Intersecting surfaces of special types
分析化学专业英语词汇
precipitation method volatilization method constituent insoluble volatility weight loss interference
calibration 校准 widespread 分布广泛的, 普遍的 gravimetric method重量分析法 volumetric method容量法 concentration 浓度 titration 滴定 back-titration 反滴定
analytical chemical term
elucidation balance quantitative measurement notion philosophical
abstraction抽象 analytical method 分析方法 rely upon 依赖 aspire to 渴望 specialization 专业化 prospective 预期的,未来的
The normal boiling point is the boiling point at 760 Torr, the atomspheric pressure at sea level. It is possible for a liquid to be superheated - heated to a temperature above the boiling point without the occurrence of boiling.
二、 词汇(New Words and Expressions)
analytical chemical term 分析化学术语 elucidation说明, 阐明 balance 天平, 秤 quantitative measurement 定量测量 notion 概念, 观念, 想法 philosophical 哲学的
ASTM D7028-2007用DMA测试Tg
Designation:D7028–07´1Standard Test Method forGlass Transition Temperature(DMA Tg)of Polymer Matrix Composites by Dynamic Mechanical Analysis(DMA)1This standard is issued under thefixed designation D7028;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.´1N OTE—Reference to a research report was added andfigures corrected in August2008.1.Scope1.1This test method covers the procedure for the determi-nation of the dry or wet(moisture conditioned)glass transition temperature(T g)of polymer matrix composites containing high-modulus,20GPa(>33106psi),fibers using a dynamic mechanical analyzer(DMA)underflexural oscillation mode, which is a specific subset of the Dynamic Mechanical Analysis (DMA)method.1.2The glass transition temperature is dependent upon the physical property measured,the type of measuring apparatus and the experimental parameters used.The glass transition temperature determined by this test method(referred to as “DMA Tg”)may not be the same as that reported by other measurement techniques on the same test specimen.1.3This test method is primarily intended for polymer matrix composites reinforced by continuous,oriented,high-modulusfibers.Other materials,such as neat resin,may require non-standard deviations from this test method to achieve meaningful results.1.4The values stated in SI units are standard.The values given in parentheses are non-standard mathematical conver-sions to common units that are provided for information only.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:2D3878Terminology for Composite MaterialsD4065Practice for Plastics:Dynamic Mechanical Proper-ties:Determination and Report of ProceduresD4092Terminology for Plastics:Dynamic Mechanical PropertiesD5229/D5229M Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Ma-trix Composite MaterialsE177Practice for Use of the Terms Precision and Bias in ASTM Test MethodsE691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test MethodE1309Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in DatabasesE1434Guide for Recording Mechanical Test Data of Fiber-Reinforced Composite Materials in DatabasesE1471Guide for Identification of Fibers,Fillers,and Core Materials in Computerized Material Property Databases E1640Test Method for Assignment of the Glass Transition Temperature By Dynamic Mechanical AnalysisE1867Test Method for Temperature Calibration of Dy-namic Mechanical Analyzers3.Terminology3.1Definitions—Terminology D3878defines terms relating to polymer matrix composites.Terminology D4092defines terms relating to dynamic mechanical property measurements on polymeric materials.3.2Symbols:E’=storage modulusE”=loss modulustan d=E”/E’=tangent deltaDMA Tg=glass transition temperature defined from dy-namic mechanical analysis measurementL=length of specimenW=width of specimenT=thickness of specimenT t=peak temperature from tangent delta curve4.Summary of Test Method4.1Aflat rectangular strip of laminate is placed in the DMA equipment and oscillated at a nominal frequency of1Hz.The specimen is heated at a rate of5°C/min(9°F/min).The same1This test method is under the jurisdiction of ASTM Committee D30onComposite Materials and is the direct responsibility of Subcommittee D30.04onLamina and Laminate Test Methods.Current edition approved Dec.15,2007.Published January2008.2For referenced ASTM standards,visit the ASTM website,,orcontact ASTM Customer Service at service@.For Annual Book of ASTMStandards volume information,refer to the standard’s Document Summary page onthe ASTM website.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.loading frequency and heating rate is used for both dry and wet specimens(moisture conditioned)to allow for comparison. The temperature at which a significant drop in storage modulus (E’)begins is assigned as the glass transition temperature (DMA Tg).The peak temperature of the tangent delta curve (T t)is identified along with DMA Tg for comparison purposes.5.Significance and Use5.1This test method is designed to determine the glass transition temperature of continuousfiber reinforced polymer composites using the DMA method.The DMA Tg value is frequently used to indicate the upper use temperature of composite materials,as well as for quality control of composite materials.6.Interferences6.1The standard testing machine shall be of the Dynamic Mechanical Analysis(DMA)type of instrument that operates with forced oscillation and applies aflexural loading mode (either three-point bend or dual cantilever)to the test specimen. Refer to Practice D4065for a summary of various other DMA practices.Other loading modes(such as tensile,torsion or shear)may produce different test results.If another equipment type or loading mode is used the non-standard approach shall be described in the report and the test result recorded as non-standard.6.2Afixed frequency of1Hz is standard in this test method. In general,for a given material,a higher testing frequency produces a higher DMA Tg value than this standard,while use of the resonance mode will yield a different DMA Tg that may be either higher or lower than the standard.If a non-standard frequency,or the resonance mode,is used,the non-standard approach shall be described in the report and the test result recorded as non-standard.6.3A heating rate of561°C/min(962°F/min)is standard in this test method.A change in heating rate will affect the glass transition temperature result;the standard heating rate is the best available compromise for comparing DMA Tg results of dry and wet laminates.If a different heating rate is used it shall be described in the report and the result recorded as non-standard.N OTE1—Users should be advised that a heating rate of5°C/min represents a compromise between various issues related to Tg measure-ment precision and bias.It is widely known that heat transfer limitations are more pronounced in DMA apparatus compared to other thermal analysis techniques,such as differential scanning calorimetry(DSC)and thermomechanical analysis(TMA).For greatest precision,it has been recommended that heating rates be2°C/min or less.Test Method E1640 specifies a heating rate of1°C/min.However,in many cases5°C/min is recommended as a compromise between Tg measurement accuracy and test method convenience,especially for wet laminate measurements,since the slower heating rate will cause specimen drying that will itself bias the results.6.4Purge gas type andflow rate and the position of the thermocouple can affect the DMA Tg test result and shall be noted and reported.The same conditions shall be used for both calibration and testing runs.Instrumentation manufacturer recommendations should be followed.6.5It is standard in this test method that one of the major fiber directions shall be parallel to the length of the specimen.The span-to-depth ratio,ply orientation,and ply stacking sequence of a specimen with respect to the testingfixture have a profound effect on the DMA Tg result.A meaningful comparison of data requires that the specimen configuration be the same.A non-standard specimen configuration shall be described in the report and the result recorded as non-standard.6.6The standard definition in this test method for DMA Tg is based on intersecting two tangent lines from a semi-logarithmic plot of the storage modulus versus temperature. Other T g definitions typically produce different test results.For example,a linear plot scale will result in a lower value of DMA Tg.A non-standard DMA Tg definition shall be described in the report and the result recorded as non-standard.For com-parison purposes the peak temperature of the tangent delta curve(T t)is identified along with DMA Tg.7.Apparatus7.1Micrometer,suitable for reading to0.025mm(0.001in.) accuracy for measuring the specimen thickness and width. 7.2Caliper,suitable for reading to0.025mm(0.001in.) accuracy for measuring the specimen length and instrument clamping distance.7.3Dynamic Mechanical Analyzer(DMA),with oven ca-pable of heating to above the glass transition temperature and of controlling the heating rate to the specified value.8.Sampling and Test Specimens8.1Two specimens shall be tested for each sample.If the testing is part of a designed experiment,other sampling techniques may be used if described in the test plan.8.2Consult the instrument manufacturer’s manual for speci-men size.A span-to-thickness ratio greater than ten is recom-mended.Specimen absolute size is notfixed by this method as various dynamic mechanical analyzers require different sizes. Depending on the analyzer,typical specimen size can range from56643126132.060.5mm(2.2160.1630.47 60.0430.0860.02in.)(L3W3T)to22613361 31.060.5mm(0.960.0430.1260.0430.0460.02 in.).8.3One of the majorfiber directions in the specimen shall be oriented along the length axis of the specimen.It is standard that one of the majorfiber directions shall be parallel to the length of the specimen,and specimens containing only off-axis plies shall not be used.Any deviations from the standard orientation shall be reported and the test results noted as non-standard.8.4The specimen surfaces shall beflat,clean,straight,and dry to prevent slippage in the grips and mitigate any effects due to moisture.Opposite surfaces must be essentially parallel and intersecting surfaces perpendicular.Tolerances in thickness and width must be better than62%.8.5The selected sample shall be taken from a representative portion of the minate edges or other irregularities created in the laminate by mold or bagging techniques should be avoided.9.Calibration9.1The DMA equipment shall be calibrated in accordance with Test Method E1867for temperature signals andinaccordance with the equipment manufacturer’s recommenda-tion for the storage modulus.The equipment must be calibrated in the same loading mode as will be used for testing,either dual cantilever or three-point bending.The temperature calibration points must span the DMA Tg result.10.Conditioning10.1Moisture has significant effect on DMA Tg.Therefore, it is recommended that the test specimens should be weighed before and after DMA Tg testing to quantify the moisture change in the specimen resulting from the DMA Tg test. 10.2Dry Specimens—To minimize the presence of moisture in the specimens,dry specimens must be conditioned prior to testing by using either of the following techniques:10.2.1Dry the specimens in an oven in accordance with Test Method D5229/D5229M,Procedure D,then stored until test in a desiccator or sealed MIL-PRF-1313(or equivalent) aluminized bag,or10.2.2Store the material in a desiccator or sealed alumi-nized bag immediately after material curing(lamination), where the material shall remain except for the minimum time required for removal during specimen preparation and testing. The maximum time between cure(lamination)and testing shall be30days,after which,prior to testing,specimens shall be oven-dried in accordance with10.2.1.10.3Wet Specimens—Condition in accordance with Test Method D5229/D5229M,Procedure B.The conditioned specimens shall be tested within30minutes after removal from the conditioning chamber,or stored in sealed MIL-PRF-131(or equivalent)aluminized bag until test.11.Procedure11.1Test Specimen—Measure the specimen thickness and width to0.025mm(0.001in.)and record.Measure the specimen length to0.025mm(0.001in.)and record.Weigh the specimen to the nearest milligram(0.001g)and record. 