19.3八年级下数学方案选择问题

合集下载

新人教版八年级数学下册19.3课题学习选择方案习题doc

新人教版八年级数学下册19.3课题学习选择方案习题doc

新人教版八年级数学下册《19.3 课题学习 选择方案》习题doc部份预览 分析:(2)由装运每种土特产的车辆都很多于3辆,可得甲:x ≥3乙:y ≥3丙:(20-x-y )≥3把第(1)的结论代入消去y ,再解不等式即可.(3)列出利润(因变量)与装运甲种土特产的车辆数x (自变量)的函数关系,依照函数图象的性质即可解出 4、宏志中学九年级300名同窗毕业前夕给灾区90名同窗捐赠了一批学习用品(书包和文具盒),由于零花钱有限,每6人合买一个书包,每2人合买一个文具盒(每一个同窗都只参加一件学习用品的购买),书包和文具盒的单价别离是54元和12元. (1)假设有x 名同窗参加购买书包,试求出购买学习用品的总件数y 与x 之间的函数关系式(不要求写出自变量的取值范围); (2)假设捐赠学习用品总金额超过了2300元,且灾区90名同窗每人至少取得了一件学习用品,请问同窗们如何安排购买书包和文具盒的人数?现在选择其中哪一种方案,使购买学习用品的总件数最多?部份预览 分析: (2)由装运每种土特产的车辆都很多于3辆,可得 甲:x ≥3 乙:y ≥3 丙:(20-x-y )≥3 把第(1)的结论代入消去y ,再解不等式即可. (3)列出利润(因变量)与装运甲种土特产的车辆数x (自变量)的函数关系,依照函数图象的性质即可解出 4、宏志中学九年级300名同窗毕业前夕给灾区90名同窗捐赠了一批学习用品(书包和文具盒),由于零花钱有限,每6人合买一个书包,每2人合买一个文具盒(每一个同窗都只参加一件学习用品的购买),书包和文具盒的单价别离是54元和12元.(1)假设有x 名同窗参加购买书包,试求出购买学习用品的总件数y 与x 之间的函数关系式(不要求写出自变量的取值范围);(2)假设捐赠学习用品总金额超过了2300元,且灾区90名同窗每人至少取得了一件学习用品,请问同窗们如何安排购买书包和文具盒的人数?现在选择其中哪一种方案,使购买学习用品的总件数最多?品的总件数最多?部份预览分析:(2)由装运每种土特产的车辆都很多于3辆,可得甲:x≥3乙:y≥3丙:(20-x-y)≥3把第(1)的结论代入消去y,再解不等式即可.(3)列出利润(因变量)与装运甲种土特产的车辆数x(自变量)的函数关系,依照函数图象的性质即可解出4、宏志中学九年级300名同窗毕业前夕给灾区90名同窗捐赠了一批学习用品(书包和文具盒),由于零花钱有限,每6人合买一个书包,每2人合买一个文具盒(每一个同窗都只参加一件学习用品的购买),书包和文具盒的单价别离是54元和12元.(1)假设有x名同窗参加购买书包,试求出购买学习用品的总件数y与x之间的函数关系式(不要求写出自变量的取值范围);(2)假设捐赠学习用品总金额超过了2300元,且灾区90名同窗每人至少取得了一件学习用品,请问同窗们如何安排购买书包和文具盒的人数?现在选择其中哪一种方案,使购买学习用。

人教版八年级下册数学19.3题课题学习选择方案说课稿

人教版八年级下册数学19.3题课题学习选择方案说课稿
5.通过课堂总结,强调本节课所学知识在实际生活中的应用价值,提高学生的学习成就感。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学、情境教学和探究式教学。选择这些方法的理论依据如下:
1.启发式教学:通过引导学生主动思考、发现问题,培养学生的自主学习能力。这种方法符合建构主义学习理论,强调学生在学习过程中的主体地位。
3.实践活动:布置与生活密切相关的实践作业,如让学生回家后帮助父母制定购物优惠方案,提高学生运用知识解决实际问题的能力。
(四)总结反馈
在总结反馈阶段,我将采取以下方式引导学生自我评价,并提供有效的反馈和建议:
1.学生自评:让学生回顾本节课所学内容,总结自己的收获和不足。
2.互评:组织学生相互评价,发现他人的优点和不足,互相学习。
3.解决问题过程中的优化策略。
二、பைடு நூலகம்情分析导
(一)学生特点
本节课面向的是八年级学生,这个年龄段的学生正处于青春期,他们的好奇心强,求知欲旺盛,喜欢探索新事物。在认知水平上,他们已经具备了一定的逻辑思维能力,能够理解并运用线性方程、不等式以及函数等基本数学知识。此外,学生对数学学习的兴趣主要集中在解决实际问题和具有挑战性的任务上。在学习习惯方面,学生已经形成了通过课堂听讲、课后练习等方式进行学习的习惯,但自主学习能力尚需加强。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设生活情境,引入实际问题,让学生感受到数学知识在生活中的实际应用。
2.设计具有挑战性的问题,激发学生的求知欲,提高他们解决问题的积极性。
3.开展小组合作学习,让学生在互动交流中互相启发,共同进步。
4.及时给予学生反馈和鼓励,帮助他们建立自信,培养克服困难的勇气。

人教版数学八年级下册19.3《课题学习 选择方案》教案教师版

人教版数学八年级下册19.3《课题学习 选择方案》教案教师版

人教版数学八年级下册19.3《课题学习选择方案》教案教师版一. 教材分析《人教版数学八年级下册19.3课题学习选择方案》是学生在掌握了概率基础知识的基础上进行的一个实践活动。

通过此课题的学习,学生将能运用概率知识解决实际问题,提高解决问题的能力。

教材中给出了两个实例,一是手机话费的收费问题,二是购买保险的问题。

这些问题都需要学生运用概率知识进行分析,从而选择出最优方案。

二. 学情分析学生在学习此课题前,已经掌握了概率的基本知识,如概率的定义,如何计算事件的概率等。

但学生运用概率知识解决实际问题的能力还有待提高。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,通过计算和分析,找出解决问题的最佳方案。

三. 教学目标1.让学生掌握选择方案的基本方法,能够运用概率知识解决实际问题。

2.提高学生的动手操作能力和解决问题的能力。

3.培养学生的合作意识和团队精神。

四. 教学重难点1.如何引导学生将理论知识与实际问题相结合。

2.如何让学生在解决问题的过程中,掌握选择方案的基本方法。

五. 教学方法采用问题驱动的教学方法,引导学生通过小组合作,动手操作,计算分析,从而解决问题。

六. 教学准备1.准备相关的问题材料,如手机话费收费标准,保险合同等。

2.准备计算器,以便学生进行计算。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾概率的基本知识,如概率的定义,如何计算事件的概率等。

