的核心是78xx稳压集成块。
且整个电路所用元件少,制作简单,无需调试,只要焊接无误一次就能成功。
原理图见1。
本充电器的原理是根据充电电池对外放电后它的输出电压会降低,对它充电时当充足时电池两端的电压将高于它的额定电压的10%左右,所以抓住这点利用78xx稳压集成块和二极管等控制充电器的输出电压就等于的电压值。
图1中D1D2是整流二极管。
C1是滤波电容。
小灯泡L在这里有两个作用;第一个是限流。
就是说对电池充电的电流大小取决于串联灯泡的电阻所以选择小灯泡时要注意,它的额定电压尽可能接近变压器的输出电压,这样做的目的是可以防止万一输出端短路而烧坏零件。
额定功率选小些,则充电电流小些,这样有利于延长电池的寿命。
如果要快充则小灯泡的功率选大些。
第二是指示作用。
灯亮表示正在充电,灯熄灭表示电池已充满,因为电池充满时它两端的电压等于充电器的电压此时无电压差就没有电流。
所以灯熄灭。
在公共端串联二极管或稳压二极管可以升高输出电压在输出端串联二极管可以降低输出电压这样可使输出电压达最理想。
例如图2是对3v充电电池的充电器。
选用7805则图3是对12v充电电池的充电器。
则如果能寻到稳压集成块LM317T那是最理想的,那就可以做万能充电器,只需调节可变电阻就能改变输出电压。
LM317制作简易恒压恒流充电器
LM317制作简易恒压恒流充电器直想做一台高级而复杂的全功能智能充电器,最后发现简单可靠实用才是真理,怎样实现简单可靠?串联充电比并联充电简单,缺点是电池要求容量比较一致,线性降压比开关降压简单,缺点是效率比较低发热大,大电流充电节约时间但是发热大电池寿命影响也不小,负斜率或者零增量侦测电池是否充满的缺点是电路复杂并且因为电池性能的关系并不可靠,目前电池的充电方式大多数推荐是恒流。
所以一台简单可靠的充电器要完成的功能特点应该有:能充多节电池,有恒流充电功能,有防止过充功能。
实现方法其实很简单:串联,恒压,恒流。
如果用稳压电源来充电的话,初期电流太大,若串入限流电阻的话,当电池电压升高后电阻就限制了充电电流使充电时间过长。
恒流恒压只是相对的,具体来说应该是前期恒流后期恒压,顺便说一下,这种方式非常适合给锂电池充电。
在网上找了很久,都没有找到满意的线路,猛的发现在LM317规格书内就有这个充电线路,原名叫做恒压限流充电器,真是踏破铁鞋无觅处,稍作修改就是自己需要的东西,并且可以做成万能充电器。
按照上图,我做的是一台一次充4节镍氢或者镍镉电池的充电器,经测试发现很理想,并且前期限流基本是恒流,后期恒压。
调试很简单,只要调整R2设置输出电压在你需要的电压上,比如镍氢电池充满是1.45v一节,4节就是5.8v,R2建议用那种精密可调电位器,多圈小型那种既稳定又能微调,R3的选择你需要的充电电流,现在充电电池容量都不小,不想充电速度太慢或太快,充电电流可以取适中,比如我取的2.2欧姆根据三极管导通电压约0.6v计算电流在270ma。
为了减少LM317的损耗,输入电压设置在比输出电压高3V,如1.45×4+3 约9v,如果你觉得LM317上3v损耗还是太大,可以把LM317换成1117这种1v的低压降IC(没试过), 如果你觉得串联充电不够好,可以只充一节电池,多做几组就可以了,其实对于一直成组使用的电池串联充电没有什么不好,充放电电流都是一致的。
制作一台数控恒压恒流电源
制作一台数控恒压恒流电源(上)(一)2010-11-12 16:03:17 来源:《无线电》杂志魏坤【作者:肖庆高大中小】浏览:2874次评论:0条直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。
对于一个电子爱好者来说,直流稳压电源也是必不可少的。
要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。
很显然这篇文章不是教你如何去选购一台直流稳压电源……基本的恒压恒流电源结构框图如图1所示。