11.2Specimen Installation—Install the specimen in the DMA test equipment oven based upon clamping method to be employed.11.3Positioning of Specimen—Follow the manufacturer’s procedure for positioning the specimen in the clamps.Gener-ally,the specimen should be centered between the clamp faces and be parallel to the base of the instrument.Mount the specimen in dual cantilever mode or three-point bending mode.11.4Heating Rate—The standard heating rate is56 1°C/min(962°F/min).The same heating rate shall be used for all samples whose results are to be compared.Any deviations from this heating rate shall be noted in the report and the result shall be reported as non-standard.11.5Frequency—The standard frequency to be used in this standard is1Hz,and the instrument should be operated in constant strain mode.11.6Strain Amplitude—The maximum strain amplitude should be kept within the linear viscoelastic range of the material.Strains of less than0.1%are standard.11.7Temperature Range—Program the run to begin at room temperature or a temperature at least50°C(90°F)below the estimated DMA Tg and to end at a temperature at least50°C (90°F)above DMA Tg,but below decomposition temperature.11.8Purge Gas Flow Rate—Follow the manufacturer’s manual or recommendations to set the purge gasflow rate.Five litres/minute(0.2CFM)is a typical purge gasflow rate setting. For some types of dynamic mechanical analyzers,a purge gas flow setting is not required.11.9Thermocouple Positioning—Follow the manufactur-er’s manual or recommendations to position the thermocouple. Typically the thermocouple should be as close to the sample as possible.11.10Test—Conduct DMA Tg measurements using the instrument settings specified and record the load and displace-ment data as a function of temperature.Allow the oven to cool before removing the specimen.Weigh the specimen after the test to the nearest milligram(0.001g)after the removal from the oven and record.11.11Specimen Examination—Examine the specimen after the test and inspect for any visual anomalies(that is,delami-nation,blisters,cracks,etc.).Record any visual anomalies observed.12.Interpretation of Results12.1Glass Transition Temperature(DMA Tg)—Plot the logarithm of storage modulus(E’)and linear tangent delta(tan d)versus the linear temperature(Fig.1).During the glass transition,the storage modulus of the composite material is significantly reduced.The DMA Tg is determined to be the intersection of two tangent lines from the storage modulus by this test method.Thefirst tangent line(Line A,Fig.1)is selected at a temperature before the transition.This tempera-ture is designated as TA.The second tangent line(Line B,Fig.1)is constructed at the inflection point to approximately the midpoint of the storage modulus drop.This temperature is designated as TB.The two tangent lines are intersected,and temperature corresponding to this intersection point is recorded as the DMA Tg.See Appendix X1for additional guidelines to draw tangent lines.12.2Tangent Delta(d)peak(T t)—The peak temperature of the tangent delta curve(T t)is identified and reported(Fig.1).13.Validation13.1Any specimen that has an obviousflaw or deviation from the requirements of this test method may be rejected.A new or spare specimen shall be prepared from the same material package and tested to replace any specimens rejected per this paragraph.13.2Test results may be discarded for any conditions which compromise the integrity of the test.Should the results be retained,then these conditions shall be described in the test report.Specific examples include:13.2.1Cracks evident in the specimen after the test.This could indicate that the sample was taken from a defective portion of the laminate.3MIL-PRF-131,Barrier Materials,Watervaporproof,Greaseproof,Flexible, Heat-Sealable.Available at or from the Standardization Document Order Desk,700Robbins Avenue,Building4D,Philadelphia,PA19111-5094.13.2.2An irregularity of the plotted curve,such as change in slope,other than that due to the glass transition,or excessive noise.It is possible that more than one transition exists,but this should be confirmed by a separate run.13.2.3Slippage of the specimen in the grips.14.Report14.1Report the following information,or references point-ing to other documentation containing this information,to the maximum extent applicable (reporting of items beyond the control of a given testing laboratory,such as might occur with material details or panel fabrication parameters,shall be the responsibility of the requestor):N OTE 2—Guides E 1309,E 1434,and E 1471contain data reporting recommendations for composite materials and composite materials me-chanical testing.14.1.1The revision level or date of issue of this test method.14.1.2The name(s)of the test operator(s).14.1.3Any variations to this test method,anomalies noticed during testing,or equipment problems occurring during testing.14.1.4Identification of all the materials constituent to the plate specimen tested,including for each:material specifica-tion,material type,manufacturer’s material designation,manu-facturer’s batch or lot number,source (if not from manufac-turer),date of certification,expiration of certification,filament diameter,tow or yarn filament count and twist,sizing,form or weave,fiber areal weight,matrix type,matrix content,and volatiles content.14.1.5Description of the fabrication steps used to prepare the parent laminate including:fabrication start date,fabrication end date,process specification,cure cycle,consolidation method,and a description of the equipment used.14.1.6Ply orientation and stacking sequence of the lami-nate,relative to the longitudinal (long)dimension.14.1.7If requested,report density,volume percent rein-forcement,and void content test methods,specimen sampling method and geometries,test parameters,and test results.14.1.8Method of preparing the test specimen,including specimen labeling scheme and method,specimen geometry,sampling method,and specimen cutting method.14.1.9Calibration dates and methods for all measurements and test equipment.14.2Report the following information:14.2.1Date of test.14.2.2Test span length and thickness.14.2.3Specimen conditioning history including weight gain or weight loss of specimen.14.2.4Instrument brand name,type,or model number.14.2.5Specimen loading condition and clamping details.14.2.6Heating rate and loading frequency.14.2.7Flow rate and type of the purge gas.14.2.8Any non-standard testing or data reduction param-eters,including heating rate and loading frequency.14.2.9Deformation amplitude or strain.14.2.10Test results,including DMA Tg,peak tangent delta value (T t ),TA,TB,the method for DMA Tg determination,and comments on any irregularities or unexpected results.14.2.11Sample weight before and after DMA Tg testing and weight loss percentage.15.Precision and Bias 415.1Precision :15.1.1The precision of the DMA Tg measurements depend on strict adherence to this test method and are influenced by mechanical and material factors,specimen preparation,and measurement errors.4A research report is available from ASTM Headquarters.RequstRR:D30-1004.FIG.1Construction of Storage Modulus Glass TransitionTemperature15.1.2Mechanical factors that can affect the test results include:the physical characteristics of the DMA testing equip-ment (stiffness,damping,and mass),accuracy of the loading and deflection measurements,loading frequency,alignment of the test specimen in the clamping device,clamping distance,thermocouple location.15.1.3Material factors that can affect test results include:material quality and representativeness,sampling scheme,and specimen preparation (surface quality,flatness,fiber alignment,aspect ratio,and so forth).15.1.4An interlaboratory test program was conducted where an average of two specimens each,of four different materials and layup configurations,were tested by seven different laboratories.The specimens were conditioned to both dry and wet environments per Test Method D 5229/D 5229M .Table 1presents the precision statistics generated from this study as defined in Practice E 691for DMA Tg dry and wet values.The materials listed in Table 1are defined as:A Glass/Epoxy Fabric -(90/0)10layupB Carbon/Epoxy Tape -(90/0)2s layupC Carbon/Bismaleimide Tape -(90/0)2s layup DCarbon/Bismaleimide Fabric -(90/0)12layup15.1.5The averages of the coefficient of variation are shown in Table 2.The values of S r /X and S R /X represent the repeat-ability and the reproducibility coefficients of variation.These averages allow a relative comparison of the repeatability (within laboratory precision)and reproducibility (between laboratory precision)of the DMA Tg test parameters.These values indicate that the material factors did not have a significant impact on repeatability and reproducibility of the DMA Tg values measured.The DMA Tg dry values were found to exhibit higher repeatability and reproducibility than the DMA Tg wet values.15.2Bias —Bias cannot be determined for this test method as no acceptable reference standard exists.16.Keywords16.1composite;DMA;dynamic mechanical analysis;glass transition temperature;polymer matrix compositeTABLE 1Precision StatisticsMaterialX–S rS RrRS r /X –,%S R /X –,%DMA Tg (°C),DryA 1290.33 5.830.9316.30.26 4.53B 176 1.75 6.70 4.9118.8 1.00 3.82C 256 1.129.19 3.1325.70.44 3.59D2621.697.164.7320.10.652.74DMA Tg (°C),WetA 79 1.03 6.55 2.8818.3 1.308.31B 120 1.417.03 3.9619.7 1.18 5.85C 1900.417.70 1.1421.60.22 4.06D1902.279.236.3525.91.194.85APPENDIX(Nonmandatory Information)X1.EXAMPLES FOR INTERPRETATION OF RESULTSX1.1The DMA Tg is determined by this test method to be the intersection of two tangent lines from the storage modulus.Examples are shown in this appendix to provide graphical illustrations of how to select the two tangent lines.X1.2Fig.X1.1shows an ideal DMA thermogram.It is ideal because the glass transition is clearly displayed.Before the transition the storage modulus is relatively constant,the sigmoidal change during transition is clear,and after the transition the storage modulus is relatively constant.5As described in 12.1,the first tangent line is selected at a temperature before the transition and the second tangent line is constructed at the inflection to mid-point of the modulus ing this approach the intersection point is drawn as shown in Fig.X1.2.If the two tangent lines are constructed from temperatures too close to the transition,the intersection isdepicted as shown in Fig.X1.3.On the other hand,if the two tangent lines are constructed at temperatures too far away from the transition,the intersection is depicted in Fig.X1.4.Figs.X1.3and X1.4illustrate that not following the approach of this test method can cause the intersection temperature of an ideal thermogram to vary by 3°C (5°F).X1.3Fig.X1.5shows a non-ideal DMA thermogram.In this example the transition is less clear than the thermogram of Fig.X1.1.Before the transition the storage modulus continues to slope downward and after the transition the storage modulus continues to slope ing the approach of this test method the intersection point is drawn as shown in Fig.X1.6.If the two tangent lines are constructed from temperatures too close to the transition,the intersection is depicted as shown in Fig.X1.7.On the other hand,if the two tangent lines are constructed at temperatures too far away from the transition,the intersection is depicted in Fig.X1.8.Figs.X1.7and X1.8illustrate that not following the approach of this test method can cause the intersection temperature of a non-ideal thermo-gram to vary by 8°C (14°F).5In Fig.X1.1the loss modulus (E’’)and tangent delta (tan delta)curves are also plotted.Alternative definitions of glass transition temperature such as the peak of the loss modulus or of the tan delta have been reported in literatures.TABLE 2Averages of the Coefficient of VariationParameter Average of S r /X –,%Average of S R /X –,%DMA Tg Dry 0.59 3.7DMA Tg Wet0.975.8FIG.X1.1An Example of an Ideal DMA Thermogram Showing Storage Modulus,Loss Modulus,and Tan DeltaFIG.X1.2An Example of the Determination of the DMA Tg Value as Described in this Test MethodFIG.X1.3An Example of the Intersection Drawn Where the First Tangent Line is Selected Too Close to the Transition and the Second Tangent Line is Selected Too Close to the Transition for the DMA Tg value.FIG.X1.4An Example of the Intersection Drawn Where the First Tangent Line is Selected Too Far Away from the Transition and the Second Tangent Line is Selected Below the Mid-Point of the Modulus Drop for the DMA Tg ValueFIG.X1.5An Example of a Non-Ideal DMA Thermogram Showing Storage Modulus,Loss Modulus,and Tan Delta from a MoistureConditioned Laminate for DMA Tg Wet ValuesFIG.X1.6An Example of the Determination of the DMA Tg Wet Value as Described in this Test MethodFIG.X1.7An Example of the Intersection Drawn Where the First Tangent Line is Selected Too Close to the Transition and the Second Tangent Line is Selected Too Close to the Transition for the DMA Tg Wet ValueASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the riskof infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of theresponsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585(phone),610-832-9555(fax),or service@ (e-mail);or through the ASTM website().FIG.X1.8An Example of the Intersection Drawn Where the First Tangent Line is Selected Too Far Away From the Transition and theSecond Tangent Line is Selected Below the Mid-Point of the Modulus Drop for the DMA Tg WetValues。
设计时应力集中问题
力和臂的接合.但Βιβλιοθήκη 不是第一个槽Stress Relief应力释放
surfaces.邻近表面之间 is blending radii between adjacent surfaces.邻近表面之间 的混合半径
Radii that just take the edge off are not blending radii. 去 掉边尖角的半径不是混和的 半径;
Blend Radius (Inches)
[3] Again, the results vary according to the particulars of the design geometry and applied loads. 数据结果依据具体的设计和相应的负载力
When more and bigger is not necessarily better.更多的或更大的并不意味着更好
减少了1/3的重力;
Stress and Fillet Blending Radius (FEA Sample003)
3500 3250 3000 2750 2500
Stress (PSI)
CATIA V5破面修复教程(英文)
PROBLEM: it is not always possible to propagate a consistent orientation all over the Join.
Copyright DASSAULT SYSTEMES 2002
6
Some Information on the Join Operator (2/3)
Simulation
NC Manufacturing
5
Some Information on the Join Operator (1/3)
JOIN is the main operator for the creation of topology Joining surfaces is done in 2 steps
to find the invalid topological situations (surface connection checker) to close the remaining free sides (Local Join, Local Healing)
STEP 1 is done considering a tolerance parameter called merging distance. All surface boundaries are compared to find those which are close enough to become shared edges.
