指数函数 教学设计

合集下载

《指数函数》的优秀教案最新9篇

《指数函数》的优秀教案最新9篇

《指数函数》的优秀教案最新9篇高一数学《指数函数》优秀教案篇一我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。

我将尝试运用新课标的理念指导本节课的教学。

新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

一、教材分析1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。

本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。

因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析基于对教材的理解和分析,我制定了以下的教学目标:1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的'能力。

3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

三、教法学法分析1、教学策略:首先从实际问题出发,激发学生的学习兴趣。

第二步,学生归纳指数的图像和性质。

第三步,典型例题分析,加深学生对指数函数的理解。

2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

指数函数 优秀教案

指数函数 优秀教案

指数函数优秀教案指数函数优秀教案简介本教案旨在帮助学生理解和应用指数函数的概念和性质。

通过引入实际生活中的例子和问题,学生将能够掌握指数函数的基本特征和计算方法。

教学目标1. 了解指数函数的定义和特点;2. 掌握指数函数的求值和运算方法;3. 能够应用指数函数解决实际问题。

教学内容1. 指数函数的定义和性质;2. 指数函数的图像和图像特征;3. 指数函数的求值和运算方法;4. 实际问题中的指数函数应用。

教学步骤步骤一:导入知识通过一个引人入胜的故事或问题,激发学生对指数函数的兴趣,并引出指数函数的概念和应用场景。

步骤二:讲解指数函数的定义和性质以简洁明了的语言解释指数函数的定义和基本性质,包括指数的概念、底数、指数法则等,帮助学生建立起对指数函数的基本认识。

步骤三:绘制指数函数的图像通过示例,引导学生绘制不同指数函数的图像,并讨论图像特征,如增长趋势、对称轴等。

可使用教学工具如GeoGebra等辅助软件进行展示和演示。

步骤四:指数函数的求值和运算方法解释指数函数的求值和运算方法,包括指数的乘方法则、倒数法则等。

通过例题,让学生掌握这些方法,并灵活运用到实际问题中。

步骤五:实际问题中的指数函数应用提供一些实际问题,如人口增长问题、物质衰变问题等,让学生应用所学知识解决这些问题。

引导学生分析问题,建立数学模型,并利用指数函数进行求解。

步骤六:总结和拓展对本节课的要点进行总结,梳理学生的研究成果,并鼓励学生在实际生活中继续发现和应用指数函数的知识。

教学评估1. 在课堂上进行小组或个人演示,展示对指数函数的理解和应用;2. 布置课后作业,检验学生对指数函数的掌握程度;3. 在下节课开头进行复和巩固。

以上为指数函数优秀教案的基本内容和步骤安排。

根据实际教学情况,可以适当调整和补充教案的内容。

希望本教案能够帮助学生深入理解和掌握指数函数的知识。

指数函数教学设计及反思

指数函数教学设计及反思

指数函数教学设计及反思一、教学目标:1.理解指数函数的概念和性质;2.掌握指数函数的图像、基本性质和应用;3.能够解决与指数函数相关的实际问题;4.培养学生的逻辑思维和数学分析能力。

二、教学内容:1.指数函数的基本概念:正数指数、零指数、负数指数、分数指数;2.指数函数的图像与性质:递增/递减性、增/减区间、零点、极限行为;3.指数函数与对数函数的关系;4.指数函数的应用:人口增长模型、物质衰减模型等。

三、教学过程:1.导入:通过展示一组图表,引发学生对指数函数的兴趣和思考:“如果你发现一个疯狂 multiplying zombies 的现象,你会用什么模型来描述他们的增长呢?”引导学生思考指数函数的定义和特点。

2.探究:a.定义与性质:引导学生观察一组指数函数的图像,比较不同指数的影响,总结指数函数的性质。

b.图像与性质的证明:以指数函数y=2^x为例,让学生推导其等比数列形式,进而证明其递增性和增区间;再通过值的比较,推导其零点和极限行为。

c.应用举例:引导学生根据实际问题建立指数函数模型,如人口增长模型、物质衰减模型等。

3.实践:a.让学生在计算器上输入不同指数函数的参数,观察图像的变化,并总结规律。

b.给学生一组实际问题,让他们运用所学的知识建立相应的指数函数模型,并解决问题。

4.总结:让学生总结指数函数的定义、性质和应用,并引导他们思考指数函数与对数函数的关系。

四、教学反思:1.教学目标是否明确:教学目标必须明确具体,而不是笼统的“理解”和“掌握”,能够量化和具体化目标有助于教学的实施和评价。

2.导入环节是否引人入胜:指数函数的引入可以通过具体实例、有趣问题等多种方式实现,但要注意避免过多的单向授课,要鼓励学生积极思考和参与讨论。

3.探究与实践的平衡:在教学过程中,既要让学生自主探究和发现规律,又要提供一定数量的练习机会,巩固所学的知识和技能。

4.师生互动:教师应注重与学生的互动,鼓励学生提问和思考,及时给予反馈和指导,促进学生的学习动力和思维发展。

指数函数教案

指数函数教案

指数函数教案一、教学目标•了解指数函数的定义和性质;•掌握指数函数的图像特征和简单的变换方法;•学会解决一些与指数函数相关的实际问题;•发展学生的数学思维和解决问题的能力。