然后引入课题,说明今天我们要运用概率知识解决实际问题。

2.呈现(10分钟)教师呈现两个实例,一是手机话费的收费问题,二是购买保险的问题。

让学生分组讨论,尝试用概率知识进行分析。

3.操练(10分钟)学生在小组内进行讨论,计算分析,找出解决问题的最佳方案。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)教师选取几个小组的方案,进行讲解和分析,让学生明确如何运用概率知识解决问题。

5.拓展(5分钟)教师提出一些拓展问题,让学生继续运用概率知识进行分析和解决。

人教版八年级数学下册教案 19-3 课题学习 选择方案

人教版八年级数学下册教案  19-3 课题学习 选择方案

19.3课题学习选择方案教学目标【知识与技能】1.会用一次函数知识解决方案选择问题,体会函数模型思想;2.能根据实际问题建立一次函数模型,比较一次函数的变化规律和趋势,应用一次函数相关性质解决问题,认识到应用函数模型的方法,感受函数模型的应用价值.【过程与方法】经历对实际问题中的数量关系进行分析,构建一次函数模型,选择不同的解决方案的过程,并能比较、评价各种解决方案.【情感、态度与价值观】能从不同的角度感知问题中的数量关系,能进行解决问题过程中的反思,总结解决问题的方法.教学重难点【教学重点】应用一次函数模型解决方案选择问题.【教学难点】规划解决问题思路,建立函数模型.教学过程一、问题导入小红要用5元购买铅笔和练习本,其中铅笔1元/支,练习本1元/本,请问可以有哪些购买方案?二、合作探究探究点选择方案典例为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B 型挖掘机同时施工1小时挖土165米3;4台A型和7台B型挖掘机同时施工1小时挖土225米3.每台A型挖掘机1小时的施工费用为300元,每台B型挖掘机1小时的施工费用为180元.(1)分别求每台A型、B型挖掘机1小时挖土多少米3?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080米3的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?[解析](1)设每台A型、B型挖掘机1小时分别挖土x米3和y米3.根据题意,得{3x+5y=165,4x+7y=225,解得{x=30,y=15.答:每台A型挖掘机1小时挖土30米3,每台B型挖掘机1小时挖土15米3.(2)设A型挖掘机有m台,则B型挖掘机有(12-m)台,总费用为W元.根据题意,得W=4×300m+4×180(12-m)=480m+8640,∵{4×30m+4×15(12−m)≥1080,4×300m+4×180(12−m)≤12960,解得{m ≥6,m ≤9,又∵m ≠12-m ,∴m ≠6,∴7≤m ≤9,∴共有3种调配方案.方案1:当m =7时,12-m =5,即A 型挖掘机7台,B 型挖掘机5台;方案2:当m =8时,12-m =4,即A 型挖掘机8台,B 型挖掘机4台;方案3:当m =9时,12-m =3,即A 型挖掘机9台,B 型挖掘机3台.∵480>0,∴W 随m 的减小而减小,∴当m =7时,W =480×7+8640=12000.答:A 型挖掘机7台,B 型挖掘机5台的施工费用最低,最低费用为12000元.三、板书设计课题学习 选择方案{ 利用一次函数,解决实际问题,选择最佳方案应用{ 购物问题分配问题工程问题通信问题教学反思从学生的生活实际出发设计问题,恰当地引入本节课的内容,可以激发学生的求知欲.在教学设计中,让学生经历“问题情境—分析研究—建立模型—解释应用”的过程,体验数学与现实生活的联系.发挥学生的主观能动性,以学生为主体,调动学生去主动探究.。

人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案一. 教材分析人教版数学八年级下册《19.3 课题学习——选择方案》这一节主要让学生学会如何从多个方案中选择最优方案。

通过引入实际问题,让学生运用概率知识、列举法等方法,解决实际选择问题。

教材以案例的形式呈现,让学生在解决问题的过程中,掌握选择方案的方法和技巧。

二. 学情分析学生在学习本节内容前,已经掌握了概率基础知识,能够理解并运用列举法。

但如何在实际问题中灵活运用这些知识,选择最优方案,对学生来说还较为困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.让学生理解选择方案的概念,掌握选择方案的方法和技巧。

2.培养学生运用概率知识、列举法解决实际问题的能力。

3.培养学生独立思考、合作交流的能力。

四. 教学重难点1.重点:选择方案的方法和技巧。

2.难点:如何将所学知识应用于实际问题中,灵活选择最优方案。

五. 教学方法1.案例教学法:通过引入实际问题,让学生在解决问题的过程中掌握选择方案的方法。

2.引导发现法:教师引导学生发现问题的解决方法,培养学生的独立思考能力。

3.合作交流法:分组讨论,让学生在合作中发现问题、解决问题,提高学生的沟通能力。

六. 教学准备1.准备相关案例材料,用于引导学生解决实际问题。

2.准备多媒体教学设备,用于展示案例和引导学生思考。

七. 教学过程1.导入(5分钟)利用多媒体展示一个实际问题:某商场举行抽奖活动,奖品有电视机、洗衣机、电风扇和玩具。

奖品设置如下:一等奖:电视机,概率为1/10;二等奖:洗衣机,概率为2/10;三等奖:电风扇,概率为3/10;四等奖:玩具,概率为4/10。

提问:如果你参加这次抽奖活动,你希望获得哪个奖项?为什么?2.呈现(10分钟)引导学生分析问题,让学生认识到选择最优方案的重要性。

呈现教材中的案例,让学生了解选择方案的方法和技巧。

19.3 课题学习 选择方案 人教版数学八年级下册

19.3 课题学习 选择方案 人教版数学八年级下册

即点A的坐标为(600,510).
(3)由图象可得,
当x<600时,去甲体育专卖店购买体育用品更合算;当x=600时,去两家体
育专卖店购买体育用品一样合算;当x>600时,去乙体育专卖店购买体育
用品更合算.
应用一次函数的性质求最大(小)值
[例2] (2022凉山)为全面贯彻党的教育方针,严格落实教育部对中小学
生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管
理工作的通知》精神,保障学生每天在校1 h体育活动时间,某班计划采
购A,B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球
拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.
(1)求A,B两种类型羽毛球拍的单价;
甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/千克,
如果一次购买4 kg以上的苹果,超过4 kg的部分按标价6折出售.x(kg)
表示购买苹果的质量,y(元)表示付款金额.
(1)文文购买3 kg苹果需付款
元;购买5 kg苹果需付款
元.
(2)求付款金额y关于购买苹果的质量x的函数解析式.
设需要购买体育用品的原价总额为x元,去甲商店购买实付y 甲 元,去乙商店购
买实付y乙元,其函数图象如图所示.
(1)分别求y甲,y乙关于x的函数解析式;
解:(1)由题意,得 y 甲=0.85x.
当 0≤x≤300 时,y 乙=x,
当 x>300 时,y 乙=300+(x-300)×0.7=0.7x+90,
(2)结合解不等式或函数图象确定自变量的取值范围;
(3)利用函数的性质选择方案.
方案选择
[例1] 甲、乙两家商店,平时以同样的价格出售品质相同的小龙虾.