The suppression of small curves may later produce invalid faces (with self-intersecting edges)
9
How to Choose a Merging Distance (2/2)
常用机械制图英语
AA/Cacrosscorners对角距A/Facrossflats对边距abovestuffing上填料accumulationofenergy储能accumulation聚集性acmethread梯形(爱克姆)螺纹acrosscorner对角距acrossflat对边距actualsize实质尺寸acuteangle锐角addendum齿顶高addendumcircle齿顶圆admiraltymetal含锡黄铜affiliation附属性(关系)ageingtreatment时效办理ALaluminum铝alignedsectionalview旋转剖视图allowance容差、加工余量analyticalmethodoflineandplane线面剖析法analyticalmethodofshape形体剖析法analyzableassembly剖析装置图ANGangle角anglebarorL-bar(beam)角钢anglebetweenaxonometricaxes轴间角angulardimension角度尺寸angulargear人字齿轮angularsection斜剖面angularity倾斜度anneal退火anti-clockwise逆时针方向的arroworarrowheads箭头asbestospacking石棉填料ASMassembly装置(图)、零件assemblydrawingnumber装置图图号assemblydrawings装置(组装)图assemblyforinstallation安装图assemblyparts装置组合零件assemblysketches装置草图auxiliarycircle协助圆auxiliaryplane协助平面auxiliarysectionalview斜(协助)剖视图alignedanddeveloped睁开视图AVGaverage均匀axialcoefficientsofforeshortening轴向变形系数axisline轴线axisofrotation转轴axis轴线axonometricaxes轴测轴axonometricdrawing轴测图axonometricprojection轴测投影BBABBabbitt巴氏(轴承)合金back(rear)view后(背)视图bar杆baseline基准线baseparts机座baseplane底平面basicdeviation基本偏差basichole基准孔basicshaft基准轴basicsize基本尺寸BBballbearing转动轴承bearingcover轴承盖bearingset轴承座bearing轴承bellmetal青铜(锡铜)合金beltwheel带轮bevelgear斜齿轮BHNBrinellhardnessnumber布氏硬度值bisector均分线bladespring板簧blindhole盲孔(不通的孔)blindhole盲孔blindthreadedhole螺纹盲孔bluntangle钝角bodyofrevolution展转体boltjoint螺栓连结bolt螺栓border图框borderline图框线boringmachineorboring镗床boring镗孔bossclub凸台bottomshell下轴瓦box箱体brazingmetal铜锌合金brightwasher平垫圈Brinellhardness布氏(HB)硬度broacher拉床、绞孔机broaching拉床、扩孔机broach拉光brokenline 断裂线brokenview(localview) 局部视图BRSbrass黄铜BRZbronze青铜burnishorpolishing 磨光butterflyvalve 蝶形阀buttress(screw)thread 锯齿形(枪膛)螺纹caliper 卡尺(钳)capscrew带帽螺钉(栓)capitalletters 大写字母carburizing(carboninfiltration) 渗碳casehardened硬化、表面淬火castingdefect 铸件缺点castingprocesses 锻造工艺casting 锻造、铸件castlenut 内六角圆螺母cavity 空腔(穴)CBOREcounterbore沉孔、用心孔centertocenterdistance中心距centerline(centralline)中心线center-to-centerspacing中心距centralprojection中心投影CHHDcheesehead开槽圆柱头CHAMchamfer倒角chamfer倒角channelbar槽钢characteristicsofprojection投影特征CHDchecked(by)(由)校正checkdrawings校(核)图cheesehead圆柱头Chinesecharacters汉字chromeplating镀铬CIcastiron铸铁CIRcircular圆的circulararc圆弧、弧circularpitch齿距circularpitch周节circularrunout圆跳动CLorcenterline中心线clamping夹紧clearancefit空隙配合clockwise顺时针方向的CMcentimeter厘米coarsepitchthread粗牙一般螺纹coarsewheel粗砂轮加工coating涂覆coincidence(revolved)section重合断面coincidentpoint重影(合)点color-hardening着色硬化、发蓝、发黑combinationsolids组合体commomtangent公切线commonaxis公共轴线commonpoint共有点compass圆规component构件compoundsectionalview 复合剖视图concavemillstone 凹面磨盘concentriccircle 齐心圆concentricityandcoaxiality 同轴(心)度conic(miter)gear 圆锥(伞)齿轮connectingbar 连杆constructionline 作图线contactsurfaces 接触表面continuousstraightthinlinewithzigzags continuousthickline 粗实线continuousthinirregularline 波涛线折线continuousthinline 细实线contourarithmeticmeandeviation 轮廓算术均匀偏差contourelement外形素线conventionalbreaks折断规定画法conventionalrepresentation规定画法converge聚为一点convexmillstone凸面磨盘coordinateaxis坐标轴COPcopper铜copperplating镀铜corrosion腐化cotter(split)pin张口(尾)销counterborehole阶梯沉孔、用心孔counterboringtool平底扩孔钻counter-drill阶梯钻countersunkhole锥形沉孔、用心孔couplingorunion连轴器coveringexternalthread套扣周节CPcircularpitchcrank摇把crossrib十字肋crosssectionshape横断面形状crossingline交错线crossingpoint交错点CRS(CtoC)centers中心距CSKcountersunk锥孔、用心孔CUcubic立方的CUFTcubicfoot立方英尺CUINcubicinch立方英寸CUYDcubicyard立方码cube立方体cuboid长方体cuppacking皮碗密封curvetemplate曲线板curvedlineofintersection曲交线curvedslot曲线槽cuttingplanesymbol剖切平面符号cuttingplane剖切平面cut断面图cycloidalgear摆线齿轮CYLcylinder(cylindrical)圆柱、圆柱体的cylindricity圆柱度Ddashedthinlines虚线datumfeature基准因素datumline基准线datumplane基准面datumpoint基准点datumsymbo基准代号ldeburring去毛刺dedendumcircle齿根圆dedendum齿根高DEGor?degree度delineator制图者descriptivegeometry画法几何descriptivegeometrysolution图解法designdatum设计基准DETDWGdetaildrawing零件图detaildrawing零件图detailing(anassemblydrawing)(由装置图)拆画零件图deviation尺寸偏差(偏差)DIAorφdiameter直径DIAGdiagonal对角线(的)diagonalline对角线diagramassemblydrawing装置工作图diagrammaticdrawing表示图diameter直径diamondknurling网纹滚花dimension尺码dimensionfigure尺寸数字dimensionform尺寸格式dimensionline尺寸线dimensiontext尺寸数值dimensiontolerance尺寸公差dimetricdrawing正二轴测图dividers分规dome圆顶状double-startthread双线螺纹dowelpin圆柱销draftordraught起模斜度draftingpaper画图纸draftingtape胶带纸drawingboard图板drawingnumber图号DRGdrawing制图、图样drilling钻孔drivegear主动齿轮drivengear从动齿轮drivenshaft从动轴DRNdrawn(by)(由)画图ductilecastiron球墨铸铁dynamometry测力Eedgeline棱线effectivediameters弹簧中径effectivelength有效长度EIorei 来自法文ecartinferieur下偏差代号elbow肘形弯管(头)elementcircle素线圆elementsymbol基本符号elementaryunit基本体ellipse椭圆elongatedhole延伸孔、拉伸孔endcover端盖endface端面endpoint端点engineeringrequirements技术要求enlargedpartialview局部放大图enlargementscale放大比率EQUISPorEQSequallyspaced均布erasingshield擦图片ESores 来自法文ecartsuperieur上偏差代号EXTexternal外面的extensionline尺寸界限external(male)thread外(阳)螺纹externaldiameter弹簧外径externaldimension外形尺寸externaltangency外切externalthreadlathing车外螺纹externalview外形视图extremepositionofmoveablepart活动极限地点extruding挤压FFABfabricate制造、装置faucet旋塞、水龙头feedspiral送料螺旋feltring毡圈ferrousmetal黑色金属FIG.figure附图、插图FILfillister凹槽file锉filingmargin装订边fillin填写fillet锻造(内)圆角fineboring精镗finebroaching精拉finegrinding精磨finemilling精铣finepitchthread细牙一般螺纹fineplanning精刨fineturning精车finishallover所有加工fissure裂纹fitsymbol配合代号fitsystem配合制fit配合55?nonsealingpipethread55?非密封管螺纹55?sealingpipethread55?密封管螺纹fixedbody固定钳身flange法兰盘、凸缘flatbar扁钢flatheads平顶flatorplane平面flatness平面度follower从动(大齿)轮font字体fontcavity缩孔、铸口forging锻压fork拨叉formerror形状偏差forthquadrant第四象限fourquadrants四个象限45?mitreline45?斜线freehand徒手(画)freeheight自由高度frontalline正平线frontalplane(orV-plane)正投影面frontalplane正平面frustumofacone圆锥台frustumofacone截头圆锥frustumofapyramid棱锥台FTor′foot英尺fullsectionalview全剖视图原值比率fullsizefullthread 全螺纹functionaldimensions 功能尺寸Ggasket密封垫(圈)gaugecalipers卡(量)规gearbox(case)齿轮箱geartrain齿轮传动gear齿轮generalfitclass配合种类general-plane一般地点平面general-positionline一般地点直线generatingcircle母线圆generator(generation)line母线Geometricconstruction几何作图geometricalsolid几何体geometricaltolerancesymbol形位公差符号geometricaltolerance形状地点公差GIgalvanizediron马口铁、镀锌铁gib-headkey钩头楔键gland压盖gland密封压盖globevalve球阀good-qualitycarbonsteel优良碳素钢grade坡度gradeAandgradeBoftypeonehexagonnutI型六角螺母A级和B级graduatedscale比率(分度)尺图示法graphicalrepresentationGraphics图学GRDgrind磨削greycastiron灰口铸铁grindingmachine磨床grinding研磨grinding磨削groove凹槽、沟纹guardvalve安全阀guidepin定位销guidescrew丝杠Hhalfsectionalview半剖视图halfview半视图handvalve手压阀hardcasting白口铁hardmetal硬质合金hardenedandtempered调质的harden淬火hardnessnumber硬度值Hatching剖面线heat-treatment热办理heavylines加深图线heavymetal重金属helicalcompressionspring圆柱螺旋压缩弹簧helicalspring螺旋弹簧helicalspurgear斜齿圆柱齿轮helicaltensionspring圆柱螺旋拉伸弹簧herringbonegear人字形圆柱齿轮HEXhexagon六角(边)形HEXHDhexagonhead六角头hexnut六角螺母hexslottednut六角开槽螺母hexagonhead六角头hexagonheadbolt六角头螺栓hexagonheadbolt六角头螺栓hexagonsocketcapscrew内六角圆柱头螺钉hexagonthinnut六角薄螺母hiddenedges不行见轮廓线high-carbonsteel高碳钢high-speedsteel高速钢hole-basissystemoffits基孔制配合horizontal(level)plane水平面horizontalline水平线horizontalprojectionplane(H-plane)水平投影面hot-rolledsteel热轧钢HPhorsepower马力H-perpendicularline铅垂线H-perpendicularplane铅垂面HRhour小时hub轮毂hub轮毂、中心hyperbola 双曲线Ihypotenuse直角三角形之斜边(弦) I/Dinsidediameter 内径、内形尺寸I-beam工字钢imaginaryline设想线INor″inch英寸incenter内(切圆)心includedangle夹角inflexion拐点ingotiron低碳钢(工业纯铁) initialoutline初始轮廓线inletside进口端innerrace内圈insidediameter内径instructionbook说明书instrumentaldrawing用仪器画的图INTinternal内部的interchangeability交换性interferencefit过盈配合internal(female)thread内(阴)螺纹internal(inside)caliper内卡尺(钳)internaldiameters弹簧内径internaltangency内切internalthreadlathing车内螺纹interpenetration相贯intersectingplane截平面intersectionline截交线intersectionofplanesurfaces平面之交线intersectionofsurfaces表面之交线intersectionpoint交点Intersection订交Intuitiveillustrations直观图involutegear渐开线齿轮iron铁ISOstandardsISO国际标准ISO=InternationalStandardizationOrganization国际标准化组织正等轴测图isometricdrawing(diagram)isometricprojection正等测投影isometricsectionalview正等轴测剖视图Italicfont斜体Jjack千斤顶、起重器jigbody 夹详细junctionsurface 联合面Kkeydiagram 原理草图keyjoint 键连结keyseat 键座keytypes 键的型式keyway(slot) 键槽key键knobbled(wrought)iron 熟(锻)铁knurling 滚花knurlingnut 滚花螺帽LlampplankLATlatera l 钳口板侧(横)向的lathe 车床LBpound磅leaddistance导程leaderline引导线lead导程leafspring叶(薄)片弹簧lefthand-thread左旋螺纹left-handside(end)view左(端)视图lengthofthreadengagement螺纹旋合长度letter字母leverarm长臂杠杆LGlong.length长度、长的LHlefthand左旋、左方向lightmetal轻金属limitsize极限尺寸limitingdeviations极限偏差limitingelement转向轮廓素线LINlinear线性的、直线的linesegment线段linestyles线型linearity直线性linesinplanes线在面上L-iron角铁local(broken-out)sectionalview局部剖视图locationbydimension定位尺寸locationdimension尺寸定位locknut防松螺母lockscrew锁紧螺钉lockingdevice锁紧装置LONGlongitude经度(线)longdasheddottedthinline点画线longdasheddoubledottedthinline双点画线lower-caseletters小写字母lowerdeviation下偏差lowerlimit下限(值)lubricantpump齿轮油泵。
描述物品的英语