由电压基准源、调整管、误差放大、电压取样以及电流取样组成。
电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。
取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。
这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。
而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。
基本恒压恒流电源框图图2图1 基本稳压电源简图图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。
输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref (1+R3max/R2)。
这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。
用LM317做限压恒流充电电路
用LM317做限压恒流充电电路LM317是一个性能良好、应用普遍的三端可调稳压集成电路。
外接两个电阻后其输出电压在1.25V到37V之间可调。
本文将介绍利用LM317设计的限压恒流充电电路。
其电路简单,元件少,工作稳定可靠。
电池电压为12V/10Ah。
充电电流为恒流1A,充满电时自动停止。
电路如图1所示:图中D1-D4组成桥式整流电路,把由变压器输出的18.5V交流电压变成直流脉冲。
IC1是三端稳压集成块,由外接电阻R1和R2组成一个稳压电路。
其等效电路如图2所示。
其稳压输出设计为16.5V。
其中R1取值200Ω,R2可以计算如下:u1由IC1决定为1.25Vu2=u0-u1=16.5-1.25=15.25R1和R2中的电流i1是相等的。
i1=u1/R1=1.25/200=0.00625(A)R2=u2/i1=15.25/0.00625=2440(Ω)以上电路是一个典型的稳压设计。
C1是为了改善输出特性,取值0.01Uf.电阻R3和二极管D5、D6及电池组GB等组成恒流充电回路。
其等效电路如图3所示。
原理如下:由于R1两端电压u1(1.25V)是稳恒定不变的,电阻R3经二极管D5并联在R1两端,只要电阻R3一定,流过R3的电流i就恒定。
计算R3的阻值如下:设定充电电流为1A,即i=1A。
在不考虑二极管D5的影响时下可以认为R3=u1/i=1.25/1=1.25Ω应为二极管的正向压降约为0.7V。
所以应该是R3=(u1+0.7)/1=1.95Ω。
实际选2W2Ω为好。
二极管D6是防止停电后电池回流的,其值要选2-5A的。
工作原理:当蓄电池GB欠压时,其电压不足12V 甚至更低,这个电压由于二极管D5的作用把IC1的1脚紧紧拉下,使IC1的2脚输出电压跟随变低,电压大大地低于设计稳压值16.5V。
此时 R1和R2的稳压偏置不起作用,电路完全由R3和IC1组成恒流源电路在工作。
进入恒流充电状态。
随着充电时间的延长,蓄电池GB电压逐渐升高,同时IC1的2脚输出电压也不断被抬高,当蓄电池GB电压达到14.85时,同时IC1的2脚输出电压也达到了设计稳压值 16.5V。
用LM317制作的电源几例
图12为另一款能从0V起调的电源装置。它由T1、D1、D2、C1、C2组成一组正负对称的电源为IC2(TL082)提供电源。由图11可以看出,IC2的同相端(3脚)电压为(Vo-1.25)/2,IC1的2脚电压为Vo-1.25V,这样保证了电路能从0V起调。
图12
为保证稳压准确,设计电路板时主电流回路应足够宽,并焊上1mm以上的铜导线或涂锡,以减少纹波电压。C6、C8尽量靠近LM317的输入、输出端,并优先采用无感电容。C5如无合适容量,可用几只电容并联。R3、R4可用锰丝自制。