八年级数学下册(人教版)19.3课题学习选择方案说课稿

八年级数学下册(人教版)19.3课题学习选择方案说课稿
2.情境教学:将实际生活情境融入教学中,使学生能够更好地理解数学知识在实际生活中的应用,提高学生运用所学知识解决实际问题的能力。
3.合作学习:通过小组合作、讨论等形式,促进学生之间的互动与交流,培养学生的团队协作能力和沟通能力,同时提高学生的自主学习能力。
(二)媒体资源
我将使用以下教具、多媒体资源和技术工具来辅助教学:
教学内容主要包括以下知识点:
1.认识选择方案,理解其在生活中的实际意义。
2.学会运用概率、统计等知识对选择方案进行量化分析。
3.掌握各种选择方案的评价方法,如期望值法、决策树法等。
4.能够根据实际问题,运用所学方法做出最佳选择。
(二)教学目标
1.知识与技能目标
(1)理解选择方案的概念,知道选择方案在实际生活中的应用。
5.结合学生的兴趣和特长,设计富有挑战性的拓展任务,激发学生的探究欲望。
三、教学方法与手段
(一)教学策略ቤተ መጻሕፍቲ ባይዱ
我将采用的主要教学方法包括启发式教学、情境教学和合作学习。选择这些方法的理论依据如下:
1.启发式教学:这种方法能够激发学生的思维,引导他们主动探索问题,培养学生独立思考的能力。通过设置问题情境,让学生在探究中学习,有助于提高他们的学习兴趣和动机。
1.教具:实物模型、卡片、图表等,用于直观展示问题情境,帮助学生更好地理解抽象的数学概念。
2.多媒体资源:PPT、教学视频、网络资源等,丰富教学内容,提高学生的学习兴趣。
3.技术工具:投影仪、计算机、互动白板等,实现课堂信息化教学,提高教学效果。
这些媒体资源在教学中的作用主要有:提供丰富的教学情境,激发学生的学习兴趣;直观展示抽象概念,降低学生的学习难度;拓展教学时空,提高教学效率。
3.情感态度与价值观目标

人教版八年级数学下册19.3 课题学习 选择方案

人教版八年级数学下册19.3 课题学习  选择方案

探究新知
收费方式 月使用费/元 包时上网时间/h 超时费/(元/min)
A
30
25
0.05
B
50
50
0.05
5.设月上网时间为x,则方式A、B的上网费y1、y2都是x的函
数,要比较它们,需在 x > 0 时,考虑何时
(1) y1 = y2;
(2) y1 < y2;
(3) y1 > y2.
探究新知
A
30
25
0.05
B
50
50
0.05
C
120
不限时
1.哪种方式上网费是会变化的?哪种不变?A、B会变化,C不变.
2.在A、B两种方式中,上网费由哪些部分组成?
上网费=月使用费+超时费. 3.影响超时费的变量是什么? 上网时间. 4.这三种方式中有一定最优惠的方式吗?
没有一定最优惠的方式,与上网的时间有关.
探究新知
知识点 选择方案
问题1 怎样选取上网收费方式?
下表给出A,B,C三种上宽带网的收费方式.
收费方式 月使用费/元 包时上网时间/h 超时费/(元/min)
A
30
25
0.05
B
50
50
0.05
C
120
不限时
选择哪种方式能节省上网费?
探究新知
收费方式 月使用费/元 包时上网时间/h 超时费/(元/min)
(3)甲种车和乙种车都租.
探究新知
甲种客车 载客量(单位:人/辆) 45 租金 (单位:元/辆) 400
乙种客车 30 280
【讨论2】如果单独租甲种车需要多少辆?乙种车呢?
240 45 5 1 3

八年级下数学方案选择问题

八年级下数学方案选择问题
50, 0≤t≤50; 3t-100,t>50.
方案C费用:
y3=120.
A y1=
30, 0≤t≤25; 3t-45, t>25.
B y2=
50, 0≤t≤50; 3t-100,t>50.
C
y3=120.
y 120
50 30
y1 y2 y3
结合图O象可知: 25 50 75 t
(1)若y1=y2,即3t-45=50,解方程,得t =31 ; 2 3
令3t-100>120,解不等式,得t>73 .
1 3
当上网时间不超过31小时40分,选择方案A最省钱; 当上网时间为31小时40分至73小时20分,选择方案
B最省钱; 当上网时间超过73小时20分,选择方案C最省钱.
选取哪种方式能节省上网费? 该问题要我们做什么?选择方案的依据是什么?
费用 = 月使用费 + 超时费
超时费 = 超时使用价格 × 超时时间
收费方式 月使用费/元 包时上网时间/h 超时费/(元/min)
A
30
25
ቤተ መጻሕፍቲ ባይዱ
0.05
B
50
50
0.05
C
120
不限时
方案A费用:
y1=
方案B费用:
y2=
30, 0≤t≤25; 3t-45, t>25.
(2)若y1<y2,即3t-45<50,解不等式,得t<31 ;
2 3
(3)若y1>y2,即3t-45>50,解不等式,得t>31 .
2 3
令3t-100=120,解方程,得13t =73 ;
1
令3t-100>120,解不等式,得t>73
3
解决问题

人教版数学八年级下册《19.3 课题学习 选择方案》教学设计

人教版数学八年级下册《19.3 课题学习 选择方案》教学设计

人教版数学八年级下册《19.3 课题学习选择方案》教学设计一. 教材分析人教版数学八年级下册《19.3 课题学习选择方案》主要让学生学会如何从多个方案中选择最优方案。

通过本节课的学习,学生将掌握选择方案的基本方法,能够运用数学知识解决实际问题。

教材内容主要包括以下几个部分:1.选择方案的意义和作用2.选择方案的基本方法3.应用实例二. 学情分析学生在八年级上学期已经学习了概率、统计等基础知识,对数学解决实际问题有了一定的认识。