zip 拉链leather 皮革制品brand 商标size 大小pyjamas 睡衣folding 可折叠的label 标签Lost Property 失物招领处=Lost and Found Officescratch 划痕mark 记号badge 徽章make 汽车品牌conents 物品rough 粗略大概material 材质wooden 木头的silver 银gold-plated 镀金的plastic 塑料stainless steel 不锈钢copper 铜black velvet 黑天鹅绒的modern 现代的brand-new 崭新的shape 形状square 正方的oval 椭圆的circle 圆形的semi-circle 半圆的rectangle 长方的curve 曲线的,弯曲的circular 圆形的cylinder 圆柱的sphere 球体conical 圆锥的cube 立方体triangular 三角形的关于材质、纹理的英语单词翻译:Texture 纹理;肌理;质地Materials 材质,材料,素材aged 旧的Paint 油漆,涂料aging 变老,老化Glass 玻璃Metal 金属;合金ancient 古旧的,旧的Brass 黄铜Brickwall 砖墙Camouflage 伪装;掩饰;伪装物Ceramics (陶)制陶业Concrete 混凝土;凝结物Copper 铜;铜制品Cork 软木塞,软木制品;软木Corroded Metal 受侵蚀的金属;受腐蚀的金属Corroded Surfaces 受侵蚀的表面、外表Dirty 脏的,污秽的;色彩暗淡的Tile 瓦;瓷砖;墙砖;地砖Fabric 织物,织品;布料;建筑物Gold 金Granite 花岗岩,花岗石Marble 大理石Wood 木头;木材Plaster 灰泥,灰浆;熟石膏Plastic 塑胶;塑胶制品Rust 锈,铁锈Special Effects 特别的效果Stone 石,石头,石块Stonework 石制品Travertin 凝灰石;石灰华,钙华(建筑用) Weathered 风化的textile 纺织品Iron 铁lead 铅rusty 生锈的steel 钢,钢铁scratched steel 受抓损的钢铁zinc 锌pattern 花样,图案synthetic 合成物;合成纤维bump 凹凸,突出,突起aluminum 铝ground 地面;土壤,土地silver 银crystal 水晶terra-cotta 赤陶nylon 尼龙Peking enamel 景泰蓝pearl 珍珠silk 丝绸woolen 羊毛porcelain 瓷器leather 皮质Diamond 钻石Wooden 木制的关于形状的英语单词翻译:球体Sphere曲线Curve扇形Sector鱼形Fish-shaped方形Square三角形Triangular(Delta Type)长方形(矩形)Rectangular菱形(斜方形) Rhombus(Diamond)椭圆形Oval圆锥形Conical圆柱形Cylindrical蛋形Egg-Shaped葫芦形Pear-Shaped 五边形Pentagon六边形Hexagon七边形Heptagon立菱形Upright Diamond菱形Diamond-Shaped /Phombus双菱形Double Diamond内十字菱形Gross in Diamond四等分菱形Divided Diamond突角菱形Diamond with Projecting Ends斜井形Projecting Diamond内直线菱形Line in Diamond内三线突角菱形Three Line in Projecting Diamond三菱形Three Diamond附耳菱形Diamond with Looped Ends正方形Square Box长方形Rectangle梯形Echelon Formation平行四边形Parallelogram井筒形Intersecting Parallels五边形Pentagon六边形Hexagon 长六边形LongHexagon圆形Circle/Round二等分圆BisectedCircle双环形Crossed Circle双圆形Double Circle双带圆形Zoned Circle长圆形Long Circle椭圆形Oval双缺圆形DoubleIndented Circle圆内三角形Triangle inCircle三角形Triangle六角星形HexangularStar二重三角形DoubleTriangle对顶三角形HourgrassTouching Triangle内外三角形ThreeTriangle十字形Cross圆内十字形Cross inCircle山角形Angle义架形Crotch直线Straight Line月牙形Crescent心形Heart-shaped星形Star-shapedcolorpalegoldenrod 苍麒麟色palegreen 苍绿色paleturquoise 苍绿色palevioletred 苍紫罗蓝色pansy 紫罗兰色papayawhip 番木色peachpuff 桃色peru 秘鲁色pink 粉红plum 杨李色powderblue 粉蓝色purple 紫色red 红色rosybrown 褐玫瑰红royalblue 宝蓝色rubine 宝石红saddlebrown 重褐色salmon 鲜肉色salmon pink 橙红色sandy beige 浅褐色sandybrown 沙褐色sapphire 宝石蓝scarlet 猩红色seagreen 海绿色seashell 海贝色shocking pink 鲜粉红色sienna 赭色silver 银白色skyblue 天蓝色slateblue 石蓝色slategray 灰石色smoky gray 烟灰色snow 雪白色springgreen 春绿色steelblue 钢蓝色stone 石色tan 茶色teal 水鸭色thistle 蓟色tomato 番茄色turquoise 青绿色turquoise blue 翠蓝色violet 紫色wheat 浅黄色white 白色whitesmoke 烟白色winered 葡萄酒红yellow 黄色yellowgreen 黄绿色与英文颜色相对应的中文(tianshuichina)beige 米色black 黑色brown 咖啡色cream 雪白khaki 卡其色grey 灰色navy 丈青色offwhite 灰白色palegoldenrod 苍麒麟色palegreen 苍绿色paleturquoise 苍绿色palevioletred 苍紫罗蓝色pansy 紫罗兰色papayawhip 番木色peachpuff 桃色peru 秘鲁色pink 粉红plum 杨李色powderblue 粉蓝色purple 紫色red 红色rosybrown 褐玫瑰红royalblue 宝蓝色rubine 宝石红saddlebrown 重褐色salmon 鲜肉色salmon pink 橙红色sandy beige 浅褐色sandybrown 沙褐色sapphire 宝石蓝scarlet 猩红色seagreen 海绿色seashell 海贝色shocking pink 鲜粉红色sienna 赭色silver 银白色skyblue 天蓝色slateblue 石蓝色slategray 灰石色smoky gray 烟灰色snow 雪白色springgreen 春绿色steelblue 钢蓝色stone 石色tan 茶色teal 水鸭色thistle 蓟色tomato 番茄色turquoise 青绿色turquoise blue 翠蓝色violet 紫色wheat 浅黄色white 白色wheat 土黄色whitesmoke 烟白色winered 葡萄酒红yellow 黄色yellowgreen 黄绿色。
hypermesh面板命令一览表(中英文)
Hypermesh 命令一览表(上)Geom主面板 (3)Nodes子面板/Distance子界面 (3)Node edit 子界面 (3)Line edit子面板 (4)Lines子面板 (4)Defeature 子界面 (4)Circles 子界面 (4)Surfaces子界面/Surface edit子界面 (5)Midsurface 子界面 (6)Solids 子界面 (6)Solid edit 子界面 (7)Primitives 子界面 (7)Edge edit 子界面/ Point edit 子界面 (8)Auto cleanup 子界面 (9)Quick edit 子界面 (9)1D主面板 (9)Masses 子界面/Shp 子界面 (10)Rigids 子界面 (10)Fe joints 子界面 (10)Bars 子界面 (10)Connectors 子界面 (10)Spotweld 子界面 (13)Hyperbeam 子界面 (13)Line mesh 子界面/Vectors 子界面 (13)Systems 子界面 (14)Edit element 子单元 (14)Split 子单元 (14)Replace子单元/Detach子单元 (14)2D主面板 (14)Cones 子界面 (15)Planes 子界面 (15)Spheres 子界面 (15)Torus 子界面 (15)Drag 子界面 (16)Spin 子界面 (16)Elem offset 子界面 (16)Auto mesh 子界面 (16)Composites子界面 (17)Shrink wrap 子界面 (17)Smooth 子界面 (17)Quality index 子界面 (17)Elem cleanup 子界面 (17)3D 主面板 (18)Solid map 子界面 (18)Linear solid子界面/ Solid mesh 子菜单 (18)Tetramesh子界面 (19)Geom 主面板Nodes 节点Lines 线Surface 曲面Solid 实体Quick edit 快速编辑Node edit 节点编辑Line edit 线编辑Surface edit 曲面编辑Solid edit 实体编辑Edge edit 边编辑Temp nodes 临时节点Circles 圆Defeature简化几何模型Primitives 基本体Point edit 点编辑Distance 距离Length 长度Midsurface 中间面Auto clean up 自动清理Nodes 子面板 Distance 子界面Node edit 子界面Lineedit 子面板Create node 创造节点Create point 创造点 Type in 输入Reject 取消Pick geom.在几何体上建点Number of nodes 节点个数On line 在线上建点Bias intensity 偏置At point 在点上建立节点Number of nodes 建立几个节点Between 两点之间Bias intensity 偏置On plane 在面上建立节点Distance 距离Xdist X 方向的距离Ydist Y 方向的距离Zdist Z 方向的距离Angle节点之间的角度Two nodes 两个节点的距离Nodes between 两点之间放置几个节点Three nodes 三个节点Circle center圆心Two points 两个点的距离Three points 三个点Associate关联Tolerance 公差Move node 移动节点Step size移动尺寸大小Destination surf目标曲面Place node 放置节点Node to place节点到另一个地方Remap 重映射Node list 节点目录Align node 对齐节点Combine 合并Smooth 光滑Split at point指定点分割Split at joint 在连接处分割Split at line 用线分割Cut line剪切线Split at plane 用面分割Lines 子面板DDefeature 子界面Circles 子界面Circle 圆Radius 半径Center & radius 圆心& 半径Offset 偏移量Points & vector 点 & 向量Three points 三个点Find center 寻找中心Smooth corners 平滑转角Smooth line 使线光滑Min tangent angel最小切线角度Extend line 延长线Follow curvature 原有曲率From nodes 通过节点Linear 线性的Offset 偏移Offset by midline 通过中线偏移From surf edges 曲面边缘偏移Original component 偏移到原始组件里Ignore element normal 忽略法向单元Break angle 打断角度From features 通过特性选取Feature angle 特性角度Surfs with plane 面上的曲面Elements with plane 面上的单元Line with plane 面上的线At intersection 交集处Smooth lines 光滑线At tangent 切线Check points 检查点Radius 半径Fillets 圆角Trim original lines 修剪线段Pinholes 小孔Surf fillets 曲面倒角Diameter 直径Find fillets by profile 通过轮廓选取倒角Surf fillets 曲面倒角Find fillets in selected 在选择的部分选取倒角Edge fillets 边倒角Trim-intersect 修剪相交Duplicates 复制Cleanup tolerance 清除公差Find symmetry 寻找对称Reorganize 重组Delete positive 删除当前Symmetry 对称面Delete negative 删除复制体Surfaces 子界面Surface edit 子界面Multiple node 多个节点Trim with nodes 通过节点修剪Node normal to edge 矢量节点到边界Along a vector 沿着矢量Entire surface 全部的曲面Keep line Endpoints 保持线的终点Trim with lines 通过线修剪All attached surface 所有接触面With plane 用平面With surfs 用曲面Trim with surfs/plane 用曲面/平面修剪Self intersecting surfs自定义曲面At cursor 手动选取All trim lines of surfs所有曲面上的修剪线Untrim 还原修剪Internal trim lines 内部修剪线Disjoint offset 部分偏移Offset 偏移Remove degenerations 移除Cross Extension 同过延伸使交叉ExtendExtend selected surf edges延伸选择的曲面边界Shrink 缩放Ruled 规则面Auto reverse自动翻转Spline /filler样条线 / 填充线Auto create (free edges only )自动创建(自由边)Skin 蒙皮Keep tangency 相切Drag along vector 沿着矢量拉伸Drag / spin 拉伸 / 旋转Drag along line 沿着线拉伸Auto detect features 自动检查特性Mesh-based auto tolerance网格自动调整公差Surface complexity 曲面复杂度Split by components 通过组件分割From FE 通过单元Associate nodes 关联节点auto select whole edge自动选择整个边界Pick angel 拾取角度Fillets 圆角Radius 角度Midsurface 子界面Solids 子界面Closed solid 闭合实体Extract 抽取Auto midsurface 自动抽取中间面Extraction options 提取选项Sort 分类Combine with adjacent plates连接与之相邻的板Combine all adjacent plates 连接所有相邻的板Surface pair 配对曲面Result in middle surface comp结果保存在中面组件中Target type 目标样式Point to offset 指定偏移量Quick edit 快速编辑Target location 目标位置Pilot pointPoint to offset 指定偏移量Accept target 接受目标Assign target 赋值目标Pilot pointRemove target 移除目标Retained edge 要保留的边缘Replace edge 替代边缘Edge to move 要移动的边界Extend surface 延伸曲面Surfaces to extend 延长曲面Max extension distension 最大移动距离View thickness 查看厚度Show surfaces thickness 观察曲面厚度Set thickness 设置厚度Auto select solid surfaces 自动选择实体曲面Bounding surfs 曲面边界Surfs component 保存到曲面组件中Drag along vector 沿着向量拖动Merge solids at shared edges 合并重合实体边界Drag along normal 沿着法向拖动Frame mode 框架模式Reference node 参照节点Drag along line 沿着线拖动Transformation planeSolid edit 子界面Primitives 子界面变换平面Spin 旋转Trim with nodes 通过节点修剪Extend trimmer 延伸修剪With cut line 通过剖切线With bounding lines通过边界线Drag a cut line 手动画剖切线With sweep lines 通过扫率曲线Trim with lines线修剪Sweep to 选择曲线Trim with plane/surf 平面/曲面修剪With plane 通过面With surfs 通过曲面To be merged 选取合并的实体Merge by removal 通过分割面合并实体Merge 合并Remove scratches删除刮伤Detach 分离To Detach 要分离的实体Boolean 布尔运算Operating type 操作类型Operating 具体操作Square/block 正方形/块Full cone 整个圆锥Partial cone 部分圆锥Botton center 底面中心Botton center 底面中心Normal vector 法向量Normal vector 法向量Top radius 顶部半径Major vector 主向量Base radius 根部半径Start angle 起始角度Height 高度End angle 终止角度Cylinder/cone 圆柱体/圆锥Axis ratio 轴比率By center and radius 通过中心和半径For partial sphere部分球体Sphere For 4 nodes sphere 通过四点创建球体Theta begin 起始角度Edge edit 子界面Point edit 子界面Theta end 终止角度Phi begin 起始直径Phi end 终止直径Minor radius 内环半径Major center 外环中心Torus 圆环Major radius 外环半径Minor center 内环中心Add 增加At cursor 光标选取Suppress 废除Multiple points 多重边界Break angle 打断角度Replace 替代Move point 去除的点Retained point 保留的点Release 释放Points to edges 点投影到线Points to surfs 点投影到曲面Distance tolerance 距离公差Angle tolerance 角度公差Project 投影Internal points onto its surfs 内部点映射到曲面At cursor 光标选取Toggle 忽略Cleanup tolerance 公差Suppress 压缩Break angle 打断角度Move edge 要移动的边Replace 替代Retained edge 要保存的边Equiv across comps 通过组件合并Equivalence 合并Equiv free edges only仅合并自由边Unsplit 清除分割Multiple edges 混合边界Min radius 最小半径Max radius 最大半径Min angle 最小角度Edge fillets 边界倒角Trim-intersect 修剪相交Close orphan 关闭孤行Angle surfs 曲面角度Offset surfs 偏移曲面Min filletAuto cleanup 子界面Quick edit 子界面1D 主面板最小倒角Max fillet 最大倒角Angel vertex 顶点角度Shape ratio 形状比例Min edge 最小边缘Topology cleanup parameters 拓扑清理参数Use current parameters 使用当前参数Elements quality criteria 元素质量标准Use current criteria 使用当前标准Split surf-node通过节点分割曲面Adjust/set density 调整/创建密度Split surf-line通过节点和目标线分割曲面Replace point 合并点Washer split 偏置分割线Add/remove point 添加/删除点Unsplit surf 合并分割曲面Add point on line 在线上增加点Toggle edge 忽略自由边Release point 释放点Filler surf 曲面倒角Project point 投影点Delete surf 删除曲面Trim-intersect 切除相交Masses 集中质量Bars 梁单元Connectors 连接器Line mesh 线性网格Edit element 编辑单元Fe