调试时,调整RP1、RP2应使继电器K在电源输出14V左右时应吸合,否则可调换稳压二极管再试。
输出电压调整由RP1、RP2完成。其中RP1为粗调,RP2为精调。附加晶体管T1的目的在于避免电位器RP1滑动端接触不良,使LM317调整公共端对地开路,造成输出电压突然变化,损坏电源及负载。
双色发光二极管作为保险丝熔断指示器(红光)兼电源指示器(橙色光)。当电源正常时,两只发光二极管均加有正向电压,红、绿发光二极管均发光,形成橙色光。当保险丝FU2断开时,仅红色发光管加有正向电压,故此时只发红光。
图7
4)慢启动15V电源(图8);
输出电压Vout通过R1、V1对C2充电,V1饱和导通,Vo输出最低(约1.5V)。随着C2上的电压升高,V1逐渐退出饱和并趋于截止,Vout逐渐升高至额定电压。
改变R1、C2的常数可改变软启动的时间。D1用于关机后使C2上的电荷快速泄放。改变R2的值可调整输出电压Vout的值,图8示参数输出电压为15V。图中V1可用9012替换。
图8
5)5V逻辑电平控制的电源(图9);
当外来的TTL控制信号使V1截止时,输出电压为5V。同样改变R2的值可获得不同的电压输出。V1可用9013等NPN管替换。
用LM317T制作可调稳压电源
用LM317T制作可调稳压电源,常因电位器接触不良使输出电压升高而烧毁负载。
如果增加一只三极管(如下图所示),在正常情况下,T1的基极电位为0,T1截止,对电路无影响;而当W1接触不良时,T1的基极电位上升,当升至0.7V时,T1导通,将LM317T的调整端电压降低,输出电压也降低,从而对负载起到保护作用。
如去掉三极管、断开W1中心点连线,3.8V小电珠立刻烧毁,测输出电压高达21V。
而加有T1时,小电珠亮度减小,此时LM317T输出电压仅为2V,从而有效的保护了负载。
此电路可以应用于单键开、关电源,有很宽的电压范围(4.5V~40V,最大19A的电流),R5为可选,当输入电压小于20V时可短接;输入电压大于20V时建议接上,R5的取值应满足与R1的分压使MOS管V1的GS电压大于-2 0V小于-5V(在V2导通时),尽量使V1的GS电压在-10V~-20V之间以使V1输出大电流。
按钮按下前,V2的GS电压(即C1电压)为零,V2截止,V1的GS电压为0,V1截止无输出;当按下S1,C1充电,V2 GS电压上升至约3V时V2导通并迅速饱和,V1 GS电压小于-4V,V1饱和导通,Vout有输出,发光管亮(此时应放开按钮)C1通过R2、R3继续充电,V1、V2状态被锁定;当再次按下按钮时,由于V2处于饱和导通状态,漏极电压约为0V,C1通过R 3放电,放至约3V时,V2截止,V1栅源电压大于-4V,V1截止,Vout无输出,发光管灭(放开按钮),C1通过R2、R3及外电路继续放电,V1、V2维持截止状态。
注:S1使Vout打开或关闭后应放开按钮,不然会形成开关振荡。
本文介绍的几种市电指示灯,具有简单易做、用电安全、耗电甚微等特点图1所示电路中只有两个元件,R选用1/6W~1/8W碳膜电阻或金属膜电阻,阻值在100~300K之间。
Ne为氖泡,也选用普通日光灯启辉器中的氖泡,若想选用体积小且在60V左右即能启辉的氖泡,其型号为NNH-616型,电阻R选用270K的1/6W金属膜电阻。
利用LM317的LED恒流源电路图
利用LM317的LED恒流源电路图
本文介绍的是一款利用LM317的LED恒流源电路图。LED要恒流供电,不然容易老化损坏。可以用LM317,原理是利用317的启探控电压不变,再除电阻,就Байду номын сангаас恒流值。灯可以根据需求接多少个。改变R1可改变电流,电流=1.25/R1.电路如下图所示。
为了方便大家更好的学习,畅学电子网特别增加了针对单片机和EDA的公众号,每天推送相关知识,希望能对你的学习有所帮助!