但如何将这些知识应用到选择方案中,对学生来说还是一个新的挑战。

因此,在教学过程中,教师需要引导学生将已学的知识与选择方案相结合,提高学生的应用能力。

三. 教学目标1.让学生了解选择方案的意义和作用,提高解决实际问题的能力。

2.掌握选择方案的基本方法,能够独立完成选择方案的过程。

3.通过实例分析,培养学生运用数学知识解决实际问题的意识。

四. 教学重难点1.选择方案的基本方法2.如何将数学知识应用到实际问题的解决中五. 教学方法1.讲授法:讲解选择方案的基本方法和原理。

2.案例分析法:分析实际问题,引导学生运用数学知识解决。

3.小组讨论法:分组讨论,培养学生的合作能力。

六. 教学准备1.准备相关案例材料,用于课堂分析和讨论。

2.准备课件,辅助讲解和展示。

七. 教学过程1.导入(5分钟)利用一个生活中的实际问题引入课题,如“如何选择旅游线路”。

让学生思考如何从多个方案中做出最优选择,引发学生对选择方案的兴趣。

2.呈现(10分钟)讲解选择方案的基本方法,如比较法、优选法等。

通过PPT展示案例,让学生了解选择方案的过程。

3.操练(10分钟)让学生分组讨论,每组选择一个案例,运用所学的方法进行选择方案。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)邀请几组学生分享他们的选择方案过程和结果。

让学生互相评价,总结经验。

5.拓展(10分钟)让学生思考如何将选择方案的方法应用到其他领域,如学习、工作等。

人教版八年级下册数学教案:19.3课题学习选择方案

人教版八年级下册数学教案:19.3课题学习选择方案
在学生小组讨论环节,我发现他们在分享成果时,语言表达能力有待提高。为了帮助学生们更好地表达自己的想法,我打算在课后组织一些口语训练活动,如辩论赛、演讲比赛等,以提高他们的语言组织能力。
最后,我觉得让学生们将所学知识应用到实际生活中是非常重要的。在接下来的课程中,我会继续关注学生们在这方面的表现,并给予他们更多的指导和支持。希望通过我们的共同努力,学生们能够真正掌握选择方案的相关知识,并在生活中做出明智的选择。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《选择方案》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要在多个选项中做出最佳选择的情况?”比如购物时如何挑选性价比最高的商品。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索选择方案的奥秘。
2.提升逻辑推理能力,通过构建树状图和列表法,对事件的因果关系进行逻辑推理;
3.培养数学建模素养,将现实问题转化为数学模型,运用数学工具解决实际问题;
4.强化数学应用意识,使学生体会数学在生活中的广泛应用,提高解决实际问题的能力。
三、教学难点与重点
1.教学重点
-核心内容:选择方案的基本原则、树状图和列表法的应用、解决实际问题的方案选择。
-举例:构建决策树时,如何正确地将各种可能性和结果串联起来,避免逻辑错误。
-难点三:数学模型的建立,将现实问题抽象为数学模型,并能够运用数学工具进行求解。
-举例:在实际问题中,如何确定变量、建立方程或不等式,以及如何求解得到最优解。
在教学过程中,教师应针对以上重点和难点内容,采用生动实例、互动讨论、小组合作等多种教学方法,帮助学生深入理解并掌握选择方案的相关知识和技能。同时,注重引导学生的思维过程,鼓励他们提出问题、分析问题、解决问题,以促进知识的内化和能力的提升。

课题学习 选择方案(分层作业)-八年级数学下册(人教版)(解析版)

 课题学习 选择方案(分层作业)-八年级数学下册(人教版)(解析版)