joint 铰单元Rods 杆单元Spotweld 点焊单元Linear 1d 一维线性Split 分割Sph 球Rigids 刚性单元Hyperbeam Hyper 梁Replace 替代Rbe3橡胶单元Detach 分离Springs 弹簧单元Order change 改变阶次Gaps 间隙单元Vectors 向量Config edit 配置编辑Systems 坐标系Elem types 单元类型Masses 子界面Shp 子界面Rigids 子界面Fe joints 子界面Bars 子界面Connectors 子界面Organize 管理Spot焊点Add links增加连接Compare比较Find 查询Bolt螺栓Unrealize不真实Quality质量Mask 隐藏Seam 缝焊Delete 删除Area 面连接Translate 移动Apply mass 施加质量Numbers 数量Fe absorb FE吸附Renumbers从编号二级子界面OrganizeCollectors 集合Dest component 目标组件Includes 包括Dest目标Mass质量Create创造Property属性Update 更新System系统Simple cubic简单的立方体Pitch边长Material density材质密度Create创建Independent固定点Dependent连接点Attach dependent nodes as a set连接独立的点做设置Dof自由度Connectivity连接性Switch转换Update更新Attach/detach set连接/分离设置Combine合并Combine rigids with合并刚性单元通过Joint type连接类型Create创造Orientation定位Update 更新Spherical 球形的Bar2二维梁Pins aBar3三维梁Orientation/offsets in basic 简单的定位/偏移Update 更新Offset a a 偏移二级子界面Mask 二级子界面find 二级子界面translate 二级子界面deleteGlobal system 坐标系统Magnitude 偏移量二级子界面renumberStart with 从~~开始Single 单个Increment by 增加到二级子界面spot Location 位置Mesh independent 独立网格Spot 焊点Connect what 与~连接Non-normal projection 非均匀投影Creat 创建Tolerance 公差No systems 无系统Realize 实现Add location nodes as line 增加位置节点产生线Spacing 间距End offset 末端偏移Edit 编辑Retain line 保持线二级子界面boltLocation 位置Hole diameter 孔直径Bolt 螺栓Connect what 与~连接Use dynamic vector 使用动态矢量Creat 创建Tolerance 公差Mask 隐藏Reverse显示与隐藏颠倒Reverse all所有都相反状态Mask not shown 隐藏不显示Unmask all 全部显示Unmask 取消隐藏Reject 放弃Find entities 查找对象Find attached 查找连接Attached to 连接到Between 两者之间Delete associated solids 删除相关的实体Delete entity 删除实体Delete associated elems 删除相关的单元Delete model 删除模型Realize 实现Elems to current comp 创建单元到当前组件中中二级子界面seam Location 位置Mesh independent 独立网格Seam 缝焊Connect with 与~连接Creat 创建Tolerance 公差Realize 实现Elems to current comp 创建单元到当前组件中Spacing 间距Params 参数End offset 末端偏移Edit 编辑Group 组Connect rule 连接规则二级子界面area Location 位置Mesh independent 独立网格Area 面Connect with 与~连接Non-normal projection 非均匀投影Creat 创建Tolerance 公差No systems 无系统Realize 实现Elems to current comp 创建单元到当前组件中Mapped type 映射类型Size and bias 尺寸和偏移量Edit 编辑Free type 自由样式Element size 单元尺寸二级子界面Apply mass二级子界面Add links Location 位置Add links 增加连接Connect when 连接时间Connect what 与~~连接Re-connect rule 重新连接的规则Location 位置Mass type 网格类型Connect method 连接方法Distribution 分布Connect what 与~~连接Search tolerance 查询公差二级子界面QualitySpotweld 子界面Hyperbeam 子界面Merge tolerance 合并公差Cross section plane 通过界面Create node at centroid 创建节点在图心Plane base node 平面基准点Shell section 壳截面Create node at shear center 创建节点在剪切中心Part generation 产生部分Solid section 实体截面Analysis type 分析类型Standard section 标准截面Standarad section library 标准截面数据库Standarad section type 标准截面形式Generic section 普通截面Edit section 编辑截面Plot centroid 显示型心Review sections 审查截面Shear center 切变中心Line mesh 子界面Vectors 子界面Preview duplicates 预览重复单元Preview combine 预览合并Connectors 连接Remove duplicates 移除重复单元Projection check 投影校核Find too long 寻找太长的1D elems 1D 单元Length 长度Angle 角度3D elems 3D 单元Jacobian 雅克比All surfs 所有曲面Element config 单元配置Using geom.使用几何Weld location 焊接位置Using nodes 使用节点Without systems 无系统Using elems 使用单元Attach to shell elems 附在壳上的单元Switch nodes 转换节点Element size 单元格大小Segment is whole line 整个线段分段Peoperty 性质Element config 单元配置Vector update method 矢量修正方法Create 创建Magnitude 量Update 更新Global system 坐标系统Systems 子界面Edit element 子单元Split 子单元Replace子单元Detach子单元2D主面板Planes 平面Ruled规则面Connectors连接器Automesh自动划分网格Edit element编辑单元Cones 圆锥Spline样条线HyperlaminateHyper薄板Shrink wrap收缩翘曲Split分割Spheres 球体Skin三角形Composites复合材料Smooth光滑Replace替代Torus 圆环Drag拉伸Qualityindex质量指标Detach分离Create by axis direction 通过轴方向创建create by node reference通过参照节点创建Rectangular 矩形Set reference 设置参考Assign赋值Set displacement设置位移Material orientation 定义材料Material orientationalmethod定义材料方法Plot绘图Tria三角形Quad正方形Tetra四面体Pyramid棱锥Penta五面体Create创建Hex六面体Combine合并Combine to quad合并成正方体Split分割Displayed elems显示单元Cleanup清理Plate elements 板单元Split all sides 分割所有的边Solid elements 实体单元Split into hexas 分割成六面体Hexa elements 六面体单元Two pentas二个五边形Refine to target element size 改善目标单元的尺寸Refine elements改善单元体Target element edge length目标单元边界长度Replace 移动的点Equivalent 等价With不动的点At mid-point在混合节点Detach分离Detach elements分离单元Detach from从~中分离Spin 旋转Elem cleanup 单元清理Order change 改变阶次Line drag 拉伸Config edit 配置编辑Elem offset 单元偏置Elem types 单元类型Cones 子界面Botton center 底面中心Mesh, keep surf划分网格,保留曲面Normal vector 法向量Radius 半径Top radius 顶部半径Ratio 比率Full cone 完整的圆锥Height 高度Major radius 外环半径Start angle 起始角User controlled 自定义Cone 圆锥End angle 终止角Planes 子界面Spheres 子界面Torus 子界面Mesh, keep surf划分网格 , 保留曲面Trimmed 修剪Calculate plane 估算面Square 正方形Full sphere 整个球Mesh, keep surf 划分网格,保留曲面Four points 四个点画球Radius 半径Theta begin 起始角度Theta end 终止角度Phi begin 起始直径User controlled 自定义Phi end 终止直径Center 中心Mesh, keep surf 划分网格,保留曲面Full torus 整个圆环Normal vector 法向量Minor radius 内环半径User controlledMajor vector 主向量Major radius 外环半径Drag 子界面Spin 子界面Elem offset 子界面Connectors 子界面参照1D Connectors Auto mesh 子界面Minor start 内环起始角Major center 外环中心Minor end 内环结束角Minor center 内环中心Major start 外环起始角Three points 三点确定Minor radius 内环半径Major end 外环结束角Distance 距离Drag geoms 拉伸几何体Mesh, keep surf 划分网格,保留曲面Bias style 偏载类型Drag elems 拉伸单元Bias intensity 偏载强度Angle 角度Spin geoms 旋转几何体Mesh, keep surf 划分网格,保留曲面On spin Bias style 偏载类型Spin elems 旋转单元Bias intensity 偏载强度Number of layer 层的数量Solid layers 实体层Initial offset 初始偏移量Tolal thickness 总体厚度Shell layers 壳层Elems to offset 单元偏移Linear or no biasing 线性或不偏载Bias intensity 偏载强度Shell offset 壳偏移量Elements to current comp 创建创建单元到当前组件中CFD corners CFD 角Thicken shells 加厚壳Along geom to follow 沿着几何偏移Shells are on the midsurfaces壳加在中间层Elements size 单元尺寸Elems to surf component 创建单元到面组件Composites 子界面Shrink wrap 子界面Smooth 子界面Quality index 子界面Elem cleanup 子界面Mesh type 单元类型First order 一阶Break connectivity 打断当前连接Previous settings 先前的设置Link opposite edges 连接对面的边QI optimize QI 优化Use current criteria 使用当前条件Smooth across common edges with feature angle光滑有特性角度的共同边Min elem size 最小单元尺寸Edge deviation 边界偏差Max elem size 最大单元尺寸Max angle 最大角度Closed volume proximity封闭附近的体积Surface deviation曲面偏差Mesh type 网格形式Free edge deviation 自由边的偏差Rigid body mesh 刚性体网格Max feature ang 最大的特性角度Material orientation 指定材料Material orientational method 指定材料方法Ply directions厚度方向Tight 紧的Element size 单元尺寸Loose 松散的Generate solid mesh 产生实体网格Mesh orientation 网格方向Iteration 迭代次数Plates 板AnchorSolids 实体Autodecide 自动决定Min size 最小尺寸Place node 放置节点Max size 最大尺寸Swap edge 交换边界Aspect ratio 长宽比Node optimize 节点优化Warpage 翘曲Element optimize 单元优化Skew 扭曲度Jacobian 雅克比Fix folded elems ,angles 修复折叠的单元,角Use surrounding elems 使用周围的单元Reduce tria elems 减少三角单元Use current criteria 使用现有标准QI smooth elems with target QI 光滑单元的目标Feature angle 特征角Fix elems failing QI check 修复单元QI 故障检查Edit element、split、replace、detach参照1D 3D 主面板Solid map 实体映射Drag拉伸Connectors链接Tetramesh四面体格划分Edit element编辑单元Linear solid 线性实体Spin旋转Smooth光滑Split分割Solid mesh 实体网格Line drag拉伸Replace替代Elem offset单元偏置Detach分离Order change改变阶次Config edit配置编辑Elem types单元类型Solid map 子界面Source geom 起始几何Along parameters 参数设置Dest geom 目标几何体Along bias style 偏置形式General 普遍方法Along geom 沿着几何体Elem size 单元尺寸Line drag沿着线拉伸Show solidmap mesh显示实体网格Linear线性Linear solid 线性实体Apply orthogonality to along 相交延长Ends only 终止处One volume 一个实体Smooth dest目标光滑Interactive互动Stop meshing on bad jacobian在不好的雅可比处停止划分网格Multi solids 混合实体Source shell 壳源Previous setting 先前的设置Linear solid子界面Solid mesh 子菜单Alignment 对齐方式Distribute layer 分布的层Density 密度Bais intensity偏载强度Start region开始区域End region结束区域Connecting连接Uniform mesh统一的网格Drag 、Spin 、Line drag 、Elem offset 、Connectors 参照2DTetramesh 子界面Select trias/quads to tetra mesh 选择三面体/四面体进行四面体网格自动划分Optimize mesh quality 优化网格质量Tetra mesh 四面体网格No fixed trias/quads 不修复三面体/四面体Standard 标准Tetra remesh四面体网格重新自动划分Fixed with boundary layer 修复边界网格Number of layers 层的数量Comps 组件First layer thickness 第一层的厚度Single thickness 单一厚度Growth rate 增长率Float w/o boundary layer 浮动w/o 边界层Simple transition :ratio 单个旋转比CFD mesh CFD 网格Remesh重新划分网格Enclose volume 闭合的实体Volume tetra 四面体体积Match existing mesh 匹配存在的网格Elems to current comp 创建单元到当前组件中Smooth 参照2D。
hypermesh菜单翻译A
On line
在线上建点
Number of nodes
节点个数
Bias intensity
偏置
At point
在点上树立节点
Between
两点之间
Number of nodes
树立几个节点
Bias intensity
偏置
On plane
在面上树立节点
Two nodes
两个节点的距离
Distance
内部修剪线
Offset
偏移
Disjoint offset
部分偏移
Remove degenerations
移除
Extend
CrossExtension
同过延长使交叉
Extend selected surf edges
延长选择的曲面鸿沟
Shrink
缩放
Surfaces子界面Surface edit子界面
Ignore element normal
疏忽法向单元
Break angle
打断角度
Feature angle
特征角度
At intersection
交集处
Surfs with plane
面上的曲面
Elements with plane
面上的单元
Line with plane
面上的线
Smooth lines
圆角
auto select whole edge
Delete positive
删除当前
Delete negative
删除复制体
Circles 子界面
Center & radius
GOCAD(外文资料) (4)
gocad
cubit callenges:
topology book-keeping in gocad is very different from bookkeeping in most FE meshers
each TSurf in gocad “owns” its own vertexes and borders, adjoining TSurfs do not reference common nodes
examples of lithospheric structure constraints:
active source seismology: wide-angle reflection/refraction lines (onshore&offshore), MCS lines (non-commercial products)
the CBM format (as I understood in 06/15/2006):
the CBM format (as I understood in 06/15/2006):
the CBM format (as I understood in 06/15/2006):
each volume is closed (and if parts were merged, each side of the volume shares vertexes along the edges), but adjoining volumes do not share a common surface, border surface is duplicated…
?