lm317恒流源
lm317 恒流源
YW-UTC317完美替换LM317。
IC网络超市-第一价值网
LM317 恒流电路:IN脚接输入电压正,OUT脚接一个电阻后为恒流输出,ADJ脚直接接到恒流输出,就是OUT脚的电阻的另一端,负载正接在这里,因为LM317里面有基准的1.25V电压,这个电压在317里面有稳压措施,所以会一直保持不变,这个电压就在电阻的两端(OUT脚与ADJ脚),电阻值是定的,电压也是定的,流过电阻的电流就是恒定不变的。
恒流值=1.25V/电阻(欧姆)
涉及的器件有如下几种:
(1)LM317稳压块,电子市场有售,2¥一个;
(2)10欧姆电阻1个,功率最好在1W之上,不超过1¥一个;
(3)高亮度LED灯20个,一般不超过0.5¥一个;
(4)PCB试验板一块,一般不超过3¥一块;
(5)100欧姆电阻4个,功率最好在1W之上,不超过1¥一个;
建议按照上述电路焊接,其电路原理是LM317和10欧姆构成一个125mA的恒流源,流过四组LED 灯和100电阻,平均每个LED灯的电流在20mA,为LED工作典型值。
100欧姆电阻是防止有LED损坏后,降低对该LED灯组上的电压变化值(及电流),注意输入电压不能太小了,建议为12v。
恒流恒压利用lm317给锂电池打一针鸡血!
恒流恒压利用lm317给锂电池打一针鸡血!在上一篇文章中,很尴尬的犯了一个常识性的低级错误,将手机锂电池3.7V误说成4.7V,真是非常尴尬。
在这里跟各位读者说声抱歉!日后定会多加细心注意。
上篇文介绍了利用MC34063给锂电池升压供万能表使用,既然有锂电池必然是要有充电器的。
所以这次给大家介绍下利用简单的LM317与TL431组成的简易充电器,输入电源为12V,具有可调恒压、可调恒流、充满自停、LED指示灯等功能。
LM317在之前的文章中已经说过,便不再多说,此次主要介绍TL431。
TL431是一款具有良好热稳定性能的三端可调分流基准源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
该器件典型动态阻抗为0.2Ω,在很多应用中都能看到它的身影。
我们来看看手册给出的资料↓。
功能框图↓电气符号、引脚排列及等效电路↓A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。
前面已经说了,TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。
当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。
显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。
选择不同的R1和R2的值可以得到从2.5V 到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。
需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA 。
1、现在来看看我们要制作的恒流恒压充电器原理图↓此图中,恒流电路部分由IC1-LM317与电阻R2构成,恒流电流的大小由电阻R2决定,R2=1.95V/所需的充电电流(1.95V是LM317的启控电压1.25V与二极管D1的结电压0.7V之和)。
LM317稳压电源电路图
LM317稳压电源电路图描述LM317稳压电源电路图用LM317三端可调稳压IC制作的可调稳压电源简单易制,成本低廉,但是这种稳压电源的最低输出电压只能调到1.25V。
在搞电子电路测量或调试时,有时要求稳压电源的输出电压能从0V起调。