二、教学重点•指数函数的定义和性质;•指数函数的图像特征和变换方法。

三、教学内容1. 指数函数的定义和性质指数函数是指形如f(x)=a x的函数,其中a是正实数且a eq1。

其中,a称为底数,x称为指数。

指数函数具有以下性质:•当a>1时,函数是递增的;•当0<a<1时,函数是递减的;•当a=1时,函数是常数函数f(x)=1;•当a>0时,函数的定义域为 $(-\\infty, +\\infty)$;•函数图像总是过点(0,1)。

2. 指数函数的图像特征和变换方法指数函数的图像特征主要包括:•当a>1时,函数图像从左向右逐渐上升;•当0<a<1时,函数图像从左向右逐渐下降;•当a=1时,函数图像为一条水平线。

指数函数的变换方法主要有以下几种:•垂直方向伸缩变换:$y = a \\cdot f(x)$,其中|a|>1时表示纵向伸缩,|a|<1时表示纵向收缩;•水平方向平移变换:y=f(x−ℎ),其中ℎ>0表示向右平移,ℎ<0表示向左平移;•垂直方向平移变换:y=f(x)+k,其中k>0表示向上平移,k<0表示向下平移。

3. 实际问题解决方法指数函数在实际问题中的应用非常广泛,比如人口增长、物质衰变、财富增长等。

解决与指数函数相关的实际问题时,可以通过以下步骤进行分析和求解:•确定问题中与指数函数相关的变量和参数,并给出它们的初始值;•建立指数函数模型,根据问题中的条件建立函数表达式;•根据问题的要求,求解函数的值或者变量的取值范围,得到问题的答案。

四、教学方法•讲授与实例演示相结合的方法,辅以具体实际问题的分析与讨论;•引导学生进行小组合作学习,进行思维碰撞和交流;•鼓励学生进行独立思考和探索,培养解决问题的能力;•利用多媒体技术辅助教学,增强教学效果。

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。

②.掌握指数函数的性质及应用。

③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。

2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。

②培养学生观察问题,分析问题的能力。

③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。

【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。

【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。

复习指数函数的图象及性质,为本节课中的内容储备知识基础。

展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。

教师随时点评,引导,欣赏,鼓励。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。

力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。

学生小组讨论,交流。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可针对展示交流成果提出问题,进一步加深理解。

所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。

《指数函数》教案

《指数函数》教案

【课题】4.2指数函数【教学目标】知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.【教学重点】⑴指数函数的概念、图像和性质;⑵指数函数的应用实例.【教学难点】指数函数的应用实例.【教学设计】⑴以实例引入知识,提升学生的求知欲;⑵“描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;⑶知识的巩固与练习,培养学生的思维能力;⑷实际问题的解决,培养学生分析与解决问题的能力;⑸以小组的形式进行讨论、探究、交流,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间别用光滑的曲线依次联结各点,得到函数y =2x 和y =1()2x 的图像,如上图所示.归纳观察函数图像发现:1.函数2x y =和y =1()2x 的图像都在x 轴的上方,向上无限伸展,向下无限接近于x 轴;2.函数图像都经过(0,1)点;3.函数y =x2的图像自左至右呈上升趋势;函数y =1()2x 的图像自左至右呈下降趋势. 推广利用软件可以作出a 取不同值时的指数函数的图像. 展示 引导 分析 说明观察 体会 理解计算 部分 可以 由学 生独 立完 成 引导学生仔细观察函数图象的特点数形结合25*动脑思考 明确新知 一般地,指数函数xy a =()01a a >≠且具有下列性质:(1) 函数的定义域是(),-∞+∞.值域为(0,)+∞;(2) 函数图像经过点(0,1),即当0x =时,函数值1y =; (3) 当>1a 时,函数在(),-∞+∞内是增函数;当0<<1a 时,函数在(),-∞+∞内是减函数.归纳强调体会 记忆结合 图形 由学 生自 我归 纳强 调关 键点30*巩固知识 典型例题通过x.10)年该市国内生产总值为(亿元).年该市国民生产总值为(亿元).。

指数函数教案(精选多篇)

指数函数教案(精选多篇)

指数函数教案(精选多篇)第一篇:指数函数教案.doc一.思考题1.学来回答其变化的过程和答案2.通过ppt来讲解思考题二、问题1.直接说出指数函数2.同学来思考问题23.给出指数函数的概念三.例题1.念下题目,叫学生思考几秒钟,请学生来回答。

2.对学生的回答进行分析四.思考1.第一个思考,引导学生说出图像的做法,2.请学生来画出4个图像3.对图像进行补充4.从函数的三要素来分析图像的性质5.从图像上的到恒过的点及单调性6.进行底数互为倒数的函数图像的比较、得到对称的性质(换算)7.进行底数不同大小的比较,说明其大小的变化五.例题先思考,再请同学来回答,再进行点评六、总结七、布置作业第二篇:《指数函数概念》教案《指数函数概念》教案(一)情景设置,形成概念1、引例1:折纸问题:让学生动手折纸观察:①对折的次数x与所得的层数y之间的关系,得出结论y=2x②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)x引例2:《庄子。