人教版初中数学八年级下册19.3课题学习选择方案分层作业夯实基础篇一、单选题:A.18B.12【答案】B【分析】先求出直线AB的解析式,当2千克时,每2千克葡萄的价格为将(2,38)、(4,70)代入得,238470k b k b,解得:166y x ,当6x 时,102y ,即萌萌一次购买6千克这种葡萄需要102元;她分三次购买每次购2千克这种葡萄需要383114 (元),∴11410212 (元),萌萌一次购买6千克这种葡萄比她分三次购买每次购2千克这种葡萄可节省12元.故选:B .【点睛】本题考查了一次函数的应用、待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,利用数形结合的思想解答.4.某电脑公司经营A ,B 两种台式电脑,分析过去的销售记录可以知道:每台A 型电脑可盈利200元,每台B 型电脑可盈利300元;在同一时期内,A 型电脑的销售量不小于B 型电脑销售量的4倍.已知该公司在同一时期内销售这两种电脑共210台,则该公司在这一时期内销售这两种电脑能获得的最大利润是()A .42000元B .46200元C .52500元D .63000元【答案】B【分析】设该公司在这一时期内销售获得的利润是W 元,销售A 型电脑x 台,则销售B 型电脑 210x 台,根据在同一时期内,A 型电脑的销售量不小于B 型电脑销售量的4倍可得:168x ,而20030021010063000W x x x ,由一次函数性质可得答案.【详解】解:设该公司在这一时期内销售获得的利润是W 元,销售A 型电脑x 台,则销售B 型电脑 210x 台,根据题意得: 4210x x ,解得:168x ,∵ 20030021010063000W x x x ,1000 ,∴W 随x 的增大而减小,∴当168x 时,W 取最大值,最大值为1001686300046200 (元),答:该公司在这一时期内销售这两种电脑能获得的最大利润是46200元.故选:B .【点睛】本题考查一元一次不等式的应用,涉及一次函数的应用,解题的关键是读懂题意,列出不等式求出x 的范围.5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算()A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定【答案】B 【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y在y乙上面,即y甲>y乙,甲∴当游泳次数为30次时,选择乙种方式省钱.故选:B.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,则以下说法正确的是()①若通话时间少于120分,则A方案比B方案便宜②若通话时间超过200分,则B方案比A方案便宜③通讯费用为60元,则B方案比A方案的通话时间多④当通话时间是170分钟/时,两种方案通讯费用相等A.1个B.2个C.3个D.4个【答案】D【分析】根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.【详解】解:依题意得A:(1)当0≤x≤120,y A=30,(2)当x>120,y A=30+(x-120)×[(50-30)÷(170-120)]=0.4x-18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70-50)÷(250-200)](x-200)=0.4x-30,所以当x≤120时,A 方案比B 方案便宜20元,故(1)正确;当x≥200时,B 方案比A 方案便宜12元,故(2)正确;当y=60时,A :60=0.4x-18,∴x=195,B :60=0.4x-30,∴x=225,故(3)正确;当A 方案与B 方案的费用相等,通话时间为170分钟,故(4)正确;故选:D .【点睛】本题考查了函数图象和性质,解题的关键是从图象中找出隐含的信息解决问题.7.某商场销售一种儿童滑板车,经市场调查,售价x (单位:元)、每星期销量y (单位:件)、单件利润w (单位:元)之间的关系如图1、图2所示.若某星期该滑板车单件利润为20元,则本星期该滑板车的销量为()A .94B .96C .1600D .1800【答案】D 【分析】先由图1求出y 与x 的函数解析式,再由图2求出x 与w 的函数解析式,然后把w =20代入即可.【详解】解:由图1可设y 与x 的函数解析式为y =kx +b ,把(92,1400)和(98,2000)代入得,140092200098k b k b解得:1007800k b,∴y 与x 的函数解析式为:y =100x ﹣7800;由图2可设x 与w 的函数解析式为x =mw +n ,把(18,98)和(24,92)代入得:98189224m n m n解得:1116m n ∴x 与w 的函数解析式为:x =﹣w +116,当w =20时,x =﹣20+116=96,y =100×96﹣7800=9600﹣7800=1800(件),∴本星期该滑板车的销量为1800件,故选:D .【点睛】本题考查一次函数的应用和待定系数法求函数解析式,关键是根据图象求出函数解析式.二、填空题:8.元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x (2x )件,则应付款y (元)与商品数x (件)之间的关系式,化简后的结果是______.【答案】y =48x +20(x >2)/y=20+48x (x >2)【分析】根据已知表示出买x 件礼盒的总钱数以及优惠后价格,进而得出等式即可.【详解】解:∵凡在该商店一次性购物超过100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x (x >2)件,∴李明应付货款y (元)与礼盒件数x (件)的函数关系式是:y =(60x -100)×0.8+100=48x +20(x >2),故答案为:y =48x +20(x >2).【点睛】本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.9.某苹果种植合作社通过网络销售苹果,图中线段AB 为苹果日销售量y (千克)与苹果售价x (元)的函数图像的一部分.已知1千克苹果的成本价为5元,如果某天以8元/千克的价格销售苹果,那么这天销售苹果的盈利是_____元.【答案】6600【分析】根据图象求出线段AB 的解析式,求出当x =8时的y 值,再根据利润公式计算即可.【详解】解:设线段AB 的解析式为y =kx +b ,点A 、B 的坐标代入,得54000101000k b k b ,解得6007000k b,∴y =-600x +7000,当x =8时,y =600870002200 ,∴这天销售苹果的盈利是 852200 =6600(元),故答案为:6600.【点睛】此题考查了一次函数的实际应用,正确理解函数图象求出线段AB 的解析式是解题的关键.10.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金__元.【详解】设买入价x 与利润y 之间的函数关系式为:y kx b ,将4200x y ,6198x y代入得:20041986k b k b,解得:1204k b,故:204y x ,当197y 代入得:197204x ,解得:7x ,即:1吨水的买入价为7元,则买入10吨水共需71070 元.故答案为:70.【点睛】本题考查了一次函数,根据表格求出一次函数的关系式是解题的关键.13.某手工作坊生产并销售某种食品,假设销售量与产量相等,如图中的线段AB 、OC 分别表示每天生产成本1y (单位:元)、收入2y (单位:元)与产量x (单位:千克)之间的函数关系.若该手工作坊某一天既不盈利也不亏损,则这天的产量是______千克.【答案】30【分析】根据题意可设AB 段的解析式为11y k x b ,OC 段的解析式为22y k x ,再结合图象利用待定系数法求出解析式,最后根据该手工作坊某一天既不盈利也不亏损时,即12y y ,可列出关于x 的等式,解出x 即可.【详解】根据题意可设AB 段的解析式为:11y k x b ,且经过点A (0,240),B (60,480),∴124048060b k b,解得:14240k b,∴AB 段的解析式为:14240y x ;设OC 段的解析式为:22y k x ,且经过点C (60,720),∴272060k ,解得:212k ,∴OC 段的解析式为:212y x .当该手工作坊某一天既不盈利也不亏损时,即12y y ,∴424012x x ,解得:30x .