下面我们介绍一个简单的小电路,只要对LM317的电路略做改动,即可使其输出电压从0V起调。
在一般的LM317可调稳压电路中,调压电位器RP的下端都是接地的,这样当RP的阻值为零时,LM317的最小输出电压为1.25V,这个电压是LM317调整端与输出端之间的固定电压。
本电路中,采用负三端可调稳压IC——LM337L来产生一个-1.25V的稳定电压,并将RP的下端接这个-1.25V的电压,这样当RP调至0Ω时,LM317的输出电压即为0V。
为了制作方便,本电路采用单电源变压器,其次级交流电压经二极管VD1、VD2整流后,产生一正一负两组电压,正电压经电容C1滤波后,送至LM317的输入端,经LM317稳压后输出的便是稳定的直流电压。
经VD2整流及C2滤波后产生的负电压送至LM337L的输入端,经LM337L稳压后输出一个-1.25V的稳定电压。
图中LM317输入端与输出端之间并联的二极管VD3为保护二极管。
本电路调整电位器RP的阻值即可改变输出电压。
若RP选用2.2KΩ的电位器(最好选用多圈电位器),其输出电压可在0~24V之间调整。
一般让LM317输出电压可调至0V的稳压电路都是采用1.2V的稳压管构成的,由于稳压值为1.2V的稳压管很难买到,并且稳压精度也不高,故有时也采用两个硅二极管串联来代替1.2V的稳压管。
不过用两个串联的硅二极管作为稳压管,其稳压性能较差,并且稳压值很难精确控制在-1.25V,而图1电路中采用LM337L产生的-1.25V电压的稳定性及精度是普通稳压管难以达到的。
LM317T自制可调稳压电源电路图LM317T制作可调稳压电源,常因电位器接触不良使输出电压升高而烧毁负载。
恒流恒压充电器的原理与设计
恒流恒压充电器的原理与设计随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!第一类、lm317恒流源电路图图1、图2分别是用78××和LM317构成的恒流充电电路,两种电路构成形式一致。
对于图1的电路,输出电流Io=Vxx/R+IQ,式中Vxx是标称输出电压,IQ是从GND端流出的电流,通常IQ≤5mA。
当VI、Vxx及环境温度变化时,IQ的变化较大,被充电电池电压变化也会引起IQ的变化。
IQ是Io的一部分,要流过电池,IQ的值与Io相比不可忽略,因而这种电路的恒流效果比较差。
对于图2的电路,输出电流Io=VREF/R+IADJ,式中VREF是基准电压,为1.25V,IADJ是从调整端ADJ流出的电流,通常IADJ≤50μA。
虽然IADJ也随VI及环境条件的变化而变化,且也是Io的一部分,但由于IADJ仅为78××的IQ的1%,与Io相比,IQ可以忽略。
可见LM317的恒流效果较好。
对可充电电池进行恒流充电,用三端稳压集成电路构成恒流充电电路具有元件易购、电路简单的特点。
有些读者在设计电路时采用78××稳压块,如《电子报》2001年第2期第十一版刊登的《简单可靠的恒流充电器》及今年第6期第十版的《恒流充电器的改良》一文,均采用7805。
78××虽然可接成恒流电路,但恒流效果不如LM317,前者是固定输出稳压IC,后者是可调输出稳压IC,两种芯片的售价又相近,采用LM317才是更为合理的改良。
LM317采用T0-3金属气密封装的耗散功率为20W,采用TO-220塑封结构的耗散功率为15W,负载电流均可达1.5A,使用时需配适当面积的散热器。
由于LM317的VREF=1.25V,其最小压差为3V,因此输入电压VI达4.25V就能正常工作。
但应注意输出电流Io调得较大时,输入电压VI的范围将减小,超出范围会进入安全保护区工作状态,使用时可从图3的安全工作区保护曲线上查明输入—输出压差〔VI-Vo〕的范围。
基于LM317的恒流恒压充电电路