天下篇》中写到:“一尺之棰,日取其半,万世不竭”。

请写出取x次后,木棰的剩留量与y与x的函数关系式。

2、形成概念:形如y=ax(a 0且a≠1)的函数称为指数函数,定义域为x∈r。

提出问题:为什么要限制a 0且a≠1?这一点让学生分析,互相补充。

分a﹤=0,a=1讨论。

1)a 0时,y=(-3)x对于x=1/2,1/4,??(-3)x无意义。

2)a=0时,x 0时,ax=0;x≤0时无意义。

3)a=1时,a= 1=1是常量,没有研究的必要。

(二)发现问题、深化概念问题:判断(转载需注明来源:)下列函数是否为指数函数。

1)y=-3x2)y=31/x3) y=31+x4) y=(-3)x5) y=3-x=(1/3) x1、1)ax 的前面系数为1; 2)自变量x在指数位置; 3)a 0且a≠1。

2、问题中4)y=(-3)x的判定,引出上面讨论的问题:即指数函数的概念中为什么要规定a 0且a≠1。

指数函数及其性质教案

指数函数及其性质教案

指数函数及其性质教案章节一:指数函数的引入教学目标:1. 理解指数函数的概念。

2. 掌握指数函数的一般形式。

教学内容:1. 引入指数函数的概念,指数函数的一般形式。

2. 举例说明指数函数的图像和性质。

教学步骤:1. 引入指数函数的概念,通过实际例子解释指数函数的定义。

2. 介绍指数函数的一般形式,解释指数函数中的底数和指数的含义。

3. 利用数学软件或图形计算器,绘制几个指数函数的图像,观察其特点。

4. 引导学生总结指数函数的性质,如单调性、奇偶性等。

教学评估:1. 课堂讲解和举例是否清晰明了。

2. 学生是否能正确理解和应用指数函数的概念。

章节二:指数函数的图像和性质教学目标:1. 掌握指数函数的图像特点。

2. 理解指数函数的单调性和奇偶性。

教学内容:1. 分析指数函数的图像特点。

2. 探讨指数函数的单调性和奇偶性。

教学步骤:1. 利用数学软件或图形计算器,绘制几个指数函数的图像,引导学生观察和总结其特点。

2. 引导学生探讨指数函数的单调性,如当底数大于1时,函数是增函数;当底数小于1时,函数是减函数。

3. 引导学生探讨指数函数的奇偶性,如指数函数既不是奇函数也不是偶函数。

教学评估:1. 课堂讲解和举例是否清晰明了。

2. 学生是否能正确理解和应用指数函数的图像和性质。

章节三:指数函数的应用教学目标:1. 掌握指数函数在实际问题中的应用。

2. 学会解决与指数函数相关的问题。

教学内容:1. 介绍指数函数在实际问题中的应用。

2. 学会解决与指数函数相关的问题。

教学步骤:1. 举例说明指数函数在实际问题中的应用,如人口增长、放射性衰变等。

2. 引导学生掌握解决与指数函数相关问题的方法,如建立指数函数模型、求解指数方程等。

教学评估:1. 课堂讲解和举例是否清晰明了。

2. 学生是否能正确理解和应用指数函数在实际问题中的应用。

章节四:指数方程的解法教学目标:1. 掌握指数方程的解法。

2. 学会解决实际问题中的指数方程。

指数函数及其性质教学设计(共8篇)

指数函数及其性质教学设计(共8篇)

指数函数及其性质教学设计〔共8篇〕第1篇:《指数函数及其性质》教学设计《指数函数及其性质》教学设计尚义县第一中学乔珺一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,老师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的根底上,建构新的知识体系。

我将以此为根底对教学设计加以说明。

数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象打破,体会数形结合的思想。

通过分类讨论,通过研究两个详细的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。

引导学生探究出指数函数的一般性质,从而对指数函数进展较为系统的研究。

二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。

是在学生已经较系统地学习了函数的概念,将指数扩大到实数范围之后学习的一个重要的根本初等函数。

它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的根底。

因此,在教材中占有极其重要的地位,起着承上启下的作用。

此外,《指数函数》的知识与我们的日常消费、生活和科学研究有着严密的联络,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义。

三、教学目的分析^p :根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的根底上掌握指数函数的图象和由图象得出的性质为本节教学重点。

本节课的难点是指数函数图像和性质的发现过程。

为此,特制定以下的教学目的: 1〕知识目的〔直接性目的〕:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决根本的比拟大小的问题.2〕才能目的〔开展性目的〕:通过教学培养学生观察、分析^p 、归纳等思维才能,体会数形结合和分类讨论思想,增强学生识图用图的才能。

《指数函数》教学设计

《指数函数》教学设计

《指数函数》教学设计教学设计:指数函数一、教学目标:1.理解指数函数的概念和特点;2.掌握指数函数的概念;3.理解指数函数的性质和图像;4.能够应用指数函数解决实际问题。