所以这天的产量是30千克.故答案为:30.【点睛】本题考查一次函数的实际应用.掌握利用待定系数法求函数解析式是解答本题的关键.三、解答题:14.乡村振兴作为“十四五”期间的重要战略,受到了广大人民群众的关注.党的二十大再次对全面推进乡村振兴进行部署.为了发展乡村特色产业,百花村花费3000元集中采购了甲种树苗700株,乙种树苗400株,已知乙种树苗单价是甲种树苗单价的2倍.(1)求甲、乙两种树苗的单价分别是多少元?(2)百花村决定再购买同样的两种树苗100株用于补充栽种.其中甲种树苗不多于33株,在单价不变,总费用不超过340元的情况下,最低费用是多少元?【答案】(1)甲种树苗的单价是2元,则乙种树苗的单价是4元(2)最低费用是334元.【分析】(1)设甲种树苗的单价是x 元,则乙种树苗的单价是2x 元,根据题意得到等量关系建立方程求出其解即可;(2)设购买甲种树苗a 棵,则购买乙种树苗 100a 棵,其中a 为正整数,总费用为w 元,根据题意得2400w a ,然后根据一次函数性质即可解决问题.【详解】(1)解:设甲种树苗的单价是x 元,则乙种树苗的单价是2x 元,根据题意得:70040023000x x ,解得:2x ,∴24 x ,答:甲种树苗的单价是2元,则乙种树苗的单价是4元;(2)解:设购买甲种树苗a 棵,则购买乙种树苗 100a 棵,其中a 为正整数,根据题意得:03324100340x a a,解得:3033a ,设总费用为w 元,∴ 24100w a a ,整理得2400w a ,∵20 ,∴w 随a 的增大而减小,∴当33a 时,w 最小,最小值为334,答:最低费用是334元.【点睛】本题考查了列一元一次方程解实际问题的运用,不等式组的运用,一次函数的应用,关键是正确理解题意,找出题目中的等量关系列出方程,找出不等关系列出不等式组,一次函数的关系式,利用一次函数的性质解答.15.为弘扬爱国精神,传承民族文化,某校组织了“诗词里的中国”主题比赛,计划去某超市购买A ,B 两种奖品共300个,A 种奖品每个20元,B 种奖品每个15元,该超市对同时购买这两种奖品的顾客有两种销售方案(只能选择其中一种).方案一:A 种奖品每个打九折,B 种奖品每个打六折.方案二:A ,B 两种奖品均打八折.设购买A 种奖品x 个,选择方案一的购买费用为1y 元,选择方案二的购买费用为2y 元.(1)请分别写出1y 、2y 与x 之间的函数关系式.(2)请你计算该校选择哪种方案支付的费用较少.【答案】(1)192700y x ,243600y x (2)购买A 种奖品超过180个时,方案二支付费用少;购买A 种奖品180个时,方案一和方案二支付费用一样多;购买A 种奖品少于180个时,方案一支付费用少【分析】(1)根据总费用A ,B 两种奖品费用之和列出1y 、2y 关于x 的函数关系式;(2)根据(1)中关系式分三种情况讨论即可.【详解】(1)由题意得:1200.9150.6(300)92700y x x x ;2200.8150.8(300)43600y x x x ,1y ∴与x 之间的函数关系式为192700y x ,2y 与x 之间的函数关系式为243600y x ;(2)当12y y 时,9270043600x x ,解得180x ,购买A 种奖品超过180个时,方案二支付费用少;当12y y 时,9270043600x x ,解得180x ,购买A 种奖品180个时,方案一和方案二支付费用一样多;当12y y 时,9270043600x x ,解得180x ,购买A 种奖品少于180个时,方案一支付费用少.【点睛】本题考查一次函数的应用以及一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,列出函数解析式.16.某地计划修建一条长36千米的乡村公路,已知甲工程队修路的速度是乙工程队修路速度的1.5倍,乙工程队单独完成本次修路任务比甲工程队单独完成多20天.(1)求甲、乙两个工程队每天各修路多少千米?(2)已知甲工程队修路费用为25万元/千米,乙工程队修路费用为20万元/千米.甲工程队先单独修路若干天后,接到其它任务需要离开,剩下的工程由乙工程队单独完成.若要使修路总时间不超过55天,总费用不超过820万元,且甲工程队所修路程需为整数,请问共有几种修路方案?哪种方案最省钱?【答案】(1)甲工程队每天修路0.9千米,乙工程队每天修路0.6千米(2)共有13种方案,其中甲单独干10天,剩下的乙单独修完,最省钱.【分析】(1)设乙工程队每天修路x 千米,则甲工程队每天修路1.5x 千米,根据乙工程队单独完成本次修路任务比甲工程队单独完成多20天,列出方程,进行求解即可;(2)设甲工程队修路a 天,根据修路总时间不超过55天,总费用不超过820万元,列出不等式组,求出a 的取值范围,确定方案,设花费的总费用为w ,列出一次函数解析式,利用一次函数的性质,即可得出结套乒乓球拍和羽毛球拍进行销售,其中购进乒乓球拍的套数不超过【点睛】本题考查了一次函数和二元一次方程组的应用,解题的关键是仔细审题,找到等量关系列出函数能力提升篇一、单选题:∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些.故选D.2.小明和小张是邻居,某天早晨,小明7:40先出发去学校,走了一段后,在途中停下吃早餐,后来发现上学时间快到了,就跑步到学校;小张比小明晚出发5分钟,乘公共汽车到学校.右图是他们从家到学校已走的路程y (米)和小明所用时间x (分钟)的函数关系图.则下列说法中不正确的是()A .小明家和学校距离1000米;B .小明吃完早餐后,跑步到学校的速度为80米/分;C .小张乘坐公共汽车后7:48与小明相遇;D .小张到达学校时,小明距离学校400米.【答案】C【分析】根据函数图像中各拐点的实际意义求解可得.【详解】解:A 、由图像可知,小明家和学校距离1000米,故此选项不符合题意;B 、小明吃完早餐后,跑步到学校的速度为: 1000360201280 (米/分),故此选项不符合题意;C 、小张乘公共汽车的速度为: 1000155100 (米/分),360100 3.6 (分),故小张乘坐公共汽车后7点48分36秒与小明相遇,故此选项符合题意;,故此选项不符合题意.二、填空题:4.本年度某单位常有集体外出学习活动,因此准备与出租车公司签订租车协议.现有甲、乙两家出租车公司供选择.设每月行驶x千米,应付给甲公司1y元,应付给乙公司2y元,1y、2y分别与x之间的函数关系如图所示,若这个单位估计每月需要行驶的路程为3500千米,那么为了省钱,这个单位应租__________公司.【答案】B【分析】先由表格中数据分别表示出A y、B y关于x的函数表达式,分别令A y=B y、A y>B y、A y<B y求解,即可做出判断.【详解】解:由题意可知:A y=0.1x,B y=20+0.05x,当A y=B y时,由0.1x=20+0.05x得:x=400,两种收费方式一样省钱;当A y>B y时,由0.1x>20+0.05x得:x>400,B种方式省钱;当A y<B y时,由0.1x<20+0.05x得:x<400,A种方式省钱,∴当每月上网时间多于400分钟时,选择B种方式省钱,故答案为:B.【点睛】本题考查一次函数的应用、解一元一次方程、解一元一次不等式,理解题意,正确列出函数关系式是解答的关键.三、解答题:【答案】(1)48y x ;(2)修建方案为修建A 、B 两种型号的沼气池分别为8个、16个,此时修建完沼气池剩余的用地面积为12平方米.【分析】(1)分别求出A 型和B 型两种沼气池的修建费用,相加即可;(2)利用题意列出不等式组,再根据y 与x 之间的函数关系式得到y 的值最小时对应的x 的值,即可得到费用最少时的修建方案,以及此时修建完沼气池剩余的用地面积.【详解】解:(1) y 3x 224x x 48 ,∴y 与x 之间的函数关系式为48y x .(2)由题可得: 20152440010824220x x x x①②,由①得:8x ,由②得:14x ≤,∴814x ,∵48y x ,其中y 随x 的增大而增大;∴当8x 时y 最小,此时84856y ,2416x 因此方案为修建A 、B 两种型号的沼气池分别为8个、16个时总费用最少;用地面积剩余: 22010824220108824812x x (平方米),答:费用最少时的修建方案为修建A 、B 两种型号的沼气池分别为8个、16个,此时修建完沼气池剩余的用地面积为12平方米.【点睛】本题涉及到了方案选择问题,考查了一次函数和一元一次不等式组的应用,要求学生能根据题意列出函数关系式和一元一次不等式组,能根据实际情况和函数的性质得到函数的极值,并确定出最优方案,考查了学生的综合分析与实际应用的能力.。