基于LM317的恒流恒压充电电路基于LM317的恒流恒压充电电路本组认为LM317比MC34063A芯片更常用更简易。
固权衡后,以为设计本身服务为原则,采用LM317芯片搭建模块一的恒流恒压主电路。
模块一:用恒流充电以时间来控制通、断电,易造成充不足或过充电;而用恒压充电,当开始充电时,由于电池电压比较低,充电电流过大会对电池有害。
此恒流-恒压充电器对两者取长补短,开始时恒流充电,当电池电压升到某一值时变为恒压充电。
如图电路,开始充电时电池电压较低,不能使VS导通,LM317接成恒流充电形式,充电电流I=1.25/R。
充电一段时间后,电池电压上升到某一值时,VS导通,LM317 1脚通过RP1和VS接地,此时变成恒压充电,充电电压U=1.25[1+(R2/R1)-0.7],式中R2--RP1取值,R1—(R+R1)取值。
充电电流若很大,可在VD2上并联二极管。
R 承受功率W》1.6/R。
VS尽量选用导通电阻小的单向晶闸管。
使用时选择R阻值,从而确定恒流充电电流,然后调RP1得恒压充电电压,最后调RP2,使VS导通时电池电压应比充电电压低0.2V 左右。
模块二:利用指示灯显示充电电量多少,即利用多谐振荡器将直流电压转换成一定频率的交流电压使得发光二极管有相同频率的闪烁。
经过筛选我们选择了时精确度高、温度稳定度佳,且价格便宜的NE555来搭建振荡电路,而且由于其只需简单的电阻器、电容器,即可完成特定的振荡延时作用以及它的操作电源范围极大,可与TTL,CMOS等逻辑电路配合,其输出端的供给电流大,可直接推动多种自动控制的负载,使得其相对于其他振荡电路更具有优势。
NE555多谐振荡电路如下:多谐振荡器的放电时间常数分别为t PH≈0.7×(R1+R2)×C1t PL≈0.7×R2×C1振荡周期T和振荡频率f分别为T=t PH+t PL≈0.7×(R1+2R2)×C1f=1/T≈1/[0.7×(R1+2R2)×C1]图中Vcc接输入电压,输出端接发光二极管,设计时取时间常数T=0.25,二极管发光频率为4Hz。
LM317制作可调恒压恒流电源
LM317 制作可调恒压恒流电源该LM317 可调集成稳压器既能恒压也能恒流。
可用它给试验电路供电、给充电电池或电瓶充电。
交流电源经T 降压,整流、滤波后供给可调集成稳压器LM317 。
恒压输出时:电压分0-5-10-15-20-25-30-35V 共七挡。
由开关sA2 进行粗调,W 进行细调,R3 ~R8 为分压电阻。
恒流输出时:将电流经过R11 的压降作为取样信号,由W 调节控制Q1 的导通,Q1 的 C 极接LM317 的调整端,控制LM317 的输出电压以达到恒流的目的。
无论恒压或恒流输出,W 的活动臂都是向下输出加大,反之减小。
输出有三只接线柱,其中一只为共用,另外两只分别为恒压输出与恒流输出。
由于LM317 本身输出电流较小,在这里用一只3DD15 进行扩流。
输出端的指示由SA4 进行转换(0 ~15 ~45V ,O ~0.15A ~0.75A ~3A) 。
恒流电流I 为0.5A( 取样电阻10 Ω、电压5V) ,若想加大恒流电流1 只需在电压输出端和电流输出端之间接一电阻R(R=5 ÷ I) 即可。
输出指示为一只500 μ A 的85C1 表头( 内阻加附加电阻为150 Ω )SA3 为恒压恒流转换开关。
元器件的选择与调试:电源变压器容量选150VA ,最大输出电流 3.6A 左右。
3DD15 要配200mm 乘以60mm 乘以3mm 的铝板散热器。
W 选WDI3 型多圈线绕电位器。
R3 ~R8 的阻值误差要小于2 % ,R12 ~R15 的阻值误差要小于 1 %。
其他元件无特殊要求。
调试时先将SA2 置于0 ~5V 挡。
SA3 置于恒压挡,SA4 置于15V 挡,W 左旋到底。