二、教学重点和难点:1.理解指数函数的概念和特点;2.掌握指数函数的概念;3.理解指数函数的性质和图像。

三、教学内容及安排:1.前导活动(5分钟)教师通过提问和展示图片的方式引入指数函数的概念,让学生了解什么是指数函数,并了解指数函数在生活中的应用。

2.知识点讲解(20分钟)2.1指数函数的定义和概念教师通过讲解指数函数的定义和概念,引导学生了解指数函数与幂函数的关系和区别。

2.2指数函数的性质和图像教师通过讲解指数函数的性质和图像,引导学生了解指数函数的增减性、奇偶性、界值和图像特征。

3.计算练习(25分钟)教师通过练习题的形式,让学生巩固和应用所学知识,提高解题能力。

4.实例分析(20分钟)教师通过实例的分析,让学生了解指数函数在实际问题中的应用,培养学生的实际应用能力。

5.拓展延伸(15分钟)教师设计一些拓展问题,让学生进一步思考和拓展应用指数函数的能力。

四、教学方法:1.教师讲解法:通过讲解的方式引导学生理解指数函数的概念和特点;2.练习训练法:通过练习题的形式巩固学生对指数函数的理解和应用能力;3.实例分析法:通过实例的分析让学生了解指数函数在实际问题中的应用。

五、教学工具:1.教学课件:用于演示指数函数的概念、性质和图像;2.练习题集:用于巩固学生对指数函数的练习和应用能力。

1.学生实际操作能力评价:通过练习题的完成情况评价学生对指数函数的应用能力;2.学生思维能力评价:通过拓展问题的思考和回答情况评价学生的思维能力。

七、教学准备:1.准备教学课件和练习题集;2.整理好实例分析的案例。

八、教学过程:1.教师通过提问和展示图片的方式引入指数函数的概念,让学生了解什么是指数函数,并了解指数函数在生活中的应用。

2.教师讲解指数函数的定义和概念,并与幂函数进行对比,引导学生理解指数函数的特点。

指数函数的教学设计方案

指数函数的教学设计方案

一、教学目标1. 知识与技能目标:(1)理解指数函数的概念,掌握指数函数的图像和性质;(2)了解指数函数在实际生活中的应用,能够运用指数函数解决实际问题;(3)学会运用指数函数模型解决实际问题。

2. 过程与方法目标:(1)通过观察、分析、归纳等方法,培养学生对指数函数的认识;(2)通过小组合作、探究等活动,提高学生的合作能力和探究能力;(3)通过实际问题解决,培养学生的应用意识和创新能力。

3. 情感态度与价值观目标:(1)激发学生对数学学习的兴趣,培养学生对数学美的感受;(2)培养学生严谨、求实的科学态度;(3)培养学生关爱生活、关注社会的责任感。

二、教学内容1. 指数函数的概念2. 指数函数的图像和性质3. 指数函数的应用三、教学过程1. 导入新课(1)通过展示生活中常见的指数函数实例,如人口增长、细菌繁殖等,激发学生的学习兴趣;(2)引导学生回顾对数函数的相关知识,为指数函数的学习做好铺垫。

2. 教学新知(1)指数函数的概念:a^x(a>0,a≠1),其中a为底数,x为指数;(2)指数函数的图像和性质:①当a>1时,函数y=a^x(x∈R)的图像是增函数,且y值始终大于0;②当0<a<1时,函数y=a^x(x∈R)的图像是减函数,且y值始终大于0;③指数函数的图像过点(0,1);(3)指数函数的应用:通过实例分析,让学生了解指数函数在实际生活中的应用。

3. 巩固练习(1)完成教材中的例题,巩固所学知识;(2)小组合作,解决实际问题,如:计算人口增长、细菌繁殖等。

4. 课堂小结(1)回顾本节课所学内容,总结指数函数的概念、图像和性质;(2)引导学生关注指数函数在实际生活中的应用。

5. 布置作业(1)完成教材中的课后练习题;(2)收集生活中指数函数的实例,进行分析。

四、教学评价1. 课堂表现:观察学生在课堂上的参与度、积极性;2. 作业完成情况:检查学生作业的正确率和完成情况;3. 实际问题解决能力:通过实际问题解决,评价学生的应用能力和创新能力。

指数函数教案(精选多篇)

指数函数教案(精选多篇)

指数函数教案(精选多篇)第一篇:指数函数教案.doc一.思考题1.来回答其变化的过程和答案2.过ppt来讲解思考题二、问题1.接说出指数函数2.学来思考问题23.出指数函数的概念三.例题1.下题目,叫学生思考几秒钟,请学生来回答。

2.学生的回答进行分析四.思考1.第一个思考,引导学生说出图像的做法,2.学生来画出4个图像3.图像进行补充4.函数的三要素来分析图像的性质5.图像上的到恒过的点及单调性6.行底数互为倒数的函数图像的比较、得到对称的性质(换算)7.行底数不同大小的比较,说明其大小的变化五.例题先思考,再请同学来回答,再进行点评六、总结七、布置作业第二篇:《指数函数概念》教案《指数函数概念》教案(一)情景设置,形成概念1、引例1:折纸问题:让学生动手折纸观察:①对折的次数x与所得的层数y之间的关系,得出结论y=2x②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)x引例2:《庄子。