gocad
cubit
(FEA)
【外国建筑史】建筑常见词汇-fra
A visual glossary of basic architectural terms常见的基本建筑词汇Arcade拱廊Blind arcade on the exterior apse of a church?:在教堂外面的?上Colonnade石柱廊Intercolumniation: the spacing between columns in a colonnade?:石柱廊的列间距Coffer: (a sunken panel in the shape of a square, rectangle, or octagon in a ceiling or vault.花格镶板、藻井(天花板或者拱顶上凹进去的呈正方形、长方形或者八角形的嵌板、镶板)Plafond: a decorative flat or vaulted ceiling?:一种带装饰图案的平坦或者拱形的天花板Barrel vault: architectural element formed by the extrusion of a single curve (or pair of curves, in the case of a pointed barrel vault) along a given distance. The barrel vault is the simplest form of a vault.筒形拱:突出的,有特定间隔的单一弧线构成的建筑基础(尖的筒形拱的弧线是成对的)。
筒形拱是拱廊最简单的形式。
Pointed barrel vault showing direction of lateral forces尖的筒形拱,箭头方向表示侧面的受力方向。
1Catenary (Gaudì, Casa Milà): the shape of a hanging chain is transferred to a form which is then used as a guide for the placement of bricks.悬链线:悬挂着的锁链组成的形状引导砖块的位置Cloister vault: a vault resulting from the intersection of two barrel-vaults crossing in a right angle.修道院回廊拱顶:两个筒形拱相交成直角所形成的拱顶。
nle结尾的单词
nle结尾的单词单词:angle1.1词性:名词、动词1.2释义:作为名词时,指角,角度;也可指观点,立场。
作为动词时,意为使……成角度移动,斜向移动;从(某角度)报道。
1.3英文解释:As a noun, it means a space between two intersecting lines or surfaces at or close to the point where they meet. Also means a particular way of considering an issue or problem. As a verb, it means to move or place (something) at an angle or to present (information) from a particular point of view.1.4相关词汇:同义词:corner(角落,在表示角的概念时有相似性);viewpoint(观点,和angle表示的立场、观点同义);派生形容词:angular(有角的,消瘦的)。
---2. 起源与背景2.1词源:来源于拉丁语angulus,最初表示“角落”或者“弯曲的东西”。
2.2趣闻:在摄影中,不同的拍摄角度(angle)可以创造出完全不同的视觉效果。
例如,低角度拍摄可以让主体看起来更强大、更有威严,而高角度拍摄可能会让主体显得弱小或者渺小。
---3. 常用搭配与短语3.1短语:(1)acute angle:锐角例句:In a right triangle, the acute angles are less than 90 degrees.翻译:在直角三角形中,锐角小于90度。
(2)right angle:直角例句:The corner of this table is a right angle.翻译:这个桌子的角是直角。
catia零部件内腔容积计算
catia零部件内腔容积计算Calculating the volume of internal cavities in CATIA is a crucial requirement for various engineering and design tasks. Accurate volume calculations are essential for evaluating the capacity, fluid flow, and other physical properties of the components. In this essay, we will explore the problem of calculating the internal cavity volume in CATIA from multiple perspectives, including the importance of accurate volume calculations, the challenges faced in the process, the available methods for volume calculation, and the potential benefits of using CATIA for this task.Accurate volume calculations are vital in engineering and design as they provide essential information for a wide range of applications. For instance, in fluid dynamics, knowing the volume of internal cavities helps determine the flow rate and pressure within a component. This information is crucial for optimizing the performance of hydraulic systems, cooling mechanisms, and even aerodynamic designs.Moreover, accurate volume calculations are essential for estimating material requirements, cost analysis, and ensuring the structural integrity of the component.However, calculating the volume of internal cavities in CATIA can be challenging due to the complex geometries involved. CATIA, a powerful computer-aided design software, allows engineers to create intricate 3D models with various shapes and sizes. These models often consist of multiple intersecting surfaces, curved edges, and irregular shapes, making it difficult to determine the exact volume manually. Additionally, the presence of internal features, such as ribs, fillets, and chamfers, further complicates the volume calculation process.To overcome these challenges, CATIA offers several methods for volume calculation. One commonly used approach is the "Mass Properties" tool, which provides accurate volume calculations for solid models. By selecting the desired component and using the "Mass Properties" command, CATIA can automatically calculate the volume based on the model's geometry. This method is particularly useful forcomponents with simple shapes and well-defined boundaries.For more complex components, CATIA offers the "Part Design" module, which allows engineers to create internal cavities using features like pockets, slots, and holes. By defining the dimensions and positions of these features, CATIA can accurately calculate the volume of the resulting cavity. This method is highly versatile and enables engineers to create complex internal structures while ensuring accurate volume calculations.Using CATIA for volume calculations offers several benefits. Firstly, the software provides a user-friendly interface that enables engineers to visualize the component in 3D and make precise adjustments to the model if necessary. This helps ensure accurate volume calculations and reduces the chances of errors. Additionally, CATIA's advanced algorithms and mathematical models ensure high precision and reliability in volume calculations, providing engineers with confidence in their results. Moreover, CATIA's integration with other engineering tools and simulation software allows for seamless transfer of volumedata, enabling further analysis and optimization of the component's performance.In conclusion, calculating the volume of internal cavities in CATIA is an important task in engineering and design. Accurate volume calculations are essential for various applications, including fluid dynamics, material requirements, and cost analysis. Despite the challenges posed by complex geometries, CATIA offers effective methods for volume calculation, such as the "Mass Properties" tool and the "Part Design" module. Using CATIA for volume calculations provides several benefits, including a user-friendly interface, high precision, and seamlessintegration with other engineering tools. By leveraging the capabilities of CATIA, engineers can accurately calculate the volume of internal cavities, leading to improved designs and optimized performance.。
CCH-70-3水力机械钢铸件检验标准
X
(a)
II
III
M F M F
IV
M
V
M
N10
X
F Mtions Surface quality PT MT UT RT
(b)
F
M
F
.gCV'J
.~ ~
~
a.r-(f)I
J::
m() .~ o
c:
X
(d) (d)
o QJ
I-
X
2 2 2 A2 82 C2 2 2 2 2 A2 82 C1 A2 82 C2 2 2 2 2
Unitary weight (finished casting) Inquiry Nr Order Nr Inspection at F's works by Inspection at M's works by
«v',
3542 120711
19.000 kg 18.11.95
15.02.96
(b)
«V" + «X"
(b)
CHARACTERISTICS
Designation: Chemical
OF MATERIAL
Q- X5 Cr Ni 13.4 c % Mn % Si
~
According to standard :
analogic DIN 17445
%
S
~
%
Cr
%
Ni
%
Mo
%
0.015
P
% S+P
Stress relieving heat treatment : (*) Test specimens:
常用的制图专业术语-中英文
常用的制图专业术语,中、英文对照 A-LAA/C across corners 对角距A/F across flats 对边距above stuffing上填料accumulation of energy储能accumulation积聚性acme thread梯形(爱克姆)螺纹across corner 对角距across flat 对边距actual size实际尺寸acute angle 锐角addendum 齿顶高addendum circle 齿顶圆admiralty metal含锡黄铜affiliation从属性(关系)ageing treatment时效处理AL aluminum 铝aligned sectional view旋转剖视图allowance容差、加工余量analytical method of line and plane线面分析法analytical method of shape形体分析法analyzable assembly分析装配图ANG angle 角angle bar or L-bar (beam)角钢angle between axonometric axes轴间角angular dimension 角度尺寸angular gear人字齿轮angular section斜剖面angularity倾斜度anneal退火anti-clockwise逆时针方向的arrow or arrowheads 箭头asbestos packing石棉填料ASM assembly 装配(图)、部件assembly drawing number装配图图号assembly drawings装配(组装)图assembly for installation安装图assembly parts装配组合零件assembly sketches装配草图auxiliary circle辅助圆auxiliary plane辅助平面auxiliary sectional view斜(辅助)剖视图 aligned and developed展开视图AVG average 平均axial coefficients of foreshortening轴向变形系数axis line 轴线axis of rotation转轴axis轴线axonometric axes轴测轴axonometric drawing轴测图axonometric projection轴测投影BBAB Babbitt 巴氏(轴承)合金back (rear) view后(背)视图bar杆base line 基准线base parts机座base plane底平面basic deviation基本偏差basic hole基准孔basic shaft基准轴basic size基本尺寸BB ball bearing 滚动轴承bearing cover轴承盖bearing set轴承座 bearing轴承bell metal青铜(锡铜)合金belt wheel带轮bevel gear斜齿轮BHN Brinell hardness number 布氏硬度值bisector 平分线blade spring板簧blind hole 盲孔(不通的孔)blind hole盲孔blind threaded hole螺纹盲孔blunt angle 钝角body of revolution回转体bolt joint螺栓连接bolt螺栓border 图框border line 图框线boring machine or boring镗床boring镗孔boss club凸台bottom shell 下轴瓦box箱体brazing metal铜锌合金bright washer平垫圈Brinell hardness布氏(HB)硬度broacher拉床、绞孔机broaching拉床、扩孔机broach拉光broken line 断裂线broken view (local view)局部视图BRS brass 黄铜BRZ bronze 青铜burnish or polishing磨光butterfly valve蝶形阀buttress (screw) thread锯齿形(枪膛)螺纹caliper卡尺(钳)cap screw带帽螺钉(栓)capital letters 大写字母carburizing (carbon infiltration)渗碳case hardened硬化、表面淬火casting defect铸件缺陷casting processes铸造工艺casting铸造、铸件castle nut内六角圆螺母cavity空腔(穴)CBORE counterbore 沉孔、埋头孔center to center distance 中心距centerline (central line) 中心线center-to-center spacing中心距central projection中心投影CH HD cheese head 开槽圆柱头CHAM chamfer 倒角chamfer倒角channel bar槽钢characteristics of projection 投影特性CHD checked (by) (由) …校对check drawings校(核)图cheese head圆柱头Chinese characters 汉字chrome plating镀铬CI cast iron 铸铁CIR circular 圆的circular arc 圆弧、弧circular pitch 齿距circular pitch周节circular runout圆跳动CL or centerline 中心线clamping夹紧clearance fit间隙配合clockwise顺时针方向的CM centimeter 厘米coarse pitch thread粗牙普通螺纹coarse wheel粗砂轮加工coating涂覆coincidence (revolved) section重合断面coincident point重影(合)点color-hardening着色硬化、发蓝、发黑combination solids组合体commom tangent公切线common axis公共轴线common point 共有点compass 圆规component构件compound sectional view复合剖视图concave millstone凹面磨盘concentric circle同心圆concentricity and coaxiality同轴(心)度conic (miter) gear圆锥(伞)齿轮connecting bar连杆construction line 作图线contact surfaces接触表面continuous straight thin line with zig zags 折线continuous thick line 粗实线continuous thin irregular line 波浪线continuous thin line 细实线contour arithmetic mean deviation轮廓算术平均偏差contour element外形素线conventional breaks折断规定画法conventional representation规定画法converge聚为一点convex millstone凸面磨盘coordinate axis坐标轴COP copper 铜copper plating镀铜corrosion腐蚀cotter (split) pin 开口(尾)销counterbore hole 阶梯沉孔、埋头孔counterboring tool 平底扩孔钻counter-drill 阶梯钻countersunk hole锥形沉孔、埋头孔coupling or union连轴器covering external thread套扣CP circular pitch 周节crank摇把cross rib十字肋cross section shape横断面形状crossing line交叉线crossing point交叉点CRS (C to C) centers 中心距CSK countersunk 锥孔、埋头孔CU cubic 立方的CU FT cubic foot 立方英尺CU IN cubic inch 立方英寸CU YD cubic yard 立方码cube立方体cuboid长方体cup packing皮碗密封curve template 曲线板curved line of intersection曲交线curved slot 曲线槽cutting plane symbol剖切平面符号cutting plane剖切平面cut断面图cycloidal gear摆线齿轮CYL cylinder (cylindrical) 圆柱、圆柱体的cylindricity圆柱度Ddashed thin lines 虚线datum feature基准要素datum line基准线datum plane基准面datum point基准点datum symbo基准代号 ldeburring去毛刺dedendum circle 齿根圆dedendum 齿根高DEG or ? degree 度delineator制图者descriptive geometry 画法几何descriptive geometry solution 图解法design datum设计基准DET DWG detail drawing 零件图detail drawing零件图detailing (an assembly drawing) (由装配图)拆画零件图deviation尺寸偏差(偏差)DIA or φ diameter 直径DIAG diagonal 对角线(的)diagonal line 对角线diagram assembly drawing装配工作图diagrammatic drawing示意图diameter 直径diamond knurling网纹滚花dimension 尺码dimension figure 尺寸数字dimension form 尺寸格式dimension line 尺寸线dimension text 尺寸数值dimension tolerance尺寸公差dimetric drawing正二轴测图dividers 分规dome圆顶状double-start thread双线螺纹dowel pin 圆柱销draft or draught起模斜度drafting paper 绘图纸drafting tape 胶带纸drawing board 图板drawing number图号DRG drawing 制图、图样drilling钻孔drive gear主动齿轮driven gear从动齿轮driven shaft从动轴DRN drawn (by) (由) …绘图ductile cast iron球墨铸铁dynamometry测力Eedge line棱线effective diameters弹簧中径effective length有效长度EI or ei 来自法文ecart inferieur 下偏差代号elbow肘形弯管(头)element circle素线圆element symbol基本符号elementary unit基本体ellipse椭圆elongated hole延长孔、拉伸孔end cover端盖end face端面end point端点engineering requirements技术要求enlarged partial view局部放大图enlargement scale 放大比例EQUI SP or EQS equally spaced 均布erasing shield 擦图片ES or es 来自法文ecart superieur 上偏差代号EXT external 外部的extension line 尺寸界线external (male) thread外(阳)螺纹external diameter弹簧外径external dimension外形尺寸external tangency 外切external thread lathing车外螺纹external view外形视图extreme position of moveable part 活动极限位置extruding挤压FFAB fabricate 制造、装配faucet旋塞、水龙头feed spiral送料螺旋felt ring毡圈ferrous metal黑色金属FIG. figure 附图、插图FIL fillister 凹槽file锉filing margin 装订边fill in填写fillet铸造(内)圆角fine boring精镗fine broaching精拉fine grinding精磨fine milling精铣fine pitch thread细牙普通螺纹fine planning精刨fine turning精车finish all over全部加工fissure裂纹fit symbol配合代号fit system配合制fit配合55? non sealing pipe thread 55?非密封管螺纹55? sealing pipe thread 55?密封管螺纹fixed body固定钳身flange法兰盘、凸缘flat bar扁钢flat heads平顶flat or plane平面flatness平面度follower从动(大齿)轮font 字体font cavity缩孔、铸口forging锻压fork拨叉form error形状误差forth quadrant第四象限four quadrants四个象限45? mitre line 45?斜线free hand 徒手(画)free height自由高度frontal line正平线frontal plane (or V-plane)正投影面frontal plane正平面frustum of a cone圆锥台frustum of a cone截头圆锥frustum of a pyramid棱锥台FT or ′foot 英尺full sectional view全剖视图full size 原值比例full thread全螺纹functional dimensions功能尺寸Ggasket密封垫(圈)gauge calipers卡(量)规gear box (case)齿轮箱gear train齿轮传动gear齿轮general fit class配合种类general-plane 一般位置平面general-position line一般位置直线generating circle母线圆generator (generation) line母线Geometric construction 几何作图geometrical solid几何体geometrical tolerance symbol形位公差符号geometrical tolerance形状位置公差GI galvanized iron 马口铁、镀锌铁gib-head key钩头楔键gland压盖gland密封压盖globe valve球阀good-quality carbon steel优质碳素钢grade 坡度grade A and grade B of type one hexagon nutI 型六角螺母A级和B级graduated scale 比例(分度)尺graphical representation 图示法Graphics 图学GRD grind 磨削grey cast iron灰口铸铁grinding machine磨床grinding研磨grinding磨削groove 凹槽、沟纹guard valve安全阀guide pin定位销guide screw丝杠Hhalf sectional view半剖视图half view半视图hand valve手压阀hard casting白口铁hard metal硬质合金hardened and tempered调质的harden淬火hardness number硬度值Hatching 剖面线heat-treatment热处理heavy lines 加深图线heavy metal重金属helical compression spring圆柱螺旋压缩弹簧helical spring螺旋弹簧helical spur gear斜齿圆柱齿轮helical tension spring圆柱螺旋拉伸弹簧herringbone gear人字形圆柱齿轮HEX hexagon 六角(边)形HEX HD hexagon head 六角头hex nut六角螺母hex slotted nut六角开槽螺母hexagon head 六角头hexagon head bolt六角头螺栓hexagon head bolt六角头螺栓hexagon socket cap screw内六角圆柱头螺钉hexagon thin nut六角薄螺母hidden edges 不可见轮廓线high-carbon steel高碳钢high-speed steel高速钢hole-basis system of fits基孔制配合horizontal (level) plane水平面horizontal line水平线horizontal projection plane (H-plane)水平投影面hot-rolled steel热轧钢HP horsepower 马力H-perpendicular line铅垂线H-perpendicular plane铅垂面HR hour 小时hub轮毂hub轮毂、中心hyperbola双曲线Ihypotenuse直角三角形之斜边(弦)I/D inside diameter 内径、内形尺寸I-beam工字钢imaginary line 假想线IN or ″ inch 英寸incenter 内(切圆)心included angle夹角inflexion拐点ingot iron低碳钢(工业纯铁)initial outline 初始轮廓线inlet side入口端inner race内圈inside diameter内径instruction book说明书instrumental drawing 用仪器画的图INT internal 内部的interchangeability互换性interference fit过盈配合internal (female) thread内(阴)螺纹internal (inside) caliper内卡尺(钳)internal diameters弹簧内径internal tangency 内切internal thread lathing车内螺纹interpenetration相贯intersecting plane截平面intersection line截交线intersection of plane surfaces平面之交线intersection of surfaces表面之交线intersection point交点Intersection相交Intuitive illustrations直观图involute gear渐开线齿轮iron铁ISO standards ISO国际标准ISO=International Standardization Organization 国际标准化组织isometric drawing (diagram)正等轴测图isometric projection正等测投影isometric sectional view正等轴测剖视图Italic font 斜体Jjack千斤顶、起重器jig body夹具体junction surface结合面Kkey diagram原理草图key joint键连接key seat键座key types键的型式key way (slot)键槽key键knobbled (wrought) iron熟(锻)铁knurling 滚花knurling nut滚花螺帽Llamp plank钳口板LAT lateral 侧(横)向的lathe车床LB pound 磅lead distance导程leader line 指引线lead导程leaf spring叶(薄)片弹簧left hand-thread左旋螺纹left-hand side (end) view左(端)视图length of thread engagement螺纹旋合长度letter 字母lever arm长臂杠杆LG long .length 长度、长的LH left hand 左旋、左方向light metal轻金属limit size极限尺寸limiting deviations极限偏差limiting element转向轮廓素线LIN linear 线性的、直线的line segment 线段line styles 线型linearity直线性lines in planes线在面上L-iron角铁local (broken-out) sectional view局部剖视图location by dimension 定位尺寸location dimension尺寸定位lock nut防松螺母lock screw锁紧螺钉locking device锁紧装置LONG longitude 经度(线)long dashed dotted thin line 点画线long dashed double dotted thin line 双点画线lower-case letters 小写字母lower deviation下偏差lower limit下限(值)lubricant pump齿轮油泵。
LessonNineIntersection(Ш)相贯线(精)
Step 3: Complete front view of intersection
First peculiar points which locate on the outlines.