在共用与电压两接线柱上接-10W/5 Ω的电阻。
接通电源SA1 后,调节w 至最大,观看输出指示是否为5V ,微调电阻R9 使输出为5V 即可( 低于5V 减小R9 的阻值,高于5V 增大R9 的阻值) 。
图解简易恒流充电器的制作
图解简易恒流充电器的制作本文介绍的是一只成本低廉、制作方便的恒流充电器。
它可以为除锂电池之外的各种镍氢或镍镉电池充电,采用直流输入方式以适应外场使用,适合遥控设备的发射、接收及点火器充电之用。
本充电器成本仅为几十元,但效果要好于一般的墙上型恒压充电器。
而且它的制作并不需要深厚的电子基础,如果您是一位富有DIY精神的航模入门者,暂时还不想购买动辄千元的全能型充电器,那么您不妨参考本文动手一试。
原理1.图示为本充电器的核心元件:LM317三端可调稳压芯片。
常见的TO220塑料封装形式可以提供1.5A的工作电流,当采用图示的电路连接方式时便成为了一个1A的恒流源,电流的大小不受负载(电池)变化的影响。
2.这是另外一个重要元件:RS-9700温度开关,用于使充电器充满自停。
我们知道,充电过程中充满电的电池温度会升高,所以如果将这个温控开关串联到电路中,当温度升高到一定时电路便会自动切断。
本充电器选用的是40度关断的型号。
建议最高不要超过50度,否则会损伤电池。
所需元件及工具3.图中就是制作本充电器所需的全部元件,见下表:4.好的工具是工作能够顺利进行的保证,制作本充电器要准备一支得心应手的烙铁以及图中的各种相关工具。
外壳的加工5.首先在仪器盒上把所有要开的孔画好,包括安装电流表,选择开关,指示灯,输出端口的孔位等,风扇散热设计了好多大小不一的孔,用打印机在不干胶贴纸上打好再直接贴到盒子上就方便多了。
6.接下来使用电钻开孔,要注意安全。
这一步直接影响到将来充电器的美观,需要找准位置,耐心仔细的进行。
7.电流表和输出端子的安装孔使用锯子和锉刀切割,盒子加工完毕后将毛刺除干净,用洗洁精清洗掉残留的划线。
安装面板8.安装开关,指示灯和散热风扇。
风扇采用螺栓固定,以便于日后拆卸维护。
9.装好了的上部面板,螺丝要锁牢固,不能松动。
的是5V电源,所以要按图示串入一个750欧限流电阻。
使用热缩管套好。
接好。
注意导线要绞起来布好后用扎带固定。
恒流恒压充电器的原理与设计
正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。
知道了快慢充的概念后,我们还需要了解充电器的情况才能对电池正确充电。目前市场
上的充电器主要分为恒流充电器和自动充电器两种
二、恒流充电器
恒流充电器是市场上最常见的充电器,从镍镉电池时代,我们就开始使用恒流充电器。恒流充电器通常使用慢速充电电流,它的使用相对比较简单,只需将电池放在电池仓中即可充电。需要注意的是,对充电时间的计算要准确。
对充电时间的计算有个简单的公式:Hour=1.5C/充电电流。例如:对1200mAH的电池充电,充电器的充电电流为150mA,则时间为1800mAH/150mA等于12小时。当然在很多时候并不能计算出正好的时间,我们可以挑离得最近的半小时以方便记时。例如:充电器的电流为160mA,对1400mAH的电池充电,则时间为2100mAH/160mA约为13小时,而不用计算到分。
对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快和慢充才能正确掌握充电。
首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢?
恒流恒压充电器的原理与设计
随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!