天下篇》中写到:“一尺之棰,日取其半,万世不竭”。

请写出取x次后,木棰的剩留量与y与x的函数关系式。

2、形成概念:形如y=ax(a>0且a≠1)的函数称为指数函数,定义域为x∈r。

提出问题:为什么要限制a>0且a≠1?这一点让学生分析,互相补充。

分a﹤=0,a=1讨论。

1)a<0时,y=(-3)x对于x=1/2,1/4,??(-3)x无意义。

2)a=0时,x>0时,ax=0;x≤0时无意义。

3)a=1时,a= 1=1是常量,没有研究的必要。

(二)发现问题、深化概念问题:判断下列函数是否为指数函数。

1)y=-3x2)y=31/x3) y=31+x4) y=(-3)x5) y=3-x=(1/3) x1、1)ax的前面系数为1; 2)自变量x在指数位置; 3)a>0且a≠1。

2、问题中4)y=(-3)x的判定,引出上面讨论的问题:即指数函数的概念中为什么要规定a>0且a≠1。

《指数函数》的优秀教案

《指数函数》的优秀教案

《指数函数》的优秀教案•相关推荐《指数函数》的优秀教案(精选7篇)作为一名人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

教案应该怎么写才好呢?下面是小编整理的《指数函数》的优秀教案,欢迎大家分享。

《指数函数》的优秀教案篇1教学目标:1.进一步理解指数函数的性质;2.能较熟练地运用指数函数的性质解决指数函数的平移问题;教学重点:指数函数的性质的应用;教学难点:指数函数图象的平移变换.教学过程:一、情境创设1.复习指数函数的概念、图象和性质练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?二、数学应用与建构例1解不等式:(1);(2);(3);(4).小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:(1);(2);(3);(4).小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).练习:(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x—1的图象恒过的定点的坐标是.小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?小结:函数图象的对称变换规律.例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象.例4求函数的最小值以及取得最小值时的x值.小结:复合函数常常需要换元来求解其最值.练习:(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;(2)函数y=2x的值域为;(3)设a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值为14,求a的值;(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围.三、小结1.指数函数的性质及应用;2.指数型函数的定点问题;3.指数型函数的草图及其变换规律.四、作业:课本P55—6,7.五、课后探究(1)函数f(x)的定义域为(0,1),则函数的定义域为。

指数函数教案设计模板

指数函数教案设计模板

一、教学目标1. 知识与技能(1)理解指数函数的概念,掌握指数函数的定义域和值域。

(2)掌握指数函数的基本性质,如奇偶性、单调性、周期性等。

(3)能运用指数函数解决实际问题。

2. 过程与方法(1)通过观察、比较、归纳等方法,发现指数函数的性质。

(2)通过实际问题,提高学生运用指数函数解决实际问题的能力。

3. 情感态度与价值观(1)培养学生对数学的兴趣,激发学生的求知欲。

(2)培养学生严谨、细致、耐心的学习态度。

二、教学重难点1. 教学重点:指数函数的概念、基本性质、图像。

2. 教学难点:指数函数的性质的证明,以及如何运用指数函数解决实际问题。

三、教学过程1. 导入新课(1)复习幂函数的定义和性质,引导学生思考幂函数的局限性。

(2)引出指数函数的概念,提出本节课的学习目标。

2. 新课讲授(1)指数函数的定义:a的n次幂(a>0,a≠1,n为整数)。

(2)指数函数的定义域和值域:定义域为全体实数,值域为正实数集。

(3)指数函数的基本性质:① 奇偶性:当底数a>0时,指数函数f(x)=a^x为非奇非偶函数;当底数a<0时,指数函数f(x)=a^x为奇函数。

② 单调性:当底数a>1时,指数函数f(x)=a^x为增函数;当0<a<1时,指数函数f(x)=a^x为减函数。

③ 周期性:指数函数f(x)=a^x(a>0,a≠1)没有周期性。

3. 例题讲解(1)利用指数函数的性质,证明f(x)=2^x在实数集R上为增函数。

(2)利用指数函数的性质,求解不等式2^x>3。

4. 课堂练习(1)判断以下函数的奇偶性:f(x)=3^x,g(x)=(-2)^x。

(2)求函数f(x)=2^x在x=0、x=1、x=2时的函数值。

5. 课堂小结(1)回顾本节课所学内容,强调指数函数的定义、性质和图像。

(2)总结指数函数在解决实际问题中的应用。

6. 课后作业(1)完成课后练习题,巩固所学知识。

高一数学指数函数教案汇总6篇

高一数学指数函数教案汇总6篇

高一数学指数函数教案汇总6篇高一数学指数函数教案汇总6篇教案对于老师是重要的。

学习可以说很枯燥,记公式做题,做大量的类型题。

这时候,如果教师有一份明确的说课稿,将会大大提升教学效率,下面小编给大家带来关于高一数学指数函数教案,希望会对大家的工作与学习有所帮助。

高一数学指数函数教案篇1教学目标:(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:(1)重点:了解集合的含义与表示、集合中元素的特性。