a c (d ) b d″ a″ (b″ ) c″
d
a
b
c
Because there is a common symmetric plane of front and rear on the two cylindrical surfaces, the intersecting points of their front outlines, point A and point B, are common points.
The intersecting points, point C and point D, between profile outlines of smaller cylindrical surface and circumference are common points.
Secondly general points which locate on the revolutionary surfaces.
Step 4. Brighten the reserved outlines.
For example 1:
Complete front view.
Step 1: Analyse: The solid is consisted of two cylinders, a smaller cylinder and a bigger cylinder, of which their axes are perpendicular and intersection.
hypermesh菜单翻译A之欧阳学创编
Auto create(free edges only)
自动创建(自由边)
Skin
蒙皮
Keep tangency
相切
Drag / spin
拉伸/旋转
Drag along vector
沿着矢量拉伸
Drag along line
沿着线拉伸
From FE
通过单元
Auto detect features
部分圆锥
Botton center
底面中心
Botton center
底面中心
Normal vector
法向量
Normal vector
法向量
Top radius
顶部半径
Major vector
主向量
Base radius
根部半径
Start angle
起始角度
Height
高度
End angle
终止角度
创造点
Reject
取消
Pickgeom.
在几何体上建点
On line
在线上建点
Number of nodes
节点个数
Bias intensity
偏置
At point
在点上建立节点
Between
两点之间
Number of nodes
建立几个节点
Bias intensity
偏置
On plane
在面上建立节点
删除刮伤
Detach
分离
ToDetach
要分离的实体
Boolean
布尔运算
Operating type
操作类型
Operating
英汉词典
接合座 自适应总线-digital data highway to which(almost) any number of inputs 地址-electronic code identifying each part of computer memory,each address bit or information unit being routed to different address adhesion 粘接 adhesive tape 粘胶带 adjacent to 邻近的 可调水平安定面-horizontal stabilizer of an airplane which may be adjustable stabilizer adjusted in flight to trim the airplane for hands-off mode in flight admittance 导纳-in AC circui,reciprocal of impedance advance drawing 图纸先行更改通知 change notice(ADCN) advanced 先进的-new sophisticated and typifying latest technology advanced switch 步进电门 adverse effect 不利影响;严重后果 advisory circular(AC) 咨询通报 advisory Message 咨询信息 aerodynamic 空气动力的 aerodynamic smoother 空气动力平滑胶 aeroelastic torsion 气动弹性扭曲 aeronautical 航空的 aerosol 烟雾,浮质-colloid of finely divided solid or liquid disperesed in aft looking forward 从后向前看 afterbody drag 后体阻力 afterburner 加力燃烧室 尾喷管喷火-sometimes called torching,a condition resulting from afterfiring unburrnt fuel being ignited in the exhaust nozzle age-hardening 时效,硬化 ageing=aging 时效处理 aging 老龄的 agent 试剂 aileron 付翼 aileron authority 付翼效能 付翼传动力限制器-electro-mechanical device for limiting the control aileron force limiter wheel movement by the autopilot during autopilot operation aileron programmer 付翼程序器-convert central lateral control actuator motion to control air bleed valve 放气活门 减速板;阻力板-a plate or series of plates that may be projected into air brake airport's slipstream to provide turbulence and drag to slow the air carrier 航空营运者-any company which provides commercial air transportation air conditioning 空调 空气循环机;涡轮冷却器-a compressor & turbine on a common shaft for air cycle machine cooling air in an air conditioning system 大气数据计算机-one which produces air data air data computer information(altitude,airspeed ect) based on pressure and temperature 中断飞行-a change from original flight plan due to a known or air interruption suspected malfunction&/ defect during flight air lock 气锁,气塞-a trapped pocket of air that blocks the flow of fluid 空气封严件;气密封圈;气封严-usually thin rotating or staionary rims air seal designed to act as air DAMS to reduce airflow leakage air ground 起落架位置传感器;空地传感器-an electrical device operated by the sensor landing gear for transmitting airport position for systems operation air tapping 抽气管座 空中返航-return of airplane to airplane of origin as a result of air turnback malfunction or suspected defect of any item on airplane airborne 空中飞行的;机载的
斜面应力公式的适用条件
第41卷第4期力学与实践2019年8月斜面应力公式的适用条件D胡恒山2)宋永佳(哈尔滨工业大学航天科学与力学系,哈尔滨150001)摘要 斜面应力公式,即一点应力的坐标旋转变换公式,是材料力学和弹性力学里最常用的公式之一,并广泛用于固体力学和工程设计中。
一个让学生感觉例外的典型例子是含V 形切口的薄板在切口尖端的应力情况,如果利用斜面应力公式和切口面的自由面条件,就会得出切口尖点处于零应力状态的结 果,而这与线弹性断裂力学给出切口处应力趋于无限大的结果不符。
为消除这一疑虑,考察了尖端应力的特性,指出:只有在过一点的各个斜面上的应力是单值连续的情况下,斜面应力公式才能适用,此时,该点的全部应力分量组成应力张量。
在V 形切口的尖端、裂纹尖端,自由面与顺其延伸至介质内侧的面上的应 力不同,应力在该面上就不是单值连续的,该点的应力状态就不能用张量表示,斜面应力公式在切口或裂纹尖端就不适用了。
关键词 应力变换,单元体,V 形切口,应力张量,单值中图分类号:O34 文献标识码:A doi : 10.6052/1000-0879-18-486CONDITIONS FOR THE APPLICATION OF THE STRESSTRANSFORMATION FORMULA *1)2018-12-10收到第1稿,2019-04-12收到修改稿。
1) 国家自然科学基金资助项目(11734017,U802074)o2) 胡恒山,教授,从事材料力学与波动力学教学与研究。
E-mail: hhs@引用格式:胡恒山,宋永佳.斜面应力公式的适用条件.力学与实践,2019, 41(4): 445-448Hu Hengshan, Song Yongjia. Conditions for the application of the stress transformation formula. Mechanics and Engineering^ 2019, 41(4): 445-448HU Hengshan?) SONG Yongjia(Department of Astronautics and Mechanics, Harbin Institute of Technology, Harbin 150001, China)Abstract The stress transformation formula, which is also called the Cauchy's formula for stresses onslanted surfaces, is widely used in solid mechanics. No explicit statement has been found on its limitationsin application. The stresses at the sharp point of a V-shaped free-surface notch on a bar under axial loading at both ends are examined as an example. W 计h the two intersecting surfaces being free, it is deduced from the transformation equations that the sharp point is stress free. This deduction is however contradictoiy to the fact that the stress concentrates near the sharp point. Clearly the stress transformation formula leads to incoirect results and thus is not valid at that sharp point. It is known that if the stress transformation formula is valid, the stress components constitute a stress tensor, but the stress at the sharp concave corner is shown to be discontinuous and double-valued. It is further pointed out that stress transformation formula is not applicable to any point where a stress component has discontinuity or lacks of uniqueness at a surface passing through that point. The tip of any crack is the case.Key words stress transformation, stress element, V shaped cut, stress tensor, single-valued斜面应力公式,或应力变换公式,是材料力学【1-2]和弹性力学[3-5]最常用的公式之一。
INFLATABLE STRUCTURE
专利名称:INFLATABLE STRUCTURE 发明人:Visser, Etienne Douw申请号:EP01991641.0申请日:20011114公开号:EP1346119B1公开日:20060208专利内容由知识产权出版社提供摘要:This invention comprises of an inflatable structure that is constructed by combining polyhedron structural elements to form more complex geodesic structures. The structural elements are constructed out of straight inflatable tubes, in which the warp of the polyester reinforced fabric is aligned with the principal tube axis, giving it high resistance to bending. The complementary leg ends are connected at the vertices with connectors that comprises a slider and track formation, fixed along the axial angle at the end of each leg. Each leg end is shaped along the natural complimentary lines along the intersecting surfaces of the adjacent structural element. Once assembled in combination with a fabric cover and groundsheet, the tent is stable and completely freestanding.申请人:VISSER ETIENNE DOUW地址:ZA国籍:ZA代理机构:Galgut, John更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Intersecting Surfaces of Special TypesMyung-Soo KimDept.of Computer SciencePOSTECHPohang790-784,Korea.AbstractThe paper reviews new approaches to computing the in-tersection curve of two surfaces of special types.We con-sider algorithms for intersecting a torus with a natural quadric or another torus.After that,we review a topo-logical technique that computes the intersection curve of a sphere and a surface of revolution.Finally,we consider the intersection of two ruled surfaces.1.IntroductionIntersecting two surfaces is a basic geometric opera-tion in geometric and solid modeling,e.g.,for supporting Boolean operations in a solid modeler.There has been a considerable amount of previous work on the intersection of free-form surfaces[9,23,25].Nevertheless,finding al-gorithms that can compute the intersection curve of two ar-bitrary rational surfaces reliably without user intervention is extremely difficult[9].In particular,when two surfaces have singular intersections,general algorithms have serious drawbacks in robustness.Robustness,accuracy and/or efficiency are often im-proved by using a special purpose algorithm customized for the particular class of intersection problem being solved. For intersecting two quadric surfaces,there are many spe-cialized algorithms[7,17,18,20,21,24,26,27,28,29]that provide better solutions(in efficiency and robustness)than general surface intersection algorithms.Algebraic meth-ods[7,17,18,26,28,29](based on symbolic manipulation of surface equations)are general in the sense that they can handle all types of quadric surfaces.However,when the algebraic algorithms are implemented usingfloating-point arithmetic,it is very difficult to ensure their robustness.In the case of intersecting two natural quadrics,the sit-uation is much better.There are reliable geometric algo-rithms that can intersect two natural quadrics efficiently and robustly[20,21,24,27].In particular,Miller and Gold-man[21]classify necessary and sufficient geometric con-ditions that correspond to all possible types of degener-ate/singular intersections.All computations employed in these algorithms have clear geometric meanings.More-over,they can be carried out efficiently and robustly.To-gether with similar geometric algorithms for computing the planar sections of natural quadrics[11,22],these al-gorithms[20,21,24,27]can support efficient and robust Boolean operations for CSG objects constructed by planes and natural quadrics.A natural question is how to extend the geometric coverage to include torus.There are algebraic methods for intersecting two arbi-trary cyclides[4,10,19].Plane,natural quadrics,and torus are special types of cyclide.Therefore,these algorithms can be used in intersecting a torus with other simple sur-faces(plane,natural quadrics,and torus).As in the case of intersecting two quadric surfaces,algebraic methods are general,but they have limitations in robustness.Therefore, we need geometric algorithms that can guarantee efficiency and robustness at the same time.Kim et al.[13]present an algorithm that intersects a torus with a sphere.Based on a configuration space(C-space)transformation,this approach can be extended to the intersection of a torus with a cylinder,a cone,or another torus.The C-space technique is applicable to closed sur-faces that enclose valid solids;thus it is difficult to deal with a spindle(self-intersecting)torus.Kim et al.[16]present a topological technique that can intersect a sphere with an arbitrary surface of revolution(which may self-intersect). Moreover,the intersection curve can be represented exactly in a closed-form equation represented by a square root func-tion.Heo et al.[8]simplify the problem of intersecting two ruled surfaces to the construction of an implicit curve in the plane.A ruled surface is linear in one parameter direc-tion.Thus it is easy to eliminate the linear parameters of two ruled surfaces simultaneously,while reducing the prob-lem to a single equation in two remaining parameters.The construction of an implicit curve in the plane is significantly more efficient and robust than the intersection of two ruled surfaces in the space.The rest of this paper is organized as follows.In Section 2,we consider an example which exemplifies the funda-mental difficulty of general surface intersection.Section3 reviews the C-space transformation approach and Section4 shows how to detect degenerate conic sections in the inter-section of a torus and a natural quadric surface.In Section5, we explain an algorithm that intersects a sphere with a sur-face of revolution.The intersection of two ruled surfaces is discussed in Section6.Finally,in Section7,we conclude this paper.2.Limitation of General Surface IntersectionAmong numerous methods for intersecting two general free-form surfaces,subdivision-based methods produce themost reliable solutions,in general.Nevertheless,when ap-plied to almost tangential surfaces,a subdivision algorithm has serious drawbacks in efficiency and robustness due to acascading sequence of recursive subdivisions.Figure1(a)shows two bi-cubic B-spline surfaces that in-tersect in four closed loops.Figures1(b)and1(c)are the results of scaling the two surfaces of Figure1(a)along the -direction by factors0.1and0.01,respectively.