初中人教版数学八年级下册:19.3 课题学习 选择方案 习题课件(含答案)

初中人教版数学八年级下册:19.3 课题学习 选择方案  习题课件(含答案)

7.(2020·河南中考)暑期将至,某健身俱乐部面向学 生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用 按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按 八折优惠.
设某学生暑期健身 x(次),按照方案一所需费用为 y1(元),且 y1 =k1x +b ;按照方案二所需费用 为 y2(元),且 y2=k2x.其函数图象如图所示. (1)求 k1 和 b 的值, 并说明它们的实际意义;
目录页
A 分点训练•打好基础 B 综合运用•提升能力
知识点 选择方案 1.某公司急需用车,但又不准备买车,公司准备和 一个个体车主或一家出租车公司签订月租车合同, 他们的月收费 y(元)与公司每月用车的路程 x(千米)
之间的关系如图所示(其中个体车主收费为 y1 元,出 租车公司收费为 y2 元),则当 x >1800 时,选 用个体车主较合算.
解:(1)∵y1=k1x+b 过点(0,30),(10,180),
∴ b=30,
解得 k1=15,
10k1 +b=180,
b=30.
k1=15 表示的实际意义是:购买一张学生暑期专享
卡后每次健身费用为 15 元;
b=30 表示的实际意义是:购买一张学生暑期专享
卡的费用为 30 元.
(2)求打折前的每次健身费用和 k2 的值; (2)由题意可得, 打折前的每次健身费用为 15÷0.6=25(元), 则 k2=25×0.8=20.
(3)八年级学生小华计划暑期前往该俱乐部健身 8 次,应选择哪种方案所需费用更少?说明理由.
(3)选择方案一所需费用更少.理由如下: 由(1)(2)可知,y1=15x+30,y2=20x. 当健身 8 次时,选择方案一所需费用为 y1=15×8+ 30=150(元),选择方案二所需费用为 y2=20×8= 160(元). ∵150<160, ∴选择方案一所需费用更少.

新人教版八年级数学下册19.3 课题学习 选择方案(导学案)

新人教版八年级数学下册19.3 课题学习 选择方案(导学案)