(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗集合与元素之间有怎样的关系[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。

理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。

(完整版)指数函数教学设计

(完整版)指数函数教学设计

(完整版)指数函数教学设计指数函数教学设计前言指数函数是高中数学中的重要内容,对学生的数学素养培养具有重要意义。

本文档旨在设计一份完整的指数函数教学方案,帮助学生全面掌握指数函数的概念、性质和应用。

教学目标- 理解指数函数的定义和性质;- 能够根据函数表达式绘制指数函数的图象;- 掌握指数函数的运算法则;- 熟练运用指数函数解决实际问题。

教学内容1. 指数函数的概念和定义;2. 指数函数图象的性质和变换;3. 指数函数的基本运算法则;4. 指数函数在实际问题中的应用。

教学步骤1. 导入与激发:通过引入一个实际问题,激发学生对指数函数的兴趣和疑问。

2. 概念讲解与示例分析:介绍指数函数的定义和性质,通过实例分析说明指数函数的特点和变化规律。

3. 图象绘制与分析:引导学生通过变化函数的参数,绘制不同指数函数的图象,并分析图象的特点。

4. 运算法则的讲解与练:详细讲解指数函数的加减乘除、幂函数与指数函数的复合等运算法则,并通过练加深理解。

5. 实际问题应用:结合生活实际,设计一些与指数函数相关的问题,让学生运用所学知识解决实际问题。

6. 设计小组活动:将学生分为小组,每个小组设计一个实际问题,利用指数函数进行建模和分析,提高学生的自主研究能力。

7. 综合训练与测试:设计一些综合性的题目,检验学生对指数函数的掌握情况。

教学评价方法- 定期进行课堂练,检测学生对知识的掌握情况;- 设计小组活动和综合性测试,评估学生的综合运用能力;- 随堂讲评和个别辅导,关注学生的研究进展和问题。

教学资源准备- 教科书和教学课件;- 求解指数函数相关问题的计算工具;- 实际问题的素材和案例。

教学反思与改进- 根据学生的研究情况,及时调整教学进度和方法;- 借助科技手段,提供在线研究资源和辅助工具;- 鼓励学生自主研究,提供研究指导和反馈。

以上是本文档的完整版指数函数教学设计,希望能对您有所帮助。

《指数函数》教学设计方案

《指数函数》教学设计方案

《指数函数》教学设计方案《《指数函数》教学设计方案》这是优秀的教学设计文章,盼望可以对您的学习工作中带来协助!学习主题介绍学习主题:指数函数运用教材:人教版1年级1册2章6节教学内容:《指数函数》是在学习了《指数》一节内容之后编排的。

通过本节课的学习,既可以对指数和函数的概念等学问进一步稳固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来探究对数函数的性质打下坚实的概念和图象根底,又因为《指数函数》是进入中学以后学生遇到的第一个系统探究的函数,对中学阶段探究对数函数、三角函数等完整的函数学问,初步造就函数的应用意识打下了良好的学习根底,所以《指数函数》不仅是本章《函数》的重点内容,也是中学学段的主要探究内容之一,有着不行替代的重要作用。

此外,《指数函数》的学问与我们的日常生产、生活和科学探究有着严密的联系,尤其表达在细胞分裂、贷款利率的计算和考古中的年头测算等方面,因此学习这局部学问还有着广泛的现实意义。

本节内容的特点之一是概念性强,特点之二是凸显了数学图形在探究函数性质时的重要作用。

学习目标分析课程标准中与本学习主题相关的语句:学问维度:对正比例函数、反比例函数、一次函数,二次函数等最简洁的函数概念和性质已有了初步相识,能够从初中运动改变的角度相识函数初步转化到从集合与对应的观点来相识函数。

技能维度:学生对采纳描点法描绘函数图象的方法已根本驾驭,能够为探究《指数函数》的性质做好打算。

素养维度:由视察到抽象的数学活动过程已有必须的体会,已初步了解了数形结合的思想。

依据课程标准所设定的学习目标:通过这一节课的教学到达不仅使学生初步理解并能简洁应用指数函数的学问,更期望能引领学生驾驭探究初等函数图象性质的一般思路和方法,为今后探究其它的函数做好打算,从而到达造就学生学习实力的目的学生特征分析学生是否对本课的学习内容有所了解?有学习本课内容必需具备的学问驾驭状况如何?根底学问点驾驭较好本课将采纳什么样的方式组织学生学习,学生是否有过这种经验。