恒流恒压稳压电源的设计与制作
恒流恒压稳压电源的设计与制作摘要:。
本人设计的此直流恒流恒压电源是将交流电压转化为输出电压电流稳定的直流电源,电路的特点是:当负载电阻小于25欧姆时,输出为恒流,也即恒流源,有0.3A和0.6A两个档位。
当负载电阻大于25欧姆时,输出为恒压,也即电源为恒压源,有9V.12V和15V三个档位。
关键词:直流电源恒压源恒流源工作原理0 引言随着电子技术的发展,特别是电子计算机技术应用到各工业、科研领域后,各种电子设备都要求稳定的直流恒流恒压电源供电,电网直接供电已不能满足需要,直流恒流恒压电源的出现解决了这一问题。
目前直流恒流恒压电源的发展更快,它的种类繁多,功能不同应用非常广泛。
我们日常生活中的许多电器设备中都含有直流电源。
直流恒流恒压电源易于设计、配置、稳定、调节,随着电器的不断发展,它的应用会更多。
种类及功能都会进一步发展,以满足人们的需要。
通过直流稳压电源设计,把所学的知识用于实践,了解一些电子产品的设计原理,可以达到触类旁通的功效。
1 其它电源的发展近些年来,随着电子技术的迅猛发展,开关稳压电源已作为一种较理想的电源为人们所使用。
然而当前的开关稳压电源,虽然体积小,效率高,但输出电压的纹波较大Ⅲ,难以保证输出电压的高稳定性。
非隔离DC/DC技术发展也非常迅速。
现在的非隔离的DC/DC基本上分成两大类。
一是在内部含有功率开关元件,称DC/DC转换器;二是不含功率开关.需要外接功率MOSFET,称DC/DC控制器按照电路功能划分有降压的BUCK、升压BOOST,还有升降压的BUCK—BOOST等.以及正压转负压的INVERTOR等。
其中品种最多芨展最快的是BUCK型。
控制方式以PWM为主。
1.1 初级PWM控制IC不断优化有源筘位技术自从2002年VICOR公司此项专利技术到期解禁之后新型有源箝位控制IC纷纷涌现。
在大功率领域,全桥移相ZVS软开关技术在解决开关电源的效率上功不可没。
INTERSIL公司推出的PWM 对称全桥的ZVS控制IC—ISL6752,既能控制初级侧的四个MOS开关为ZVS工作状态,又能准确地给出控制二次侧的同步整流为ZVS工作状态的驱动信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LM317制作简易恒压恒流充电器
上传者:mmcqd2010浏览次数:188888分享到:开心网人人网新浪微博EEPW微博
一直想做一台高级而复杂的全功能智能充电器,最后发现简单可靠实用才是真理,怎样实现简单可靠?串联充电比并联充电简单,缺点是电池要求容量比较一致,线性降压比开关降压简单,缺点是效率比较低发热大,大电流充电节约时间但是发热大电池寿命影响也不小,负斜率或者零增量侦测电池是否充满的缺点是电路复杂并且因为电池性能的关系并不可靠,目前电池的充电方式大多数推荐是恒流。
所以一台简单可靠的充电器要完成的功能特点应该有:能充多节电池,有恒流充电功能,有防止过充功能。
实现方法其实很简单:串联,恒压,恒流。
如果用稳压电源来充电的话,初期电流太大,若串入限流电阻的话,当电池电压升高后电阻就限制了充
电电流使充电时间过长。
恒流恒压只是相对的,具体来说应该是前期恒流后期恒压,顺便说一下,这种方式非常适合给锂电池充电。
在网上找了很久,都没有找到满意的线路,猛的发现在LM317规格书内就有这个充电线路,原名叫做恒压限流充电器,真是踏破铁鞋无觅处,稍作修改就是自己需要的东西,并且可以做成万能充电器。
按照上图,我做的是一台一次充4节镍氢或者镍镉电池的充电器,经测试发现很理想,并且前期限流基本是恒流,后期恒压。
调试很简单,只要调整R2设置输出电压在你需要的电压上,比如镍氢电池充满是1.45v一节,4节就是5.8v,R2建议用那种精密可调电位器,多圈小型那种既稳定又能微调,R3的选择你需要的充电电流,现在充电电池容量都不小,不想充电速度太慢或太快,充电电流可以取适中,比如我取的2.2欧姆根据三极管导通电压约0.6v计算电流在270ma。
为了减少LM317的损耗,输入电压设置在比输出电压高3V,如1.45×4+3 约9v,如果你觉得LM317上3v损耗还是太大,可以把LM317换成1117这种1v的低压降IC(没试过), 如果你觉得串联充电不够好,可以只充一节电池,多做几组就可以了,其实对于一直成组使用的电池串联充电没有什么不好,充放电电流都是一致的。
前面也说了,这电路用来充单节锂电池,单节磷酸铁锂电池很合适。
只需要把输出电压设置在电池的截止电压。