19.3 课题学习选择方案——最佳方案的确立一、新课导入1.导入课题某单位要制作一批宣传材料.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.问:让哪家公司制作这批宣传材料比较合算?这节课我们结合这个问题来学习怎样选择最佳方案.(板书课题)2.学习目标(1)能熟练列函数关系式表示实际问题中的数量关系.(2)能运用一次函数的知识帮助分析、确定和选择最佳方案.3.学习重、难点重点:运用一次函数的知识确定最佳方案.难点:在不同情况下对自变量x的范围的确定.二、分层学习1.自学指导(1)自学内容:导入课题中的问题.(2)自学时间:8分钟.(3)自学要求:先思考两家公司的收费额的计算方法,然后列出相应的函数关系式.思考这两个数值会存在哪些大小关系?(4)自学参考提纲:①两家公司的收费都与什么有关?②如果设共有x份材料,两家公司的收费分别为y1(元)、y2 (元),分别写出y1、y2 的解析式.③由y1、y2可能存在的大小关系来确定x的取值范围.④从③可以看出,选取哪家公司付费y元是由材料的份数x决定的.解:①两个公司的收费都与材料的份数有关;②y1=20x+3000,y2=30x;③当y1>y2时,x<300;当y1=y2时,x=300;当y1<y2时,x>300.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生自学中存在的问题或困难.②差异指导:对学习有困难的学生进行点拨引导.(2)生助生:小组研讨,帮助解决疑点.4.强化(1)解答问题时的思考过程.(2)总结比较收费合算的问题,实质是比较两个函数值大小的问题.(3)总结解决方案型问题的一般步骤.1.自学指导(1)自学内容:P102到P103的问题1.(2)自学时间:10分钟.(3)自学方法:认真阅读问题1中的条件与问题,寻求条件与问题结论之间的联系.(4)自学参考提纲:①在A ,B 两种方式中,影响上网费用的变量是上网时间,方式C 中的上网费用是常量.②先比较A ,B 两种方式的上网费用,再在其中选择省钱的方式与方式C 比较.设月上网时间为xh ,则分别用x 表示方案A ,B 的费用y 1、y 2,为:y 1=130,025, 345,25.y x x x ⎨⎩≤≤-⎧=> y 2=130,025, 345,25.y x x x ⎨⎩≤≤-⎧=> ③在课本P103的图19.3-1中,分别画出y 2,y 3的图象,根据图象选择最省钱方案.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:了解学生对问题1的思考中存在的困难及误区在哪里?②差异指导:对个别在理解题意和解答时有疑难的学生进行点拨指导.(2)生助生:同桌之间相互研讨疑难之处.4.强化(1)解答问题1的关键点和解答思路.(2)总结三个方案的比较型问题的一般解题步骤.(3)展示本节所学知识点和数学思想方法.1.自学指导(1)自学内容:停车场汽车停放的收费问题.(2)自学时间:8分钟.(3)自学要求:先自主分析题意和找函数关系,然后同桌交流疑点问题.(4)自学参考提纲:某汽车停车场预计“十一”国庆节这一天将停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.根据预计,解答下面的问题:(ⅰ)写出国庆节这天停车场的收费金额y元与小车停放辆次x辆之间的函数关系式,并指出自变量的取值范围;(ⅱ)如果国庆节这天停放的小车辆次占总停车辆次的65%—85%,请你估计国庆节这天该停车场收费金额的范围.①用x表示小车停放辆次,则大车停放的次数为1200-x.②收费金额y关于x的解析式为-5x+12000.自变量的取值范围是0≤x≤1200.③估计国庆节这天该停车场收费金额的范围是由什么来确定?答案:小车停放辆次2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:a.关注学生如何表示大车辆次;b.收费金额y的范围的确定与什么有关是否找准.②差异指导:对学习有困难的学生进行点拨引导.(2)生助生:同桌之间相互研讨疑难之处.4.强化(1)解答问题的关键点及两个变量之间相互转化.(2)总结确定自变量的取值范围的方法.(3)总结解答多变量的选择方案型问题的一般步骤.1.自学指导(1)自学内容:P103到P104的问题2.(2)自学时间:10分钟.(3)自学要求:边阅读问题2的条件,边完成课本分析填空,然后相互展示交流.(4)自学参考提纲:①完成问题2分析中的填空,确定客车的总辆数.②完成问题2的解答过程.③课本的问题2是怎样列不等式组来确定自变量x的取值范围的?④怎样解决含有多个变量的问题?2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:了解学生在自学中遇到的疑难问题.②差异指导:指导学生完成分析填空,帮助总结多变量问题的解答方法.(2)生助生:同桌之间相互研讨疑难之处.4.强化(1)问题2的分析和解答过程.(2)总结列不等式组确定自变量x的取值范围的依据和技巧.(3)总结解答含有多个变量的问题的一般解题步骤.(4)展示本节所学知识点和数学思想方法.三、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的课堂学习态度、学习方法、收获和疑惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效和不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时从生活中的实际问题出发,通过数学建模来选择最佳方案.首先阅读理解,审清题意;再简化问题,建立数学模型;然后用数学方法解决实际问题;最后根据实际情况检验数学结果.教师在教学过程中,应处于指导的位置,才能使学生在自主探究中掌握知识.(时间:12分钟满分:100分)一、基础巩固(60分)1.(30分)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其他费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价) 解:(1)设电视机进货x台,则洗衣机进货(100-x)台.则由题意得:1800x+1500×(100-x)≤161800.解得x≤39.又∵x≥12(100-x),∴x≥34,∴34≤x≤39.∴商店一共有6种进货方案.(2)设利润为y元,则由题意得:y=(2000-1800)·x+(1600-1500)(100-x)=100x+10000.∵34≤x≤39,∴当x=39时,ymax=100×39+10000=13900.∴当商店购进电视机39台、洗衣机61台时,获得的利润最多,为13900元.2.(30分)某饮料厂为了开发新产品,现有A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料50千克,下表是实验的相关数据:(1)假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集;(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y关于x 的函数表达式.根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?解:(1)()()0.5500.2190.3500.417.2x xx x+-⨯≤+-⨯≤⎧⎪⎨⎪⎩,解集为28≤x≤30;(2)y关于x的函数表达式为:y=4x+(50-x)×3=x+150.∵28≤x≤30,∴当x=28时,y min=28+150=178.∴当甲种饮料配制28千克时,甲、乙两种饮料的成本总额最少,为178元.二、综合应用(20分)3.康乐公司在A、B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台.从A、B两地运往甲、乙两地的费用如下表:(1)如果从A地运往甲地x台,求完成以上调运所需总费用y(元)关于x(台)的函数关系式;(2)若康乐公司请你设计一种最佳调运方案,使总费用最少,则该公司完成以上调运方案至少需要多少费用?解:(1)如果从A地运往甲地x台,则从A地运往乙地(17-x)台,从B地运往甲地(18-x)台,从B地运往乙地(x-3)台.则由题意得:y=600x+500×(17-x)+400×(18-x)+800×(x-3)=500x+13300.∵170180?30xxxx≥-≥-⎧⎪⎪⎨⎪⎪⎩≥-≥,,,,解得3≤x≤17.∴完成以上调运所需总费用y(元)关于x(台)的函数关系式为y=500x+13300(3≤x≤17).(2)∵3≤x≤17,∴当x=3时,y min=500×3+13300=14800.∴当从A地运3台机器到甲地,运14台到乙地,从B地运15台到甲地时,所需的总费用最少,为14800元.三、拓展延伸(20分)4.“爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍和1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这些帐篷用卡车一次性运送到该地震灾区的A,B两地,由于两市通住A,B两地道路的路况不同,卡车的运载量也不同.已知运送帐篷每千顶所需的车辆数、两地所急需的帐篷数如下表:请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.解:(1)设总厂原来每周生产帐篷x千顶,则分厂原来每周生产帐篷(9-x)千顶,在赶制帐篷的一周内,总厂生产帐篷1.6x千顶,分厂生产帐篷1.5(9-x)千顶.由题意得:1.6x+1.5(9-x)=14,解得x=5,9-x=4.则在赶制帐篷的一周内,总厂生产帐篷5×1.6=8(千顶),分厂生产帐篷4×1.5=6(千顶);(2)设从甲市运y千顶帐篷到A地,所需车辆总数为z辆.则从甲市运(8-y)千顶帐篷到B地,从乙市运(9-y)千顶帐篷到A地,从乙市运(y-3)千顶帐篷到B地.由题意得:z=4y+7×(8-y)+3×(9-y)+5×(y-3)=68-y.∵0,80,90,30,yyyy≥-≥-≥-≥⎧⎪⎪⎨⎪⎪⎩∴3≤y≤8.∴当y=8时,z min=68-8=60.∴当从甲市运8千顶帐篷到A地,从乙市运1千顶帐篷到A地,从乙市运5千顶帐篷到B地时,所需的车辆总数最。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30, 0≤t≤25; A y1= 120 3t-45, t>25. 50, 0≤t≤50; B y2= 3t-100,t>50. 50 30 C y3=120.
y
y1
y2 y3
t O 25 50 75 结合图象可知: 2 (1)若y1=y2,即3t-45=50,解方程,得t =31 3 ; 2 (2)若y1<y2,即3t-45<50,解不等式,得t<31 3 ; (3)若y1>y2,即3t-45>50,解不等式,得t>31 2 . 3 1 令3t-100=120,解方程,得t =73 3 ; 1 令3t-100>120,解不等式,得t>73 3
+
超时费
×
超时费
= 超时使用价格
超时时间
收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 30 25 0.05
B
C50120来自50不限时0.05
30, 0≤t≤25; 方案A费用: y1= 3t-45, t>25. 50, 0≤t≤50; 方案B费用: y2= 3t-100,t>50. 方案C费用: y3=120.
解决问题
1 解:令3t-100=120,解方程,得t =73 3 ; 1 令3t-100>120,解不等式,得t>73 3 . 当上网时间不超过31小时40分,选择方案A最省钱; 当上网时间为31小时40分至73小时20分,选择方案 B最省钱; 当上网时间超过73小时20分,选择方案C最省钱.
八年级 下册
19.3 课题学习 选择方案(1)
1 、某教学网站策划了 A 、 B 两种上网学习的月 收费方式:
收费 方式 A 月使用费/元 包月上网时间/ 小时 7 25 超时费(元/ 分钟) 0.01
B
m
n
0.01
设每月上网学习时间为x小时,方案A,B的收费金额 分别是 yA , yB 25 yB (1)如图是 yB与x 之间的 20 函数关系的图像,请根据图像 15 填空:m=______;n=_______; 10 2写出y A与x之间的函数关系式 5
3选择哪种方式合算?
0
25 50 75
提出问题
下表给出A,B,C 三种上宽带网的收费方式:
收费方式 月使用费/元 包时上网时间/h 超时费/(元/min)
A
B C
30
50 120
25
50 不限时
0.05
0.05
选取哪种方式能节省上网费? 该问题要我们做什么?选择方案的依据是什么?
费用
=
月使用费
相关文档
最新文档