高中数学教案《指数函数》

高中数学教案《指数函数》

教学计划:《指数函数》一、教学目标1.知识与技能:学生能够理解指数函数的概念,掌握指数函数的一般形式及其性质。

学生能够识别并绘制指数函数的图像,理解图像与函数性质之间的关系。

学生能够运用指数函数解决简单的实际问题,如增长率、衰减率等。

2.过程与方法:通过观察、比较、归纳等方法,引导学生发现指数函数的特征和规律。

通过动手实践(如绘制函数图像),加深学生对指数函数性质的理解。

通过案例分析,培养学生将实际问题抽象为数学问题的能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。

培养学生的逻辑思维能力和严谨的科学态度。

引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。

二、教学重点和难点重点:指数函数的概念、一般形式、性质及其图像特征。

难点:理解指数函数图像与函数性质之间的关系,以及运用指数函数解决实际问题。

三、教学过程1. 引入新课(5分钟)生活实例引入:通过展示细胞分裂、人口增长、放射性物质衰减等实际问题的例子,引导学生思考这些现象背后的数学规律。

提出问题:引导学生观察这些现象的共同点,即都涉及到了“基数”和“指数”的概念,进而引出指数函数的概念。

明确目标:介绍本节课将要学习的内容——指数函数,并说明学习目标。

2. 讲授新知(15分钟)定义讲解:详细讲解指数函数的概念、一般形式(如,其中且)及其基本性质(如定义域、值域、单调性等)。

图像展示:利用多媒体设备展示不同底数下指数函数的图像,引导学生观察图像特征,如底数大于1时函数图像上升,底数在0和1之间时函数图像下降等。

性质归纳:引导学生根据图像特征归纳出指数函数的性质,如单调性、过定点(如)等。

3. 案例分析(10分钟)例题讲解:选取一两个具有代表性的例题(如计算复利、分析人口增长趋势等),详细讲解如何运用指数函数模型解决问题。

思路展示:通过板书或PPT展示解题思路和步骤,引导学生理解如何将实际问题抽象为数学问题并求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数 教学设计本节课的内容是高中数学必修一第三章第三节“指数函数”的第一课时——指数函数的定义,图像及性质。

新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

我将以此为基础从下面这几个方面加以说明。

一、教材的地位和作用本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数, 以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。

因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。

二、教学目标知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质和简单应用;使学生获得研究函数的规律和方法。

能力目标:①培养学生观察、联想、类比、猜测、归纳等思维能力;②体会数形结合思想、分类讨论思想,增强学生识图用图的能力;情感目标:①让学生自主探究,体验从特殊→一般→特殊的认知过程,了解指数函数的实际背景; ②通过学生亲手实践,互动交流,激发学生的学习兴趣,努力培养学生的创新意识,提高学生抽象、概括、分析、综合的能力。

三、教学重难点教学重点:进一步研究指数函数的图象和性质。

指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。

因此它对知识起到了承上启下的作用。

教学难点:弄清楚底数a 对函数图像的影响。

对于底数1>a 和 10<<a 时函数图像的不同特征,学生不容易归纳认识清楚。

突破难点的关键:通过学生间的讨论、交流及多媒体的动态演示等手段,使学生对所学知识,由具体到抽象, 从感性认识上升到理性认识,由此来突破难点。

因此,在教学过程中我选择让学生自己去感受指数函数的生成过程以及从这两个特殊的指数函数入手,先描点画图,作为这一堂课的突破口。

四、学情分析及教学内容分析1、学生知识储备通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:知识方面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能方面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质方面:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

2、学生的困难本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,但学生在探究问题的能力以及合作交流等方面发展不够均衡,所以学生学习起来有一定难度。

五、教法分析本节课我采用引导发现式的教学方法。

通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

六、教学过程分析根据新课标的理念,我把整个的教学过程分为六个阶段,即:1.情景设置,形成概念 2.发现问题,深化概念 3.深入探究图像,加深理解性质 4.强化训练,落实掌握 5.小结归纳 6.布置作业(一)情景设置,形成概念学情分析:1、学生初中就接触过一次函数、二次函数,在第二章再次学习一次函数、二次函数时,学生有一定的知识储备,但对于指数函数而言,学生是完全陌生的函数,无已有经验的参考,在接受上学生有困难。

2、课本给出了两个引例以及在本章章前语也给了一个例子,分别是细胞分裂、放射性物质省留量及“指数爆炸”,这三个例子比较好但离学生的认知仍存在一定距离,于是我在引课这里翻查了一些参考资料,发现这样一个例子,——折纸问题,这个引例对学生而言①便于动手操作与观察②贴近学生的生活实际。

1、引例 1:折纸问题:让学生动手折纸观察:①对折的次数x 与所得的层数y 之间的关系,得出结论x y 2=②对折的次数x 与折后面积y 之间的关系(记折前纸张面积为 1),得出结论x y )(21=引例 2:《庄子。

天下篇》中写到:“一尺之棰,日取其半,万世不竭”。

请写出取x 次后,木棰的剩留量与y 与 x 的函数关系式。

设计意图:(1) 让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。

从而引入两种常见的指数函数①1>a ②10<<a(2) 让学生感受我们生活中存在这样的指数函数模型,便于学生接受指数函数的形式。

2、形成概念:形如xa y =(0>a 且1≠a )的函数称为指数函数,定义域为R 。

提出问题:为什么要限制0>a 且1≠a ?这一点让学生分析,互相补充。

分0<a ,0=a ,10<<a ,1=a ,1>a 五部分讨论。

(二)发现问题、深化概念问题 1:判断下列函数是否为指数函数。

1)x y )(3-= 2)x y 13= 3) 13+=x y 4) xy )(31= 设计意图:1、通过这些函数的判断,进一步深化学生对指数函数概念的理解,指数函数的概念与一次、二次函数的概念一样都是形式定义,也就是说必须在形式上一模一样方行,即在指数函数的表达式中x a y =(0>a 且1≠a )。