(This ex-ample is taken from Figure7.11of J.-J.Choi[3].G.Elber atTechion,Israel,originally suggested testing this example.) The intersection curve of Figure1(a)has the same topolog-ical structure as that of Figure1(c).Nevertheless,it is sig-nificantly more difficult to deal with the almost tangential intersection case of Figure1(c).In Figure1(c),the intersection curve is composed of many tiny curve segments generated in the recursive sub-division.The input surfaces are also subdivided into many small patches.Due to numerical errors occurring in the re-peated subdivision,it is extremely difficult to connect the intersection curve segments in a correct topology.Many tiny loops may be generated erroneously.Thus it is hard to tell how many connected components the intersection curve actuallyhas.(a)(b)(c)Figure1.Tangential Surface Intersection.3.C-space TransformationA torus is the envelope surface of a sphere moving along a circle.Given a torus and a surface,their intersection curve can be characterized as the envelope of the inter-section curves generated by the moving sphere and the given surface.Kim et al.[13]showed that the problem of intersecting a torus and a sphere can be transformed to the intersection of the main circle of the torus and two offsets of the sphere(see Figure2).The left column of Figure2 showsfive different configurations of the main circle of a torus with respect to the volumetric region bounded by two offset spheres.The right column shows the intersection curves corresponding to the configurations of the left column.When the main circle is totally contained in the volumet-ric region bounded by two offset spheres,the intersection curve has two loops.Each tangential intersection between the main circle and an offset sphere corresponds to a sin-gular point of the intersection curve.Each segment(except the whole circle)in the volumetric region corresponds to a connected component of the intersection curve.When the minor radius of the torus is larger than the ra-dius of the sphere,we cannot apply this technique since the inner offset sphere reverses its surface orientation.In this case,we may consider the sphere as a moving object and the torus as an obstacle.As we reduce the sphere to its cen-ter,the torus is offset to two tori.Depending on the region where the sphere center locates,we can tell the topological type of the intersection curve(see Figure3).The C-space approach can be extended to the intersection of a torus witha cylinder,a cone,and another torus[12].4.Degenerate Conic SectionsConic sections embedded in a torus must be circles of special types(see Figure4):(i)profile circles,(ii) cross-sectional circles,and(iii)Yvone-Villarceau circles. When a torus intersects another surface in a conic section, the conic section must be a circle.It is easy to classify all circles embedded in natural quadrics(sphere,cylinder,and cone).By comparing these circles with those embedded in a torus,we can detect and compute all conic sections(i.e., circles)in the intersection curve of a torus and a natural quadric.Kim and Kim[14]present a simple algorithm that de-tects and constructs all degenerate circles in the intersection of a torus and a natural quadric.Consider a torus(with minor radius,major radius,center,and axis direc-tion),and a sphere(with center and radius).TheFigure2.Torus and SphereIntersections.Figure3.Torus and SphereIntersections.(a)(b)(c)Figure4.Circles Imbedded in a Torus.1p2p1Nrp2N1p1rr(a)(b)Figure5.Detecting Yvone-Villarceau Circlestorus and the sphere intersect in two Yvone-Villarceau cir-cles if and only if they satisfy the following two conditions:(2) The circle itself is constructed as a circle of radius,with center atin the intersection curve.The end point (respectively,)is located on the circle if and only if the two segments and are connected at their com-mon end point(and respectively,).For example,the intersection curve of Figure7consists of two closed loops.Similarly, referring back to Figure6,the intersection curve consists of one isolated(tangential)point and two closed loops.When ,,is a closed loop inside(but never in-tersects the circle itself),the intersection curve has two closed loops,each of which is a smooth deformation of (i.e.,homeomorphic to).In general,the surface of revolution may self-intersect and the sphere may intersect the axis of rotation.Figure8 shows four such examples.In each example,the grey re-gion represents the area inside the circle which is at the same time outside the reflected circle(with respect to the axis of rotation).Note that each segment in the grey re-gion corresponds to a closed loop of the intersection curve.Assume that the sphere of radius has its center at and the surface(of revolution)is obtained by ro-tating a plane curve about the-axis.(We may assume this specific configuration by applying trans-lation and rotation to both surfaces.)Kim et al.[16]show that the intersection curve can be represented exactly as follows:Thus the problem of intersecting two ruled surfaces can be essentially reduced to that of constructing an implicit curve in the-plane.Let be a surface parametrized by.The curve is constructed by inter-secting and the-plane.By applying the B-spline subdivision technique to the surface,we can com-pute the intersection curve.This approach provides an effi-cient and robust algorithm,in particular,when the two ruled surfaces intersect almost tangentially.(a)(b)(c)(d)(e)(f)Figure9.Intersection of two cylinders.In(a)-(d),two almost coaxial cylinders are inter-sected,with the angle between the two cylin-ders being,,,.In(e)and(f),the functions for cases(a)and(d)areshown.Figures9(a)–9(d)show a sequence of examples that in-tersect two almost coaxial cylinders with angles of,, ,between the two cylinders,in that order.Fig-ures9(e)and9(f)are the-functions of the examples shown in Figures9(a)and9(d),respectively.It is very difficult to distinguish two intersecting cylinders that appear almost overlapping in Figures9(c)–9(d).Moreover,the-function of Figure9(f)is almostflat.Nevertheless,the computation results are numerically stable and they produce reasonable solutions,which demonstrates the robustness of our inter-section algorithm for two ruled surfaces.Elber et al.[5]show that traditional ray-tracing can be re-duced to a problem of intersecting a free-form surface with ruled surfaces(see Figure10).Thus the development of efficient algorithms for surface intersection can have a sig-nificant impact on graphics rendering.Given two free-form curves in the plane,their bisector curve is defined as the set of points which are at equal distance from the two curves. Choi[3]reduced the problem of computing a bisector curve to that of intersecting two developable surfaces(which are also ruled surfaces).Thus the surface intersection of free-form surfaces(in particular,that for ruled surfaces)has var-ious interesting applications in computer graphics and geo-metricmodeling.Figure10.Ruled Tracing.7.ConclusionThis paper reviewed the author’s recent work in devel-oping algorithms that intersect surfaces of special types.As an envelope surface of a sphere moving along a circle,the torus has a simpler geometric structure than the cone.Con-sequently,geometric algorithms for tori can be designed in a much easier way than those dealing with natural quadrics. Ruled surfaces are also simpler than general free-form sur-faces.The computational procedure for intersecting two ruled surfaces is similar to that of Elber and Kim[6]which computes the bisector curve of two rational curves in the plane.It may also be possible to transform other problems for ruled surfaces to simpler problems of solving a few al-gebraic constraints in two variables.AcknowledgementsThe author owes much to technical collaboration with his colleagues and students,in particular,to Jung-Ju Choi,Ger-shon Elber,Hee-Seok Heo,Ku-Jin Kim,and Ralph Martin.This research was supported in part by the Korean Min-istry of Science and Technology under Grant97-NS-01-05-A-02-A of STEP2000,by KOSEF(Korea Science and Engineering Foundation)KOSEF(Korea Science and En-gineering Foundation)under Grant96-0100-01-01-2and Com Mac.References[1] C.Bajaj,C.Hoffmann,J.Hopcroft,and R.Lynch.Tracingsurface puter Aided Geometric Design, 5(4):285–307,November1988.[2] C.Bajaj and G.Xu.NURBS approximation of sur-face/surface intersection curves.Advances in Computational Mathematics,2(1):1–21,January1994.[3]J.-J.Choi.Local Canonical Cubic Curve Tracing along Sur-face/Surface Intersections.Ph.D.Thesis,Dept.of Computer Science,POSTECH,February1997.[4]J.de Pont.Essays on the Cyclide Patches.Ph.D.The-sis,Cambridge University Engineering Department,Cam-bridge,February1984.[5]G.Elber,J.-J.Choi,and M.-S.Kim.Ruled tracing.TheVisual Computer,13(2):78–94,February1997.[6]G.Elber and M.-S.Kim.Bisector curves of planar rationalcurves.To appear in Computer-Aided Design,1999.[7]R.Farouki,C.Neff,and M.O’Connor.Automatic parsingof degenerate quadric-surface intersections.ACM Trans.on Graphics,3(3):174–203,July1989.[8]H.-S.Heo,M.-S.Kim,and G.Elber.The intersection of tworuled surfaces.To appear in Computer-Aided Design,1999.[9]J.Hoschek and sser.Fundamentals of Computer AidedGeometric Design.A.K.Peters,Wellesley,MA,1993. [10]J.Johnstone.A new intersection algorithm for cyclides andswept surfaces using circle puter Aided Geometric Design,10(1):1–24,February1993.[11]J.Johnstone and puting the intersectionof a plane and a natural puters&Graphics, 16(2):179–186,April1992.[12]K.-J.Kim.Torus and Simple Surface Intersection Basedon a Configuration Space Approach Ph.D.Thesis,Dept.of Computer Science,POSTECH,February1998.[13]K.-J.Kim,M.-S.Kim,and K.Oh.Torus/sphere intersectionbased on a configuration space approach.Graphical Models and Image Processing,60(1):77–92,January1998. [14]K.-J.Kim and puting all conic sectionsin torus and natural quadric intersections.Proc.of Israel-Korea Bi-National Conference on New Themes in Comput-erized Geometric Modeling,Tel-Aviv,Israel,February18–19,1998,pages11–20.[15]K.-J.Kim and M.-S.Kim.A simple algorithm fortorus/sphere intersection.Proc.of Workshop on Differ-ential/Topological Techniques in Geometric Modeling andProcessing’98,Pohang,Korea,April7–8,1998,pages205–214.[16]K.-J.Kim,M.-S.Kim,and R.Martin.Intersecting a trans-lationally or rotationally swept surface with a plane or a sphere.Submitted for publication,1998.[17]J.Levin.A parametric algorithm for drawing pictures ofsolid objects composed of quadric mun.ACM, 19(10):555–563,October1976.[18]J.Levin.Mathematical models for determining the intersec-tions of quadric puter Graphics and Image Processing,11(1):73–87,September1979.[19]R.Martin,J.de Pont,and T.Sharrock.Cyclide surfacesin computer aided design.The Mathematics of Surfaces I, J.A.Gregory(Ed.),Clarendon Press,Oxford,pages253–267,1986.[20]ler.Geometric approaches to nonplanar quadricsurface intersection curves.ACM Trans.on Graphics, 6(4):274–307,October1987.[21]ler and R.Goldman.Geometric algorithms for de-tecting and calculating all conic sections in the intersection of any two natural quadric surfaces.Graphical Models and Image Processing,57(1):55–66,January1995.[22]ler and ing tangent balls tofind planesections of natural quadrics.IEEE Computer Graphics& Applications,12(2):68–82,March1992.[23]N.Patrikalakis.Surface-to-surface intersections.IEEEComputer Graphics&Applications,13(1):89–95,January 1993.[24]L.Piegl.Geometric method of intersecting natural quadricsrepresented in trimmed surface puter-Aided De-sign,21(4):201–212,May1989.[25]M.Pratt and A.Geisow.Surface/surface intersection prob-lems.The Mathematics of Surfaces I,J.A.Gregory(Ed.), Clarendon Press,Oxford,pages117–142,1986.[26]R.Sarraga.Algebraic methods for intersections of quadricsurfaces in puter Vision,Graphics,and Image Processing,22(2):222–238,?1983.[27] C.-K.Shene and puting the intersectionof a plane and a revolute puters&Graphics, 18(1):47–59,January1994.[28]W.Wang,B.Joe,and puting quadric sur-face intersections based on an analysis of plane cubic curves.Manuscript,1997.[29]I.Wilf and Y.Manor.Quadric-surface intersection curves:Shape and puter-Aided Design,25(10):633–643,October1993.。