1) x a 的前面系数为 1, 2)自变量x 在指数位置, 3)0>a 且1≠a2) 2、问题 1 中(1)x y )(3-=的判定,引出问题 1:即指数函数的概念中为什么要规定0>a 且1≠a①0<a 时,x y )(3-=对于 21=x ,41,…… 无意义。

②0=a 时,0>x 时,0=x a ;0≤x 时无意义。

③1=a 时,11==x x a 是常量,没有研究的必要。

设计意图:通过问题 1 对 a 的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时也为后面研究函数的图像和性质埋下伏笔。

落实掌握:1)若函数xa a a y )33(2+-= 是指数函数,求a 值。

2)指数函数 x a y =(0>a 且1≠a )的图像经过点)9,3(,求)1()0()(f f x f 、、的值。

——待定系数法求指数函数解析式(只需一个方程)。

(三)深入研究图像,加深理解性质指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了两个环节。

第一环节:分三步(1) 让学生作图 (2)观察图像,发现指数函数的性质 (3)归纳整理 (3) 学生课前准备:利用描点法作函数 x y 2=,x y 3=,以及 x y ⎪⎭⎫ ⎝⎛=21,xy ⎪⎭⎫ ⎝⎛=31 的图像。

设计意图:(1)观察总结 1>a ,10<<a 图像上的差异(2) 观察x y 2=与x y )21(=,x y 3= 与xy ⎪⎭⎫ ⎝⎛=31图像关于 y 轴对称。

(3) 在第一象限指数函数的图像满足“底大图高。

(4) 经过)1,0(点图像位置变化。

变式:去掉底数换成字母,根据图像比较底数的大小。

方法提炼:①用上面得到的规律;②作直线1=x 与指数函数图像相交的纵坐标,即为底数。

第二环节:利用多媒体教学手段,通过几何画板演示底数a 取不同的值时,让学生观察函数图像的变化特征,归纳总结:xa y =的图像与性质以x y 2=为例,让学生用单调性的定义加以证明;设计意图:(1)让学生由初中的“看图说话”的水平,提升到高中的严格推理的层面上来。

(2)学习用做商法比较大小。

4、奇偶性: 不具备5、对称性:x a y =不具备,但底数互为倒数的两个指数函数图像关于y 轴对称。

从形式上可变为x a y =与 x a y -=总结:两个函数)(x f y =,)-(x f y =关于y 轴对称。

6、交点:(1)与y 轴交于一点)1,0( (2)与x 轴无交点(x 轴为其渐近线)7、,当1>a 0>x 时,1>y ;当0<x 时,10<<y ;10<<a ,当 0>x 时,10<<y ;x )(3-当0<x 时,1>y8、xa y =(0>a 且1≠a )在第一象限图像“底大图高”(直线 1=x 辅助)难点突破:通过数形结合,利用几个底数特殊的指数函数的图像将本节课难点突破。

为帮助学生记忆,教师用一句精彩的口诀结束性质的探究:左右无限上冲天,永与横轴不沾边。

大1增,小 1 减,图像恒过)1,0(点。

(四)强化训练落实掌握例 1:学习了指数函数的概念,探究出它的性质以后,再回应本节课开头的问题,解决引例问题。

例 2:比较下列各题中两值的大小 (1)-0.2334⎪⎭⎫ ⎝⎛与-0.2534⎪⎭⎫ ⎝⎛; (2) 2.50.8与30.8 。

方法指导:同底指数不同,构造指数函数,利用函数单调性 (3)3234⎪⎭⎫ ⎝⎛ 与3265⎪⎭⎫ ⎝⎛;(4)73)1.2(- 与73)2.2(- 方法指导:底不同但指数相同,结合函数图像进行比较,利用底大圈高。

(6)“-”是学生的易错易混点。

(5)-30.3 与322.3;(6)0.31.7 与 3.10.9。

方法指导:底不同,指数也不同,可采用①估算(与常见数值比较)②利用中间量变式:解不等式设计意图:(1)、(2)对指数函数单调性的应用(逆用单调性),(3)建立学生分类讨论的思想。

(4)培养学生灵活运用图像的能力。

(五)归纳总结,拓展深化请学生从知识和方法上谈谈对这一节课的认识与收获。

1、知识上:学习了指数函数的定义、图像和性质以及应用。

关键要抓住底数 1>a 和 10<<a时函数图像的不同特征和性质是学好本节的关键。

2、方法上:经历从特殊→一般→特殊的认知过程,从观察中获得知识,同时了解指数函数的实际背景和和研究函数的基本方法;体会分类讨论思想、数形结合思想。

(六)布置作业,延伸课堂A 类:(巩固型)面向全体同学1、完成课本习题B 类:(提高型)面向优秀学生2、完成学案 。

教学反思指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分 的教学安排上,我更注意学生思维习惯的养成, 特作如下思考:1、设计应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了三个环节(1) 由具体的折纸的例子引出指数函数设计意图:贴近学生的生活实际,便于动手操作与观察。

相关文档
最新文档